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In a wide class of cosmological models, a positive cosmological constant drives cosmological evolution
toward an asymptotically de Sitter phase. Here we connect this behavior to the increase of entropy over
time, based on the idea that de Sitter spacetime is a maximum-entropy state. We prove a cosmic no-hair
theorem for Robertson-Walker and Bianchi I spacetimes that admit a Q-screen (“quantum” holographic
screen) with certain entropic properties: If generalized entropy, in the sense of the cosmological version of
the generalized second law conjectured by Bousso and Engelhardt, increases up to a finite maximum value
along the screen, then the spacetime is asymptotically de Sitter in the future. Moreover, the limiting value of
generalized entropy coincides with the de Sitter horizon entropy. We do not use the Einstein field equations
in our proof, nor do we assume the existence of a positive cosmological constant. As such, asymptotic
relaxation to a de Sitter phase can, in a precise sense, be thought of as cosmological equilibration.
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I. INTRODUCTION

Like black holes, universes have no hair, at least if they
have a positive cosmological constant Λ [1–10]. A cosmic
no-hair theorem states that, if a cosmological spacetime
obeys Einstein’s equation with Λ > 0, then the spacetime
asymptotically tends to an empty de Sitter state in the
future.1 A more precise statement is due to Wald, who
proved the following theorem [1]:
Theorem I.1 (Wald) All Bianchi spacetimes (except

for certain type IX spacetimes) that are initially expanding,
that have a positive cosmological constant Λ > 0, and
whose matter content besides Λ obeys the strong and
dominant energy conditions, tend to a de Sitter state in the
future.
Bianchi spacetimes are cosmologies that are homo-

geneous but in general anisotropic [12,13]. For example,
the metric of the 1þ 3-dimensional Bianchi I spacetime in
comoving Cartesian coordinates is given by

ds2 ¼ −dt2 þ a21ðtÞdx2 þ a22ðtÞdy2 þ a23ðtÞdz2: ð1Þ

It is essentially a Robertson-Walker (RW) spacetime in
which the scale factor can be different in different direc-
tions in space. In this case, when the necessary conditions
are satisfied, Wald’s theorem implies that each aiðtÞ tends
to the same de Sitter scale factor, expð ffiffiffiffiffiffiffiffi

Λ/3
p

tÞ for a
cosmological constant Λ > 0, as t tends to infinity.
The intuition behind why one would expect a cosmic no-

hair theorem to hold is that as space expands, the energy
density of ordinary matter decreases while the density of
vacuum energy remains constant. As such, the cosmologi-
cal constant eventually dominates regardless of the initial
matter content and geometry, and a universe in which a
positive cosmological constant is the only source of stress-
energy is de Sitter. For Bianchi I spacetimes, one can make
this intuition explicit by writing down a Friedmann
equation for the average scale factor, āðtÞ≡ ½a1ðtÞa2
ðtÞa3ðtÞ�1/3, which gives ([14] Chap. 8.6)

�
_̄aðtÞ
āðtÞ

�
2

∝ ðρΛ þ ρmatter þ ρanÞ: ð2Þ

On the right-hand side, ρΛ and ρmatter denote the energy
densities due to the cosmological constant and matter
respectively, while ρan is an effective energy density due
to anisotropy, similar to how one can think of spatial
curvature as an effective source of stress energy. Crucially,
ρan scales at most like ā−2, and so as the universe expands,
only the constant contribution due to ρΛ persists. The
exception to Wald’s theorem is the case of a Bianchi IX
spacetime (which has positive spatial curvature) whose
initial matter energy density is so high that the spacetime
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1For a different definition of cosmic hair which more closely
parallels black hole hair, see [11].
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recollapses before the cosmological constant can dominate
[1]. Intuitively, we expect not only anisotropies, but also
perturbative inhomogeneities to decay away at late times,
though this is harder to prove rigorously [2,9,15,16]. For
arbitrary inhomogeneous and anisotropic cosmologies, one
can always find regions that expand at least as fast as de
Sitter, thus realizing a type of local no-hair theorem [17].
Beyond classical general relativity, various generalizations
of Wald’s theorem attempt to demonstrate analogous no-
hair theorems for the quantum states of fields on a curved
spacetime background [18–20].
As the universe expands and the cosmological constant

increases in prominence with respect to other energy
sources, something else is also going on: entropy is
increasing. According to the second law of thermodynam-
ics, the entropy of any closed system (such as the universe)
will increase or stay constant, at least until it reaches a
maximum value. It is interesting to ask whether there is a
connection between these two results, the cosmic no-hair
theorem and the second law. Can the expansion of the
universe toward a quiescent de Sitter phase be interpreted
as thermodynamic equilibration to a maximum-entropy
state? It is well established that de Sitter has many of the
properties of an equilibrium maximum-entropy state,
including a locally thermal density matrix with a constant
temperature [21,22], and the relationship between entropy
and de Sitter space has been examined from a variety of
perspectives [23–31].
In this paper we try to make one aspect of these ideas

rigorous, showing that a cosmic no-hair theorem can be
derived even without direct reference to Einstein’s equa-
tion, simply by invoking an appropriate formulation of the
second law. This strategy of deducing properties of
spacetime from the behavior of entropy is reminiscent of
the thermodynamic and entropic gravity programs [32–36],
as well as of the gravity-entanglement connection [37–44].
Though we do not attempt to derive a complete set of
gravitational field equations from entropic considerations,
it is interesting that a specific spacetime can be singled out
purely from the requirement that entropy increases to a
maximum finite value.
To derive our theorem, we require a precise formulation

of the second law that is applicable in curved spacetime,
and that includes the entropy of spacetime itself. A step in
this direction is Bekenstein’s generalized second law (GSL)
[45]. Recall that the entropy of a black hole with area A is
given by SBH ¼ A/4G. The GSL is the conjecture that
generalized entropy, Sgen, which is defined as the sum of
the entropy of all black holes in a system as well as the
ordinary thermodynamic entropy, increases or remains
constant over time. Unfortunately this form of the GSL
does not immediately help us in spacetimes without any
black holes. Recently, Bousso and Engelhardt proposed a
cosmological version of the GSL [46], building on previous
work on holography [47], apparent horizons [48–53], and

holographic screens [54,55]. They define a version of
generalized entropy on a hypersurface they call a
“Q-screen.” A Q-screen is a quantum version of a holo-
graphic screen, which in turn is a modification of an
apparent horizon. Given a Cauchy hypersurface Σ and a
codimension-2 spatial surface with no boundary σ ⊂ Σ that
divides Σ into an interior region and an exterior region, the
generalized entropy is the sum of the area entropy of σ, i.e.,
its area in Planck units, and the entropy of matter in the
exterior region

Sgen½σ;Σ� ¼
A½σ�
4G

þ Sout½σ;Σ�: ð3Þ

Bousso and Engelhardt’s version of the GSL is the state-
ment that generalized entropy increases strictly monoton-
ically with respect to the flow through a specific preferred
foliation of a Q-screen

dSgen
dr

> 0; ð4Þ

where r parameterizes the foliation. Although it is
unproven in general, this version of the GSL is well
motivated and known to hold in specific circumstances
(the discussion of which we defer to the next section).
In this work, we use the GSL to establish a cosmic

no-hair theorem purely on thermodynamic grounds. In an
exact de Sitter geometry, the de Sitter horizon is a holo-
graphic screen,2 and every finite horizon-sized patch is
associated with a fixed entropy that is proportional to the
area of the horizon in Planck units [56]. We therefore
conjecture that evolution toward such a state is equivalent
to thermodynamic equilibration of a system with a finite
number of degrees of freedom, and therefore a finite
maximum entropy. Specifically, assuming the GSL, we
show that if a Bianchi I spacetime admits a Q-screen along
which generalized entropy monotonically increases up to a
finite maximum, then the anisotropy necessarily decays and
the scale factor approaches de Sitter behavior asymptoti-
cally in the future. At no point do we use the Einstein field
equations, nor do we assume the presence of a positive
cosmological constant. The GSL and that entropy tends to a
finite maximum along the Q-screen take the logical place of
these two respective ingredients.
The proof essentially consists of first showing that an

approach to a finite maximum entropy heavily constrains
the possible asymptotic structure of a Q-screen. Second, we
show that the spacetime must necessarily be asymptotically
de Sitter (and in particular, isotropic as well) in order to
admit a Q-screen with the aforementioned asymptotic
structure.

2Pure de Sitter spacetime does not, however, satisfy the generic
conditions outlined in [55].
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The structure of the rest of this paper is as follows. We
review Q-screens and the GSL in Sec. II. In Sec. III, we first
prove a cosmic no-hair theorem for the simpler case of RW
spacetimes using the GSL. Then, in Sec. IV, we move on to
the proof for Bianchi I spacetimes, first in 1þ 2 dimensions
to illustrate our methods, and then in 1þ 3 dimensions,
which also illustrates how to generalize to arbitrary
dimensions. We discuss aspects of the theorems and their
proofs as well as some implications in Sec. V.

II. THE GENERALIZED SECOND LAW FOR
COSMOLOGY

We begin by briefly reviewing Bousso and Engelhardt’s
conjectured generalized second law. The GSL can be
thought of as a quasilocal version of Bekenstein’s entropy
law for black holes [45], but which also applies to
cosmological settings. Moreover, the GSL is a natural
semiclassical extension of Bousso and Engelhardt’s area
theorem for holographic screens in the same way that
Bekenstein’s entropy law extends Hawking’s area theorem
to evaporating black holes.
An early cornerstone of classical black hole thermody-

namics [57,58] was Hawking’s area theorem: in all space-
times which satisfy the null curvature condition, the total
area of all black hole event horizons can only increase, i.e.,
dA/dt ≥ 0 [59]. Of course, the area theorem fails for
evaporating black holes, the technical evasion being that
they do not satisfy the null curvature condition. Bekenstein
pointed out, however, that if one instead interprets the area
of the black hole event horizon as horizon entropy and
includes the entropy of the Hawking radiation outside the
black hole, Sout, in the total entropy budget, then the
generalized entropy, Sgen ¼ A/4Gþ Sout, increases mono-
tonically or stays constant, dSgen/dt ≥ 0 [45].
From the perspective of trying to understand the thermo-

dynamics of spacetime, both Hawking’s and Bekenstein’s
results suffer from two inconveniences. First, they are
fundamentally nonlocal, since identifying event horizons
requires that one know the full structure of a Lorentzian
spacetime. Second, these results only apply to black holes;
it would be desirable to understand thermodynamic aspects
of spacetime in other geometries as well. These consid-
erations motivate holographic screens [54,55], a subset of
which obey a classical area theorem, as well as their
semiclassical extensions called Q-screens [46], a subset
of which are conjectured to obey an entropy theorem.
Importantly, both holographic screens and Q-screens are
quasilocally defined and are known to be generic features
of cosmologies in addition to black hole spacetimes.
Let us first review holographic screens. Following the

convention of Bousso and Engelhardt, here and throughout
we will refer to a spacelike codimension-2 hypersurface
simply as a “surface”.
Let σ be a compact connected surface. At every point on

σ, there are two distinct future-directed null directions (or

equivalently, two distinct past-directed null directions) that
are orthogonal to σ: inward and outward directed. The
surface σ is said to be marginal if the expansion of the null
congruence corresponding to one of these directions, say
kμ, is zero everywhere on σ. Consequently, σ is a slice of
the null sheet generated by kμ that locally has extremal area.
This last point is particularly clear if one observes that the
expansion, θ ¼ ∇μkμ, at a point y ∈ σ, can be equivalently
defined as the rate of change per unit area of the area of the
slice, A½σ�, when a small patch of proper areaA is deformed
along the null ray generated by kμ at y with an affine
parameter λ,

θðyÞ ¼ lim
A→0

1

A
dA½σ�
dλ

����
y
: ð5Þ

This definition is illustrated in Fig. 1.
A holographic screen is a smooth codimension-1 hyper-

surface that can be foliated by marginal surfaces, which are
then called its leaves. Note that while the leaves σ are
spacelike, in general a holographic screen need not have a
definite character. A marginal surface σ is said to be
marginally trapped if the expansion of the congruence in
the other null direction is negative everywhere on σ, and a
future holographic screen is a holographic screen whose
leaves are marginally trapped; marginally antitrapped
surfaces and past holographic screens are defined analo-
gously. Then, assuming the null curvature condition as well
as a handful of mild generic conditions, Bousso and
Engelhardt proved that future and past holographic screens
obey the area theorem paraphrased below [54,55].
Theorem II.1(Bousso and Engelhardt) Let H be a

regular holographic screen. The area of its leaves changes
strictly monotonically under the flow through the foliation
of H.
Q-screens are related to holographic screens, but with

expansion replaced by what is dubbed the “quantum
expansion.” Let σ again denote a compact connected
surface. The quantum expansion at a point y ∈ σ in the
orthogonal null direction kμ is defined as the rate of change
per unit proper area of the generalized entropy (3), i.e., the
sum of both area and matter entropy, with respect to affine
deformations along the null ray generated by kμ,

FIG. 1. Given a Cauchy hypersurface Σ, the surface σ ⊂ Σ
(drawn with a solid line) splits Σ into an interior and exterior.
Deformations of σ (drawn with a dotted line) are defined by
dragging σ along the null ray generated by kμ at any point y ∈ σ.
More precisely, a deformation is defined by transporting a small
area element A ⊂ σ at y in the kμ direction.
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Θk½σ; y� ¼ lim
A→0

4G
A

dSgen
dλ

����
y
: ð6Þ

Then similar to before, a quantum marginal surface is a
surface σ such that the quantum expansion in one orthogo-
nal null direction vanishes everywhere on σ. Just as a
marginal surface locally extremizes area along a light sheet,
a quantum marginal surface locally extremizes the gener-
alized entropy along the light sheet generated by kμ.
The adjective quantum can be confusing in this context.

In this work it denotes a shift from classical general
relativity, where one proves theorems about the area of
surfaces, to quantum field theory on a semiclassical back-
ground, where analogous theorems refer to a generalized
entropy that adds the entropy of matter degrees of freedom
to such an area. That matter entropy may be calculated as
the quantum (von Neumann) entropy of a density operator,
but in the right circumstances (which we will in fact be
dealing with below) it is equally appropriate to treat it as a
classical thermodynamic quantity. So here quantum should
always be interpreted as “adding an entropy term to the area
of some surface,” whether or not quantum mechanics is
directly involved.
The remaining constructions have similarly parallel

definitions. A Q-screen is a smooth codimension-1 hyper-
surface that can be foliated by quantum marginal surfaces.
A quantum marginal surface σ is marginally quantum
trapped if the quantum expansion in the other null direction
is negative everywhere on σ, and a future Q-screen is a Q-
screen whose leaves are marginally quantum trapped.
Analogous definitions apply for antitrapped surfaces and
past Q-screens. A Q-screen may be timelike, null, space-
like, or some combination thereof in different regions.
Future and past Q-screens that also obey certain generic
conditions analogous to those for holographic screens are
the objects that are conjectured to obey a generalized
second law [46].
Conjecture II.2 (generalized second law) Let Q be a

regular future (respectively, past) Q-screen. The general-
ized entropy of its leaves increases strictly monotonically
under the past and outward (respectively, future and
inward) flow along Q.
Note that while the GSL remains unproven in general, it

is known to hold in several examples, and it can in fact be
shown to hold if one assumes the quantum focusing
conjecture [60].
So far we have not said much about the precise definition

of generalized entropy, so let us discuss how it is defined in
more careful terms. Our context here is quantum field theory
in curved spacetime, rather than a full-blown theory of
quantum gravity. Given some spacetime, suppose that it
comes equipped with a foliation by Cauchy hypersurfaces,
and suppose that the spacetime’s matter content is described
by a density matrix ρðΣÞ on each Cauchy hypersurface Σ.
Let σ be a compact connected surface that divides a Cauchy

hypersurface Σ into two regions: the interior and exterior of
σ. The generalized entropy computedwith respect to σ andΣ
is then the sum of the area of σ in Planck units and Sout, the
von Neumann entropy of the reduced state of ρ restricted to
the exterior of σ [cf. Eq. (3)]. The reduced state of ρ outside
σ, whichwe denote ρout, is obtained by tracing out degrees of
freedom on Σ in the interior of σ,

ρout ≡ trintσ½ρðΣÞ�; ð7Þ
and the Von Neumann entropy of ρout is

Sout½σ;Σ� ¼ −tr½ρout ln ρout�: ð8Þ
For a general field-theoretic state, the von Neumann

entropy Sout½σ;Σ� is a formally divergent quantity.
Consequently, there is some subtlety surrounding how it
should be regulated, whether through an explicit ultraviolet
cutoff or via subtracting a divergent vacuum contribution
[46,61]. Since we will exclusively be concerned with
cosmology, we will work in a regime where the matter
content of the spacetime has a conserved “thermodynamic”
or coarse-grained entropy s per unit comoving volume.
[Entropy per comoving volume is approximately conserved
in cosmologies that do not have too much particle pro-
duction ([14] Chap. 3.4).] The von Neumann entropy of a
quantum mechanical system coincides with the thermody-
namic Gibbs entropy in the classical limit where the state
ρout has no coherence, i.e., is diagonal in the energy
eigenbasis of Gibbs microstates.
We will suppose that we can take the matter contribution

to the generalized entropy, which is formally given by the
von Neumann entropy Sout½σ;Σ�, to be given by a coarse-
grained entropy SCG½σ;Σ� in the interior of σ,

Sout½σ;Σ� → SCG½σ;Σ� ¼ s · volc½σ;Σ�: ð9Þ
Here, volc½σ;Σ� denotes the comoving (coordinate) volume
of intσ on Σ. (This approach is also taken in the examples of
[46].) This expression is appropriate for cosmology, where
observers find themselves on the inside of Q-screens and
cosmological horizons when present, as opposed to observ-
ers who remain outside of a black hole and who are unable
to access the interior of the black hole’s horizon. Moreover,
in the field-theoretic case where ρðΣÞ is a pure state, then it
follows that Sin ¼ Sout, where Sin is the Von Neumann
entropy of ρin ≡ trextσ½ρðΣÞ�.
The fact that each leaf of a Q-screen extremizes the

generalized entropy on an orthogonal light sheet leads to a
useful method for constructing Q-screens [47]. Given some
spacetime with a foliation by Cauchy surfaces, suppose that
one is also supplied with a foliation of the spacetime by null
sheets with compact spatial cross sections. Let each null
sheet be labeled by a parameter r, and on each null sheet,
let σðrÞ be the spatial section with extremal generalized
entropy, when it exists. (Not every spacetime contains
Q-screens, such as Minkowski space. But in big bang
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cosmologies, we expect both the area of, and entropy
inside, a light cone to decrease in the very far past, so the
generalized entropy will have an extremum somewhere.) It
follows that each σðrÞ is a quantum marginal surface, and
so if the quantum expansion has a definite sign in the other
orthogonal null direction on each σðrÞ, the union of these
surfaces, Q ¼ ⋃rσðrÞ, is by construction a Q-screen.
One way to generate a null foliation of a spacetime is to

consider the past light cones of some timelike trajectory.
Q-screens constructed from this type of foliation will be
particularly useful for our purposes. This construction is
illustrated through a worked example in Appendix A.

III. A COSMIC NO-HAIR THEOREM FOR
RW SPACETIMES

We can used the notions reviewed above to show that
spacetimes that expand and approach a constant maximum
entropy along Q-screens will asymptote to de Sitter space.
The basic idea of our proof is made clear by the simple
example of a metric that is already homogeneous and
isotropic, so that all we are showing is that the scale factor
approaches eHt for some fixed constant H. The anisotropic
case, considered in the next section, is considerably more
complex, but the ideas are the same.
Let M be a Robertson-Walker (homogeneous and

isotropic) spacetime with the line element

ds2 ¼ −dt2 þ a2ðtÞðdχ2 þ χ2dΩ2
d−1Þ; ð10Þ

where t ∈ ðti;∞Þ. Our aim is to show that if M admits a
past Q-screen along which the generalized entropy mono-
tonically increases up to a finite maximum value, then this
alone, together with a handful of generic conditions onM,
implies that M is asymptotically de Sitter, or in other
words, that

lim
t→∞

aðtÞ ¼ eHt ð11Þ

for some constantH. In particular, we will neither make use
of the Einstein field equations nor assume that there is a
positive cosmological constant.
Begin by foliating M with past-directed light cones

whose tips lie at the spatial origin χ ¼ 0, and suppose that
M admits a past Q-screen, Q, constructed with respect to
this foliation. In other words, suppose that each light cone
has a spatial slice with extremal generalized entropy so that
Q is the union of all of these extremal slices. Past light
cones will generically have a maximal entropy slice in
cosmologies which, for example, begin with a big bang
where aðtiÞ ¼ 0. An example is portrayed in Fig. 2, which
shows a holographic screen and a Q-screen in a cosmo-
logical spacetime with a past null singularity and a future de
Sitter evolution; this example is explained in more detail in
Appendix A. The intuition here is that while the past-
directed null geodesics that make up a light cone may

initially diverge, eventually they must meet again in the
past when the scale factor vanishes and space becomes
singular. Ultimately, however, we need only assume that
the Q-screen exists, and we only remark on its possible
origins for illustration.
Because RW spacetimes are spherically symmetric, the

extremal-entropy light cone slices will be spheres, i.e.,
constant-t slices. If the quantum expansion vanishes in the
lightlike direction along the light cone and is positive in the
other lightlike direction at a single point on some test
sphere, then it maintains these properties at every point on
that sphere due to symmetry. This sphere is by construction
a marginally quantum antitrapped surface, or equivalently
has extremal generalized entropy on the light cone. We
therefore take the Cauchy surfaces Σ with respect to which
generalized entropy is defined to be the constant-t surfaces
in M, since constant-t slices of light cones are spheres.
We will also make a handful of generic assumptions

aboutM andQ without which a cosmic no-hair theorem is
not guaranteed. Indeed, Wald’s theorem does not hold in
completely general cosmologies either; it requires that the
spacetime is initially expanding and that its matter content
satisfies the strong and dominant energy conditions. Here,
we will assume that space continues to expand for all
cosmic time.3 We want to avoid cosmologies that crunch
or that otherwise clearly do not admit a no-hair theorem.

FIG. 2. Holographic screen and Q-screen illustrated on the
Penrose diagram for a homogeneous and isotropic spacetime with
a positive cosmological constant. Null sheets that make up the
foliation by past-directed light cones are shown in yellow, and the
cosmological horizon is the dashed black line. The dotted green
line and large green dots are the holographic screen and its leaves,
respectively. The solid purple line and large purple dots are the
Q-screen and its leaves.

3In principle, the expansion need not be monotonic, but we
will find that monotonicity is implied whenM admits a Q-screen
such as Q.
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Wewill also suppose thatQ satisfies the generic conditions
outlined in [46].
With these considerations in mind, the theorem that we

wish to prove is the following.
Theorem III.1 Let M be a RW spacetime with the

line element (10) and whose matter content has constant
thermodynamic entropy s per comoving volume. Suppose
thatM admits a past Q-screen,Q, constructed with respect
to a foliation of M with past-directed light cones that are
centered on the origin, χ ¼ 0, and suppose that the
generalized second law holds on Q. Suppose that M
and Q together satisfy the following assumptions:
(a) aðtÞ → ∞ as t → ∞,
(b) Sgen → Smax < ∞ along Q.
Then, M is asymptotically de Sitter and the scale factor
aðtÞ approaches eHt, where H is a constant.
Proof: For convenience we work in d ¼ 3 spatial

dimensions, but the generalization to arbitrary dimensions
is straightforward. As discussed above, the leaves of Q are
spheres. Letting the leaves be labeled by some parameter r,
the generalized entropy is then given by

Sgen½σðrÞ;ΣðrÞ�≡ SgenðrÞ ¼
π

G
χ2ðrÞa2ðtðrÞÞ þ 4

3
πχ3ðrÞs:

ð12Þ

The hypersurface ΣðrÞ is the constant-tðrÞ surface in which
the leaf σðrÞ is embedded, and χðrÞ denotes the radius
of the leaf.
First, we need to establish that Q extends out to future

timelike infinity. In principle, Q could become spacelike
and consequently not extend beyond some time t [or in
other words, tðrÞ could have some finite maximum value],
but it turns out that this does not happen.
Recall the property of Q-screens that generalized entropy

is extremized on each leaf with respect to lightlike
deformations. Here we may write

kμ∂μSgen ¼ 0; ð13Þ

where kμ ¼ ðaðtÞ;−1; 0; 0Þ is the lightlike vector that is
tangent to the light cone and with respect to which Sgen is
extremal. [Any point xμ belongs to a unique sphere on a
past-directed light cone and may therefore be associated
with a particular value of Sgen. This lets us define the partial
derivative in Eq. (13) above.] The deformation corresponds
to dragging the leaf σðrÞ up and down the light cone, and by
construction SgenðrÞ is extremal on the leaf σðrÞ. Note that
in more general settings we should consider deformations
with respect to null geodesics, since the null generators of
the light cone could have different normalizations at
different points on σðrÞ. Or, in other words, the geometry
of the leaf σðrÞ could change as it is dragged by some fixed
affine amount along the light cone. Here, however, the
spherical symmetry of RW ensures that the null generators

on σðrÞ all have the same normalization, so that kμ as
defined above is proportional to the null generators every-
where on σðrÞ.
Writing out the partial derivatives, (13) becomes

0 ¼ ða∂t − ∂χÞ
�
π

G
χ2a2 þ 4

3
πχ3s

�

¼ 2π

G
χ2a2 _a −

2π

G
χa2 − 4πχ2s: ð14Þ

[One must be careful to distinguish between the coordinate
t and the value tðrÞ which labels leaves in the Q-screen.] If
χ ≠ 0, then it follows that

1

χ
¼ _aðtÞ − 2Gs

a2ðtÞ : ð15Þ

Equation (15) lays out the criterion for when there is a leaf
in a constant-t slice; when the right side is finite and
positive, then there must be a leaf in that slice.
Observe that the right side of Eq. (15) does not diverge

for any finite t > ti since aðtÞ is defined for all t ∈ ½ti;∞Þ
and only diverges in the infinite t limit by assumption.
Furthermore, if the right side is nonzero and positive for
some time ttime [and consequently there is a leaf σðrÞ in the
tðrÞ ¼ ttime slice], then the right side cannot approach zero,
since this would cause the radius of subsequent leaves to
grow infinitely large, which contradicts the assumption that
Sgen remains finite. Therefore, if Q has a leaf at some time,
then Eq. (15) shows that Q must have leaves in all future
slices. Q is therefore timelike and extends out to future
timelike infinity.4 Furthermore, that the right side of
Eq. (15) cannot vanish immediately implies that _a >
2Gs/a2 > 0 for t > ttime, so that the expansion must be
monotonic.
Because Q is timelike, we can label each leaf by the

constant-t1 surface in which it lies, i.e., let the parameter r
be a time t1 (subscripted as such to distinguish it from the
coordinate t). Referring to Eq. (12), since aðtÞ grows
without bound by assumption, it must be that χðt1Þ
decreases at least as fast as a−1ðt1Þ in order for the area
term in Sgen to remain finite (as it must, since by hypothesis
Sgen ≤ Smax). The matter entropy term therefore becomes
irrelevant in the asymptotic future, and so that Sgen → Smax,
it must be that

χðt1Þ →
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GSmax

π

r
1

aðt1Þ
ð16Þ

as t1 → ∞.

4Alternatively, we could instead replace assumption (a) with
the assumption that Q is timelike and extending out to future
timelike infinity and argue that a → ∞. The arguments given here
show that these two points are logically equivalent.
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Next, rearrange Eq. (15) to solve for _a. Using the
asymptotic form for χðt1Þ in Eq. (16), to leading order
in a we find that

_a →
ffiffiffiffiffiffiffiffiffiffiffiffiffi
π

GSmax

r
aþ ðsubleadingÞ: ð17Þ

Therefore, it follows that aðtÞ → eHt as t → ∞, where
H ¼ ðπ/GSmaxÞ1/2, demonstrating that the metric
approaches the de Sitter form, as desired. The entropy
Smax ¼ π/GH2 coincides with the usual de Sitter horizon
entropy. ▪

We close this section by briefly remarking that the result
above extends straightforwardly to open and closed RW
spacetimes as well.
Corollary III.2 More generally, the result of

Theorem III.1 applies to a RW spacetime M of any spatial
curvature, i.e., with the line element

ds2 ¼ −dt2 þ a2ðtÞðdχ2 þ f2ðχÞdΩ2
d−1Þ ð18Þ

where

fðχÞ ¼
8<
:

sin χ χ ∈ ½0; π� ðclosedÞ
χ χ ∈ ½0;∞Þ ðflatÞ
sinh χ χ ∈ ½0;∞Þ ðopenÞ

: ð19Þ

Proof: The overall proof technique is the same as in
the proof of Theorem III.1. Working in 1þ 3 dimensions,
in the more general case, the generalized entropy of the
leaves of Q is given by

Sgen½σðrÞ;ΣðrÞ�≡ SgenðrÞ
¼ π

G
f2ðχðrÞÞa2ðtðrÞÞ þ vðχðrÞÞs: ð20Þ

When M is closed, the comoving volume vðχÞ is given by
vðχÞ ¼ 2πðχ − sin χ cos χÞ, and when M is open, vðχÞ is
given by vðχÞ ¼ 2πðsinh χ cosh χ − χÞ. Consequently, the
condition kμ∂μSgen ¼ 0, which determines when there is a
leaf in the constant-t hypersurface, gives

1

f2ðχÞ ¼
�
_aðtÞ − 2Gs

a2ðtÞ
�

2

þ k; ð21Þ

where k ¼ þ1, 0, or −1 ifM is respectively closed, flat, or
open. Here as well, if there is a leaf at some time ttime so that
the right-hand side of Eq. (21) is nonzero, then there are
leaves in all subsequent constant-t slices, since the finite-
ness of Sgen demands that the right-hand side cannot
approach zero. Therefore, Q extends out to future timelike
infinity.

For the general case, the condition in Eq. (16) that
Sgen → Smax reads5

fðχðt1ÞÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffi
GSmax

π

r
1

aðt1Þ
: ð22Þ

Upon substituting Eq. (22) into Eq. (21) (and taking the
positive root, since M is expanding), we recover Eq. (17),
and so the rest of the proof follows as before. ▪

IV. A COSMIC NO-HAIR THEOREM FOR
BIANCHI I SPACETIMES

In a RW spacetime, we demonstrated that the existence
of a Q-screen along which entropy monotonically increases
to a finite maximum implies that the scale factor tends to
the de Sitter scale factor far in the future. Now we will go
one step further and show that in the case where the
cosmology is allowed to be anisotropic, similar assump-
tions imply that any initial anisotropies decay at late times
as well. Specifically, we will prove a cosmic no-hair
theorem for Bianchi I spacetimes. The calculations in
the proof for Bianchi I spacetimes are more involved than
the RW case, so we will begin with a proof in 1þ 2
dimensions, where the anisotropy only has one functional
degree of freedom. We will then generalize to 1þ 3
dimensions, which also makes apparent how to generalize
to arbitrary dimensions.

A. 1 + 2 dimensions

Let M be a Bianchi I spacetime in 1þ 2 dimensions
with the line element

ds2 ¼ −dt2 þ a21ðtÞdx2 þ a22ðtÞdy2 ð23Þ

where t ∈ ðti;∞Þ. Once again foliateMwith past-directed
light cones whose tips lie at x ¼ y ¼ 0 and suppose thatM
admits a past Q-screen Q, constructed with respect to this
foliation, together with an accompanying foliation by
Cauchy hypersurfaces. Our aim is to show that if gener-
alized entropy tends to a finite maximum alongQ, then the
GSL implies that a1ðtÞ; a2ðtÞ → eHt as t → ∞ for some
constant H.
Here as well we will assume that space expands for all

time, with a1ðtÞ, a2ðtÞ → ∞ as t → ∞. We will also further
assume thatQ is timelike and extends out to future timelike
infinity past some time ttime. We suspect that it might be
possible to show that this latter property follows from the
assumption that a1ðtÞ and a2ðtÞ grow without bound, as in

5A minor technical point worth noting is that the condition in
Eq. (22) is not identically equivalent to the condition χðt1Þ →ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GSmax/π

p
/aðt1Þ when M is closed. In this case, χðt1Þ → π −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

GSmax/π
p

/aðt1Þ is also admissible.
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the case of a RW spacetime, but we do not know of a
straightforward way to show this.
We will assume that generalized entropy is globally

maximized on each light cone by the corresponding screen
leaf (as opposed to only assuming local extremality). In
other words, we will assume that there are no other slices of
each light cone whose generalized entropy is larger than
that of the screen leaf. This property of leaves is certainly
true when the quantum focusing conjecture (QFC) holds
[60]. Moreover, the GSL is provably true when the QFC
holds.
The QFC is the conjecture that the quantum expansion of

a null congruence is nonincreasing along the congruence.
In symbols, for a null congruence generated by kμ with an
affine parameter λ on a given null ray, the QFC reads

dΘk

dλ
≤ 0: ð24Þ

The QFC is the semiclassical analogue of classical focus-
ing, dθ/dλ ≤ 0, which holds when the null curvature
condition holds. In particular, Eq. (24) makes it clear that
if a light cone slice locally maximizes generalized entropy
with respect to deformations on the light cone, then it is
also the unique global maximum. A leaf σ that locally
maximizes generalized entropy obeys Θk½σ; y� ¼ 0 for all
y ∈ σ. Therefore, if Θk is nonincreasing on the light cone,6

there are no deformations of σ that lead to a larger
generalized entropy, and so σ defines a globally maximal
generalized entropy. It is interesting to explore ways in
which this assumption about global maximality of gener-
alized entropy can be relaxed, which we shall do after the
proof of the no-hair theorem.
Next, we introduce conformal light cone coordinates

[62,63], which are more convenient coordinates to work in
when dealing with anisotropy. First, observe that we may
rewrite the line element (23) as

ds2 ¼ −dt2 þ a2ðtÞ½e2bðtÞdx2 þ e−2bðtÞdy2� ð25Þ
with a1ðtÞ ¼ aðtÞebðtÞ and a2ðtÞ ¼ aðtÞe−bðtÞ [13]. In this
parameterization, the “volumetric scale factor” aðtÞ
describes the overall expansion of space while bðtÞ char-
acterizes the anisotropy. Next, make the coordinate trans-
formation to conformal time defined by dt ¼ �aðηÞdη so
that the line element (25) reads

ds2 ¼ a2ðηÞ½−dη2 þ e2bðηÞdx2 þ e−2bðηÞdy2�: ð26Þ
Choose the sign of η so that ηðtÞ is a monotonically
increasing function of t, and denote the limiting value of
ηðtÞ as t → ∞ by η∞. Conformal light cone coordinates are
then defined by the following coordinate transformation

xðη; ηo; θÞ ¼ cos θ
Z

ηo

η

e−2bðζÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2θe−2bðζÞ þ sin2θe2bðζÞ

p dζ

ð27Þ

yðη; ηo; θÞ ¼ sin θ
Z

ηo

η

e2bðζÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 θe−2bðζÞ þ sin2 θe2bðζÞ

p dζ

ð28Þ

The point with coordinates ðη; ηo; θÞ is reached by firing a
past-directed null geodesic from the spatial origin x ¼ y ¼
0 at an angle θ ∈ ½0; 2πÞ counterclockwise relative to the x
axis at conformal time ηo and following the light ray in the
past down to the conformal time η (Fig. 3). Note that while
η is a timelike coordinate, ηo acts as a radial coordinate at
each η.
The surfaces of constant ηo are precisely the past-

directed light cones with respect to whichQ is constructed.
We can therefore label the leaves σ ofQ by the values of ηo
corresponding to the light cones on which they lie (Fig. 4),

Q ¼ ⋃
ηo

σðηoÞ: ð29Þ

Similarly, label the Cauchy hypersurfaces with respect to
which each leaf is defined by ΣðηoÞ. In various instances, it
will be useful to use another coordinate,

χ ¼ ηo − η; ð30Þ
which may be thought of as a comoving radius in a sense
that will be made precise later. We will also sometimes
work in the coordinates ðη; χ; θÞ or ðχ; ηo; θÞ in addition to
the conformal light cone coordinates (η, ηo, θ).
The no-hair theorem that we will prove is as follows.
Theorem IV.1 Let M be a Bianchi I spacetime with

the line element (23) and whose matter content has constant
thermodynamic entropy s per comoving volume. Suppose

FIG. 3. Conformal light cone coordinates. At the conformal
time ηo, fire a past-directed null geodesic (shown in yellow) from
the origin at an initial angle θ relative to the positive x axis and
follow it until the conformal time η.

6The pathological case of dΘk/dλ ¼ 0 on a subset of the
congruence with nonzero measure is ruled out by appropriate
genericity conditions.

SEAN M. CARROLL and AIDAN CHATWIN-DAVIES PHYS. REV. D 97, 046012 (2018)

046012-8



that M admits a past Q-screen Q, with globally maximal
entropy leaves constructed with respect to a foliation of
M with past-directed light cones that are centered on the
origin, x ¼ y ¼ 0. Suppose that the generalized second
law holds on Q and that M and Q together satisfy the
following assumptions:

(i) a1ðtÞ, a2ðtÞ → ∞ as t → ∞,
(ii) Q is timelike past some ttime and extends out to

future timelike infinity
(iii) _a1ðtÞ, _a2ðtÞ > 0 after some tmono,
(iv) Sgen → Smax < ∞ along Q.

Then, M is asymptotically de Sitter and the scale factors
a1ðtÞ and a2ðtÞ approach C1eHt and C2eHt, respectively,
where H, C1, and C2 are constants.
Notes: To obtain a manifestly isotropic metric, rescale

the coordinates x and y by C1 and C2, i.e., set X ¼ C1x and
Y ¼ C2y. Then, the line element (23) asymptotically reads
ds2 → −dt2 þ e2HtðdX2 þ dY2Þ. Also note that we have
introduced an additional assumption compared to the RW
case: assumption (iii), that a1ðtÞ and a2ðtÞ grow mono-
tonically past some time tmono. Finally, also note that in
terms of aðηÞ and bðηÞ, assumption (i) becomes

ði0Þ aðηÞ → ∞ as η → η∞ and aðηÞe�bðηÞ → ∞.
In terms of aðηÞ and bðηÞ, the theorem is established by
showing that aðηÞ → −1/Hη and bðηÞ → B as η → 0− (and
also that η∞ ¼ 0) for some constant B.
Proof: The proof can be broken down into three

parts. First, we show that, asymptotically, Q squeezes into
the comoving coordinate origin. Second, we use this
asymptotic squeezing behavior to demonstrate that the
volumetric scale factor aðηÞ tends to the de Sitter scale
factor. Finally, we show that the asymptotic behavior of
aðηÞ and assumption (iii) together imply that anisotropy
decays.

1. Showing that Q squeezes into the coordinate
origin χ = 0 as η → η∞

Consider the leaves of Q and work in x̃μ ¼ ðη; ηo; θÞ
coordinates. On the light cone whose tip is at ηo, each leaf
σðηoÞ is a closed path parameterized by

x̃μðu; ηoÞ ¼ ðηðu; ηoÞ; ηo; uÞ u ∈ ½0; 2πÞ: ð31Þ
Our first task is to show that χðu; ηoÞ≡ ηo − ηðu; ηoÞ tends
to zero for all values of u as η → η∞. We will do so through
a proof by contradiction.
Suppose to the contrary that Q never squeezes into the

comoving coordinate origin. That is, suppose that there
exists M > 0 such that, given any ηo > ηtime, one can find
values η̃o > ηo and ũ such that χðũ; η̃oÞ ≥ M. Let η̃≡
ηðũ; η̃oÞ and consider the constant η ¼ η̃ slice of the light
cone whose tip is at η̃o (Fig. 5). Denote this (codimension 2)
surface by ςðη̃; η̃oÞ, and denote the (codimension 1) hyper-
surface of constant-η̃ by Xðη̃Þ. Since the generalized
entropy of the leaf σðη̃oÞ is globally maximal on this light
cone by assumption, it must follow that

Sgen½σðη̃oÞ;Σðη̃oÞ� ≥ Sgen½ςðη̃; η̃oÞ; Xðη̃Þ� ≥
A½ςðη̃; η̃oÞ�

4G
;

ð32Þ
where the last inequality follows because Sgen is always
greater than or equal to just the area term. Our basic
strategy will be to show that A½ςðη̃; η̃oÞ� diverges as
η̃o → η∞, which contradicts assumption (iv) that Sgen must
remain finite on Q.
To do this, let us compute the proper area A½ςðη̃; η̃oÞ�.

In three dimensions, the induced metric on a surface of
constant η and ηo has only a single component, given by

γ ¼ ∂xμ
∂θ

∂xν
∂θ gμν

¼ a2ðηÞ
�
e2bðηÞ

�∂x
∂θ

�
2

þ e−2bðηÞ
�∂y
∂θ

�
2
�

≡ a2ðηÞγ̃; ð33Þ

FIG. 4. A Q-screen Q (the solid black hypersurface) con-
structed with respected to a foliation by past-directed light cones
(sketched in yellow). Each leaf σðηoÞ (shown in blue) is
labeled by the value of ηo where the tip of its parent light
cone sits.

FIG. 5. The leaf σðη̃oÞ and the constant-η̃ slice, ςðη̃; η̃oÞ, of its
parent light cone.
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where the coordinate partial derivatives read7

∂x
∂θ ¼

Z
ηo

η

− sin θ

ðcos2θe−2bðsÞ þ sin2θe2bðsÞÞ3/2 ds

∂y
∂θ ¼

Z
ηo

η

cos θ

ðcos2θe−2bðsÞ þ sin2θe2bðsÞÞ3/2 ds:

It follows that the area of this surface is

Aðη; ηoÞ ¼
Z

2π

0

ffiffiffi
γ

p
dθ ¼ aðηÞ

Z
2π

0

ffiffiffĩ
γ

p
dθ: ð34Þ

It is fairly straightforward to place a lower bound on this
area,

Aðη; ηoÞ ≥ aðηÞebðηÞ
Z

2π

0

���� ∂x∂θ
����dθ

¼ aðηÞebðηÞ
Z

ηo

η
ds

×
Z

2π

0

dθ
j sin θj

ðcos2θe−2bðsÞ þ sin2θe2bðsÞÞ3/2

¼ 4aðηÞebðηÞ
Z

ηo

η
dse−bðsÞ:

One arrives at a similar expression using ∂y/∂θ. Note that
in the middle line above, we were able to bring the absolute
value into the integrand of ∂x/∂θ because it has a definite
sign for any given θ. Then, if e−bðsÞ is minimized at
s ¼ ηm ∈ ½η; ηo�, it follows that

Aðη; ηoÞ ≥ 4aðηÞebðηÞe−bðηmÞðηo − ηÞ ≥ 4aðηÞðηo − ηÞ:
ð35Þ

Applied to our surface ςðη̃; η̃oÞ, for which η̃o − η̃ ≥ M, the
bound reads

A½ςðη̃; η̃oÞ�≡ Aðη̃; η̃oÞ ≥ 4Maðη̃Þ; ð36Þ

which diverges as η̃o and η̃ are chosen arbitrarily large.
We therefore have the contradiction that we sought, and so
the leaves of the Q-screen must squeeze into the comoving
coordinate origin in the asymptotic future.

2. Showing that aðηÞ is asymptotically de Sitter

Now we turn our attention to calculating Sgen½σðηoÞ;
ΣðηoÞ� itself, and using its asymptotic properties as
ηo → η∞ to demonstrate that aðηÞ → −1/Hη for a constant
H with η∞ ¼ 0. First, we will argue that the matter entropy
term, which we assume can be calculated using the

coarse-grained entropy SCG½σðηoÞ;ΣðηoÞ�, vanishes asymp-
totically in the future. To this end, let us prove the following
useful lemma about constant-η slices of light cones when
χ ¼ ηo − η is infinitesimally small.
Lemma IV.2 Let ςðη; ηþ χÞ be the constant-η slice

of the past-directed light cone whose tip is at ηo ¼ ηþ χ.
The generalized entropy defined by this slice is given by

Sgen½ςðη; ηþ χÞ; XðηÞ� ¼ Aðη; ηþ χÞ
4G

þ cgðη; χÞχ2s; ð37Þ

where Aðη; ηþ χÞ is given by

Aðη; ηþ χÞ ¼ aðηÞ · ½2πχ þOðχ3Þ�; ð38Þ

and cgðη; χÞ is some Oð1Þ geometric factor due to
anisotropy that does not depend on aðηÞ.
Proof: First we justify the parameterization of the

coarse-grained entropy SCG ¼ cgðη; χÞχ2s. In the coordi-
nates of the metric (26), SCG is given by

SCG½ςðη; ηþ χÞ; XðηÞ� ¼ s · volc½ςðη; ηþ χÞ; XðηÞ�

¼ s
Z Z

intς
dxdy; ð39Þ

where intςðη; ηþ χÞ denotes the region on XðηÞ inside
ςðη; ηþ χÞ. In terms of the coordinates ðη; χ; θÞ, SCG is

SCG½ςðη; ηþ χÞ; XðηÞ�≡ SCGðη; χÞ

¼ s
Z

χ

0

Z
2π

0

���� ∂ðx; yÞ∂ðχ0; θÞ
����dθdχ0: ð40Þ

Formally, the Jacobian can be calculated from the coor-
dinate transformation (27) and (28) above. Expanding in
powers of χ, one finds that

SCGðη; χÞ ¼ s ·

�
πχ2 þ π

8
b0ðηÞ2χ4

�
þOðχ5Þ: ð41Þ

Therefore, we can simply define the function cgðη; χÞ to be
the function

cgðη; χÞ≡ SCGðη; χÞ
χ2s

¼ π þ π

8
b0ðηÞ2χ2 þOðχ3Þ: ð42Þ

The function cgðη; χÞ is Oðχ0Þ by construction, and from
the coordinate transformation (27) and (28), in which aðηÞ
never appears, we see that cg cannot depend on aðηÞ, as
claimed.
The expansion of Aðη; ηþ χÞ for small χ follows from

expanding
ffiffiffĩ
γ

p
in Eq. (34) in powers of χ and then

integrating. Note that Eq. (38) demonstrates the sense in
which χ is a comoving radius (at least for small values
of χ). ▪

7A Maple worksheet which implements the calculations in this
article is available through the online repository [64].
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We can use the result of Lemma IV.2 to show that
SCG½σðηoÞ;ΣðηoÞ� vanishes asymptotically in the future.
Given a leaf σðηoÞ, let ηmin be the minimum value attained
by ηðu; ηoÞ:

ηmin ¼ min
u
fηðu; ηoÞg: ð43Þ

Consider the constant-ηmin slice of the light cone whose tip
is at ηo, which we label by ςðηmin; ηoÞ (Fig. 6). The
comoving volume of σðηoÞ is contained within the comov-
ing volume of ςðηmin; ηoÞ, which, according to Lemma IV.2,
vanishes in the asymptotic future limit. Therefore, the
comoving volume of σðηoÞ vanishes as well, so SCG½σðηoÞ;
ΣðηoÞ� vanishes asymptotically in the future.
Next we investigate the asymptotic behavior of A½σðηoÞ�.

For this part of the proof, we will work in the coordinates
ðχ; ηo; θÞ. In these coordinates, the leaf σðηoÞ is para-
meterized by some path x̃μðuÞ ¼ ðχðu; ηoÞ; ηo; uÞ with ηo
held constant and 0 ≤ u < 2π. In the future when SCG
becomes negligible, this path is the maximal area (also
known as length in 1þ 2 dimensions) path on the light
cone whose tip is at ηo, and so A½σðηoÞ� satisfies

δA½σðηoÞ�
δχðu; ηoÞ

¼ 0: ð44Þ

In principle, one can therefore solve the Euler-Lagrange
problem above to obtain the path χðu; ηoÞ and hence also
the maximal area A½σðηoÞ�.
The tangent to the path is tμ ¼ dx̃μ/du ¼ ð_χðu; ηoÞ; 0; 1Þ

(where a dot denotes a derivative with respect to the
parameter u). Therefore, the area of σðηoÞ is given by

A½σðηoÞ� ¼
Z

2π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
g̃μνtμtν

p
du

¼
Z

2π

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g̃00 _χ2 þ 2g̃02 _χ þ g̃22

q
du; ð45Þ

where g̃μν is the metric of Eq. (26) but rewritten in ðχ; ηo; θÞ
coordinates. One finds that g̃00 ¼ 0 exactly, but g̃02 and g̃22

do not admit any such simplifications. Because of this,
solving the full Euler-Lagrange problem to actually obtain
the path χðu; ηoÞ is intractable in general.
Nevertheless, we can exploit the fact that Q squeezes

into the coordinate origin and perform a small-χ expansion
of A½σðηoÞ�. First, pull out a factor of aðηo − χÞ from the
square root,

A½σðηoÞ� ¼
Z

2π

0

aðηo − χÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f02 _χ þ f22

p
du: ð46Þ

In so doing we have defined g̃μν ¼ ½aðηo − χÞ�2fμν. Then,
expand the square root in χ. The result is

A½σðηoÞ� ¼
Z

2π

0

aðηo − χÞ
�

χ

Rðu; ηoÞ
þ 1

2
b0ðηoÞ

Qðu; ηoÞ
R2ðu; ηoÞ

χ2

þOðχ3Þ
�
du; ð47Þ

where

Rðu; ηoÞ ¼ e−2bðηoÞcos2uþ e2bðηoÞsin2u

Qðu; ηoÞ ¼ e−2bðηoÞcos2u − e2bðηoÞsin2u: ð48Þ

Pulling out the scale factor is necessary to avoid pathol-
ogies that arise because both χ and ηo become small in the
same limit (see Appendix A for illustration).
Only keeping the first-order term, the variation δA/δχ¼0

gives

0 ¼ −a0ðηo − χÞ χ

Rðu; ηoÞ
þ aðηo − χÞ 1

Rðu; ηoÞ
; ð49Þ

so asymptotically, the maximizing path χðu; ηoÞ ¼ χðηoÞ is
given implicitly by the solution of

χ ¼ aðηo − χÞ
a0ðηo − χÞ : ð50Þ

To first order, A½σðηoÞ� is given by

A½σðηoÞ� ¼ 2π
a2ðηo − χÞ
a0ðηo − χÞ : ð51Þ

But the requirement that Sgen → Smax means that A½σðηoÞ�/
4G must tend to the constant value Smax, or in other words,

lim
ηo→η∞
χ→0

a2ðηo − χÞ
a0ðηo − χÞ ¼

2GSmax

π
≡ 1

H
: ð52Þ

Therefore, aðηÞ asymptotically approaches de Sitter,
aðηÞ → −1/Hη as η → 0−, with H ¼ π/2GSmax.
Since χðηoÞ is a function of ηo, a technical detail to

address is to check that the higher-order coefficients in the

FIG. 6. Given a leaf σðηoÞ, the constant-η ¼ ηmin slice of its
parent light cone is the surface ςðηmin; ηoÞ.
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expansion (47), which themselves depend on ηo through
bðηoÞ and its derivatives, do not cause the higher-order
terms to be larger than the term that is first order in χ.
This we can achieve by bounding the remainder, r1ðχ; ηoÞ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f02 _χ þ f22

p
− χ/R.

Let F ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f02 _χ þ f22

p
. We may write its second deriva-

tive with respect to χ as

∂2F
∂χ2 ¼ b0ðηo − χÞ Qðu; ηo − χÞ

R2ðu; ηo − χÞ þ εðχ; ηoÞ; ð53Þ

where the term εðχ; ηoÞ → 0 as χ → 0 for any ηo. As such,
choose χ and ηo both small enough such that jεðχ; ηoÞj <
jb0ðηo − χÞj/Rðu; ηo − χÞ for all u.8 With this choice, and
since jQ/Rj ≤ 1, we have that���� ∂2F

∂χ2
���� < 2jb0ðηo − χÞj

Rðu; ηo − χÞ : ð54Þ

Next we invoke the monotonicity assumption (iii). Let η⋆ ¼
maxfηmono; ηtimeg. In terms of aðηÞ and bðηÞ, assumption
(iii) reads ðaðηÞeþbðηÞÞ0 > 0 and ðaðηÞe−bðηÞÞ0 > 0, or
jb0ðηÞj < a0ðηÞ/aðηÞ. Therefore, upon additionally requir-
ing 0 > ηo − χ > η⋆ (i.e. possibly making χ and ηo
smaller), it follows that���� ∂2F
∂χ2

���� < 2

Rðu; ηo − χÞ
a0ðηo − χÞ
aðηo − χÞ →

2

Rðu; ηo − χÞχðηoÞ
:

ð55Þ

So, byTaylor’s remainder theoremwehave that jr1ðχ; ηoÞj <
Rðu; ηo − χ1Þ−1ðχ2/χðηoÞÞ on any interval χ ∈ ½χðηoÞ; χ2�,
where χ1 ∈ ½χðηoÞ; χ2� minimizes Rðu; ηo − χÞ. Or, at the
edge of the interval,

jr1ðχðηoÞ; ηoÞj <
χðηoÞ

Rðu; ηo − χ1Þ
: ð56Þ

Since
R
2π
0 Rðu; ηoÞ−1du ¼ 2π irrespective of the value of ηo,

it follows that remainder in the expansion is strictly smaller
than the first-order term, so we were safe in restricting our
attention to the first-order solution.

3. Showing that the anisotropy decays

The decay of anisotropy is directly implied by
assumption (iii) once we have established that the volu-
metric scale factor aðηÞ is asymptotically de Sitter. In the
far future limit, assumption (iii) recast as ðaðηÞe�bðηÞÞ0 > 0
gives

jb0ðηÞj < a0ðηÞ
aðηÞ ⟶

η→0−

HaðηÞ ¼ 1

−η
: ð57Þ

Therefore, to capture the asymptotic scaling of b0ðηÞ, we
can write

b0ðηÞ ¼ fðηÞ
ð−ηÞ1−p ; ð58Þ

where p > 0 and where jfðηÞj ≤ F for some bounded
constant F when η > η⋆. In other words, b0ðηÞ cannot grow
faster than 1/η as η → 0−, so that ð−ηÞ1−pb0ðηÞ is some
bounded function. To establish that the anisotropy decays,
and thus complete the proof of the theorem, we need only
establish that bðηÞ goes to a fixed limit at late times.
Lemma IV.3 If b0ðηÞ satisfies Eq. (58) on ðη⋆; 0Þ, then

limη→0−bðηÞ exists.
Proof: We show that the limit exists by showing

that bðηÞ is a Cauchy function. Let ϵ > 0. We must find
δ > 0 such that 0 < −η1 < δ and 0 < −η2 < δ implies that
jbðη2Þ − bðη1Þj < ϵ. Without loss of generality, suppose
that η⋆ < η1 < η2. Then,

jbðη2Þ − bðη1Þj ¼
����
Z

η2

η1

fðuÞ
ð−uÞ1−p du

���� ≤
Z

η2

η1

jfðuÞj
ð−uÞ1−p du

≤ F
Z

η2

η1

1

ð−uÞ1−p du ≤
F
p
ð−η1Þp: ð59Þ

Therefore, let δ ¼ ðϵF/pÞ1/p. Then jbðη2Þ − bðη1Þj < ϵ as
required. ▪

It is interesting to briefly consider how one may relax the
assumption that each light cone has a globally maximal
generalized entropy section.9 If we do not assume that each
light cone has a maximum generalized entropy surface,
then the proof above pauses at Eq. (32). In this case, it is
no longer true that Sgen½σðη̃oÞ;Σðη̃oÞ� must be greater
than Sgen½ςðη̃; η̃oÞ; Xðη̃Þ�; the generalized entropy of the
leaf σðη̃oÞ could just be a local maximum, and the
entropy of the constant-η̃ slice ςðη̃; η̃oÞ could be larger.
We must therefore make a slightly different argument. It
turns out that a weaker but sufficient assumption is to
only assume that each light cone has a unique maximum
area surface.
As before, let us still suppose that Q never squeezes into

the comoving coordinate origin and find a contradiction.
We again suppose that there exists M > 0 such that, given
any ηo > ηtime, one can find values η̃o > ηo and ũ such that

8The only instance in which this is not possible is if
jb0ðηo−χÞj/Rðu;ηo−χÞ vanishes faster than jεðχ; ηoÞj. But, in this
case, the remainder jr1ðχ; ηoÞj can be bounded arbitrarily tightly,
since j∂2F/∂χ2j can be made arbitrarily small.

9A particularly astute reader may have noticed that the light
cones in the example in Appendix A do not satisfy this global
maximality property, but this is just because the approximation in
which Sout is estimated by SCG breaks down. More precisely, SCG
is not a good estimate of the matter contribution to generalized
entropy for light cone slices that are far to the past of the light
cone’s tip. For such slices, the comoving volume enclosed by the
slice grows arbitrarily large.
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χðũ; η̃oÞ ≥ M. First note that in order for Sgen½σðη̃oÞ;Σðη̃oÞ�
to remain finite, it must be that the function χðu; η̃oÞ is only
greater thanM on an interval that has vanishing measure in
the limit as η̃o → η∞. Otherwise, the proper area of σðη̃oÞ
diverges. Therefore, the leaves of Q develop “tendrils” in
the asymptotic future limit, as illustrated in Fig. 7. In this
case, however, the comoving volume that is enclosed by
σðη̃oÞ vanishes as η̃o → η∞, which means that the (locally)
maximal entropy slice of each light cone coincides with the
(globally) maximal area slice in the asymptotic future limit.
We can then repeat the same arguments presented in the
proof above for the constant-η̃ slice, but applied in
comparison to the maximal area slice, to construct the
required contradiction. Once it is established that Q
squeezes into the comoving coordinate origin, the proof
continues as before.
This relaxation is interesting (albeit somewhat artificial)

because it makes it possible to avoid assuming the quantum
focusing conjecture. Moreover, as is shown in Appendix B,
if a RW spacetime admits a continuous holographic screen
that has maximal area leaves on every past-directed light
cone, then the screen itself is unique and there is always a
finite globally maximal area slice of each light cone.
(However, this slice is not necessarily unique and may
not be part of the unique continuous holographic screen
with leaves on every past-directed light cone.) This result
suggests that it might in general be possible to relate
continuity properties of screens to the properties of
extremal-area light cone slices. For practical purposes,
however, it is much cleaner to simply assume the QFC
(which also guarantees that the GSL holds).

B. 1 + 3 dimensions

Now suppose that M is a Bianchi spacetime in 1þ 3
dimensions with the line element

ds2 ¼ −dt2 þ a21ðtÞdx2 þ a22ðtÞdy2 þ a23ðtÞdz2: ð60Þ

The case where M has three dimensions of space parallels
the 1þ 2-dimensional case with only a handful of technical
complications. The main difference is that now the
anisotropy has two functional degrees of freedom,

ds2 ¼ −dt2 þ a2ðtÞ½e2b1ðtÞdx2 þ e2b2ðtÞdy2 þ e2b3ðtÞdz2�:
ð61Þ

One arrives at the equation above by setting aiðtÞ ¼
aðtÞebiðtÞ for i ¼ 1, 2, 3, where the biðtÞ are subject to
the constraint

P
3
i¼1 biðtÞ ¼ 0. The definition of conformal

light cone coordinates (η, ηo, θ, ϕ) is correspondingly
modified

xjðη; ηo; θ;ϕÞ ¼ Djðθ;ϕÞ
Z

ηo

η

e−2bjðζÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
3
i¼1D

iðθ;ϕÞ2e−2biðζÞ
q dζ;

ð62Þ
where

Djðθ;ϕÞ ¼ ðsin θ cosϕ; sin θ sinϕ; cos θÞ:
Nevertheless, the essential construction remains unchanged.
We still consider a past Q-screen,Q, constructedwith respect
to a foliation of M by past-directed light cones, and the
leaves ofQ are still labeled by the conformal time ηo where
the tip of their corresponding light cone is located. The no-
hair theorem also generalizes in a straightforward way.
Theorem IV.4 Let M be a Bianchi I spacetime with

the line element (60) and whose matter content has constant
thermodynamic entropy s per comoving volume. Suppose
that M admits a past Q-screen, Q, with globally maximal
entropy leaves constructed with respect to a foliation ofM
with past-directed light cones that are centered on the
origin, x ¼ y ¼ z ¼ 0. Suppose that the generalized second
law holds on Q and that M and Q together satisfy the
following assumptions for i ∈ f1; 2; 3g:

(i) aiðtÞ → ∞ as t → ∞,
(ii) Q is timelike past some ttime and extends out to

future timelike infinity,
(iii) _aiðtÞ > 0 past some tmono,
(iv) Sgen → Smax < ∞ along Q.

Then, M is asymptotically de Sitter and the axial scale
factors aiðtÞ approachCieHt, whereH and Ci are constants.
Note: In terms of aðηÞ and the biðηÞ, assumption

(i) becomes
ði0Þ aðηÞ → ∞ as η → η∞ and aðηÞebiðηÞ → ∞.
Proof: The proof for 1þ 3 dimensions exactly paral-

lels the proof of Theorem IV.1, so we only note the most
important modifications. Beginning with part 1, in (η, ηo, θ,
ϕ) coordinates, the leaves σðηoÞ are now parameterized
surfaces,

x̃μðu; v; ηoÞ ¼ ðηðu; v; ηoÞ; ηo; u; vÞ u ∈ ½0; π�
v ∈ ½0; 2πÞ: ð63Þ

FIG. 7. A hypothetical leaf σðη̃oÞ that remains bounded away
from the comoving coordinate origin. The leaf has two long
tendrils that extend out from the comoving coordinate origin.
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Our first task is again to show that χðu; v; ηoÞ≡ ηo −
ηðu; v; ηoÞ tends to zero for all values of u and v
as ηo → η∞.
As before, let us construct a contradiction of

assumption (iv) by supposing that Q never squeezes into
the comoving coordinate origin. Suppose that there exists
M > 0 such that, given any ηo > ηtime, one can find values
η̃o > ηo, ũ, and ṽ such that χðũ; ṽ; η̃oÞ ≥ M. Let η̃≡
ηðũ; ṽ; η̃oÞ and consider the constant η ¼ η̃ slice of the
light cone whose tip is at η̃o. Denote this (codimension 2)
surface by ςðη̃; η̃oÞ, and denote the (codimension 1)
hypersurface of constant-η̃ by Xðη̃Þ. Here as well,
Eq. (32) will lead us to the contradiction via a divergence
in A½ςðη̃; η̃oÞ�.
In 1þ 3 dimensions, the induced metric on a surface of

constant η and ηo is given by

γab ¼
∂xμ
∂θa

∂xν
∂θb gμν

¼ a2ðηÞ
X3
j¼1

e2bjðηÞ
∂xj
∂θa

∂xj
∂θb ; ð64Þ

and where xj and gμν refer to Eqs. (61) and (62) with
θa ≡ ðθ;ϕÞ. The area of this surface is now given by the
surface integral

Aðη; ηoÞ ¼
Z

π

0

Z
2π

0

ffiffiffi
γ

p
dϕdθ; ð65Þ

where the determinant of the induced metric is

γ ¼ a4ðηÞ
X
i<j

e2ðbiðηÞþbjðηÞÞ
�∂xi
∂θ

∂xj
∂ϕ −

∂xj
∂θ

∂xi
∂ϕ

�
2

: ð66Þ

One may therefore bound the area of ςðη; ηoÞ by, e.g.,

Aðη; ηoÞ ≥ a2ðηÞeb1ðηÞþb2ðηÞ
ZZ

dθdϕ

���� ∂x∂θ ∂y∂ϕ −
∂y
∂θ

∂x
∂ϕ

����:
ð67Þ

Using the coordinate transformation Eq. (62), one can show
that the Jacobian in the integrand above is given by

���� ∂x∂θ ∂y∂ϕ −
∂y
∂θ

∂x
∂ϕ

���� ¼
ZZ

ηo

η
dsds0 sin θj cos θjðsin2θcos2ϕe2ðb2ðsÞþb3ðs0ÞÞþsin2θsin2ϕe2ðb3ðsÞþb1ðs0ÞÞ þ cos2θe2ðb2ðsÞþb1ðs0ÞÞÞ

×

�X3
i¼1

Diðθ;ϕÞ2e−2biðsÞ
�−3/2�X3

j¼1

Djðθ;ϕÞ2e−2biðs0Þ
�−3/2

: ð68Þ

This is quite beastly, but fortunately we can bound it nicely,���� ∂x∂θ ∂y∂ϕ −
∂y
∂θ

∂x
∂ϕ

���� ≥
ZZ

ηo

η
dsds0 sin θjcos3θje2ðb2ðsÞþb3ðs0ÞÞððe−2b1ðsÞ þ e−2b2ðsÞÞsin2θ þ e−2b3ðsÞcos2θÞ−3/2

× ððe−2b1ðs0Þ þ e−2b2ðs0ÞÞsin2θ þ e−2b3ðs0Þcos2θÞ−3/2: ð69Þ

[One would arrive at similar results by choosing different terms to keep in the numerator of Eq. (68).] Then, inserting
Eq. (69) into Eq. (67) and performing the angular integration, one arrives at

Aðη; ηoÞ ≥ 4πa2ðηÞeb1ðηÞþb2ðηÞ
ZZ

ηo

η
dsds0f̃ðs; s0Þ

where

f̃ðs; s0Þ ¼ eb1ðsÞþ3b2ðsÞþ3b1ðs0Þþb2ðs0Þ

½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2b1ðsÞ þ e2b2ðsÞ

p
e2ðb1ðs0Þþb2ðs0ÞÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2b1ðs0Þ þ e2b2ðs0Þ

p
e2ðb1ðsÞþb2ðsÞÞ�2

≥
eb1ðsÞþ3b2ðsÞþ3b1ðs0Þþb2ðs0Þ

½ðeb1ðsÞ þ eb2ðsÞÞe2ðb1ðs0Þþb2ðs0ÞÞ þ ðeb1ðs0Þ þ eb2ðs0ÞÞe2ðb1ðsÞþb2ðsÞÞ�2
≡ fðs; s0Þ:

Note that we have also used the fact that b3 ¼ −b1 − b2 to eliminate b3. Then, if fðs; s0Þ is minimized at sm, s0m ∈ ½η; ηo�, it
follows that

Aðη; ηoÞ ≥ 4πðηo − ηÞ2a2ðηÞeb1ðηÞþb2ðηÞfðsm; s0mÞ: ð70Þ
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Given this result, we now apply it to our surface ςðη̃; η̃oÞ,
for which ðη̃o − η̃Þ ≥ M. Doing so, we arrive at

A½ςðη̃; η̃oÞ�≡ Aðη̃; η̃oÞ ≥ 4πM2a2ðη̃Þeb1ðη̃Þþb2ðη̃Þfðsm; s0mÞ:
ð71Þ

The right-hand side of the bound above then diverges as η̃
and η̃o are chosen arbitrarily large. The only subtlety arises
if either or both of b1 and b2 also diverge, but because the
numerator and the denominator of the b-dependent part of
the bound Eq. (71) contain equal powers of b1 and b2, the
overall divergent behavior induced by aðηÞ is unchanged.
[Recall that aðηÞeb1ðηÞ, aðηÞeb2ðηÞ, and aðηÞeb3ðηÞ ¼
aðηÞe−b1ðηÞ−b2ðηÞ all grow infinitely large by assumption.]
We therefore arrive at the desired contradiction of
assumption (iv) via Eq. (32), and so the leaves of Q
squeeze into the comoving coordinate origin in the asymp-
totic future.
Next we turn to showing that the scale factor aðηÞ is

asymptotically de Sitter (part 2). Consider the generalized
entropy Sgen½σðηoÞ;ΣðηoÞ� once more. First, Lemma IV.2 is
correspondingly modified.
Lemma IV.5 Let ςðη; ηþ χÞ be the constant-η slice of

the past-directed light cone whose tip is at ηo ¼ ηþ χ. The
generalized entropy defined by this slice is given by

Sgen½ςðη; ηþ χÞ; XðηÞ� ¼ Aðη; ηþ χÞ
4G

þ cgðη; χÞχ3s; ð72Þ

where Aðη; ηþ χÞ is given by

Aðη; ηþ χÞ ¼ a2ðηÞ · ½4πχ2 þOðχ4Þ�; ð73Þ

and cgðη; χÞ is some Oð1Þ geometric factor due to
anisotropy that does not depend on aðηÞ.
Proof: Repeating the steps described in Lemma IV.2,

one finds that

cgðη;χÞ≡ SCGðη;χÞ
χ3s

¼ 4π

3

þ 8π

45
ðb01ðηÞ2 þ b01ðηÞb02ðηÞ þ b02ðηÞ2Þχ2 þOðχ3Þ:

ð74Þ

The expansion of Aðη; ηþ χÞ for small χ follows
from expanding

ffiffiffi
γ

p
in Eq. (65) in powers of χ and then

integrating. ▪

From Lemma IV.5, it therefore again follows that
the matter contribution to the generalized entropy,
SCG½σðηoÞ;ΣðηoÞ�, vanishes in the asymptotic future limit.
Consequently, we focus on the area term, A½σðηoÞ�.
For this part of the proof, we will work in the coordinates

ðχ; ηo; θ;ϕÞ. The leaf σðηoÞ is parameterized by some
surface x̃μðu; vÞ ¼ ðχðu; v; ηoÞ; ηo; u; vÞ with ηo held

constant and 0 ≤ u ≤ π, 0 ≤ v < 2π. In the asymptotic
future, this surface is the surface on the light cone with tip at
ηo with maximal area, and so it is the solution of

δA½σðηoÞ�
δχðu; v; ηoÞ

¼ 0: ð75Þ

The induced metric on this surface is, as usual, given by

hab ¼
∂x̃μ
∂ua

∂x̃ν
∂ub g̃μν ð76Þ

where g̃μν is the metric of Eq. (61) but rewritten in
ðχ; ηo; θ;ϕÞ coordinates. The area of σðηoÞ is given by

A½σðηoÞ� ¼
Z

π

0

Z
2π

0

ffiffiffiffiffiffiffiffiffiffi
det h

p
dvdu; ð77Þ

and the components of hab are as follows:

huu ¼ ð∂uχÞ2g̃00 þ 2ð∂uχÞg̃02 þ g̃22

huv ¼ ð∂uχÞð∂vχÞg̃00 þ ð∂uχÞg̃03 þ ð∂vχÞg̃02 þ g̃23

hvv ¼ ð∂vχÞ2g̃00 þ 2ð∂vχÞg̃03 þ g̃33: ð78Þ

Once more, solving the full Euler-Lagrange problem for
χðu; v; ηoÞ to obtain the maximal area A is intractable, so we
use the same trick where we extract an overall factor of
a4ðηo − χÞ from det h and then expand the square root of
the quotient in powers of χ. The result is

A½σðηoÞ� ¼
Z

π

0

Z
2π

0

a2ðηo − χÞ
�

sin θ
Rðu; v; ηoÞ3/2

χ2

þQðu; v; ηoÞ sin θ
Rðu; v; ηoÞ5/2

χ3 þOðχ4Þ
�
dvdu; ð79Þ

where

Rðu; v; ηoÞ ¼
X3
i¼1

e−2biðηoÞDiðu; vÞ2

Qðu; v; ηoÞ ¼
X3
i¼1

b0iðηoÞe−2biðηoÞDiðu; vÞ2: ð80Þ

Only keeping the lowest order term, the variation
δA/δχ ¼ 0 gives the maximal path χðu; v; ηoÞ ¼ χðηoÞ as
the solution of

χ ¼ aðηo − χÞ
a0ðηo − χÞ : ð81Þ

So, to lowest order, A½σðηoÞ� is given by
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A½σðηoÞ� ¼ χ2a2ðηo − χÞ
Z

π

0

Z
2π

0

sinθ
Rðu;v;ηoÞ3/2

dvdu

¼ 4π

�
a2ðηo− χÞ
a0ðηo− χÞ

�
2

: ð82Þ

But the requirement that Sgen → Smax means that A½σðηoÞ�/
4G must tend to the constant value Smax, or in other words,

lim
ηo→η∞
χ→0

a2ðηo − χÞ
a0ðηo − χÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
GSmax

π

r
≡ 1

H
: ð83Þ

Therefore, aðηÞ asymptotically approaches de Sitter,
aðηÞ → −1/Hη as η → 0−, with H2 ¼ π/GSmax. Note that
we recover the same Hubble constant as in Theorem III.1
for RW spacetimes in 1þ 3 dimensions.
Finally, as in the case of 1þ 2 dimensions, the condition

ðaðηÞebiðηÞÞ0 > 0 is enough to show that limη→0−b0iðηÞ exists
for each i. □

V. DISCUSSION

Assuming the generalized second law, we have shown
that if a Bianchi I spacetime admits a past Q-screen along
which generalized entropy increases up to a finite maxi-
mum, then this implies that the spacetime is asymptotically
de Sitter. We recover a version of Wald’s cosmic no-hair
theorem by making thermodynamic arguments about
spacetime, without appealing to Einstein’s equations.
While the proof of these cosmic no-hair theorems is most

tractable (and certainly easiest to visualize) in 1þ 2
dimensions, the generalization to 1þ 3 dimensions was
fairly immediate. In principle, the proof strategy for
arbitrary dimensions is the same, albeit more difficult from
the perspective of calculation. This is chiefly because
calculating area elements of codimension-2 surfaces in
arbitrary dimensions is cumbersome. Nevertheless, it is
natural to expect that analogous cosmic no-hair theorems
hold for Bianchi I spacetimes of arbitrary dimensions.
Within the proof itself, it would be interesting to see

if the monotonicity assumptions, a0iðηÞ > 0, could be
eliminated. The fact that the generalized second law
asserts that Sgen increases monotonically along a Q-
screen does offer some leverage. In particular, asymp-
totically this implies that the average scale factor aðηÞ ¼
ðQd

i¼1 aiðηÞÞ1/d increases monotonically; however, we
learn nothing about the anisotropies biðηÞ, since the
leading order behavior of Sgen does not depend on the
biðηÞ in the asymptotic future regime. We also note
that the monotonicity assumptions do not trivialize the
cosmic no-hair theorems demonstrated in Sec. IV. For
example, assuming monotonicity does not rule out
exponential expansion with different rates in different
spatial directions, nor asymptotically power-law scale
factors, nor does it even imply accelerated expansion
at all.

An interesting extension would be to try to prove a no-
hair theorem for classical cosmological perturbations [65],
or for quantum fields in curved spacetime. Given a scalar
field on a curved spacetime background, the task is to show
that the combined metric and scalar field perturbations
approach the Bunch-Davies state [66] at late times. In
principle it would suffice to show that the background
spacetime still tends to de Sitter in the future in this case,
since one could then simply invoke known no-hair results
about scalar fields in curved backgrounds [18–20].
Conceptually, such a calculation would be interesting
because one can explicitly write down the quantum state
of cosmological perturbations, and so a full treatment of the
matter entropy as von Neumann entropy (modulo ultra-
violet divergences) is possible.
To prove our theorem, it was not strictly necessary to

assume that the gravitational contribution to the entropy
was precisely proportional to the surface area. We could
imagine choosing some other function of the area, such that

Sgen½σ;Σ� ¼ fðA½σ�/GÞ þ SCG½σ;Σ�: ð84Þ

For example, returning to the RW case, if one sets
fðA/GÞ ¼ CðA/GÞp for some constants C and p, exactly
the same analysis as in the proof of Theorem III.1 leads to
the conclusion that [cf. Eq. (17)]

_aðtÞ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4π

G

�
C

Smax

�
1/p

s
aðtÞ ð85Þ

in the limit as t → ∞. In other words, one still concludes
that the scale factor is asymptotically de Sitter, albeit with
a Hubble constant that differs from the usual case of
fðA/GÞ ¼ A/4G.
Finally, while we did not make use of the Einstein field

equations in our derivation, upon reinvoking them, we note
that the cosmic no-hair theorems established here imply a
pure dark energy phase asymptotically in the future (in the
sense that the stress energy tensor becomes proportional to
the metric, gμν). However, the GSL is not sensitive to the
nature of the dark energy (whether it is a pure cosmological
constant, whether it turns on, whether it is due to a slowing
scalar field, and so on).
This work can be thought of as part of the more general

program of connecting gravitation to entropy, thermody-
namics, and entanglement [32–44]. As in attempts to derive
Einstein gravity from entropic considerations, we deduce
the behavior of the geometry of spacetime from thermo-
dynamics, without explicit field equations. Our result is less
general, as we only obtain the asymptotic behavior of the
universe, but is perhaps also more robust, as our assump-
tions are correspondingly minimal. Thinking of spacetime
as emerging thermodynamically from a set of underlying
degrees of freedom can change our perspective on the
knotty problems of quantum gravity; for example, as
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emphasized by Banks [23], the cosmological constant
problem becomes the question of ‘why does Hilbert space
have a certain number of dimensions?” rather than ‘why is
this parameter in the low-energy effective Lagrangian so
small?” Problems certainly remain (including why the
entropy was so low near the big bang), but this alternative
way of thinking about gravitation may prove useful going
forward.
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APPENDIX A: Q-SCREENS, A WORKED
EXAMPLE

In this appendix, we illustrate Q-screens by explicitly
constructing one in a RW spacetime that is asymptotically
de Sitter. Consider a RW spacetime in 1þ 3 dimensions
with the line element ds2 ¼ −dt2 þ a2ðtÞðdχ2 þ χ2dΩ2

2Þ
and where the scale factor is aðtÞ ¼ sinh t, t ∈ ð0;∞Þ.
Conformal time is given by ηðtÞ ¼ −2arccothðetÞ,
η ∈ ð−∞; 0Þ, and the scale factor in conformal time is

aðηÞ ¼ 1

sinhð−ηÞ : ðA1Þ

Foliate the spacetime with past-directed light cones cen-
tered at the coordinate origin χ ¼ 0, and let the Cauchy
hypersurfaces of the spacetime be the constant-η hyper-
surfaces. Let us now construct a Q-screen by extremizing
the generalized entropy on each light cone.
Consider a past-directed light cone whose tip is at the

conformal time ηo. A constant-η < ηo slice of this light
cone is a 2-sphere of coordinate radius ηo − η, and so the
generalized entropy computed with respect to this slice is

Sgenðη; ηoÞ ¼
π

G

�
ηo − η

sinhð−ηÞ
�

2

þ 4

3
πðηo − ηÞ3s: ðA2Þ

A plot of Sgenðη; ηoÞ as a function of η for several values of
ηo is shown in Fig. 8. The area term Aðη; ηoÞ/4G alone is
also overlaid on the plot, which illustrates that it is the
dominant contribution to the generalized entropy at late
times. Notice that in addition to having a local maximum,
Sgenðη; ηoÞ also has a local minimum, and below a certain
critical value ηcrito there is in fact no nonzero value of η
which locally extremizes Sgenðη; ηoÞ. As such, the

Q-screen, which is defined as the union of the slices with
maximal generalized entropy, is only defined for ηo ≥ ηcrito .
This is in contrast to the area Aðη; ηoÞ, which has a locally
maximizing value of η for all ηo. The holographic screen,
which is made up of extremal area slices, is therefore
defined for all times. Both the Q-screen and the holographic
screen were schematically illustrated previously in Fig. 2.
Generalized entropy is extremal when ∂Sgen/∂η ¼ 0.

Excluding η ¼ 0 and η → −∞, the extremizing values of
η are the real-valued solutions of

ηo − η ¼ sinhð−ηÞ
coshð−ηÞ − 2Gs sinhð−ηÞ3 ðA3Þ

when they exist. Let ηQðηoÞ denote the maximizing
value, and hence also define the Q-screen leaf radius
χQðηoÞ≡ ηo − ηQðηoÞ. A plot of χQðηoÞ is shown in
Fig. 9. As expected, χQðηoÞ vanishes as ηo → 0−. For
comparison, we also plot the holographic screen radius
χHðηoÞ≡ ηo − ηHðηoÞ, where ηHðηoÞmaximizes the area of
the light cone slice, i.e., it is the solution of

ηo − η ¼ tanhð−ηÞ: ðA4Þ

In particular note that χQðηoÞ is always slightly larger than
χHðηoÞ, but they ultimately coincide in the limit η → 0−

(cf. Fig. 2).
As a final exercise, let us investigate the asymptotic

dependence of χHðηoÞ on ηo [which is also the asymptotic
dependence of χQðηoÞ, since the two coincide as ηo → 0−] to
illustrate some of the subtleties involved in performing
asymptotic expansions. Consider Eq. (A4) and let η ¼ ηo −
χ so that we have χ ¼ tanhðχ − ηoÞ. Since, asymptotically,

FIG. 8. Plots of area (solid) and generalized entropy (dashed)
along light cones. From the lowest peak to the highest peak, the
values of ηo are −2, −1, −0.5, −0.1, −0.01, and −0.001. Here we
have taken G ¼ 1 and we have picked s ¼ 0.001.
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χ → 0, one may be tempted to expand this last equation for
small values of χ,

χ ¼ tanhð−ηoÞ þ ð1 − tanh2ð−ηoÞÞχ þOðχ2Þ

⇒ χHðηoÞ¼?
1

tanhð−ηoÞ
: ðA5Þ

Notice, however, that since 0 < tanhð−ηoÞ < 1, this expres-
sion for χHðηoÞ cannot be infinitesimally small—the expan-
sion is inconsistent. Rather, χ and ηo are simultaneously
infinitesimal. Consider instead the double Taylor series in χ
and ηo,

χ ¼ χ − ηo −
1

3
χ3 þ ηoχ

2 − η2oχ þ
1

3
η3o þ � � �

⇒ χHðηoÞ ¼ ð−3ηoÞ1/3 þ ηo þ � � � ðA6Þ

This last result is the correct asymptotic behavior of χHðηoÞ.
Similarly, writing A ¼ 4πχ2a2ðηo − χÞ, one arrives at

the wrong expressions for extremal values if one tries to
expand A in small values of χ, ηo, or even both at the same
time. The key is to keep aðηo − χÞ intact so that one arrives
at Eq. (A4). Doing so leaves just enough nonlinearity to be
able to restore the correct asymptotic behavior of χHðηoÞ.
This technique is exploited in Sec. IVA 2.

APPENDIX B: HOLOGRAPHIC SCREEN
CONTINUITY AND MAXIMAL AREA

LIGHT CONE SLICES

When the null curvature condition holds, the
Raychaudhuri equation guarantees that light rays focus,
or in other words, that the expansion of a null congruence is
always nonincreasing: dθ/dλ ≤ 0. In particular, this means

that if a null congruence has a spacelike slice whose area is
maximal with respect to local deformations, then this is in
fact the unique globally maximal area slice. A consequence
of this observation is that if one’s aim is to construct a
holographic screen by stitching together maximal area slices
of each null sheet in a null foliation, then the holographic
screen is uniquely fixed by the choice of foliation.
Here, we connect the uniqueness of locally maximal area

slices to continuity properties of holographic screens in RW
spacetimes. What we will first show is that, given a
foliation of a RW spacetime by past-directed light cones,
there is at most one continuous holographic screen that can
be constructed with respect to this foliation that has
maximal area leaves on every light cone. We will then
show that a consequence of this observation is that if a
spacetime admits a continuous holographic with maximal
area leaves on every light cone, then each light cone
necessarily has a globally maximal finite area slice.
Proposition B.1 Let M be a RW spacetime with the

line element

ds2 ¼ a2ðηÞð−dη2 þ dχ2 þ χ2dΩ2
d−1Þ; ðB1Þ

where the conformal time η takes values in an unbounded
(connected) interval I ⊆ R. Consider a foliation of M by
past-directed light cones whose tips are at χ ¼ 0. If there is
a past-directed light cone that has multiple spacelike slices
that have maximal area with respect to local deformations,
then M admits at most one holographic screen, H,
constructed with respect to the given foliation that is both
(a) continuous and (b) has maximal area leaves on every
past-directed light cone.
Proof: Consider a past-directed light cone whose tip is

at ηo. For η < ηo, the area of the constant-η slice of this light
cone is given by

Aðη; ηoÞ ¼ N d½ðηo − ηÞaðηÞ�d−1; ðB2Þ

where N d is a dimension-dependent constant. Because M
is spherically symmetric, such a slice has extremal area if
∂A/∂η ¼ 0, or equivalently, if

ηo ¼ ηþ aðηÞ
a0ðηÞ≡ fðηÞ: ðB3Þ

Therefore, constant-η slices of the past-directed light cone
whose tip is at ηo for which fðηÞ ¼ ηo and η < ηo are
potential holographic screen leaves.
Now suppose that there is a light cone whose tip is at ηo

that has n locally maximal area slices at η ¼ η1; η2;…; ηn
where, for convenience, these conformal times are ordered
such that η1 > η2 > � � � > ηn. This means that a graph of
fðηÞ must intersect the horizontal line at ηo at least 2n − 1
times. [Between any two adjacent local maxima ηi and
ηiþ1, there must be a local minimum of area at some

FIG. 9. Asymptotic behavior of the radius of the Q-screen
leaves [χQðηoÞ, dashed] and holographic screen leaves [χHðηoÞ,
solid].
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ηmin
i ∈ ðηi; ηiþ1Þ, and there may also be inflection points.]
Consider any two adjacent local maxima ηi and ηiþ1.
Schematically, in the vicinity of these points, the graph
of fðηÞ must look like one of the two configurations shown
in Figs. 10(a) and 10(b), since f is continuous if a/a0 is
continuous. Now consider shifting the horizontal line at ηo
up and down. This corresponds to shifting the tip of the
light cone to the future and past of ηo. Where the horizontal
line intersects the graph of fðηÞ tracks how the location of
the local maxima and the local minimum of A move. In
particular, notice that by moving the horizontal line
sufficiently far to the future or the past, one of the local
maxima and the local minimum must eventually meet and
become an inflection point before disappearing altogether.
(Note that we may always move the horizontal line
sufficiently far in at least one of the past or future
directions, since the interval I in which the conformal
time takes its values is unbounded in at least one direction.)
Therefore, if we track how the locations of the maxima at ηi
and ηiþ1 change as we move the location of the light cone’s
tip, we see that one of these local maxima must eventually
disappear, as illustrated in Fig. 10(d).
Inductively, then, there exists at most one continuous

function, call it ηmaxðηoÞ, whose domain is all ηo ∈ I and is
such that η ¼ ηmaxðηoÞ is a local maximum of Aðη; ηoÞ for

all ηo. The union of the constant-ηmaxðηoÞ slices of all past-
directed light cones is precisely the holographic screen H
described in the statement of the proposition. ▪

Examples of various fðηÞ are sketched below.
Figure 11(a) depicts a case in which there exists a
continuous holographic screen with leaves on every light
cone. Figure 11(b) depicts a case in which there is no such
holographic screen. In fact, from this example, one can see
that if I ¼ R, then there can never be a continuous
holographic screen with leaves on every light cone if there
is a light cone that has multiple maximal area slices.
Referring to the proof above, the technical reason is that
in this case, the horizontal line of constant ηo can be pushed
arbitrarily far up and down since ηo can take all values inR,
and so any pair of adjacent maxima and minima will
eventually merge (as a function of ηo).
Finally, there is a partial converse of the result above.
Proposition B.2 If M as described in Proposition B.1

admits a continuous holographic screen, H, with maximal
area leaves on every past-directed light cone, then each
light cone has a spatial slice which is a global maximum of
the area of all spatial slices of the light cone, and the area of
this slice is finite.
Proof: Consider first the case where there is a

unique local maximum on each past-directed light cone

(a) (b)

(c) (d)

FIG. 10. In the vicinity of two local maxima of Aðη; ηoÞ at ηi and ηiþ1 with ηo held fixed, the graph of the function fðηÞ must
schematically resemble one of the configurations shown in (a) and (b). The dashed line is the ηo ¼ η line; η can only take values to the
left of this line. The graph (c) depicts a configuration with additional inflection points. The graph (d) illustrates how the maxima and the
minimum eventually meet and annihilate as the horizontal constant ηo line is shifted up and down.
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and H is the union of these maximal area surfaces.
Again denote the value of η that maximizes Aðη; ηoÞ for a
given ηo by ηmaxðηoÞ. The only way that ηmaxðηoÞ could
not be a global maximum of area is if there was some
ηM < ηmaxðηoÞ such that AðηM; ηoÞ > AðηmaxðηoÞ; ηoÞ.

However, for this to be possible, there must be a local
minimum of A in between ηM and ηmaxðηoÞ. In other
words, the function fðηÞ must intersect the horizontal
constant-ηo line once for the local maximum, once for
the local minimum, and then possibly an additional even
number of times for pairs of inflection points—there
cannot be more intersections if ηmaxðηoÞ is the unique
local maximum of area. This means that the graph of
fðηÞ must be concave up or concave down (Fig. 12), in
which case there will be some horizontal ηo lines that do
not intersect the graph of fðηÞ, which contradicts the
requirement that H have leaves on every light cone.
Therefore, η ¼ ηmaxðηoÞ is in fact a global maximum
of Aðη; ηoÞ.
Then, according to Proposition B.1, the other case is

where some light cones have multiple local maxima of
Aðη; ηoÞ, in which case I is only semi-infinite. This can
only happen for light cones whose tips are near the
finite endpoint of the interval I . Beyond some thresh-
old value of η in the direction in which I is
unbounded, fðηÞ must still be monotonic in order for
there to be leaves on every light cone. Therefore, for ηo
beyond the threshold, the first case applies, and when
there are multiple local maxima of area on a given light
cone for ηo between the threshold and the finite
endpoint of I , at least one of them is a global
maximum of Aðη; ηoÞ. ▪
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