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de Sitter space from dilatino condensates in massive IIA supergravity
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We use the superspace formulation of (massive) IIA supergravity to obtain the explicit form of the
dilatino terms, and we find that the quartic-dilatino term is positive. The theory admits a ten-dimensional de
Sitter solution, obtained by assuming a nonvanishing quartic-dilatino condensate which generates a
positive cosmological constant. Moreover, in the presence of dilatino condensates, the theory admits formal
four-dimensional de Sitter solutions of the form dS4 x Mg, where Mg is a six-dimensional Kéhler-Einstein

manifold of positive scalar curvature.
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I. INTRODUCTION AND SUMMARY

Fermionic condensates have been considered in the past
mostly in the context of heterotic theory [1-9] and, to a
lesser extent, in eleven-dimensional supergravity [10,11].
Of course spinor vacuum expectation values (vevs) must
vanish in a Lorentz-invariant vacuum, however scalar
quadratic- and quartic-fermion condensates are allowed
by the symmetry of the vacuum and may be generated by
quantum effects.

In (massive) type IIA theory there is a single scalar
that can be constructed in ten dimensions out of four
dilatini, as can be seen by e.g. the Fierz identities (3.7)
below. The presence of a unique quartic-dilatino term in
the action thus gives a simple and interesting possibility
to generate a positive cosmological constant via fer-
mionic condensation. As we will see this possibility is
indeed realized, in that the quartic-dilatino term of the
theory turns out to be positive. Moreover, assuming
nonvanishing dilatino condensates, one can obtain both
a maximally-symmetric ten-dimensional de Sitter vacuum
dS;y and a compactification to four dimensional de Sitter
space dS,, of the form dS,; x Mg with Mg a Kihler-
Einstein six-dimensional manifold of positive curvature
(such as e.g. CP? with the Fubini-Study metric).

Let us be clear that these are formal solutions of
(massive) IIA supergravity, obtained by simply assuming
nonvanishing values of the dilatino condensates of the
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theory. Our apporach is similar to e.g. [10], in that we do
not offer any concrete scenario or mechanism for the
generation of the dilatino condensate.

The quartic-fermion terms in the massive IIA theory
were not computed in [12]. On the other hand all
(massive) IIA supergravities admit a unified superspace
formulation, given in [13], in which the quartic-fermion
terms are given implicitly. Unfortunately their explicit
form was not worked out in [13]. However it was
conjectured in [12] that the quartic-fermion terms are
identical in the massive and massless IIA theories. Indeed
this follows immediately from the results of [13], since at
the level of the superspace Bianchi identities given in that
reference the massless limit is smooth and the quartic-
fermion terms do not depend on the mass.

The massless IIA supergravity theory was first
obtained in [14-16] (complete with quartic fermions)
by the dimensional reduction of eleven-dimensional
supergravity [17]. Moreover, the quartic-fermion terms
of (massive) IIA were given explicitly in [18], in the
rheonomic formulation. These references could therefore
be used in principle to provide the “missing” quartic-
fermion terms of Romans supergravity. Unfortunately,
however, we have been unable to conclude whether the
quartic-fermion terms in [14-16,18] agree with each
other.' Instead in the present paper we derive the dilatino
terms from scratch using the superspace formalism of
[13], and we find agreement with [14]. In deriving these
computationally intensive results, we have made exten-
sive use of the computer program [19] which builds on
[20] to supplement it with various functionalities, includ-
ing explicit spinor indices and their manipulation.

'"The second author is grateful to Stefan Theisen for collabo-
ration on this problem during July-September 2013.
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Our strategy will be to first determine the fermionic
action, Sg, up to gravitino terms. Le. Sy is obtained from
the full fermionic action by setting the gravitino to zero.
We will refer to the action thus obtained as the dilatino-
condensate action. The result is given in Eq. (2.22)
below. Of course setting the gravitino to zero is in
general inconsistent, since the gravitino couples linearly
to terms of the form (flux) x (dilatino) and (dilatino)?.
However, in a Lorentz-invariant vacuum, where linear
and cubic fermion vevs vanish, this does not lead to an
inconsistency.

The dilatino-condensate actions of the present paper
should thus be regarded as pseudoactions: book-keeping
devices whose variation with respect to the bosonic fields
gives the correct bosonic equations of motion in the
presence of dilatino condensates (hence their name).
Moreover the fermionic equations of motion are trivially
satisfied in the Lorentz-invariant vacuum.

On the other hand, as we explain in more detail in
Sec. 11, setting the gravitino to zero is a frame-dependent
statement. Moreover the superspace formalism of [13]
turns out to be in a frame different from the Einstein
frame. Thus the dilatino-condensate action (2.22) cannot
be compared to the actions in [14-16], which are
expressed in the Einstein frame, by simply setting the
gravitino in those references to zero.

As we will see in Sec. III, setting the superspace-frame
gravitino to zero turns out to be equivalent to setting the
Einstein-frame gravitino to be proportional to the dilatino.
Specifically the dilatino-condensate action (2.22) should be
compared with what one obtains from [14—16] by imposing
(3.1). This exercise is performed in Sec. III, and we find
agreement with [14]. Of course the massive terms in (2.22)
are absent from the massless ITA action of [14]. Rather they
can be compared to what one obtains from the Romans
action [12] by imposing (3.1), and again we find perfect
agreement.

The generic dilatino-condensate action, obtained by
setting to zero the gravitino of an arbitrary frame (para-
meterized by a real parameter /), is given in (3.8) below: it
is obtained from the action of [12] completed with the
quartic-fermion terms of [14], by imposing (3.3) with
arbitrary parameter 3. As special cases, the dilatino-
condensate actions obtained by setting the Einstein-frame,
string-frame gravitino to zero are given in (3.9), (3.10)
respectively.

Having obtained the general dilatino-condensate action,
we can look for de Sitter solutions supported by non-
vanishing dilatino condensates. In Sec. IVA we show
that, setting the FEinstein-frame gravitino to zero, the
theory admits ten-dimensional de Sitter vacua supported
by the quartic-dilatino condensate, with constant dilaton
and vanishing flux. In Sec. IVB, IVC we consider
compactifications on six-dimensional Kéhler-Einstein
manifolds My. We show that setting the Einstein-frame

gravitino to zero leads to four-dimensional de Sitter sol-
utions of the form dS, x Mg. Section IV B considers the
case of vanishing flux and nonvanishing quadratic- and
quartic-dilatino condensates, while Sec. IV C considers
nonvanishing RR flux and vanishing quadratic-dilatino
condensates.

The plan of the remainder of the paper is as follows.
The action of (massive) IIA supergravity is obtained in
Sec. II, up to gravitino terms. The derivation of the
bosonic terms, already worked out in [13], is reviewed in
Sec. ITA. In particular we recover the fact that the
superspace formalism of [13] is naturally formulated in a
frame different from the Einstein frame. The dilatino
terms are derived in Sec. I[I B. In Sec. III we compare the
dilatino-condensate action (2.22) with what one would
obtain from [12] and the quartic term in [14] by setting
the superspace-frame gravitino to zero, and we find
perfect agreement. Furthermore we derive the generic
dilatino-condensate action (3.8) obtained by setting to
zero the gravitino of an arbitrary frame. In Sec. IV we
show that the dilatino condensate action (3.9), obtained
by setting the Einstein-frame gravitino to zero, admits de
Sitter vacua of the from dS;, and dS; x Mg, supported
by the quartic-dilatino condensate. We conclude in
Sec. V. Appendix A works out the supersymmetry
transformations, while Appendix B compares some dif-
ferent conventions in the literature.

II. MASSIVE IIA IN SUPERSPACE

Massless IIA supergravity [14—-16] was first obtained
by the dimensional reduction of eleven-dimensional super-
gravity [17]. The massive deformation of IIA supergravity,
which cannot be obtained by reduction from eleven dimen-
sions, was introduced by Romans in [12]. Moreover all
(massive) IIA supergravities admit a unified superspace
formulation, given in [13].2

Here we are interested in giving a nonzero expectation
value to the dilatino condensate in (massive) IIA super-
gravity. For that purpose we need to know the terms both
quadratic and quartic in the dilatino. However the quartic-
fermion terms (although implicit in [13]) were not explic-
itly derived in that reference.

In this section we will use the superspace formulation of
the theory to extract the explicit form of the dilatino terms
in the action. More precisely, Romans supergravity is
obtained by setting

3 1
L ==(ul) +=me*?,

L' =-L,
4 2

(2.1)
in all equations of [13].

*The solution of the superspace Bianchi identities up to mass
dimension-1 was previously given in [21].
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A. The bosonic terms

The bosonic equations of motion appear at mass dimension-2 and are given in Eq. (3.91) of [13]. Setting all fermionic
superfields to zero and restricting to the x-space component of the bosonic superfields (i.e. the lowest-order term in the
theta-expansion), the content of the B = C = 0 equations of [13] can be seen to be equivalent to the following set of
equations,

18i
dL(z) + ?lmez"jK@) =0
. 2
ldL(4) —gK(3) A L(z) +4K(1) A L(4) =0
id * Ly + 8K(1) Nx Ligy + 24K(3) ALy = 0
id » L(z) + 12K(]) A* L(z) + 864K(3) A* L(4) = 0. (2.2)

The A = D = 0 equations of [13] can be seen to be equivalent to,

ldK(3) —4K(1) A K(g) =0

. 128 8
id x K(3) — 8K(1) Nk K(g) —TL(Q) Nk L(4) - 768L(4) VAN L(4) —Emez‘/’ * L(z) =0

. 32 2
id » K(l) - 12K(1) NA\* K(l) —?L(z) N\* L(z) - 144K(3) N* K(3) - 4608L(4) Ax L<4) +§m2e4¢ = O, (23)

together with the Einstein equation,

3 |
Ryn = Gnn (3v : K(l) + 18K%l) - 5,/}126445)

. 64 1
+12iV(, K, = 16K, K, = - (2L<22)mn -3 gan%2)>

1 3
2 2 2 2
+48 <3K(3)mn -3 gmnK(3)> — 768 <4L( sy — g 9L 4)> : (2.4)

where we have set CID%p) =Dy O, <I>%p>mn =
Einstein equation in the form (2.4) we have made use of the last equation in (2.3). Note that the latter can be obtained by acting
on the equations of motion of the fermionic superfield, cf. (2.13) below, with a spinor derivative and contracting the free spinor
indices with each other.

The first equation in (2.3) above can be solved by introducing a scalar field ¢,

fbmmz'“mp @, for any p-form ®. Moreover in order to put the

i

where the normalization has been chosen so that ¢ is identified with the dilaton. The equations above are not automatically
expressed in the Einstein frame in ten dimensions. To transform to the Einstein frame we define a new Weyl-rescaled metric,

gmﬂ = e%(/)gmn' (2'6)

The Finstein equation then takes the form,

S L s 64 [, 1,
Rmn - _Eamq&arﬂl) - Em € " Gmn — ? (ZL(2)m” - ggan(z)

1 3
2 2 2 2
+ 48 <3K(3)mn -2 gmnK(3>) — 768 <4L(4>mn -3 gan(4)) : (2.7)
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where R,,, is the Ricci tensor of §; the contractions on the ~ up to fermionic bilinear terms which will be determined in
right-hand side are taken with respect to the unrescaled  the following, cf. (2.16) below. The equations of motion
metric g. read,

The equations above can be recognized as the bosonic
equations of Romans supergravity. For example one can
readily make contact with the formulation of [22]’ by using
the following dictionary,

0— @245 _ §e3¢/2F2 + %e—anz _9_166¢/2G2 _ gm265¢/2

0 = d(e*?2%F) + ¢??H A *G

3 i N . 1 4 N
_ . _ -2¢ 17. — —¢ P12 - —me392
L(z)__1_6F’ K(3>__ﬂe H: 0=d(e?*H) + e?*F A %G 2G/\G—|—5me *F
1 = 252G —

_ L g 0=d(e?”**G)—H A G, (2.9)

T
5 A 2 here the covariant derivative V and the Hodge star # are

> there; — there; R = —Rthere 28 where \4 g

m=an Jmn = Gimn - (23 taken with respect to the rescaled metric g, and,

L 1, 1 I
_ 1 D2 1 g 2 a2
0= Rmn + 28m¢an¢ + 25 m-e mn T 4 e <2F(2)mn ] gmnF(2)>

1
L (32
+—e (3H(3)m

1, 1 3.
12 gmnH%:S)) + . e¢/2 (4G(24>mn — —gmnG%4)) N (2 10)

n4 48 8

where the contractions on the right-hand side are computed using §. Moreover the forms obey the following Bianchi
identities,

dF:gmH; dH=0; dG=HAF. (2.11)

It can also be checked that the equations of motion integrate to the following bosonic action in the Einstein frame, cf. (2.1)
of [22],

~ 1 8 1 1 1
— 10 al R _ 2 2 ,5¢2 3¢/2F2 —¢H2 @12 2 2.12
S, /d x\/§< +3(09) + omPe 4o —e +5731 +5ar¢ G>+Cs, (2.12)

where contractions are taken with respect to the rescaled metric § and CS denotes the Chern-Simons term.

B. The dilatino terms

As explained in the introduction, we are interested in determining the fermionic action up to gravitino terms. The
fermionic equations of motion appear at dimension-3/2 and are given in Eq. (4.25) of [13],

*We are using the conventions of [22] where all (bosonic) forms are given in “superspace conventions,’

@(m = E(Dmlmmpdxmﬂ A oA dx"'l;d(@(p) A T(q)) = (D<p) A dll“(q) =+ (—l)qdq)(p) A llj(q)

These are better suited for our discussion here which derives from the superspace formulation of IIA supergravity in which these
conventions are the natural ones. The Hodge star is defined as follows,

* (dxal ANEEEIAN dxa") = €almapblmb10,pdxbl VANPRAN dxb“’-ﬂ,

(10 = p)!
so that,

1
q)(p> VAN 4 d)(p) = (* I)Eq)mw-m,,q) I
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. 24 36 16
iWi == me*lu == (uu == Loy (r*n)
3
= 12Ky (rV2) + 3K 3 (r¥2) + 15 (ur o) (rD)2)
! 36 16
Wi =5 med+ 2 ()= Loy(r2)

3
(Ar3)4) (rp).

— 12K 1y (r V) = 3K 5)(yPp) +20
(2.13)
These are exact superfield equations, i.e. valid to all orders
in the theta-expansion.

In order to identify the fermionic part of the action giving
rise to these equations we must first address the following
two issues: Firstly, once the fermionic superfields are
turned on, the bosonic equations (2.2), (2.3), (2.4) will
be violated by terms quadratic and quartic in the fermion
superfields. In other words, these equations are not valid as
full-fledged superspace equations for superfields. In par-
ticular, the superspace Bianchi identities for the superforms
at mass dimension-1, read:

Ozdkl
o 18 A
0: dL2+?m€2¢K3
0= df<3 +4lk1 A f<3
N 20 . . " ~
0=di, +§1L2 ARy —4iR, ALy, (2.14)

where the hatted superfields differ in general from the
unhatted ones by spinor superfield bilinears. Explicitly in
components the Bianchi identities read:

N 1 N
0= DuKp + ETABFKF

A N 6 A
0= DyuLpcy+ Tiag " Lric) + §m€2¢KABc

X 3 X o
0 =D Kpep) + ET[AB|FKF\CD) +4iK s Kpep)

N N 4i . .
0 = DyuLgcpry + 2T g  Lricpr) + ?L[ABKCDE)

_4ik[Ai‘BCDE)' (215)
These can be solved following the standard procedure,
taking into account the expressions for the torsion super-
field components of [13]. The solution reads,

N

k, =K,

“ 3
Ly =Ly + gﬂhbﬂ

N 1 1
Kabc = Kabc - g/’lyabcﬂ + gﬁyabc/1

S

1
Labcd = Lahcd + 7ﬂ7abcd/1’

5 (2.16)

for the top (bosonic) components and

A i - 3 A i A i
K, =34 Ll =-268 Kupw=-—=awph S ——
a 7 a 16 aba 12 (7ab )a abca 926 (7:11)6/”)05
Re=lye =25 Ry == un)® Lan® = = (raped)
_2)“ p— 16 B ab — 12 YabM abc — 926 Yabe
A 1 A 1
Kaa/;’ = _ﬁ(ya)aﬂ Labaﬁ == 192 (yab)aﬁ
A 1 A 1
K afp _ af L .%, = a
a 24 (ya> ab p 192 (yab) B

for the remaining components. The ordinary bosonic forms are identified with the lowest-order components in the theta-

expansion of the hatted superfields in (2.16).
Second, note that the following combinations,

- 344 8 8
AT = =T+ S L+ g Loy (rPm) + = Ly (r )
8 16 11
+ §K(1)(7<1)/1) - EK@)( ®) ) — 450 (/4}’(3)/1)(7(3)/1)
344 8 8
ATa : _Ta - %Lﬂ + §L<2) (}’(2)/1) - EL(4)(7<4)A)
8 k() 0k (3, — G)
+§K(1)(Y H) +EK(3)(V H) —@(W(ay{)(y 1), (2.17)
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vanish on-shell, cf. (4.9),(4.10) of [13]. Hence we are free to add to the right-hand sides of Eq. (2.13) terms proportional to
AT above. When integrated to a fermionic action, they induce terms proportional to 7%1,, T ,u%. Given that T is the trace of
the dimension-3/2 torsion, these are gravitino terms which we set to zero here.

Let us take as our starting point the fermionic equation (2.13), adding to the right-hand sides the terms ¢;AT%, ¢, AT, as
explained in the previous paragraph, for some coefficients cy, ¢,. Provided we take ¢, = ¢y, the resulting equations can be
integrated into the following fermionic action:

- 4 _
Sp= / d'Ox ge<6—861/9>¢{(Armva) _%(270 —43¢,)e>" m(AA)

1 - 1 2 -
- (1 - gcl>€3(/)/4an(AFm”F11A) + <§ - Ecl>€_¢/2Hmnp(AanpFllA)
_ 2 _
+ 1080 c1e¢/4Gm,,pq(AF PIN) + 5(15 - cl)(AA)Z}, (2.18)

where the Dirac gamma-matrices I and the Majorana fermions A are given in (AS8), (A9) respectively; we have expressed
the final result in terms of the rescaled metric (2.6) and the bosonic forms in (2.8), with the understanding that the unhatted
forms therein are now replaced by the corresponding hatted ones given in (2.16):

F := ——L(z); H := 24i€2¢i{<3); G:= 192€2¢£(4). (219)

The total action (up to gravitino terms) is thus given by: § = §;, + aSy, for some coefficient a to be determined.
Next consider the dilaton equation of motion,

4 32, X R
0= —2iV- K = 24K} —gm’e* — ?Lé) — 48Ky — 38417,
16 A . .
~ 5 me (4ye) = 8(ay D) Loy + 8[(ArV4) = (ur ) ) = 3200 ) Ly + 144 ()2, (2.20)

which is an exact superfield equation obtained from the Bianchi identities at dimension-2; it reduces to the bosonic dilaton
equation given in (2.9) upon setting to zero the fermionic superfields, and transforming to the Einstein-frame metric. As
explained above, we can modify Eq. (2.20) by adding on the right-hand side a term of the form c31,AT* + c4u® AT, which
vanishes on-shell. This will generate gravitino terms 4,7%, u®T,, which we can then set to zero. Demanding that the
resulting equation of motion coincides with the dilaton equation coming from S;, + aSy, gives an overdetermined system of

equations for the unknown coefficients «, cy, ..., ¢4. The solution reads,
27
a = —80, C] = Cy = Z, C3 = Cq = —45. (221)

Plugging back the above into the action we obtain,
_ 9 _
S=5,—- 80/d10x\/§{(AF’”VmA) +EeS‘7”4m(AA)
1 - 1 -
+ 3 M, (AT A) + 40 ¢ "2 H (AT A)

1 . 33
+ 160 MG g (ATPIN) + 10 (AA)? } (2.22)

where the bosonic part of the action §;, was given in (2.12).

*The precise relation between T¢%, and the gravitino can be derived using the procedure described in detail in e.g. [23] and it is of the
form: e,,%,"T%, = V[my/‘;] + O(w). In particular it vanishes upon setting w4 = 0.
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The Einstein equation can be used as a further consistency check. The dimension-2 superspace Bianchi identities give,

1
Rbcznbc<—m e44’+ v K1)+ 18K

25
36

+24(Ay W)L

2

Liype
32
3

— 108(4) >
128
+ 121V bK - 16Kb T

+4i(Ay sV ey A) + 4iuy , Vo) —

- 192(/1}’(bijkﬂ)ﬁc)ijk-

16 .
(Au)me*® — 5 (AyPu)L o) + 6[(Ay3)2) -

(/17 b ﬂ)

8 . . .
2 2 2 2
) gLl — 12K, + 28817,

(uy DK 3

+ 1441?%3);70 - 30721134)1,0

i = 36[(Ay b 2) = (uy b ) IK i

(2.23)

Proceeding as before, we note that the following terms vanish on-shell,

_2_0(7/“ Vi)
1
+_

SK(l)(Vz(zl)ﬂ)

~ 3i
— _T -
aa 20

1
+§K(1>( ( )/1)

ATS = -T2

20

N
20

cf. (4.9), (4.10) of [13]. Therefore the right-hand side of
the Einstein equation (2.23) can be modified by a term of
the form, c¢s(AT,y0)A) + c6(AT (pye)u) + cope(ATA) +
cgfpe(ATu). Demanding that the Einstein equation thus
modified agrees with the Einstein equation coming from
(2.22) leads to a highly overdetermined system of equa-
tions. As required for consistency, a unique solution exists
and is given by,

81

cs = cg = —24; c7=cg == (2.25)

ITII. GENERAL DILATONIC VACUA

The dilatino w,, of the superspace formulation is
canonically related (through the suspersymmetry trans-
formations) to the metric g,,,, whereas the dilatino ¥,,
of (Al1) is canonically related to the rescaled Einstein-
frame metric §,,,, cf. (2.6). The action (2.22) is obtained by
setting the superspace gravitino to zero which thus corre-
sponds to,

(3.1)

as can be seen from (A9).
More generally, setting the gravitino to zero is a frame-
dependent statement. This can be seen directly from the

1
— L&D
3

K5 (r&w)

(Vf(ll)V(M)

2
+3 Ly r2)
(r 3y (7 )
L) (rew)

(rm) (S 2),

5

+E

1 ) 2
——_L o _Z
5 (2)(7 /4) 5

3
K2 +—=

2.24
160 ( )

[

supersymmetry transformation for the vielbein (A1) which,
when evaluated at the lowest order in the #-expansion,
gives &ge,” = —i(ey®y,,) —i({y"w,,), up to a Lorentz
transformation. More generally, it canonically associates
the vielbein of the metric g¥) with the gravitino ),
where,

(B)

Gmn = ezﬂ(ﬁgmn; Wﬁf) =

=¥ —pr,A; BER,

and we have used, 6:¢0 = &- V¢p = (ed) + ({p). It follows
that setting the gravitino ) to zero corresponds to,

(3.2)

P =0 W, =pr,A (3.3)
which generalizes (3.1) to an arbitrary frame. In particular,

we distinguish the following cases,

—%, vanishing superspace-frame gravitino

= 0’

, vanishing string-frame gravitino.

vanishing Einstein-frame gravitino  (3.4)

i

The four-fermion part of the IIA Lagrangian in [14] is given
as a sum of 24 terms expressed in terms of por  )Gp
cf. Appendix B. Substituting (3.3) in [14] corresponds to

setting,
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wal = ﬁ\/ﬁrllrmlGPv ‘i'nGlP = oIy I, 29", (35)

where ¢ := v/2(f + 1/12), with # € R. We thus obtain the following expression for the (14)* term in [14],

= 26v/2 2 - 1 21
(}“anrl 11)2 <—\/' 03 - —9 C4> + (/Irmnqu')z <_ C3 - —C4>

3 4 V2 ]
7 2 7
+ (L)’ <— =5 4) + (A0, 4)? <——c2 +—=c+ V26 - 6c4)

3V2 30 V2
(320 - 276V2¢3 +1727 & 4) (A2)2, (3.6)

where in the last equality we used the following Fierz identities,

(ALl 4) = 6(22)?
(A pA)? = 48(24)?
(AT T112)2 = —48(72)>
(AT pgh)? = —336(20)%. (3.7)

Furthermore substituting (3.3) in the massive IIA action of [12], completing it with the quartic-fermion term (3.6) and
normalizing to our conventions, cf. Appendix B, we obtain the one-parameter family of dilatonic-condensate
pseudoactions,

21 _
S=38,+ / d"x/4 ( { 1 — 144p%)(AI"V,, A) — (36ﬁ2— 10ﬁ+%)65¢/4m(AA)

2
1 13 _ 1773 )\
- N @l4 mnpq _ 4 2

1 _ 1 _
- (29/32 - g B+ %) SV, (AT A) — (4ﬂ2 + 3 ﬁ) e H,,,,(AT"™ T} A)

where S}, is given in (2.12), and ¢ was defined below (3.5).
Setting # = —3/4 in (3.8) we recover the action (2.22). The dilatonic-condensate pseudoactions S, S obtained by
setting the Einstein-frame, string-frame gravitino to zero (f = 0, 1/4 respectively) read,

_ 21 _ _
SE =5, + / dlox@{(Ar'"va) -~ 2—0e5¢/4m(AA) + 5% (AA)?

5 — 1 _
— —2 63{/)/4an (AF’"”FI lA) + ﬁ e{/)/4G (AF’”"’"’A) } s (39)

and

_ 4 _
S =S, + / dlox\/é{—s(Armva) 2 Mm(AA) - g (AA)?

1 - 1 _ 1 B}
=5 @V F (ATT 1 A) = 5 €92 H,,, (AT A) = 5 4G (RT™P9A) } (3.10)

Note that the quartic-dilaton term in S can potentially generate a positive cosmological constant, contrary to the quartic-
dilaton term in S*’, which is negative.
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The dilaton and Einstein equations following from action (3.8) read,

. 1
v 3412 F2 —(/)HZ -

0= ¢ —|— e 7€ + %6
5 21 - 3
-2 (365 - 108+ > S m(AN) -2
1
+3 (4ﬂ2 + ﬂ) “2H,p, (ATPT 3 )

and,

A~ 1 1
0= Ry, + Eam(ﬁan(b =+ E

1
12

1
2052 4~ i o302 <2 F2,

G2+ ‘g‘mz o502

5 _
(29ﬂ2 2 B+ —) SPAFE (AT A)

1 1 3
—e?(3H2 —Z5 H? e 4G22 —Z) 2
e (3 mn =y 9mn > + 48 e < Ginn 3 Iun G )

1= 14 (AT V) 4 gun(ATV,0) )

. ((36/)’2 ~ 108+ ) S m(AN) + <8c2 — 69V2¢? + %&) ([\A)2)

9 5 o
- <29ﬁ2 -—p+ E) e, (AT, Ty A)

1
2
432 1; —p12 3H U(AT,;: Ty A
- /3+§/€ E(m( Wil 1) =

1 1 3 o
2 <21ﬁ2 - Eﬂ - E) e <2G(ml']k(AFn)ijkA)

The form equations read,

0= d<2 2 <29ﬂ2 “Jp+ ]5_6> 63¢/4(f\r<2)r”/\)]> e A 3G

0 =d(*[e~?H -

0

where we have defined: (AL(,)A) = (Ale m, N)dX"P A
. Adx™, similarly to our definition for the bosonic forms,
cf footnote 3.
In addition to the equations above, the forms obey the
Bianchi identities given in (2.11).

IV. DE SITTER VACUA

Having obtained the general dilatino-condensate action
(3.8), we can look for de Sitter solutions supported by
nonvanishing dilatino condensates. We will use for that
purpose the dilatino-condensate pseudoaction (3.9),
obtained by setting the Einstein-frame gravitino to zero
(p = 0), although the analysis can be easily extended to a
general value of the parameter f.

[ 1 3 -
d(i’ €¢/ZG - (21ﬂ2 —Eﬂ—E> €¢/4(AF<4)A):|> —-HA G,

- 1 4
(24ﬂ2 + 2ﬁ)e‘¢/2(AF(3)F11A)]) + €¢/2F A ‘:’G - EG AN G + gm63¢/2;F

1 2
— Pl4 mnpq
%6 <2ﬂ ﬂ 16) Gnpg(AT""PIN), (3.11)
1
——4. F?
8gmn >
L, ARE)
1_6gmnH(3)<AF rllA)
1. -
—gImGa) (Ar<4>A)> . (3.12)
(3.13)

[
A. dSy

In this section we show that the massless IIA theory
admits ten-dimensional de Sitter vacua supported by the
quartic-dilatino condensate, with constant dilaton and
vanishing flux. The only potentially nonvanishing con-
densates in the ten-dimensional Lorentz-invariant vacuum
are the scalar condensates (AA) and (AA)?. Note in
particular that these vevs are a priori independent.’

With these assumptions, setting m, f = 0, we see that the
Bianchi identities (2.11), the form equations in (3.13) and

_SStn'ctly—speaking these vevs should be denoted by (AA) and
({(AA)?) respectively, where ((AA)?) # (AA)? in general. Omit-
ting the brackets should hopefully not lead to confusion.
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the dilaton equation (3.11) are trivially satisfied. Moreover
the Einstein equation (3.12) reduces to,

N 3 - .
=R, = p (AA)2gmn (41)
For a nonvanishing quartic-dilatino condensate we thus
obtain a simple realization of dS;, in massless IIA
theory.6 The de Sitter radius is set by the value of the

condensate.

B. dS4 X M6 without flux

Let us now consider compactifications, on six-dimen-
sional Kihler-Einstein manifolds Mg, of massless ITA
supergravity to a maximally-symmetric Lorentzian mani-
fold M, ; with vanishing flux, F, H, G = 0, and constant
dilaton which we also set to zero for simplicity, ¢ = 0.
More specifically, we assume that the ten-dimensional
spacetime is of direct product form M, 3 x Mg,

dS2 = dSz(Mls) + dSZ(M6). (42)

Moreover,

_R;w = Qg/w; —Rin = ®OGpns (43)
where g,,, g, are the components of the metric in the
external, internal space respectively; we have chosen the
parametrization so that positive € corresponds to de Sitter
space, and similarly for w, cf. footnote 6.
The internal manifold being Kéhler-Einstein, it admits
a nowhere-vanishing spinor, #, of positive chirality,
which we take to be commuting. Moreover the spinor
obeys,
vm’/] =iP,n, (44)
where dP is proportional to J, the Kéhler form of M.
Furthermore J can be expressed as an # bilinear,
inyom=J. (4.5)
We decompose the chiral and antichiral components of the
dilatino, 4 and u respectively, cf. (A9), as follows,
A=y, ®n+cc Uu=y_Q®n+cwc., (4.6)
where y, (y_) is a chiral (antichiral) anticommuting Weyl
spinor of M ;. The rationale for this decomposition is that,
in the effective action describing the compactification on
Mg, (4.6) should give rise to “light” four-dimensional

®Note that in our “superspace” conventions for the forms,
R <0, R> 0 corresponds to de Sitter, anti-de Sitter space
respectively, cf. also footnote 3.

spinors ;(i7 it generalizes to the Ké&hler-Einstein case the
decomposition of [1], where M, is taken to be a Calabi-
Yau. Similar decompositions were adopted in e.g. [7].

It follows from (4.6) that, for a Lorentz-invariant four-
dimensional vacuum, the dilatino bilinear condensates take
the form,

(AA) =%(A);  (AlgA) = J(A)J;

where the complex number A :=4(y, y_) is the four-
dimensional quadratic-dilatino condensate, and vol, is
the volume element of M, ;. Furthermore, setting m,
p =0, we see that the Bianchi identities (2.11), the form
Eq. (3.13) and the dilaton equation (3.11) are all auto-
matically satisfied. The mixed (u, m) components of the
Einstein equation (3.12) are automatically satisfied, while
the internal and external components of the Einstein
equations reduce to,

i -

Q== 75 (AP, (4.8)

where we have used that vevs of the form (AI',,V,)A)
vanish.

For a nonvanishing quartic-dilatino condensate we thus
obtain a simple realization of dS,; x My in massless IIA
theory. The curvature of de Sitter space and the internal
manifold are both set by the value of the condensate.

C. dS4; x Mg with RR flux

In this section we consider compactifications supported
solely by a nonvanishing quartic-dilaton vey, i.e. such that,
(AAN)? # 0; (/_\F(,,)A) =0, (4.9)
for p =0, ..., 10. As we will see, with this assumption8 the
theory admits four-dimensional de Sitter solutions of the
form dS, x Mg with nonvanishing RR flux, where Mg is a
six-dimensional Kihler-Einstein manifold of positive scalar
curvature.

Let us note that solutions with vanishing quadratic
condensates, supported by nonvanishing quartic-fermion
condensates, are necessarily nonsupersymmetric. This
readily follows from the supersymmetric integrability
theorem for (massive) ITA [13,25]. Indeed quartic con-
densates leave the Bianchi identities, the form equations
and the supersymmetry transformations unchanged, while
modifying the Einstein equation. If such solutions were

7Although certainly plausible, this is hard to show in general
beyond the Calabi-Yau case.

Lattice models with nonvanishing quartic-fermion conden-
sates and vanishing quadratic-fermion condensates have been
studied in e.g. [24].
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supersymmetric they would therefore violate the integra-
bility theorem, leading to contradiction. A supersymmetric
integrability theorem in the presence of condensates has
recently been presented in [9] in the context of the heterotic
string, and it would be interesting to extend it to the type
IT case.

As in section IV B, we assume that the ten-dimensional
spacetime is of direct product form, cf. (4.2), (4.3). Moreover
we set the dilaton and the three-form flux to zero, ¢ = 0,
H =0, and we parametrize the RR fluxes as follows,

F=0bJ: G = avol, +%CJ2; a,b,c €R, (4.10)
where J is the Kihler form of Mg, and vol, is the volume
element of M, ;. It is then straightforward to see that the
Bianchi identities (2.11), the F-form and G-form equations
in (3.13) are automatically satisfied, while the H-form
equation reduces to,

1 2
bc—iac—l—gmb:O. (4.11)
Moreover the dilaton equation (3.11) reduces to,
2 2 >, 16,
a®=9b"+ 3¢ +?m . (4.12)

The two equations above can be used to determine two of the
parameters a, b, ¢, m in terms of the other two.

The mixed (u,m) components of the Einstein equa-
tion (3.12) are automatically satisfied, while the internal
components of the Einstein equations reduce to,

16 3 -
w=—m?+2b> + c? + = (AA)?,

- 5 (4.13)

where we have taken (4.12) into account. This equation
simply solves for w; it implies that the internal space M is
necessarily of positive scalar curvature.

Lastly the (u,v) components of the Einstein equations
reduce to,

24 _
PR VR PN S I VA S

5 5 X (4.14)

where again we have used (4.12). It follows that for (AA)?
sufficiently large, €2 is positive and the theory admits dS, x
M solutions. We also note that, for vanishing condensate,
Q is necessarily negative. In this case we recover the
AdS,; x Mg solutions described in Sec. II1.2 of [26].

V. CONCLUSIONS

We have used the superspace formulation [13] of
Romans supergravity [12] to obtain the dilatino terms
of the theory, and we have found agreement with the

quartic-fermion term of [14]. As we have seen, setting the
Einstein-frame gravitino to zero results in a positive
quartic-dilatino term, which could therefore generate a
positive cosmological constant via fermionic condensation.

As a byproduct we have obtained the superform formu-
lation of Romans supergravity: the hatted superforms of
Eq. (2.16) obey the super-Bianchi identites (2.14). The
latter can be used as an alternative starting point for
defining the full theory in superspace.

We have shown that the theory admits formal de Sitter
space solutions, obtained by assuming nonvanishing dila-
tino condensates. This is in contrast to gaugino-condensate
scenarios in heterotic string which do not seem to allow for
ade Sitter vacuum [8]. The results of the present paper open
the way for a more general and systematic study of
(massive) ITA solutions supported by dilatino condensates,
with or without supersymmetry.

We emphasize that we do not claim to have solved the
problem of de Sitter space in string theory: we have offered
neither a concrete mechanism for the generation of the
dilatino condensate (although we have brane instantons in
mind), nor any controlled setting in which these quantum
effects might take place. The main message of the present
paper is that the quartic-dilatino term in (massive) IIA turns
out to be positive, and that this could potentially be
important for cosmological applications.

It is well known that de Sitter and, more generally,
cosmological spacetimes are not straightforward to embed
in string theory. In that respect fermionic condensates offer
an interesting possibility for generating a positive cosmo-
logical constant. Although elucidating the quantum origin
of the putative dilatino condensate is beyond the scope of
the present paper, it is clearly an important point that needs
to be addressed.
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APPENDIX A: THE SUPERSYMMETRY
TRANSFORMATIONS

Although we do not directly make use of this in the
present paper, it is instructive to work out the explicit form
of the supersymmetry transformations. A superdiffeomor-
phism generated by the supervector field & acts on the
vielbein as follows,

SeEn® = V&t + ET gy, (A1)
up to a &-dependent Lorentz transformation. The super-
symmetry transformation of the gravitini, w% = E%|,
Wima = Engl, with parameters (e%,¢,), is obtained from
the above by setting €” := &%, {, := &,|, where the vertical
bar denotes the lowest-order term in the theta-expansion.
‘We thus obtain,
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oy = vmea + emc(eﬂTﬂca + é’ﬂTﬂca)l
W e = vmga + emc<€ﬁTﬂca + CﬂTﬁca)

: (A2)

up to gravitino-dependent, cubic fermion terms which we do not need to consider here. Correspondingly the supersymmetry
transformation of the dilatini reads,

O = (/Y + {,VPue)|
= Le + Kypp"E = L™ € + Kyppt "8 + Ly pgr ™€
Sl = (P ghg + C5VP2,)]
= ~LE A+ Ky = Linay™"8 = Kipnpt™"7€ = Lynpgy"""¢. (A3)

where we have taken (4.5),(4.6) of [13] into account. Together with (2.5), (2.8) above we obtain, suppressing spinor indices,

] 1
ey — %8m¢}7m€ + 5 meShe
+ i e3(/)/4F pmn e _ L e—()/ZH Amnpé’ + L e()/4G HMNpq o
16 mn? 24 mnp? 192 mnpql
e = 20, 7" %meSW“C

3 . i B n 1 A
+ g M ™+ 57 €y 7" € = 155 €M Gnpg? P E (A4)

up to cubic fermion terms; the curved gamma matrices 7 are defined with respect to the rescaled metric (2.6). Similarly for
the gravitino transformations we obtain,
&/Ima = Vmg - S}’m€ + Fflgf}/mefe - F%w}/eé‘ - H}lth/mfghC
+ Hﬁghyghg - Gl’fghymejcghe + G%tefgyefge
51//;)1[1 = va + Symg + Fif}/mefé/ - F%teyeg - H}'ghymfghe

+ Hy v e + Glryy " = G v, (A5)

where we used (4.3) of [13]. Furthermore using (4.6) of [13] and (2.5), (2.8) above we obtain,

A 2i 3 i i
(Sl//ma = vmé’ + g m65¢/477m€ + § aeq&?emé + g e3¢/4F€fymef€ + 5 63(/)/4Fmeye€
1 i
+t52 e H oy, + o "G p vl
v 2i 5 3 e i 2 e i b e
64’%1 = vme - g meS(/)Mymg + gae¢y m€ + geS(/MFefym fé’ + 563(//4Fme7 é,

1 i
- ﬁ e_¢/2Hfgh7/mfgh€ - ﬂ e¢/4Gmefgyefg€v (A6)

up to cubic fermion terms; V is the covariant derivative associated to the spin connection of the rescaled metric (2.6) so that,

N 3. 3, A 3 i
e3¢/2wnkm = Wpkm + Zgnkam(l) - Zgnmak(l)’ vm)( = vm)( + gand)(y m)()’ (A7)

where @, @ are the spin connections of g, g respectively, and y is a fermion of either chirality.

To make contact with the supersymmetry transformations as given in e.g. [22] we use the following ten-dimensional
Dirac-matrix notation:
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0 —i(7m) g 05 0 0 &
Fm=<,A ( )/}); F11=<ﬂ ,>; C“z( ; ﬂ), (A8)
i@)? 0 0 & -5 0
and define the Dirac-Majorana spinors,
ma 3 /105 a
le = 63¢/8 (l// a > — ZFmA, A = e_3¢/8F11 < » ) ; O = e3¢/8 <€a > , (Ag)
Y H €

which obey the reality conditions ¥,, = ¥I'C~!, etc. In terms of these, the supersymmetry transformations (A4), (A6) take

the form,
1 . meSPh 3304 o2 z
oA = {— EF’"quﬁ I + TF"’"FWF“ + THmonmnprn 192 Gmnpqrmnpq}& (A10)
and
R S/4 3¢/4
e 2 e 20
+ Wanq(anpq _ 95m"l"l7‘1)r11 -+ ﬁ anqr <anl7qr _ ?6mnr‘[74r> }@, (Al 1)

respectively, up to cubic fermion terms. These are precisely
the supersymmetry transformations expressed in the con-
ventions of [22].

APPENDIX B: A NOTE ON CONVENTIONS

In this section we compare our conventions to those of
[12,14]. The translation between the conventions of the
present paper and those of [22] was explained previously.

The fermionic fields in [12] are related to those in the
present paper via,

1
51 = lea AR = —A’ Bl
% 7 (B1)
where the R superscript denotes the fields in that reference.
Moreover the bosonic fields of [12] are related to those in
the present paper via,

|
With these field redefinitions it can be seen that at the
fermionic vacuum (3.1) the action of [12] precisely reduces
to that given in (2.22), (2.12) of the present paper, up to the
quartic-fermion term which was not computed in [12].

On the other hand the quartic-fermion terms are identical
in the massive and massless IIA theories. In order to
compare with the quartic-fermion terms of massless IIA as
given in [14] we note that, upon setting k = 1 therein, the
fermionic w§”, A6” of that reference are related to the ones
in the present paper via,

1
¥, =—ySrf; A =T A%P. B3
\/EW 11 (B3)
Thus the fermionic vacuum (3.1) corresponds to setting,
3 . 2V2
GP = __—_1,,I",,A%", Yor = 2271, \1,49°%,
v 22 11 3 1
(B4)

where WGF := yGP + (v/2/12)1),T,,A%".
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