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Muonium is a purely leptonic system, but the accuracy of the theoretical QED prediction for its
hyperfine interval is limited in part by hadronic effects. Here we consider radiative corrections to the
leading hadronic vacuum polarization term, since their size is larger than the uncertainty in the calculation
of the leading hadronic term itself. The total hadronic contribution of relative order of α in comparison with
the leading hadronic term is found to be 4.97(19) Hz. The hadronic uncertainty sets an “ultimate” limit on
the use of the 1s hyperfine interval in muonium as a QED variable.
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I. INTRODUCTION

Quantum electrodynamics (QED) is a theory which, in
principle, allows us to make theoretical predictions with an
unlimited accuracy in the case of “purely leptonic” quan-
tities. Unfortunately, such quantities do not exist in nature.
Many theoretical predictions can be made for simple atoms.
The most important atomic contributions can be obtained
by considering one or a few electrons in an external field
created by the nucleus. Ordinary atoms have nuclei, which
are not pointlike, i.e., structureless particles. The effects of
nuclear structure could not be treated ab initio. To take
them into account one has to utilize experimental data on
the nuclear structure and apply models.
There are two atoms available for experimental studies,

muonium and positronium, that do not have a hadronic
nucleus. In this paper we consider a muonium atom,
which consists of an electron and a muon, where a heavier
particle (mμ/me ≃ 207) plays the role of a nucleus. The
most accurate QED tests can be performed on the hyper-
fine-structure (HFS) interval in the ground state. The
history of studies of such a quantity is a long one and
various QED contributions have been studied for decades.
A review can be found in [1–3].

Even in such a purely leptonic two-body system, there
are nonleptonic contributions present. The situation is
pretty similar to that with the anomalous magnetic moment
of the muon (see, e.g., [4,5]). Various contributions have
QED diagrams with photon lines. The full photon propa-
gator includes the vacuum-polarization loop and therefore,
once we have a contribution with a photon line, there
should be radiative corrections to it due to the vacuum-
polarization effects. The latter have contributions due to all
charged particles including hadrons. The leading hadronic
contributions come from the hadronic vacuum polarization
(hVP); see Figs. 1 and 2.
The hadronic contributions to the muonium HFS interval

[6–10] and to the gμ − 2 (see, e.g., [4,5,11–14]) have
reached the accuracy better than 1% and therefore their
uncertainty is comparable to radiative corrections to the
leading hadronic terms. In this paper, we study radiative
corrections to the leading hadronic contribution to the HFS
interval in the ground state of muonium.

FIG. 1. Leading hadronic contribution to Mu HFS.*savely.karshenboim@mpq.mpg.de
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This interval has been known with a high accuracy
[15,16]

νHFSðexpÞ ¼ 4 463 302.776ð51Þ kHz; ð1Þ
and the progress seems possible. (In our paper we calculate
the energy HFS interval and apply the relativistic units
in which ℏ ¼ c ¼ 1, but all the numerical results are given
in the frequency units, i.e., in terms of the related value
of ΔE/h.)
There are different estimations of the QED computa-

tional uncertainty, which vary from 70 to 200 Hz (see [2,3]
for details.). Meanwhile the uncertainty in the leading term
for the HFS interval is as large as 500 Hz and is determined
by the accuracy of our (experimental) knowledge of the
muon-to-electron mass ratio.
The status of the muonium spectroscopy as well as

proposals for a new series of experiments are described in
[17–20]. One may expect more accurate results in the close
future. At present, the experimental accuracy is above the
uncertainty of the hadronic contribution, but the situation
may hopefully change soon. The QED uncertainty is also
above the level of radiative corrections to the leading
hadronic contributions. However, the QED contributions
can be determined, in principle, more accurately depending
on purely theoretical efforts. In contrast to that, any
calculation of the hadronic contributions depends on the
existence of the data and sets a kind of an ultimate limit for
a theoretical prediction.

II. TWO-PHOTON EXCHANGE AND THE
LEADING HADRONIC CONTRIBUTION TO

MUONIUM HFS INTERVAL

The diagrams for the leading hadronic VP contribution
to the HFS interval in muonium are presented in Fig. 1.
They are related to two-photon-exchange diagrams.
Currently the hadronic contributions are evaluated by the
data-driven dispersion approach resulting in an accuracy of
0.5% or even better for the dominant contribution of the
ρ-meson final state (see [6–10] and [4,5,11–14] for details).
The “first-principles-based” lattice calculations, although
showing good progress, are not yet able to provide the
subpercent accuracy needed to solve the problem of the
muon anomalous magnetic moment [21,22].
Within the dispersion-relation approach, the hadronic

VP is described with help of a substitution in the photon
propagator

1

k2
→

α

π

Z
dsρðsÞ
k2 þ s

; ð2Þ

where k is the photon four-momentum and the parameter s
is the dispersion variable for the hVP.
The spectral density ρðsÞ can be, in principle, determined

experimentally. In terms of the cross section of eþe−
annihilation into hadrons it takes the form

ρðsÞ ¼ RðsÞ
3s

; ð3Þ

where

RðsÞ ¼ σðeþe− → γ → hadronsÞ
4πα2/3s

: ð4Þ

Technically, the dispersion parameter s plays a role of
the photon mass squared and to take advantage of the
dispersion presentation (3) we have to evaluate the skeleton
diagrams (see Fig. 3) with one massless and one massive
photon.
The contribution that is linear in hadronic vacuum

polarization can be presented as an integral [23]

ΔEðhVP∶leadÞ ¼ 2
αðZαÞ
π2

memμ

m2
μ −m2

e
ẼF

Z
dsKMuðsÞρðsÞ;

ð5Þ

where

KMuðsÞ ¼
Z

∞

0

dkL0ðkÞ
Z

1

k2 þ s
; ð6Þ

and

KMuðsÞ ¼ −
�

s
4m2
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þ 2
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4m2
μ

s

s
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1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

μ

s

q

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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s
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þ
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−
1

2
ð7Þ

and

ẼF ¼ 8

3
ðZαÞ4 m

2
e

mμ

�
mR

me

�
3

: ð8Þ

The latter is the Fermi energy, the leading nonrelativistic
contribution to the hyperfine interval in muonium. It is

FIG. 2. Leading hadronic contribution to the anomalous mag-
netic moment of the muon [aμ ¼ ðgμ − 2Þ/2)].

FIG. 3. The two-photon-exchange skeleton diagrams.
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customary to distinguish two similar values, the Fermi
energy with the Dirac values of the magnetic moments, ẼF,
and a “full” nonrelativistic value with the actual value of the
nuclear (muon) magnetic moment

EF ¼ ẼFð1þ aμÞ:

Here, Z stands for the nuclear charge and in muonium
Z ¼ 1, but it is customary to keep it in order to distinguish
the effects due to radiative photons (with α) and exchange
photons (with Zα).
An important factor in (6) is the leptonic factor, that

for the skeleton two-photon-exchange diagram, which is
responsible for the leading hVP contribution, is of the form

L0ðkÞ ¼ 4

�� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

μ þ k2
q

− k

�

þ k
2

�
−

k
4m2

μ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2

μ þ k2
q

þ k2

4m2
μ
þ 1

2

��
: ð9Þ

An application of that or a similar expression with a
realistic sophisticated description of the available exper-
imental data on R leads to results on the leading hVP term
with an uncertainty at the level of 1% and even better
(for earlier less accurate results see references in [7–10]).
The most accurate results are summarized in Table I.
We note that most of the radiative corrections to the

leading hadronic term are linear in hVP and can be
presented in a similar form. To find those linear contribu-
tions we have to evaluate the radiative corrections to the
leptonic factor LðkÞ. To study the radiative corrections to
the leading hVP term which are suppressed by a factor of
α ≃ 1/137, we do not need a sophisticated description of R;
a simple model will be sufficient.

III. A MODEL FOR THE HADRONIC VP
SPECTRAL FUNCTION ρðsÞ

The model we use includes the contribution of meson
resonances and a background. The dispersion density is
defined as

ρmodðsÞ ¼ ρresðsÞ þ ρbðsÞ: ð10Þ

The resonances (ρ, ω, ϕ) are described with δ functions

ρresðsÞ ¼
X
ρ;ω;ϕ

ρiresðsÞ; ð11Þ

where

ρiresðsÞ ¼
4π2

f2res
δðs −mresÞ ð12Þ

and their parameters are presented in Table II (cf. [24]).
The background contributions within the model are

ρbðsÞ ¼
RbðsÞ
3s

; ð13Þ

where

Rb ¼
�
2.3; for 1.0 GeV <

ffiffiffi
s

p
≤ 3.7 GeV;

3.8; for
ffiffiffi
s

p
> 3.7 GeV:

ð14Þ

The model described above is our base model and it
apparently has its limitations. To control the accuracy of
our calculations we also consider a supporting model,
which involves a somewhat more realistic description of
the resonances (an asymmetric Lorentzian profile with the
effective width Γ depending on s) and a somewhat more
advanced background (with a more complicated behavior at
threshold between 1.0 and 1.5 GeV).
To estimate the quality of the base model, we calculate

now the leading hVP contributions to the HFS interval
in the ground state of muonium and to the anomalous
magnetic moment of the muon aμ. The analytic expression
for the former has been already discussed above [see (5)].
The result is

ΔEmodelðhVP∶leadÞ ¼ 239.9 Hz; ð15Þ
which should be compared to the complete result (see
Table I). The deviation is about 5%. The application of
the supporting model shifts the result by approximately
10%. The dominant contribution comes from the ρ meson
(see Table III).

TABLE I. Recent results for the leading hVP contribution to the
muonium HFS interval (see Fig. 1).

ΔEhVP∶lead Ref.

240(7) Hz [7]
233(3) Hz [8]
232.5(2.5) Hz [9]
232.7(1.4) Hz [10]

TABLE II. Parameters of the ρ, ω, and ϕ mesons [24].

Resonance mres, [MeV] 4π/f2res

ρ 775.26 1.61
ω 782.65 0.136
ϕ 1019.46 0.221

TABLE III. The ρ-meson contributions to the leading hVP
terms in the muonium HFS interval and in aμ.

Term
ρ-Meson

Contribution

ΔEHFS 64%
aμ 70%
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A similar situation is with a calculation of the leading
hVP contribution to aμ [11] (see Fig. 2)

ΔaμðhVP∶leadÞ ¼
α2

π2

Z
dsKaðsÞρðsÞ; ð16Þ

where

Ka ¼ −
�

s2

2m4
μ
−

2s
m2

μ
þ 1

�
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1 − 4m2
μ

s

q ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

μ

s

q
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4m2

μ

s

q

þ
�

s2

2m4
μ
−

s
m2

μ

�
ln

s
m2

μ
−

s
m2

μ
þ 1

2
: ð17Þ

The result of the application of the model reads

Δamodel
μ ðhVP∶leadÞ ¼ 6.92 × 10−8: ð18Þ

The alternative model shifts the result by 3% and the
difference between the value in (18) and that obtained with
full R is approximately twice smaller. The dominant
contribution to ΔaμðhVP∶leadÞ comes from the ρ meson
(see Table III).
The calculation of these two quantities, which are known

with the accuracy at the level of 1%, is helpful to estimate
the uncertainty of our base model. The difference between
the results obtained in the base model and the supporting
one is of the order of a few percent. The difference between
the results of our base model and those found with the
“complete” description of the data for contributions to
the muonium HFS interval [6–10] (see Table I) and to the
anomalous magnetic moment of the muon [4,5,11–14] is
somewhat smaller.
It is important that in all the results the dominant

contribution to the hVP terms comes from the ρ meson.
With a complete consideration, the ρ is the main source
of the uncertainty. We conclude that if in the case of the
evaluation of the corrections the contribution of the ρ
meson dominates, the accuracy of the model could be
safely estimated as 10%.
Speaking about the accuracy of the calculation of the

leading hVP term (see Table I) we note that there have been
more efforts to estimate the leading hVP contribution to aμ.
The ρ meson not only produces a dominant contribution to
the central value, but is also responsible for most of the
uncertainty for the leading hVP terms in the muonium
HFS interval and aμ. The ρ contributions are comparable in
them. That means that whatever progress is achieved for
the leading hVP contribution to aμ, we should expect that
an equally accurate evaluation is possible for the HFS
interval. The accuracy at the level of a portion of percent is
quite achievable. That is not an accuracy of a particular
calculation for muonium [10]. That is also an accuracy
which we should expect by adopting the model used for

various calculations for aμ (see, e.g., [12]) and applying
them to muonium.
For both muonium HFS and aμ, the dominant contri-

bution (70% or more) comes from the ρ meson, which is
known to very high accuracy of about 0.5%. The multibody
hadronic final states have been measured much less
accurately but now worse than 10%. A comparison of
our approximate model with the sum of the measured cross
sections shows that conservatively one can estimate the
accuracy of our approach as better than 5%.
The dominance of the ρ-meson contribution also means

that the momentum exchange is essentially higher than the
muon scale

4m2
μ

m2
ρ
≃ 0.076; ð19Þ

which is helpful for various estimations, allowing us to use
numerous asymptotics.

IV. RADIATIVE CORRECTIONS TO THE
LEADING HVP TERM

The radiative corrections to the leading hVP term are
presented in Fig. 4. All but the last [Fig. 4(g)] are QED
radiative corrections and they are linear in hadronic vacuum
polarizations. The last contribution is quadratic.
The radiative corrections were in part considered in

[23,25], where some terms were evaluated with a large
fractional uncertainty (essentially about 10%). In this
section we intend to reach the level of 10% (see above)
and below in this section we discuss a further improvement
in the accuracy.
To discuss the radiative corrections to the leptonic factor

L0ðkÞ in (9), we note that all contributions similar to those
presented in Fig. 4, but with a substitution of the hadronic
vacuum polarization by the muonic one, have been calcu-
lated [26–29] and the results were considered in detail.
The muonic vacuum polarization was taken there into
account by a substitution

(a) (b) (c) (d)

(e) (f) (g)

FIG. 4. Characteristic diagrams for the higher-order two-
photon-exchange hVP contributions.
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1

k2
→

Z
1

0

dv
v2ð1 − v2/3Þ

4m2
μ þ k2ð1 − v2Þ ; ð20Þ

which is a dispersion presentation as well as the substitu-
tion for the hadronic vacuum polarization in (2). The
similarity of these two substitutions means that the k
integration for the leading term and for the QED radiative
corrections to the leading term is the same for the hVP
terms and muonic VP terms. The integral over the
dispersion density is different. The radiative corrections
to the integrand can be presented in terms of the corrections
to the leptonic factor L0ðkÞ in (9), which do not depend on
the dispersion parameter. We adopt those corrections from
the calculations with the muonic VP.
In particular, let us mention two of them.
To take into account the single-electron vacuum polari-

zation [see Fig. 4(a)] we have to multiply the expression
L0ðkÞ by Z

1

0

dv
v2ð1 − v2/3Þk2

4m2
e þ k2ð1 − v2Þ : ð21Þ

The combinatorial coefficient is 6. Another useful presen-
tation of the same factor is

1

3
ln
m2

μ

m2
e
þ 1

3
ln

k2

m2
μ
−
5

9
; ð22Þ

which is sufficient for the hadronic contributions at
k ≫ me. The second presentation allows us to explicitly
extract a logarithmically enhanced contribution.
The radiative correction for the diagrams of Fig. 4(b) is at

k ≫ me described by a factor of [27]

−
23

12
:

A more accurate formula is also available [27].
The results of the calculations of the hVP contributions

are presented in Table IV. Even if the asymptotics for
k ≫ me (similar to those described above) are available, we
applied completely accurate expressions for the radiative

corrections. Certain marginal differences between the exact
formulas and the asymptotic ones (essentially below the
accuracy of the model) have been observed. We estimate
the accuracy of the results linear in hVP as 10% (for the
final result).
The model we use is not very accurate. However, the

uncertainty can be nevertheless improved. Comparing
Tables III and IV we note that the fractional contribution
of the ρ meson is approximately the same. That is an
indication that the calculation of the leading hVP term
and any QED radiative correction to it discussed above
are correlated. By comparing the results of the base
and supporting models we check that for ΔEhvp∶i
(i ¼ a; b;…; f) the deviation of one model from the other
is essentially larger (in fractional units) than the deviation
of the ratio ΔEhvp∶i/ΔEhvp∶lead. The result with an improved
estimation of the uncertainty is summarized in Table V.

V. OTHER HADRONIC CONTRIBUTIONS
IN ORDER αEhVP∶lead

There is a radiative correction [see Fig. 4(g)] which is not
a QED radiative correction to the leading hVP term. The
contribution is quadratic in hVP effects. The calculation
does not present a problem, while using the dispersion
presentation for the hadronic vacuum polarization, and the
result of the direct calculations is

ΔEðhVP∶gÞ ¼ 0.58ð11Þ Hz: ð23Þ

We estimate the uncertainty as 20% (because it is quadratic
in hVP).

TABLE V. The hVP contributions to the HFS interval in
muonium in fractional units (with respect to the leading hVP
term).

Term ΔE in Units of α
π · ΔEhvp∶lead

a ln m2
μ

m2
e
− 5

3
þ 1.475ð35Þ

b 1.272(65)
c −1.876ð1Þ
d −0.687ð75Þ
e −1.057ð20Þ
f −0.566ð10Þ
a − f ln m2

μ

m2
e
− 2.70ð10Þ

¼ 7.97ð10Þ

FIG. 5. A characteristic diagram for the hadronic light-by-light
scattering contribution.

TABLE IV. The higher-order hadronic contributions to the
muonium 1s HFS interval. The classification of the terms follows
Fig. 4.

Term ΔEhVP [Hz]
ρ-Meson

Contribution

a 6.60 62%
b 0.70 55%
c −1.05 64%
d −0.38 61%
e −0.58 61%
f −0.31 61%
a − f 4.4(4) 61%
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The accuracy can be improved by presenting the con-
tribution in units of the leading hVP term as

ΔEðhVP∶gÞ ¼ 1.054ð50Þ α
π
ΔEhvp∶lead: ð24Þ

The result is more accurate than the previous one, since the
model dependence is partly removed once we compare
the contribution of interest to ΔEhvp∶lead. That is a conse-
quence of the domination of the ρ-meson contribution in
ΔEðhVP∶gÞ.
There are two more contributions in order αΔEhvp∶lead.

One of them is due to hadronic light-by-light (hLbL)
scattering (see Fig. 5). The result for the hLbL contribution
is negligibly small [30]

ΔEðhLbLÞ ¼ −0.0065ð10Þ Hz:

For all the contributions above, similar diagrams with a
substitution of the hadronic closed loop by a muonic one
are known and it may be interesting to compare their
numerical contributions (see Table VI). In many situations,
the muonic result can be considered as a very rough
preliminary estimation, but still a reasonable one, of the
related hadronic term. That is correct for all the hVP
contributions, but fails for the hLbL term, which is
essentially smaller compared to its muon counterpart.
There is a contribution in order αΔEhvp∶lead for which its

muonic VP analog is not known. That is a three-photon
hVP contribution (see Fig. 6). The contribution does not

seem to have any logarithmic enhancement as we estimate
it as [25]

ΔEðhVP∶3γÞ ¼ �0.16 Hz:

VI. CONCLUSION

To find the numerical value we rely on the result
233(3) Hz [8] for the leading hVP term and use the results
in fractional units in Table Vand in Eq. (24). We choose the
result of [8] because, as we see from the situation with
calculations of the leading hVP term to aμ, the results more
accurate than 1% already exist; however, they have a large
scatter. The uncertainty essentially below one percent for
the leading term is possible; however, first, more accurate
results for aμ should be consistent. The results are sum-
marized in Table VII.
The uncertainty due to three-photon contributions is

the dominant one for the total uncertainty of the radiative
corrections to the hadronic contribution in order
αΔEhVP∶lead. A consideration of higher-order terms, such
as α2ΔEhVP∶lead, shows that they are comparable to that
uncertainty. For example, the leading α2 contribution
(due to two-electronic VP) is in the leading logarithmic
approximation

2α2

3π2
ln2

m2
μ

m2
e
ΔEhVP∶lead ≃ 0.094 Hz:

The next-to-leading terms (with a single logarithm) are
smaller, but numerically comparable to the leading α2

term and we assign the uncertainty of 50% to the leading
logarithmic approximation for the α2 term.
The total result for the higher-order hadronic contribu-

tions is

ΔEhadr∶h:o ¼ 4.97ð19Þ Hz; ð25Þ
which is consistent with previous less accurate estimations
such as 7(2) Hz [23] and 5.0(15) Hz [25]. The uncertainty
of the former calculations of the higher-order term is
comparable to the uncertainty of the leading term in
Table I and in case of any further progress in the leading
term it would dominate within the hadronic sector.

TABLE VI. The hVP contributions to the muonium HFS
interval. The factor 1/2 for the b term arises because of the
difference in combinatorial coefficients; that is, 0.464 Hz that
should be compared to 0.68 Hz. The leading hadronic term is
taken from [8]. The uncertainty of the hadronic terms follows the
results of Table Vand the leading result from [8]. We consider the
uncertainties as uncorrelated.

Term ΔEhVP [Hz] ΔEμVP [Hz]

Leading 233(3) [8] 253.217
a 5.89(2) 6.158 [26]
b 0.68(3) 1/2 × 0.464
c −1.015ð5Þ −1.109 [27]
d −0.37ð4Þ −0.352 [28]
e −0.57ð1Þ −1.060 [27]
f −0.303ð5Þ −0.257 [29]
g 0.58(3) 0.232
hLbL −0.0065ð10Þ [30] −0.495 [31]

FIG. 6. A characteristic three-photon-exchange hVP diagram.

TABLE VII. The total higher-order hadronic contributions to
the 1s HFS interval in muonium.

Term ΔEhVP [Hz] Ref.

Linear (a − f) 4.31(6)
Quadratic (g) 0.57(3)
hLbL −0.0065ð10Þ [30]
3γ hVP �0.16 [25]
α2 �0.09ð5Þ
Total 4.97(19)
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The current uncertainty in the higher-order hadronic
contributions in (25) does not have this problem. An
improvement in the leading hVP term will immediately
improve the complete hadronic uncertainty.
To conclude, we improved the calculation of the radi-

ative corrections to the leading hadronic contribution to the
1s HFS interval in muonium compared to our previous
paper [25]. The radiative corrections are definitely above
the uncertainty of the calculation of the leading hVP term

which is from 1 to 3 Hz [8–10] and could be likely
improved to reach the uncertainty below 1 Hz. That opens
an opportunity to check bound-state QED theory of the
muonium HFS interval at the level of a part in 1010.
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