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We use the superspace formulation of (massive) IIA supergravity to obtain the explicit form of the
dilatino terms, and we find that the quartic-dilatino term is positive. The theory admits a ten-dimensional de
Sitter solution, obtained by assuming a nonvanishing quartic-dilatino condensate which generates a
positive cosmological constant. Moreover, in the presence of dilatino condensates, the theory admits formal
four-dimensional de Sitter solutions of the form dS4 ×M6, whereM6 is a six-dimensional Kähler-Einstein
manifold of positive scalar curvature.
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I. INTRODUCTION AND SUMMARY

Fermionic condensates have been considered in the past
mostly in the context of heterotic theory [1–9] and, to a
lesser extent, in eleven-dimensional supergravity [10,11].
Of course spinor vacuum expectation values (vevs) must
vanish in a Lorentz-invariant vacuum, however scalar
quadratic- and quartic-fermion condensates are allowed
by the symmetry of the vacuum and may be generated by
quantum effects.
In (massive) type IIA theory there is a single scalar

that can be constructed in ten dimensions out of four
dilatini, as can be seen by e.g. the Fierz identities (3.7)
below. The presence of a unique quartic-dilatino term in
the action thus gives a simple and interesting possibility
to generate a positive cosmological constant via fer-
mionic condensation. As we will see this possibility is
indeed realized, in that the quartic-dilatino term of the
theory turns out to be positive. Moreover, assuming
nonvanishing dilatino condensates, one can obtain both
a maximally-symmetric ten-dimensional de Sitter vacuum
dS10 and a compactification to four dimensional de Sitter
space dS4, of the form dS4 ×M6 with M6 a Kähler-
Einstein six-dimensional manifold of positive curvature
(such as e.g. CP3 with the Fubini-Study metric).
Let us be clear that these are formal solutions of

(massive) IIA supergravity, obtained by simply assuming
nonvanishing values of the dilatino condensates of the

theory. Our apporach is similar to e.g. [10], in that we do
not offer any concrete scenario or mechanism for the
generation of the dilatino condensate.
The quartic-fermion terms in the massive IIA theory

were not computed in [12]. On the other hand all
(massive) IIA supergravities admit a unified superspace
formulation, given in [13], in which the quartic-fermion
terms are given implicitly. Unfortunately their explicit
form was not worked out in [13]. However it was
conjectured in [12] that the quartic-fermion terms are
identical in the massive and massless IIA theories. Indeed
this follows immediately from the results of [13], since at
the level of the superspace Bianchi identities given in that
reference the massless limit is smooth and the quartic-
fermion terms do not depend on the mass.
The massless IIA supergravity theory was first

obtained in [14–16] (complete with quartic fermions)
by the dimensional reduction of eleven-dimensional
supergravity [17]. Moreover, the quartic-fermion terms
of (massive) IIA were given explicitly in [18], in the
rheonomic formulation. These references could therefore
be used in principle to provide the “missing” quartic-
fermion terms of Romans supergravity. Unfortunately,
however, we have been unable to conclude whether the
quartic-fermion terms in [14–16,18] agree with each
other.1 Instead in the present paper we derive the dilatino
terms from scratch using the superspace formalism of
[13], and we find agreement with [14]. In deriving these
computationally intensive results, we have made exten-
sive use of the computer program [19] which builds on
[20] to supplement it with various functionalities, includ-
ing explicit spinor indices and their manipulation.
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Our strategy will be to first determine the fermionic
action, Sf, up to gravitino terms. I.e. Sf is obtained from
the full fermionic action by setting the gravitino to zero.
We will refer to the action thus obtained as the dilatino-
condensate action. The result is given in Eq. (2.22)
below. Of course setting the gravitino to zero is in
general inconsistent, since the gravitino couples linearly
to terms of the form ðfluxÞ × ðdilatinoÞ and ðdilatinoÞ3.
However, in a Lorentz-invariant vacuum, where linear
and cubic fermion vevs vanish, this does not lead to an
inconsistency.
The dilatino-condensate actions of the present paper

should thus be regarded as pseudoactions: book-keeping
devices whose variation with respect to the bosonic fields
gives the correct bosonic equations of motion in the
presence of dilatino condensates (hence their name).
Moreover the fermionic equations of motion are trivially
satisfied in the Lorentz-invariant vacuum.
On the other hand, as we explain in more detail in

Sec. III, setting the gravitino to zero is a frame-dependent
statement. Moreover the superspace formalism of [13]
turns out to be in a frame different from the Einstein
frame. Thus the dilatino-condensate action (2.22) cannot
be compared to the actions in [14–16], which are
expressed in the Einstein frame, by simply setting the
gravitino in those references to zero.
As we will see in Sec. III, setting the superspace-frame

gravitino to zero turns out to be equivalent to setting the
Einstein-frame gravitino to be proportional to the dilatino.
Specifically the dilatino-condensate action (2.22) should be
compared with what one obtains from [14–16] by imposing
(3.1). This exercise is performed in Sec. III, and we find
agreement with [14]. Of course the massive terms in (2.22)
are absent from the massless IIA action of [14]. Rather they
can be compared to what one obtains from the Romans
action [12] by imposing (3.1), and again we find perfect
agreement.
The generic dilatino-condensate action, obtained by

setting to zero the gravitino of an arbitrary frame (para-
meterized by a real parameter β), is given in (3.8) below: it
is obtained from the action of [12] completed with the
quartic-fermion terms of [14], by imposing (3.3) with
arbitrary parameter β. As special cases, the dilatino-
condensate actions obtained by setting the Einstein-frame,
string-frame gravitino to zero are given in (3.9), (3.10)
respectively.
Having obtained the general dilatino-condensate action,

we can look for de Sitter solutions supported by non-
vanishing dilatino condensates. In Sec. IVA we show
that, setting the Einstein-frame gravitino to zero, the
theory admits ten-dimensional de Sitter vacua supported
by the quartic-dilatino condensate, with constant dilaton
and vanishing flux. In Sec. IV B, IV C we consider
compactifications on six-dimensional Kähler-Einstein
manifolds M6. We show that setting the Einstein-frame

gravitino to zero leads to four-dimensional de Sitter sol-
utions of the form dS4 ×M6. Section IV B considers the
case of vanishing flux and nonvanishing quadratic- and
quartic-dilatino condensates, while Sec. IV C considers
nonvanishing RR flux and vanishing quadratic-dilatino
condensates.
The plan of the remainder of the paper is as follows.

The action of (massive) IIA supergravity is obtained in
Sec. II, up to gravitino terms. The derivation of the
bosonic terms, already worked out in [13], is reviewed in
Sec. II A. In particular we recover the fact that the
superspace formalism of [13] is naturally formulated in a
frame different from the Einstein frame. The dilatino
terms are derived in Sec. II B. In Sec. III we compare the
dilatino-condensate action (2.22) with what one would
obtain from [12] and the quartic term in [14] by setting
the superspace-frame gravitino to zero, and we find
perfect agreement. Furthermore we derive the generic
dilatino-condensate action (3.8) obtained by setting to
zero the gravitino of an arbitrary frame. In Sec. IV we
show that the dilatino condensate action (3.9), obtained
by setting the Einstein-frame gravitino to zero, admits de
Sitter vacua of the from dS10 and dS4 ×M6, supported
by the quartic-dilatino condensate. We conclude in
Sec. V. Appendix A works out the supersymmetry
transformations, while Appendix B compares some dif-
ferent conventions in the literature.

II. MASSIVE IIA IN SUPERSPACE

Massless IIA supergravity [14–16] was first obtained
by the dimensional reduction of eleven-dimensional super-
gravity [17]. The massive deformation of IIA supergravity,
which cannot be obtained by reduction from eleven dimen-
sions, was introduced by Romans in [12]. Moreover all
(massive) IIA supergravities admit a unified superspace
formulation, given in [13].2

Here we are interested in giving a nonzero expectation
value to the dilatino condensate in (massive) IIA super-
gravity. For that purpose we need to know the terms both
quadratic and quartic in the dilatino. However the quartic-
fermion terms (although implicit in [13]) were not explic-
itly derived in that reference.
In this section we will use the superspace formulation of

the theory to extract the explicit form of the dilatino terms
in the action. More precisely, Romans supergravity is
obtained by setting

L ¼ 3

4
ðμλÞ þ 1

2
me2ϕ; L0 ¼ −L; ð2:1Þ

in all equations of [13].

2The solution of the superspace Bianchi identities up to mass
dimension-1 was previously given in [21].
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A. The bosonic terms

The bosonic equations of motion appear at mass dimension-2 and are given in Eq. (3.91) of [13]. Setting all fermionic
superfields to zero and restricting to the x-space component of the bosonic superfields (i.e. the lowest-order term in the
theta-expansion), the content of the B ¼ C ¼ 0 equations of [13] can be seen to be equivalent to the following set of
equations,

dLð2Þ þ
18i
5

me2ϕKð3Þ ¼ 0

idLð4Þ −
2

3
Kð3Þ ∧ Lð2Þ þ 4Kð1Þ ∧ Lð4Þ ¼ 0

id ⋆ Lð4Þ þ 8Kð1Þ ∧⋆ Lð4Þ þ 24Kð3Þ ∧ Lð4Þ ¼ 0

id ⋆ Lð2Þ þ 12Kð1Þ ∧⋆ Lð2Þ þ 864Kð3Þ ∧⋆ Lð4Þ ¼ 0: ð2:2Þ

The A ¼ D ¼ 0 equations of [13] can be seen to be equivalent to,

dKð1Þ ¼ 0

idKð3Þ − 4Kð1Þ ∧ Kð3Þ ¼ 0

id ⋆ Kð3Þ − 8Kð1Þ ∧⋆ Kð3Þ −
128

3
Lð2Þ ∧⋆ Lð4Þ − 768Lð4Þ ∧ Lð4Þ −

8

45
me2ϕ ⋆ Lð2Þ ¼ 0

id ⋆ Kð1Þ − 12Kð1Þ ∧⋆ Kð1Þ −
32

3
Lð2Þ ∧⋆ Lð2Þ − 144Kð3Þ ∧⋆ Kð3Þ − 4608Lð4Þ ∧⋆ Lð4Þ þ

2

5
m2e4ϕ ¼ 0; ð2:3Þ

together with the Einstein equation,

Rmn ¼ gmn

�
3i
2
∇ · Kð1Þ þ 18K2

ð1Þ −
1

25
m2e4ϕ

�

þ 12i∇ðmKnÞ − 16KmKn −
64

9

�
2L2

ð2Þmn −
1

8
gmnL2

ð2Þ

�

þ 48

�
3K2

ð3Þmn −
1

4
gmnK2

ð3Þ

�
− 768

�
4L2

ð4Þmn −
3

8
gmnL2

ð4Þ

�
; ð2:4Þ

where we have set Φ2
ðpÞ ≔ Φm1…mp

Φm1…mp , Φ2
ðpÞmn ≔ Φmm2…mp

Φn
m2…mp , for any p-form Φ. Moreover in order to put the

Einstein equation in the form (2.4) we have made use of the last equation in (2.3). Note that the latter can be obtained by acting
on the equations of motion of the fermionic superfield, cf. (2.13) below, with a spinor derivative and contracting the free spinor
indices with each other.
The first equation in (2.3) above can be solved by introducing a scalar field ϕ,

Kð1Þ ¼
i
2
dϕ; ð2:5Þ

where the normalization has been chosen so that ϕ is identified with the dilaton. The equations above are not automatically
expressed in the Einstein frame in ten dimensions. To transform to the Einstein framewe define a newWeyl-rescaled metric,

ĝmn ¼ e
3
2
ϕgmn: ð2:6Þ

The Einstein equation then takes the form,

R̂mn ¼ −
1

2
∂mϕ∂nϕ −

1

25
m2e4ϕgmn −

64

9

�
2L2

ð2Þmn −
1

8
gmnL2

ð2Þ

�

þ 48

�
3K2

ð3Þmn −
1

4
gmnK2

ð3Þ

�
− 768

�
4L2

ð4Þmn −
3

8
gmnL2

ð4Þ

�
; ð2:7Þ
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where R̂mn is the Ricci tensor of ĝ; the contractions on the
right-hand side are taken with respect to the unrescaled
metric g.
The equations above can be recognized as the bosonic

equations of Romans supergravity. For example one can
readily make contact with the formulation of [22]3 by using
the following dictionary,

Lð2Þ ¼ −
3

16
F; Kð3Þ ¼ −

i
24

e−2ϕH;

Lð4Þ ¼
1

192
e−2ϕG

m ¼ 5

2
mthere; ĝmn ¼ gtheremn ; R̂ ¼ −Rthere; ð2:8Þ

up to fermionic bilinear terms which will be determined in
the following, cf. (2.16) below. The equations of motion
read,

0 ¼ ∇̂2ϕ −
3

8
e3ϕ/2F2 þ 1

12
e−ϕH2 −

1

96
eϕ/2G2 −

4

5
m2e5ϕ/2

0 ¼ dðe3ϕ/2⋆̂FÞ þ eϕ/2H ∧ ⋆̂G
0 ¼ dðe−ϕ⋆̂HÞ þ eϕ/2F ∧ ⋆̂G −

1

2
G ∧ Gþ 4

5
me3ϕ/2⋆̂F

0 ¼ dðeϕ/2⋆̂GÞ −H ∧ G; ð2:9Þ

where the covariant derivative ∇̂ and the Hodge star ⋆̂ are
taken with respect to the rescaled metric ĝ, and,

0 ¼ R̂mn þ
1

2
∂mϕ∂nϕþ 1

25
m2e5ϕ/2ĝmn þ

1

4
e3ϕ/2

�
2F2

ð2Þmn −
1

8
ĝmnF2

ð2Þ

�

þ 1

12
e−ϕ

�
3H2

ð3Þmn −
1

4
ĝmnH2

ð3Þ

�
þ 1

48
eϕ/2

�
4G2

ð4Þmn −
3

8
ĝmnG2

ð4Þ

�
; ð2:10Þ

where the contractions on the right-hand side are computed using ĝ. Moreover the forms obey the following Bianchi
identities,

dF ¼ 4

5
mH; dH ¼ 0; dG ¼ H ∧ F: ð2:11Þ

It can also be checked that the equations of motion integrate to the following bosonic action in the Einstein frame, cf. (2.1)
of [22],

Sb ¼
Z

d10x
ffiffiffî
g

p �
R̂þ 1

2
ð∂ϕÞ2 þ 8

25
m2e5ϕ/2 þ 1

2 · 2!
e3ϕ/2F2 þ 1

2 · 3!
e−ϕH2 þ 1

2 · 4!
eϕ/2G2

�
þ CS; ð2:12Þ

where contractions are taken with respect to the rescaled metric ĝ and CS denotes the Chern-Simons term.

B. The dilatino terms

As explained in the introduction, we are interested in determining the fermionic action up to gravitino terms. The
fermionic equations of motion appear at dimension-3/2 and are given in Eq. (4.25) of [13],

3We are using the conventions of [22] where all (bosonic) forms are given in “superspace conventions,”

ΦðpÞ ¼
1

p!
Φm1…mp

dxmp ∧ … ∧ dxm1 ; dðΦðpÞ ∧ ΨðqÞÞ ¼ ΦðpÞ ∧ dΨðqÞ þ ð−1ÞqdΦðpÞ ∧ ΨðqÞ:

These are better suited for our discussion here which derives from the superspace formulation of IIA supergravity in which these
conventions are the natural ones. The Hodge star is defined as follows,

⋆ ðdxa1 ∧ … ∧ dxapÞ ¼ 1

ð10 − pÞ! ε
a1…ap

b1…b10−pdx
b1 ∧ … ∧ dxb10−p ;

so that,

ΦðpÞ ∧⋆ ΦðpÞ ¼ ð⋆ 1Þ 1

p!
Φm1…mp

Φm1…mp :
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i=∇λ ¼ −
24

5
me2ϕμ −

36

5
ðμλÞμ − 16

3
Lð2Þðγð2ÞμÞ

− 12Kð1Þðγð1ÞλÞ þ 3Kð3Þðγð3ÞλÞ þ
3

40
ðμγð3ÞμÞðγð3ÞλÞ

i=∇μ ¼ 24

5
me2ϕλþ 36

5
ðμλÞλ − 16

3
Lð2Þðγð2ÞλÞ

− 12Kð1Þðγð1ÞμÞ − 3Kð3Þðγð3ÞμÞ þ
3

40
ðλγð3ÞλÞðγð3ÞμÞ:

ð2:13Þ

These are exact superfield equations, i.e. valid to all orders
in the theta-expansion.
In order to identify the fermionic part of the action giving

rise to these equations we must first address the following
two issues: Firstly, once the fermionic superfields are
turned on, the bosonic equations (2.2), (2.3), (2.4) will
be violated by terms quadratic and quartic in the fermion
superfields. In other words, these equations are not valid as
full-fledged superspace equations for superfields. In par-
ticular, the superspace Bianchi identities for the superforms
at mass dimension-1, read:

0 ¼ dK̂1

0 ¼ dL̂2 þ
18

5
me2ϕK̂3

0 ¼ dK̂3 þ 4iK̂1 ∧ K̂3

0 ¼ dL̂4 þ
2i
3
L̂2 ∧ K̂3 − 4iK̂1 ∧ L̂4; ð2:14Þ

where the hatted superfields differ in general from the
unhatted ones by spinor superfield bilinears. Explicitly in
components the Bianchi identities read:

0 ¼ D½AK̂BÞ þ
1

2
TAB

FK̂F

0 ¼ D½AL̂BCÞ þ T ½ABjFL̂FjCÞ þ
6

5
me2ϕK̂ABC

0 ¼ D½AK̂BCDÞ þ
3

2
T ½ABjFK̂FjCDÞ þ 4iK̂½AK̂BCDÞ

0 ¼ D½AL̂BCDEÞ þ 2T ½ABjFL̂FjCDEÞ þ
4i
3
L̂½ABK̂CDEÞ

− 4iK̂½AL̂BCDEÞ: ð2:15Þ

These can be solved following the standard procedure,
taking into account the expressions for the torsion super-
field components of [13]. The solution reads,

K̂a ¼ Ka

L̂ab ¼ Lab þ
3

8
μγabλ

K̂abc ¼ Kabc −
1

8
μγabcμþ

1

8
λγabcλ

L̂abcd ¼ Labcd þ
1

32
μγabcdλ; ð2:16Þ

for the top (bosonic) components and

K̂α ¼
i
2
λα L̂α

β ¼ −
3

16
δβα K̂abα ¼

i
12

ðγabλÞα L̂abcα ¼
i
96

ðγabcμÞα

K̂α ¼ i
2
μα L̂α

β ¼ −
3

16
δαβ K̂ab

α ¼ −
i
12

ðγabμÞα L̂abc
α ¼ −

i
96

ðγabcλÞα

K̂aαβ ¼ −
1

24
ðγaÞαβ L̂abα

β ¼ −
1

192
ðγabÞαβ

K̂a
αβ ¼ 1

24
ðγaÞαβ L̂ab

α
β ¼

1

192
ðγabÞαβ;

for the remaining components. The ordinary bosonic forms are identified with the lowest-order components in the theta-
expansion of the hatted superfields in (2.16).
Second, note that the following combinations,

ΔTα ≔ −T̃α þ 344

225
Lμþ 8

9
Lð2Þðγð2ÞμÞ þ

8

45
Lð4Þðγð4ÞμÞ

þ 8

9
Kð1Þðγð1ÞλÞ −

16

45
Kð3Þðγð3ÞλÞ −

11

450
ðμγð3ÞμÞðγð3ÞλÞ

ΔTα ≔ −T̃α −
344

225
Lλþ 8

9
Lð2Þðγð2ÞλÞ −

8

45
Lð4Þðγð4ÞλÞ

þ 8

9
Kð1Þðγð1ÞμÞ þ

16

45
Kð3Þðγð3ÞμÞ −

11

450
ðλγð3ÞλÞðγð3ÞμÞ; ð2:17Þ
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vanish on-shell, cf. (4.9),(4.10) of [13]. Hence we are free to add to the right-hand sides of Eq. (2.13) terms proportional to
ΔT above. When integrated to a fermionic action, they induce terms proportional to T̃αλα, T̃αμ

α. Given that T̃ is the trace of
the dimension-3/2 torsion, these are gravitino terms which we set to zero here.4

Let us take as our starting point the fermionic equation (2.13), adding to the right-hand sides the terms c1ΔTα, c2ΔTα, as
explained in the previous paragraph, for some coefficients c1, c2. Provided we take c2 ¼ c1, the resulting equations can be
integrated into the following fermionic action:

Sf ¼
Z

d10x
ffiffiffî
g

p
eð6−8c1/9Þϕ

�
ðΛ̄Γm∇mΛÞ −

4

225
ð270 − 43c1Þe5ϕ/4mðΛ̄ΛÞ

−
�
1 −

1

6
c1

�
e3ϕ/4FmnðΛ̄ΓmnΓ11ΛÞ þ

�
1

8
−

2

135
c1

�
e−ϕ/2HmnpðΛ̄ΓmnpΓ11ΛÞ

þ 1

1080
c1eϕ/4GmnpqðΛ̄ΓmnpqΛÞ þ 2

5
ð15 − c1ÞðΛ̄ΛÞ2

�
; ð2:18Þ

where the Dirac gamma-matrices Γm and the Majorana fermions Λ are given in (A8), (A9) respectively; we have expressed
the final result in terms of the rescaled metric (2.6) and the bosonic forms in (2.8), with the understanding that the unhatted
forms therein are now replaced by the corresponding hatted ones given in (2.16):

F ≔ −
16

3
L̂ð2Þ; H ≔ 24ie2ϕK̂ð3Þ; G ≔ 192e2ϕL̂ð4Þ: ð2:19Þ

The total action (up to gravitino terms) is thus given by: S ¼ Sb þ αSf, for some coefficient α to be determined.
Next consider the dilaton equation of motion,

0 ¼ −2i∇ · Kð1Þ − 24K2
ð1Þ −

4

5
m2e4ϕ −

32

3
L̂2
ð2Þ − 48K̂2

ð3Þ − 384L̂2
ð4Þ

−
16

5
me2ϕðλμÞ − 8ðλγð2ÞμÞL̂ð2Þ þ 8½ðλγð3ÞλÞ − ðμγð3ÞμÞ�K̂ð3Þ − 32ðλγð4ÞμÞL̂ð4Þ þ 144ðλμÞ2; ð2:20Þ

which is an exact superfield equation obtained from the Bianchi identities at dimension-2; it reduces to the bosonic dilaton
equation given in (2.9) upon setting to zero the fermionic superfields, and transforming to the Einstein-frame metric. As
explained above, we can modify Eq. (2.20) by adding on the right-hand side a term of the form c3λαΔTα þ c4μαΔTα, which
vanishes on-shell. This will generate gravitino terms λαT̃α, μαT̃α, which we can then set to zero. Demanding that the
resulting equation of motion coincides with the dilaton equation coming from Sb þ αSf, gives an overdetermined system of
equations for the unknown coefficients α; c1;…; c4. The solution reads,

α ¼ −80; c1 ¼ c2 ¼
27

4
; c3 ¼ c4 ¼ −45: ð2:21Þ

Plugging back the above into the action we obtain,

S ¼ Sb − 80

Z
d10x

ffiffiffî
g

p �
ðΛ̄Γm∇mΛÞ þ

9

25
e5ϕ/4mðΛ̄ΛÞ

þ 1

8
e3ϕ/4FmnðΛ̄ΓmnΓ11ΛÞ þ

1

40
e−ϕ/2HmnpðΛ̄ΓmnpΓ11ΛÞ

þ 1

160
eϕ/4GmnpqðΛ̄ΓmnpqΛÞ þ 33

10
ðΛ̄ΛÞ2

�
; ð2:22Þ

where the bosonic part of the action Sb was given in (2.12).

4The precise relation between Tα
ab and the gravitino can be derived using the procedure described in detail in e.g. [23] and it is of the

form: emaenbTα
ab ¼ ∇½mψα

n� þOðψÞ. In particular it vanishes upon setting ψα
m ≡ 0.
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The Einstein equation can be used as a further consistency check. The dimension-2 superspace Bianchi identities give,

Rbc ¼ ηbc

�
−

1

25
m2e4ϕ þ 3i

2
∇ · Kð1Þ þ 18K2

ð1Þ þ
8

9
L̂2
ð2Þ − 12K̂2

ð3Þ þ 288L̂2
ð4Þ

−
36

5
ðλμÞme2ϕ −

16

3
ðλγð2ÞμÞL̂ð2Þ þ 6½ðλγð3ÞλÞ − ðμγð3ÞμÞ�K̂ð3Þ

þ 24ðλγð4ÞμÞL̂ð4Þ − 108ðλμÞ2
�

þ 12i∇ðbKcÞ − 16KbKc −
128

9
L̂2
ð2Þbc þ 144K̂2

ð3Þbc − 3072L̂2
ð4Þbc

þ 4iðλγðb∇cÞλÞ þ 4iðμγðb∇cÞμÞ −
32

3
ðλγðbiμÞL̂cÞi − 36½ðλγðbijλÞ − ðμγðbijμÞ�K̂cÞij

− 192ðλγðbijkμÞL̂cÞijk: ð2:23Þ

Proceeding as before, we note that the following terms vanish on-shell,

ΔTα
a ≔ −T̃α

a −
3i
20

ðγð1Þa ∇ð1ÞμÞ −
1

5
Lð2Þðγð2Þa λÞ þ 2

5
Lð4Þðγð4Þa λÞ

þ 1

5
Kð1Þðγð1Þa μÞ − 3

20
Kð3Þðγð3Þa μÞ þ 3

160
ðλγð3ÞλÞðγð3Þa μÞ

ΔTaα ≔ −T̃aα −
3i
20

ðγð1Þa ∇ð1ÞλÞ −
1

5
Lð2Þðγð2Þa μÞ − 2

5
Lð4Þðγð4Þa μÞ

þ 1

5
Kð1Þðγð1Þa λÞ þ 3

20
Kð3Þðγð3Þa λÞ þ 3

160
ðμγð3ÞμÞðγð3Þa λÞ; ð2:24Þ

cf. (4.9), (4.10) of [13]. Therefore the right-hand side of
the Einstein equation (2.23) can be modified by a term of
the form, c5ðΔTðbγcÞλÞ þ c6ðΔTðbγcÞμÞ þ c7ηbcðΔTλÞ þ
c8ηbcðΔTμÞ. Demanding that the Einstein equation thus
modified agrees with the Einstein equation coming from
(2.22) leads to a highly overdetermined system of equa-
tions. As required for consistency, a unique solution exists
and is given by,

c5 ¼ c6 ¼ −24; c7 ¼ c8 ¼ −
81

4
: ð2:25Þ

III. GENERAL DILATONIC VACUA

The dilatino ψm of the superspace formulation is
canonically related (through the suspersymmetry trans-
formations) to the metric gmn, whereas the dilatino Ψm
of (A11) is canonically related to the rescaled Einstein-
frame metric ĝmn, cf. (2.6). The action (2.22) is obtained by
setting the superspace gravitino to zero which thus corre-
sponds to,

ψm ≡ 0 ↔ Ψm ≡ −
3

4
ΓmΛ; ð3:1Þ

as can be seen from (A9).
More generally, setting the gravitino to zero is a frame-

dependent statement. This can be seen directly from the

supersymmetry transformation for the vielbein (A1) which,
when evaluated at the lowest order in the θ-expansion,
gives δξema ¼ −iðϵγaψmÞ − iðζγaψmÞ, up to a Lorentz
transformation. More generally, it canonically associates
the vielbein of the metric gðβÞ with the gravitino ψ ðβÞ,
where,

gðβÞmn ≔ e2βϕĝmn; ψ ðβÞ
m ≔ Ψm − βΓmΛ; β ∈ R; ð3:2Þ

and we have used, δξϕ ¼ ξ ·∇ϕ ¼ ðϵλÞ þ ðζμÞ. It follows
that setting the gravitino ψ ðβÞ to zero corresponds to,

ψ ðβÞ
m ≡ 0 ↔ Ψm ≡ βΓmΛ; ð3:3Þ

which generalizes (3.1) to an arbitrary frame. In particular,
we distinguish the following cases,

β ¼

8>><
>>:

− 3
4
; vanishing superspace-frame gravitino

0; vanishing Einstein-frame gravitino
1
4
; vanishing string-frame gravitino:

ð3:4Þ

The four-fermion part of the IIA Lagrangian in [14] is given
as a sum of 24 terms expressed in terms of bΨGP

m , λGP,
cf. Appendix B. Substituting (3.3) in [14] corresponds to
setting,
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ψGP
m ≡ β

ffiffiffi
2

p
Γ11Γmλ

GP; Ψ̂GP
m ≡ cΓ11Γmλ

GP; ð3:5Þ

where c ≔
ffiffiffi
2

p ðβ þ 1/12Þ, with β ∈ R. We thus obtain the following expression for the ðλ̄λÞ2 term in [14],

ðλ̄ΓmnΓ11λÞ2
�
26

ffiffiffi
2

p

3
c3 −

29

4
c4
�
þ ðλ̄ΓmnpqλÞ2

�
1ffiffiffi
2

p c3 −
21

8
c4
�

þ ðλ̄ΓmnpλÞ2
�

7

3
ffiffiffi
2

p c3 − 5c4
�
þ ðλ̄ΓmnpΓ11λÞ2

�
−
2

3
c2 þ 7ffiffiffi

2
p c3 þ

ffiffiffi
2

p
c3 − 6c4

�

¼
�
32c2 − 276

ffiffiffi
2

p
c3 þ 1773

2
c4
�
ðλ̄λÞ2; ð3:6Þ

where in the last equality we used the following Fierz identities,

ðλ̄ΓmnΓ11λÞ2 ¼ 6ðλ̄λÞ2
ðλ̄ΓmnpλÞ2 ¼ 48ðλ̄λÞ2

ðλ̄ΓmnpΓ11λÞ2 ¼ −48ðλ̄λÞ2
ðλ̄ΓmnpqλÞ2 ¼ −336ðλ̄λÞ2: ð3:7Þ

Furthermore substituting (3.3) in the massive IIA action of [12], completing it with the quartic-fermion term (3.6) and
normalizing to our conventions, cf. Appendix B, we obtain the one-parameter family of dilatonic-condensate
pseudoactions,

S ¼ Sb þ
Z

d10x
ffiffiffî
g

p �
ð1 − 144β2ÞðΛ̄Γm∇mΛÞ −

�
36β2 − 10β þ 21

20

�
e5ϕ/4mðΛ̄ΛÞ

−
1

2

�
29β2 −

9

2
β þ 5

16

�
e3ϕ/4FmnðΛ̄ΓmnΓ11ΛÞ −

�
4β2 þ 1

3
β

�
e−ϕ/2HmnpðΛ̄ΓmnpΓ11ΛÞ

−
1

24

�
21β2 −

1

2
β −

3

16

�
eϕ/4GmnpqðΛ̄ΓmnpqΛÞ −

�
8c2 − 69

ffiffiffi
2

p
c3 þ 1773

8
c4
�
ðΛ̄ΛÞ2

�
; ð3:8Þ

where Sb is given in (2.12), and c was defined below (3.5).
Setting β ¼ −3/4 in (3.8) we recover the action (2.22). The dilatonic-condensate pseudoactions SE, Sst obtained by

setting the Einstein-frame, string-frame gravitino to zero (β ¼ 0; 1/4 respectively) read,

SE ¼ Sb þ
Z

d10x
ffiffiffî
g

p �
ðΛ̄Γm∇mΛÞ −

21

20
e5ϕ/4mðΛ̄ΛÞ þ 3

512
ðΛ̄ΛÞ2

−
5

32
e3ϕ/4FmnðΛ̄ΓmnΓ11ΛÞ þ

1

128
eϕ/4GmnpqðΛ̄ΓmnpqΛÞ

�
; ð3:9Þ

and

Sst ¼ Sb þ
Z

d10x
ffiffiffî
g

p �
−8ðΛ̄Γm∇mΛÞ −

4

5
e5ϕ/4mðΛ̄ΛÞ − 5

2
ðΛ̄ΛÞ2

−
1

2
e3ϕ/4FmnðΛ̄ΓmnΓ11ΛÞ −

1

3
e−ϕ/2HmnpðΛ̄ΓmnpΓ11ΛÞ −

1

24
eϕ/4GmnpqðΛ̄ΓmnpqΛÞ

�
: ð3:10Þ

Note that the quartic-dilaton term in SE can potentially generate a positive cosmological constant, contrary to the quartic-
dilaton term in Sst, which is negative.
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The dilaton and Einstein equations following from action (3.8) read,

0 ¼ −∇̂2ϕþ 3

8
e3ϕ/2F2 −

1

12
e−ϕH2 þ 1

96
eϕ/2G2 þ 4

5
m2e5ϕ/2

−
5

4

�
36β2 − 10β þ 21

20

�
e5ϕ/4mðΛ̄ΛÞ − 3

8

�
29β2 −

9

2
β þ 5

16

�
e3ϕ/4FmnðΛ̄ΓmnΓ11ΛÞ

þ 1

2

�
4β2 þ 1

3
β

�
e−ϕ/2HmnpðΛ̄ΓmnpΓ11ΛÞ −

1

96

�
21β2 −

1

2
β −

3

16

�
eϕ/4GmnpqðΛ̄ΓmnpqΛÞ; ð3:11Þ

and,

0 ¼ R̂mn þ
1

2
∂mϕ∂nϕþ 1

25
m2e5ϕ/2ĝmn þ

1

4
e3ϕ/2

�
2F2

mn −
1

8
ĝmnF2

�

þ 1

12
e−ϕ

�
3H2

mn −
1

4
ĝmnH2

�
þ 1

48
eϕ/2

�
4G2

mn −
3

8
ĝmnG2

�

þ ð1 − 144β2Þ
�
1

2
ðΛ̄Γðm∇nÞΛÞ þ

1

16
gmnðΛ̄Γi∇iΛÞ

�

−
1

8
ĝmn

��
36β2 − 10β þ 21

20

�
e5ϕ/4mðΛ̄ΛÞ þ

�
8c2 − 69

ffiffiffi
2

p
c3 þ 1773

8
c4
�
ðΛ̄ΛÞ2

�

−
1

2

�
29β2 −

9

2
β þ 5

16

�
e3ϕ/4FðmiðΛ̄ΓnÞiΓ11ΛÞ

−
�
4β2 þ 1

3
β

�
e−ϕ/2

�
3

2
HðmijðΛ̄ΓnÞijΓ11ΛÞ −

1

16
ĝmnHð3ÞðΛ̄Γð3ÞΓ11ΛÞ

�

−
1

24

�
21β2 −

1

2
β −

3

16

�
eϕ/4

�
2GðmijkðΛ̄ΓnÞijkΛÞ −

1

8
ĝmnGð4ÞðΛ̄Γð4ÞΛÞ

�
: ð3:12Þ

The form equations read,

0 ¼ d
�
⋆̂
�
e3ϕ/2F −

�
29β2 −

9

2
β þ 5

16

�
e3ϕ/4ðΛ̄Γð2ÞΓ11ΛÞ

��
þ eϕ/2H ∧ ⋆̂G

0 ¼ dð⋆̂½e−ϕH − ð24β2 þ 2βÞe−ϕ/2ðΛ̄Γð3ÞΓ11ΛÞ�Þ þ eϕ/2F ∧ ⋆̂G −
1

2
G ∧ Gþ 4

5
me3ϕ/2⋆̂F

0 ¼ d

�
⋆̂
�
eϕ/2G −

�
21β2 −

1

2
β −

3

16

�
eϕ/4ðΛ̄Γð4ÞΛÞ

��
−H ∧ G; ð3:13Þ

where we have defined: ðΛ̄ΓðpÞΛÞ≔ 1
p!ðΛ̄Γm1…mp

ΛÞdxmp ∧
…∧ dxm1 , similarly to our definition for the bosonic forms,
cf. footnote 3.
In addition to the equations above, the forms obey the

Bianchi identities given in (2.11).

IV. DE SITTER VACUA

Having obtained the general dilatino-condensate action
(3.8), we can look for de Sitter solutions supported by
nonvanishing dilatino condensates. We will use for that
purpose the dilatino-condensate pseudoaction (3.9),
obtained by setting the Einstein-frame gravitino to zero
(β ¼ 0), although the analysis can be easily extended to a
general value of the parameter β.

A. dS10
In this section we show that the massless IIA theory

admits ten-dimensional de Sitter vacua supported by the
quartic-dilatino condensate, with constant dilaton and
vanishing flux. The only potentially nonvanishing con-
densates in the ten-dimensional Lorentz-invariant vacuum
are the scalar condensates ðΛ̄ΛÞ and ðΛ̄ΛÞ2. Note in
particular that these vevs are a priori independent.5

With these assumptions, settingm, β ¼ 0, we see that the
Bianchi identities (2.11), the form equations in (3.13) and

5Strictly-speaking these vevs should be denoted by hΛ̄Λi and
hðΛ̄ΛÞ2i respectively, where hðΛ̄ΛÞ2i ≠ hΛ̄Λi2 in general. Omit-
ting the brackets should hopefully not lead to confusion.
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the dilaton equation (3.11) are trivially satisfied. Moreover
the Einstein equation (3.12) reduces to,

−R̂mn ¼
3

212
ðΛ̄ΛÞ2ĝmn: ð4:1Þ

For a nonvanishing quartic-dilatino condensate we thus
obtain a simple realization of dS10 in massless IIA
theory.6 The de Sitter radius is set by the value of the
condensate.

B. dS4 ×M6 without flux

Let us now consider compactifications, on six-dimen-
sional Kähler-Einstein manifolds M6, of massless IIA
supergravity to a maximally-symmetric Lorentzian mani-
fold M1;3 with vanishing flux, F, H, G ¼ 0, and constant
dilaton which we also set to zero for simplicity, ϕ ¼ 0.
More specifically, we assume that the ten-dimensional
spacetime is of direct product form M1;3 ×M6,

ds2 ¼ ds2ðM1;3Þ þ ds2ðM6Þ: ð4:2Þ

Moreover,

−Rμν ¼ Ωgμν; −Rmn ¼ ωgmn; ð4:3Þ

where gμν, gmn are the components of the metric in the
external, internal space respectively; we have chosen the
parametrization so that positive Ω corresponds to de Sitter
space, and similarly for ω, cf. footnote 6.
The internal manifold being Kähler-Einstein, it admits

a nowhere-vanishing spinor, η, of positive chirality,
which we take to be commuting. Moreover the spinor
obeys,

∇mη ¼ iPmη; ð4:4Þ

where dP is proportional to J, the Kähler form of M6.
Furthermore J can be expressed as an η bilinear,

iη†γð2Þη ¼ J: ð4:5Þ

We decompose the chiral and antichiral components of the
dilatino, λ and μ respectively, cf. (A9), as follows,

λ ¼ χþ ⊗ ηþ c:c:; μ ¼ χ− ⊗ ηþ c:c:; ð4:6Þ

where χþ (χ−) is a chiral (antichiral) anticommuting Weyl
spinor ofM1;3. The rationale for this decomposition is that,
in the effective action describing the compactification on
M6, (4.6) should give rise to “light” four-dimensional

spinors χ�
7 it generalizes to the Kähler-Einstein case the

decomposition of [1], where M6 is taken to be a Calabi-
Yau. Similar decompositions were adopted in e.g. [7].
It follows from (4.6) that, for a Lorentz-invariant four-

dimensional vacuum, the dilatino bilinear condensates take
the form,

ðΛ̄ΛÞ ¼ ℜðAÞ; ðΛ̄Γð2ÞΛÞ ¼ ℑðAÞJ;

ðΛ̄Γð4ÞΛÞ ¼ ℑðAÞvol4 þℜðAÞ 1
2
J2; ð4:7Þ

where the complex number A ≔ 4ðχ̄þχ−Þ is the four-
dimensional quadratic-dilatino condensate, and vol4 is
the volume element of M1;3. Furthermore, setting m,
β ¼ 0, we see that the Bianchi identities (2.11), the form
Eq. (3.13) and the dilaton equation (3.11) are all auto-
matically satisfied. The mixed ðμ; mÞ components of the
Einstein equation (3.12) are automatically satisfied, while
the internal and external components of the Einstein
equations reduce to,

Ω ¼ ω ¼ 3

212
ðΛ̄ΛÞ2; ð4:8Þ

where we have used that vevs of the form ðΛ̄Γðm∇nÞΛÞ
vanish.
For a nonvanishing quartic-dilatino condensate we thus

obtain a simple realization of dS4 ×M6 in massless IIA
theory. The curvature of de Sitter space and the internal
manifold are both set by the value of the condensate.

C. dS4 ×M6 with RR flux

In this section we consider compactifications supported
solely by a nonvanishing quartic-dilaton vev, i.e. such that,

ðΛ̄ΛÞ2 ≠ 0; ðΛ̄ΓðpÞΛÞ ¼ 0; ð4:9Þ

for p ¼ 0;…; 10. As we will see, with this assumption8 the
theory admits four-dimensional de Sitter solutions of the
form dS4 ×M6 with nonvanishing RR flux, where M6 is a
six-dimensional Kähler-Einstein manifold of positive scalar
curvature.
Let us note that solutions with vanishing quadratic

condensates, supported by nonvanishing quartic-fermion
condensates, are necessarily nonsupersymmetric. This
readily follows from the supersymmetric integrability
theorem for (massive) IIA [13,25]. Indeed quartic con-
densates leave the Bianchi identities, the form equations
and the supersymmetry transformations unchanged, while
modifying the Einstein equation. If such solutions were

6Note that in our “superspace” conventions for the forms,
R̂ < 0, R̂ > 0 corresponds to de Sitter, anti-de Sitter space
respectively, cf. also footnote 3.

7Although certainly plausible, this is hard to show in general
beyond the Calabi-Yau case.

8Lattice models with nonvanishing quartic-fermion conden-
sates and vanishing quadratic-fermion condensates have been
studied in e.g. [24].
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supersymmetric they would therefore violate the integra-
bility theorem, leading to contradiction. A supersymmetric
integrability theorem in the presence of condensates has
recently been presented in [9] in the context of the heterotic
string, and it would be interesting to extend it to the type
II case.
As in section IVB, we assume that the ten-dimensional

spacetime is of direct product form, cf. (4.2), (4.3). Moreover
we set the dilaton and the three-form flux to zero, ϕ ¼ 0,
H ¼ 0, and we parametrize the RR fluxes as follows,

F ¼ bJ; G ¼ avol4 þ
1

2
cJ2; a; b; c ∈ R; ð4:10Þ

where J is the Kähler form of M6, and vol4 is the volume
element of M1;3. It is then straightforward to see that the
Bianchi identities (2.11), the F-form and G-form equations
in (3.13) are automatically satisfied, while the H-form
equation reduces to,

bc −
1

2
acþ 2

5
mb ¼ 0: ð4:11Þ

Moreover the dilaton equation (3.11) reduces to,

a2 ¼ 9b2 þ 3c2 þ 16

5
m2: ð4:12Þ

The two equations above can be used to determine two of the
parameters a, b, c, m in terms of the other two.
The mixed ðμ; mÞ components of the Einstein equa-

tion (3.12) are automatically satisfied, while the internal
components of the Einstein equations reduce to,

ω ¼ 16

25
m2 þ 2b2 þ c2 þ 3

212
ðΛ̄ΛÞ2; ð4:13Þ

where we have taken (4.12) into account. This equation
simply solves for ω; it implies that the internal space M6 is
necessarily of positive scalar curvature.
Lastly the ðμ; νÞ components of the Einstein equations

reduce to,

Ω ¼ −3b2 −
3

2
c2 −

24

25
m2 þ 3

212
ðΛ̄ΛÞ2; ð4:14Þ

where again we have used (4.12). It follows that for ðΛ̄ΛÞ2
sufficiently large, Ω is positive and the theory admits dS4 ×
M6 solutions. We also note that, for vanishing condensate,
Ω is necessarily negative. In this case we recover the
AdS4 ×M6 solutions described in Sec. III.2 of [26].

V. CONCLUSIONS

We have used the superspace formulation [13] of
Romans supergravity [12] to obtain the dilatino terms
of the theory, and we have found agreement with the

quartic-fermion term of [14]. As we have seen, setting the
Einstein-frame gravitino to zero results in a positive
quartic-dilatino term, which could therefore generate a
positive cosmological constant via fermionic condensation.
As a byproduct we have obtained the superform formu-

lation of Romans supergravity: the hatted superforms of
Eq. (2.16) obey the super-Bianchi identites (2.14). The
latter can be used as an alternative starting point for
defining the full theory in superspace.
We have shown that the theory admits formal de Sitter

space solutions, obtained by assuming nonvanishing dila-
tino condensates. This is in contrast to gaugino-condensate
scenarios in heterotic string which do not seem to allow for
a de Sitter vacuum [8]. The results of the present paper open
the way for a more general and systematic study of
(massive) IIA solutions supported by dilatino condensates,
with or without supersymmetry.
We emphasize that we do not claim to have solved the

problem of de Sitter space in string theory: we have offered
neither a concrete mechanism for the generation of the
dilatino condensate (although we have brane instantons in
mind), nor any controlled setting in which these quantum
effects might take place. The main message of the present
paper is that the quartic-dilatino term in (massive) IIA turns
out to be positive, and that this could potentially be
important for cosmological applications.
It is well known that de Sitter and, more generally,

cosmological spacetimes are not straightforward to embed
in string theory. In that respect fermionic condensates offer
an interesting possibility for generating a positive cosmo-
logical constant. Although elucidating the quantum origin
of the putative dilatino condensate is beyond the scope of
the present paper, it is clearly an important point that needs
to be addressed.
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APPENDIX A: THE SUPERSYMMETRY
TRANSFORMATIONS

Although we do not directly make use of this in the
present paper, it is instructive to work out the explicit form
of the supersymmetry transformations. A superdiffeomor-
phism generated by the supervector field ξA acts on the
vielbein as follows,

δξEM
A ¼ ∇Mξ

A þ ξBTBM
A; ðA1Þ

up to a ξ-dependent Lorentz transformation. The super-
symmetry transformation of the gravitini, ψα

m ≔ Eα
mj,

ψmα ≔ Emαj, with parameters ðϵα; ζαÞ, is obtained from
the above by setting ϵα ≔ ξαj, ζα ≔ ξαj, where the vertical
bar denotes the lowest-order term in the theta-expansion.
We thus obtain,
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δψα
m ¼ ∇mϵ

α þ emcðϵβTβc
α þ ζβTβ

c
αÞj

δψmα ¼ ∇mζα þ emcðϵβTβcα þ ζβTβ
cαÞj; ðA2Þ

up to gravitino-dependent, cubic fermion terms which we do not need to consider here. Correspondingly the supersymmetry
transformation of the dilatini reads,

δμα ¼ ðϵβ∇βμ
α þ ζβ∇βμαÞj

¼ Lϵþ Kmγ
mζ − Lmnγ

mnϵþ Kmnpγ
mnpζ þ Lmnpqγ

mnpqϵ

δλα ¼ ðϵβ∇βλα þ ζβ∇βλαÞj
¼ −Lζ þ Kmγ

mϵ − Lmnγ
mnζ − Kmnpγ

mnpϵ − Lmnpqγ
mnpqζ; ðA3Þ

where we have taken (4.5),(4.6) of [13] into account. Together with (2.5), (2.8) above we obtain, suppressing spinor indices,

e−3ϕ/4δμ ¼ i
2
∂mϕγ̂

mζ þ 1

2
me5ϕ/4ϵ

þ 3

16
e3ϕ/4Fmnγ̂

mnϵ −
i
24

e−ϕ/2Hmnpγ̂
mnpζ þ 1

192
eϕ/4Gmnpqγ̂

mnpqϵ

e−3ϕ/4δλ ¼ i
2
∂mϕγ̂

mϵ −
1

2
me5ϕ/4ζ

þ 3

16
e3ϕ/4Fmnγ̂

mnζ þ i
24

e−ϕ/2Hmnpγ̂
mnpϵ −

1

192
eϕ/4Gmnpqγ̂

mnpqζ; ðA4Þ

up to cubic fermion terms; the curved gamma matrices γ̂ are defined with respect to the rescaled metric (2.6). Similarly for
the gravitino transformations we obtain,

δψmα ¼ ∇mζ − Sγmϵþ F1
efγm

efϵ − F2
meγ

eϵ −H01
fghγm

fghζ

þH02
mghγ

ghζ −G1
efghγm

efghϵþG2
mefgγ

efgϵ

δψα
m ¼ ∇mϵþ Sγmζ þ F1

efγm
efζ − F2

meγ
eζ −H1

fghγm
fghϵ

þH2
mghγ

ghϵþ G1
efghγm

efghζ −G2
mefgγ

efgζ; ðA5Þ

where we used (4.3) of [13]. Furthermore using (4.6) of [13] and (2.5), (2.8) above we obtain,

δψmα ¼ ∇̂mζ þ
2i
5
me5ϕ/4γ̂mϵþ

3

8
∂eϕγ̂

e
mζ þ

i
8
e3ϕ/4Fefγm

efϵþ i
2
e3ϕ/4Fmeγ

eϵ

þ 1

24
e−ϕ/2Hfghγm

fghζ þ i
24

eϕ/4Gmefgγ
efgϵ

δψα
m ¼ ∇̂mϵ −

2i
5
me5ϕ/4γ̂mζ þ

3

8
∂eϕγ̂

e
mϵþ

i
8
e3ϕ/4Fefγm

efζ þ i
2
e3ϕ/4Fmeγ

eζ

−
1

24
e−ϕ/2Hfghγm

fghϵ −
i
24

eϕ/4Gmefgγ
efgζ; ðA6Þ

up to cubic fermion terms; ∇̂ is the covariant derivative associated to the spin connection of the rescaled metric (2.6) so that,

e3ϕ/2ωnkm ¼ ω̂nkm þ 3

4
ĝnk∂mϕ −

3

4
ĝnm∂kϕ; ∇mχ ¼ ∇̂mχ þ

3

8
∂nϕðγnmχÞ; ðA7Þ

where ω̂, ω are the spin connections of ĝ, g respectively, and χ is a fermion of either chirality.
To make contact with the supersymmetry transformations as given in e.g. [22] we use the following ten-dimensional

Dirac-matrix notation:

BERTRAND SOUÈRES and DIMITRIOS TSIMPIS PHYS. REV. D 97, 046005 (2018)

046005-12



Γm ¼
�

0 −iðγ̂mÞαβ
iðγ̂mÞαβ 0

�
; Γ11 ¼

� δαβ 0

0 −δβα

�
; C−1 ¼

�
0 δαβ

−δβα 0

�
; ðA8Þ

and define the Dirac-Majorana spinors,

Ψm ¼ e3ϕ/8
�
ψmα

ψα
m

�
−
3

4
ΓmΛ; Λ ¼ e−3ϕ/8Γ11

�
λα

μα

�
; Θ ¼ e3ϕ/8

�
ζα

ϵα

�
; ðA9Þ

which obey the reality conditions Ψ̄m ¼ ΨTr
mC−1, etc. In terms of these, the supersymmetry transformations (A4), (A6) take

the form,

δΛ ¼
�
−
1

2
Γm∇̂mϕ −

me5ϕ/4

2
þ 3e3ϕ/4

16
FmnΓmnΓ11 þ

e−ϕ/2

24
HmnpΓmnpΓ11 −

eϕ/4

192
GmnpqΓmnpq

�
Θ; ðA10Þ

and

δΨm ¼
�
∇̂m −

me5ϕ/4

40
Γm −

e3ϕ/4

64
FnpðΓm

np − 14δm
nΓpÞΓ11

þ e−ϕ/2

96
HnpqðΓm

npq − 9δm
nΓpqÞΓ11 þ

eϕ/4

256
Gnpqr

�
Γm

npqr −
20

3
δm

nΓpqr

��
Θ; ðA11Þ

respectively, up to cubic fermion terms. These are precisely
the supersymmetry transformations expressed in the con-
ventions of [22].

APPENDIX B: A NOTE ON CONVENTIONS

In this section we compare our conventions to those of
[12,14]. The translation between the conventions of the
present paper and those of [22] was explained previously.
The fermionic fields in [12] are related to those in the

present paper via,

ψR
m ¼ Ψm; λR ¼ 1ffiffiffi

2
p Λ; ðB1Þ

where the R superscript denotes the fields in that reference.
Moreover the bosonic fields of [12] are related to those in
the present paper via,

mRBð2Þ ¼
1

2
Fð2Þ; GR

ð3Þ ¼
1

2
Hð3Þ; FR

ð4Þ ¼
1

2
Gð4Þ

mR ¼ 4

5
m; ϕR ¼ −

1

2
ϕ; RR ¼ −R̂: ðB2Þ

With these field redefinitions it can be seen that at the
fermionic vacuum (3.1) the action of [12] precisely reduces
to that given in (2.22), (2.12) of the present paper, up to the
quartic-fermion term which was not computed in [12].
On the other hand the quartic-fermion terms are identical

in the massive and massless IIA theories. In order to
compare with the quartic-fermion terms of massless IIA as
given in [14] we note that, upon setting k ¼ 1 therein, the
fermionic ψGP

m , λGP of that reference are related to the ones
in the present paper via,

Ψm ¼ 1ffiffiffi
2

p ψGP
m ; Λ ¼ −Γ11λ

GP: ðB3Þ

Thus the fermionic vacuum (3.1) corresponds to setting,

ψGP
m ≡ −

3

2
ffiffiffi
2

p Γ11Γmλ
GP; Ψ̂GP

m ≡ −
2

ffiffiffi
2

p

3
Γ11Γmλ

GP;

ðB4Þ

where Ψ̂GP
m ≔ ψGP

m þ ð ffiffiffi
2

p
/12ÞΓ11Γmλ

GP.
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BERTRAND SOUÈRES and DIMITRIOS TSIMPIS PHYS. REV. D 97, 046005 (2018)

046005-14

https://doi.org/10.1002/prop.200310134
https://doi.org/10.1016/j.nuclphysb.2006.04.023
https://doi.org/10.1016/j.nuclphysb.2006.01.008
https://doi.org/10.1007/JHEP04(2012)114
https://doi.org/10.1007/JHEP11(2013)182
https://doi.org/10.1007/JHEP06(2015)104
https://doi.org/10.1002/prop.201700010
https://doi.org/10.1002/prop.201700010
https://doi.org/10.1016/0370-2693(83)91164-4
https://doi.org/10.1016/0370-2693(83)91164-4
https://doi.org/10.1007/BF02771012
https://doi.org/10.1016/0370-2693(86)90375-8
https://doi.org/10.1088/1126-6708/2005/10/057
https://doi.org/10.1088/1126-6708/2005/10/057
https://doi.org/10.1103/PhysRevD.30.325
https://doi.org/10.1016/0550-3213(84)90388-2
https://doi.org/10.1088/0264-9381/2/3/007
https://doi.org/10.1088/0264-9381/2/4/524
https://doi.org/10.1016/0370-2693(78)90894-8
https://doi.org/10.1142/S0217751X11054607
https://doi.org/10.1142/S0217751X11054607
https://doi.org/10.1016/0370-2693(87)91271-8
https://doi.org/10.1016/0370-2693(87)91271-8
https://doi.org/10.1088/1126-6708/2005/02/027
https://doi.org/10.1088/1126-6708/2005/02/027
https://doi.org/10.1088/1126-6708/2004/11/087
https://doi.org/10.1088/1126-6708/2004/11/087
https://doi.org/10.1007/JHEP10(2016)058
https://doi.org/10.1007/JHEP10(2016)058
https://doi.org/10.1088/1126-6708/2008/11/021
https://doi.org/10.1088/1126-6708/2008/11/021
https://doi.org/10.1088/1126-6708/2009/04/111
https://doi.org/10.1088/1126-6708/2009/04/111

