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We study a class of eight-supercharge little string theories (LSTs) on the world volume of N M5-branes
with transverse space S1 × ðC2=ZMÞ. These M-brane configurations compactified on a circle are dual toM
D5-branes intersecting N NS5-branes on T2 × R7;1 as well as to F-theory compactified on a toric Calabi-
Yau threefold XN;M . We argue that the Kähler cone of XN;M admits three regions associated with weakly
coupled quiver gauge theories of gauge groups ½UðNÞ�M; ½UðMÞ�N , and ½UðNM

k Þ�k where k ¼ gcdðN;MÞ.
These provide low-energy descriptions of different LSTs. The duality between the first two gauge theories
is well known and is a consequence of the S-duality between D5- and NS5-branes or the T-duality of the
LSTs. The triality involving the third gauge theory is new, and we demonstrate it using several examples.
We also discuss implications of this triality for the W-algebras associated with the Alday-Gaiotto-
Tachikawa dual theories.
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I. INTRODUCTION

Throughout the years, dualities have been a driving tool
in the exploration and development of statistical physics,
quantum field theory, and (non)perturbative string theory.
Either as conceptual means to analyze the (mathematical)
structure of the theory or as computational tools to
reformulate specific questions in a more tractable frame-
work, dualities were proven extremely useful and, in many
cases, have been at the forefront of new discoveries. While
new dualities (or associated symmetries) are typically
difficult to find (or prove) in full-fledge string theories,
they typically also leave imprints on other physical system
that are engineered by string (or M-) theory. One such
example is that of little string theories (LSTs) [1–7] (see
[8,9] for a review): using various brane constructions (in
string or M-theory) and their dual geometric description in
F-theory [10], different realizations of LSTs can be con-
structed and duality relations among them can be studied

[11,12], including heterotic LSTs [13–15]. In this paper, we
aim to further analyze the web of dualities connecting
different LSTs as well as their low energy descriptions in
terms of gauge field theories.
LSTs refer to a class of interacting, ultraviolet-complete

quantum theories in six dimensions whose nonlocal
dynamics is governed by self-dual noncritical strings.
While being easier to handle due to the fact that gravity
is decoupled (i.e., the spectrum does not contain a massless
spin-two field), these theories still share many features in
common with the critical string theory in ten dimensions. In
fact, LSTs are operationally definable from type II string
theory (or its dual avatars) through a particular decoupling
limit that sends the string coupling constant to zero
(gst → 0) while at the same time keeping the string length
lst finite. Depending on details of the original type II setup,
one can construct various different LSTs with (2,0) or (1,0)
supersymmetry.
The construction of LSTs which will be relevant for

us is in terms of F-theory compactifications [16–21] on a
class of toric, noncompact Calabi-Yau threefolds called
XN;M: the latter are equipped with the structure of
a double elliptic fibration, in which one elliptic fibration
has a singularity of type IN−1 and the other one of IM−1
[22,23]. These LSTs of type ðN;MÞ can also be engineered
using N parallel M5-branes with a transverse orbifold of
type AM−1 [24–27]. Moreover, using the refined topological
vertex formalism [28], the topological string partition
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function ZN;MðT; t; m; ϵ1; ϵ2Þ of XN;M has been computed
in [12,27,29] at a particular region of the Käher moduli
space: in this region T ¼ fT1;…; TMg and t ¼ ft1;…; tNg
are two sets of Kähler parameters related to the two elliptic
fibrations of XN;M, respectively (and m is a further Kähler
modulus), while ϵ1;2 are related to the topological string
coupling and the beta deformation due to theΩ background
[30–32]. ZN;MðT; t; m; ϵ;−ϵÞ have also been studied for
quantized values of the parameters t in units of ϵ and shown
to be given by highest weight representations of an affine
algebra [33]. It was proposed in [12] that the topological
string partition function ZN;M captures the partition
functions of a class of LST with 8 supercharges.
Compactification of LSTs of type ðN;MÞ on a circle then
relates these with LSTs of type ðM;NÞ by T-duality. This
T-duality relation is reflected in the Calabi-Yau XN;M by the
exchange of the two fibers [10,22]. See [34,35] for
discussion of topological string partition functions on
elliptically fibered Calabi-Yau threefolds.
Furthermore, the low energy limits of the compactified

LSTs of type ðN;MÞ and ðM;NÞ are the (circular) quiver
gauge theories with gauge group ½UðNÞ�M and ½UðMÞ�N ,
respectively. In these two descriptions, the parameters T
and t are interpreted as either the gauge coupling constants
or the Coulomb-branch parameters (while m is interpreted
as the mass scale of the bifundamental hypermultiplets).

Therefore, the T-duality relation above leads to a duality
relation between these two gauge theories in which the
coupling constants are exchanged with the Coulomb branch
parameters and vice versa.
It should be noted that the corresponding instanton

partition functions can be obtained by suitable expansions
of the topological string partition function ZN;M. Indeed, in
[22], these two gauge theories have also been referred to as
vertical and horizontal description, respectively, reflecting
two possible choices of a preferred direction in the toric
web diagram of XN;M for calculating ZN;M using the
(refined) topological vertex: the web diagram is shown
in Fig. 1, with a generic labeling of the various line
segments, which represent rational curves in XN;M. Since
each trivalent vertex contains a horizontal (green) leg and a
vertical (red) leg, we can choose either of them as the
preferred direction, which gives rise to a representation of
ZN;M as a series expansion in e−h1;…;MN or e−v1;…;MN ,
respectively. At the particular region in the moduli space
considered in [22], these in turn could readily be identified
with the instanton expansions of the quiver gauge theories
mentioned above.
However, inspecting Fig. 1, we see that all vertices also

contain a diagonal (blue) leg, which can equally be chosen
as the preferred direction. Hereafter, we refer to this as
“diagonal description.” In fact, in [36], diagonal expansion

FIG. 1. The 5-brane web corresponding to XN;M with a generic parametrization of all line segments. Not all variables
h ¼ ðh1;…; hMNÞ, v ¼ ðv1;…; vMNÞ and m ¼ ðm1;…; mMNÞ are independent, but are subject to 2NM − 2 consistency conditions.
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of ZN;M in the form of a series in powers of e−m1;…;NM have
recently been studied. While well-defined from the per-
spective of the topological string, it is an interesting
question if this presentation of ZN;M (in some region of
the parameter space) can also be interpreted as the instanton
partition function of a new (quiver) gauge theory that can
be engineered from XN;M. If this were so, it would extend
the T-duality relation of LSTs to a triality. In this paper, we
present strong evidence that this is indeed the case and
that the diagonal description gives a (circular) quiver
gauge theory with gauge group ½UðNM=kÞ�k [where
k ¼ gcdðN;MÞ], which is the weak coupling limit of a
new LST. Working at a generic point in the Kähler moduli
space of XN;M, we analyze in detail the horizontal, vertical
and diagonal gauge theories, whose gauge group is

Ghor¼½UðMÞ�N; Gvert¼½UðNÞ�M; Gdiag¼
�
U

�
NM
k

��
k
;

respectively. We propose explicit parametrizations of the
Kähler cone of XN;M which makes these three gauge
symmetries manifest by allowing to extract the correspond-

ing instanton partition functions ZðN;MÞ
hor , ZðN;MÞ

vert and ZðN;MÞ
diag

from ZN;M.
The Alday-Gaiotto-Tachikawa (AGT) relation for four-

dimensionalN ¼ 2 supersymmetric gauge theories [37,38]
has been extended to five-dimensional gauge theories
[39–41] and to five-dimensional quiver gauge theories
[42]. The triality we newly proposed in this paper has
interesting implications for this AGT relation. It is known
that there is a relation between the five-dimensional
½UðNÞ�M quiver gauge theory and an WN algebra [41].
By duality, there is also a relation between the same quiver
gauge theory and anWM algebra [42]. The newly proposed
triality implies a further relation between the same quiver
gauge theory and an WNM

k
algebra.

Finally, based on our previous work [36], we remark
that in the extended Kähler moduli space of XN;M (extended
through flop transformations) there are yet more LSTs.
By analyzing the associated toric diagrams, it was
shown in [11] that XN;M ∼ XN0;M0 for MN ¼ M0N0 and
gcdðM;NÞ ¼ k ¼ gcdðM0; N0Þ; i.e., the two Calabi-Yau
threefolds lie in the same extended moduli space and
can be related by a combination of symmetry and flop
transforms. For example, the Kähler cone of XN0;M0 again
affords different parametrizations, which suggest the
appearance of a triad of quiver gauge theories, with gauge
groups ½UðM0Þ�N0

, ½UðN0Þ�M0
and ½UðN0M0=kÞ�k, which are

generically different from the theories mentioned above.
These, along with other dual quiver gauge theories and
associated W-algebras, will be discussed in detail in the
forthcoming publication [43].
This paper is organized as follows. In Sec. II, we discuss

LSTs of type ðN;MÞ from the viewpoints of branes in

M-theory, ðp; qÞ 5-brane webs in type IIB theory, and dual
Calabi-Yau threefolds XN;M. We also discuss the Kähler
cone of XN;M and the theory data of the dual gauge theories.
In Sec. III, we analyze three different limits of the LST
partition function leading to distinct (but dual) weakly
coupled affine A-type quiver gauge theories. In Sec. IV, we
make some general comments about the implication of
triality for the W-algebras associated with these gauge
theories. In Sec. V, we present our conclusions and
directions for future work. In the Appendix, we relegate
special situations of ðN;NÞ and ðnN;NÞ webs. We also
elaborate the residual dualities that survive in the non-
compact limit that the LSTs descend to superconformal
field theories.

II. LITTLE STRINGS, GAUGE THEORIES,
AND BRANE WEBS

In this section, we briefly review how six-dimensional
LSTs withN ¼ ð2; 0Þ andN ¼ ð1; 0Þ supersymmetry and
world volume R4 × T 2 can be constructed from brane
configurations in M-theory, along with their parameter
space. These M5-brane configurations are U-dual to a class
of ðp; qÞ 5-brane webs in type IIB string theory and can
give rise to, in the limit of decoupling little strings, four-
dimensional superconformal field theories (SCFTs) with
eight supercharges in the infrared. We will also discuss in
this section the gauge group and the coupling constants of
the quiver gauge theories dual to LSTs on R4 × T 2 and the
Kähler cone of the associated Calabi-Yau threefold XN;M

which is dual to the ðp; qÞ 5-brane web.

A. Little string theories from M-theory

In this subsection, we discuss how N ¼ ð1; 0Þ LSTs
arise from M-theory along with their parameter spaces. We
begin with a brief review of the M-brane configurations
which engineer LSTs. For more details on this construction,
see [22,25–27].

1. M-brane configurations

A stack of N coincident M5-branes probing a transverse
R5 space at low energies is described by a six-dimensional
N ¼ ð2; 0Þ SCFT of AN−1 type [44–48]. We can move
away from the conformal point by separating the M5-
branes along a Rtrans ⊂ R5 transverse to the branes: indeed,
in this case massive states appear in the form of M2-branes
stretched between the individual M5-branes. If Rtrans is
furthermore compactified to a circle S1

trans of circumference
ρ, the dynamics on the N M5-branes, whether coincident or
not, defines a maximally supersymmetric LST of A-type.
The positions of the M5-branes on the transverse circle
parametrize a ðS1ÞN=SN moduli subspace of the tensor
branch of the N M5-branes on the (partially) compactified
space. The circumference ρ sets a defining length scale of
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the LST, which appears since an M2-brane can wrap S1
trans

while ending on separate M5-branes, thus giving rise to a
string configuration whose tension T ∼ ρ (in M theory unit)
is proportional to ρ. If the S1

trans ×R4 transverse to the
M5-branes is orbifolded by ZM (i.e., replaced by
Strans ×R4=ZM), we obtain a LST with N ¼ ð1; 0Þ super-
symmetry. The spectrum of the latter is consists of towers
of tensor multiplets, vector multiplets, and hypermultiplets.
The configurations we are mostly concerned with in this

work are obtained by compactifying not only the time
direction on S1

0 (whose radius is chosen to be 1), but also a
further direction parallel to the M5-branes on S1

jj (with

circumference τ), such that the world volume of the
M5-branes becomes S1

0 × S1
jj ×R4. As has been discussed

in detail in [26], these M-brane configurations are U-dual to
webs of M parallel D5-branes intersecting N parallel
NS5-branes in type II string theory. Upon resolving the
intersections of these branes, the web can be presented in
the form shown in Fig. 1. This description in turn is dual to
F-theory compactifications on a toric Calabi-Yau manifold
XN;M, whose toric web diagram takes the same form as
Fig. 1. For more details on these dual descriptions, we refer
the reader to [26,27,29] and references therein.

2. Little strings and their parameter space

The brane web shown in Fig. 1 is dual to the Calabi-Yau
threefold XN;M with sizes of the various line segments
corresponding to the Kähler parameters of XN;M [49]. The
3NM parameters labeling the web, as shown in Fig. 1,
(hereafter we collectively denote them as ½h; v;mÞ] are not
all independent. There are only ðNM þ 2Þ independent
Kähler parameters (see [27]), as they are constrained by the
condition that all horizontal, vertical and diagonal lines
must be parallel (i.e., oriented along (1,0), (0,1), and (1,1),
respectively). Considering a hexagon web in Fig. 1 con-
sisting of two horizontal, two vertical, and two diagonal
lines (see Fig. 2 with some generic labeling of the areas
associated with these line segments), the condition that the
horizontal, vertical and diagonal lines are pairwise parallel,
leads to the following constraints

hþm ¼ h0 þm0 and vþm0 ¼ mþ v0: ð2:1Þ

Imposition of these conditions for every hexagon appearing
in Fig. 1 leads to a system of linear equations whose
solution contains ðMN þ 2Þ independent parameters (see
[11] for more details). How to choose these independent
variables is a priori not fixed and, as we shall see in
following section, different choices allow us to explore
different gauge theories engineered by the web diagrams.
We also remark that, in many works in the literature (see

[12,22,27,29,50]), a nonmaximal set of parameters
ðT1;…; TM; t1;…; tN; mÞ is often considered, which (with
respect to the labeling of Fig. 1) is related to our para-
metrization as

Ti¼mði−1ÞNþsþviNþs; ∀ s¼1;…;N and i¼1;…;M;

ta¼maþrNþhaþrN; ∀r¼0;…;M−1 and a¼1;…;N;

m¼mk; ∀k¼1;…;NM: ð2:2Þ

Indeed, the set of ðN þM þ 1Þ variables ðT1;…; TM;
t1;…; tN; mÞ is a solution of the consistency conditions of
the type (2.1).
The partition function of the LSTs engineered by the

M-brane configurations corresponding to the web diagram
in Fig. 1 is computed by the refined topological string
partition function ZN;M of the Calabi-Yau threefold XN;M.
This partition function depends on the Kähler parameters
ðh; v;mÞ (subject to the consistency conditions mentioned
above). In addition, it depends on the two refinement
parameters ϵ1 and ϵ2 required by the refined topological
string:

ZN;Mðh; v;m; ϵ1; ϵ2Þ ð2:3Þ

From the perspective of the gauge theories engineered by
XN;M, ϵ1;2 parametrize the Ω background (see [30,51,52]),
suitable for regularizing the instanton contribution.
Moreover, ZN;M can be computed with the help of the
refined topological vertex, which requires picking a pre-
ferred direction in the web diagram. Each choice of the
preferred direction corresponds to a possibly distinct gauge
theory partition function [26,28,36].

B. Dual gauge theories and series expansions

1. Theory data

At low energies below the compactification scale, the
LSTs associated with the Calabi-Yau threefolds XN;M

discussed above are described by five-dimensional quiver
gauge theories of Âr−1 type with a unitary gauge group at
each node UðsÞa (a ¼ 1;…; rÞ. For a general low-energy
description of M-theory compactified on a Calabi-Yau
threefold, see [53–55]. The field content of these theories
includes gauge vector multiplets ðφa; AaÞ, transforming in
the adjoint of UðsÞa, and matter hypermultiplets ðHa; ~HaÞ,
transforming in the bifundamental representations of

FIG. 2. Imposing consistency conditions on a hexagon appear-
ing in Fig. 1.

BASTIAN, HOHENEGGER, IQBAL, and REY PHYS. REV. D 97, 046004 (2018)

046004-4



UðsÞa ×UðsÞaþ1. From the perspective of the gauge
theories, at a generic point of the Coulomb branch of
the theory with gauge group G, the dynamics is described
by the prepotential F ,

F ¼ 1

2!
tijφiφj þ 1

3!
c0ijkφ

iφjφk

þ 1

12

�X
R

jR ·φj3 −
X
f

X
w∈Wf

jw ·φþmfj3
�
: ð2:4Þ

Here, φ’s are local coordinates in an open patch of the
Coulomb branch moduli space M and are the vacuum
expectation values of the scalars in the vector multiplet with
i ¼ 1;…; rankðGÞ. R is the set of weights of the adjoint
representation, Wf are the sets of weights in the represen-
tation of the hypermultiplets with mass mf which for us is
the bifundamental representation and the effective gauge
couplings are given by,

ðg−2Þij ¼ ∂i∂jF ¼ tij þ � � � :

The five-dimensional Lagrangian contains the Chern-
Simons term,

L ¼ 1

24π2
cijkAi ∧ Fj ∧ Fk

where cijk ¼
∂3F

∂φi∂φj∂φk
¼ c0ijk þ � � � ; ð2:5Þ

and Fi is the field strength two-form associated with gauge
potential one-form Ai. The presence of this term spoils the
gauge invariance of the path integral at quantum level
unless the coefficients cijk are integrally quantized (in
suitable units) and therefore cannot change under continu-
ous symmetry transformations of the theory.
Recall that, if the five-dimensional theory were obtained

by compactification of M-theory on a Calabi-Yau threefold,
then the prepotential of the theory is related to the triple
intersection of the divisors. For instance, consider a five-
dimensional SUðNÞ gauge theory obtained from a Calabi-
Yau threefold YN which is an AN−1 singularity fibered over
P1. Resolving the AN−1 singularity gives a chain of (N − 1)
P1’s in the fiber. The compact divisors of YN are the
4-cycles fD1; D2;…; DN−1g, which are the i-th fiber P1

fibered over the base P1. Each of the divisors Di is a
Hirzebruch surface. The size of the P1’s in the fiber is
ti ¼ ðφiþ1 − φiÞ (i ¼ 1;…; N) where φi’s are the scalars
introduced above. The cubic part of the prepotential, which
gives the Chern-Simons coefficient (2.5), of the five-
dimensional theory is then given by [56]

F jcubic ¼
1

6

�XN−1

i;j¼1

ðA−1ÞijtiDj

�
3

; ð2:6Þ

where ðA−1Þij is the inverse Cartan matrix of AN−1 and
DiDjDk are the triple intersection numbers of the divisors
in YN . From this, we can see that the coefficients cijk in
Eq. (2.5) depend on the triple intersection numbers of the
divisors in the Calabi-Yau threefold YN . When the five-
dimensional theory is considered on R4 × S1, the M2-
branes wrapping the holomorphic curves in YN and the S1

(with momentum along the S1) contribute to the prepo-
tential as well. In the type IIA string description, these are
the bound-states of D2-branes and the D0-branes. The
triple intersection numbers now get contributions from
these bound-states such that

DiDjDk ↦ DiDjDk þ
X

β∈H2ðYN;ZÞ
Nβ

ijke
−
R
β
ω
; ð2:7Þ

where Nβ
ijk is the contribution from the holomorphic curves

in the class β which intersect the divisors Di, Dj and Dk.
These contributions are precisely captured by the genus-
zero topological string amplitude. The full partition func-
tion of the gauge theory on R4 × S1 is thus given by the
topological string partition function of the corresponding
Calabi-Yau threefold used to engineer the gauge theory
itself [57,58].
We can relate this gauge theory description to the Calabi-

Yau description discussed in the previous section: the
Kähler parameters of XN;M take the role of either the
gauge coupling constants, Coulomb branch parameters or
hypermultiplet masses. As already alluded to above, the
precise correspondence is not unique; i.e., the ðNM þ 2Þ
independent Kähler parameters can be assigned in different
ways to these three sets of gauge theory parameters. This
means that in general different gauge theories can be
associated with a single XN;M which, however, are dual
to each other. To clarify more precisely what we mean by
“different but dual,” we need to provide more details on the
characteristic quantities that are necessary to distinguish
two gauge theories engineered from the same XN;M. They
are as follows:

(i) gauge group G
The gauge theories discussed above that are

associated with XN;M are of Â quiver type with
gauge group

G ¼ ½UðsÞ�r; with rs ¼ NM: ð2:8Þ

Here the condition rs ¼ NM can be understood
from the fact that these gauge theories are low-
energy limits of LSTs of A-type, which can be
obtained as a particular decoupling limits of type IIB
string theory: conservation of D-brane charges in the
latter imposes that the rank of the gauge group, jGj,
is the same for all theories associated with XN;M.
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(ii) gauge coupling constants
To each of the r factors ofUðsÞ in the gauge group

G in (2.8), we can associate an independent inverse
coupling constant g−2i . The coupling constants can
be varied continuously and the weak coupling limit
is g−2i → ∞ for i ¼ 1;…; r.

(iii) moduli space
The ðNM þ 2 − rÞ remaining independent Kähler

parameters of XN;M parametrize the hypermultiplet
masses and Coulomb branch parameters of the
gauge theory. The latter can be varied continuously
and we assume to always work at a point in the
moduli space where the latter are positive definite.

(iv) Chern-Simons terms
As we just discussed, the five-dimensional gauge

theories contain Chern-Simons couplings for the
vector multiplet gauge fields Eq. (2.5). The coef-
ficients cijk in this term are given by the triple
intersection number of the Calabi-Yau threefold.
They appear in the topological string partition
function of the corresponding Calabi-Yau threefolds
[59] (see also [60]). Recall that in general the
topological string partition function of a Calabi-
Yau threefold X is given by

ZX ¼ expðFÞ; ð2:9Þ

where F ¼ P∞
g¼0 λ

2g−2Fg is the free energy given by
the topological string coupling λ and the genus-g
topological string amplitudes Fg which are given by
integrating topological string measure over the
moduli space of genus-g curves. If we denote the
Kähler class of the Calabi-Yau threefold X by ω
[61,62],

F ¼ 1

λ2

Z
X

1

3!
ω ∧ ω ∧ ω

−
Z
X

c2ðXÞ
24

∧ ωþ χðXÞ
2

lnMðeiλÞ

þ
X

0≠β∈H2ðX;ZÞ

X
g≥0

ngðβÞ

×
X∞
n¼1

1

n

�
2 sin

�
nλ
2

��
2g−2

e
−n
R
β
ω
; ð2:10Þ

where c2ðXÞ is the second Chern class of the tangent
bundle of X, χðXÞ is the Euler characteristic of X and
MðqÞ is the MacMahon function,

MðqÞ ¼
Y∞
k¼1

ð1 − qkÞ−k: ð2:11Þ

The ngðβÞ are the genus-g Gopakumar-Vafa invar-
iants [61,62] of the curve class β and are conjectured

to be integers since they are related to the dimen-
sions of the various homology groups of the moduli
space of D2-branes wrapping the holomorphic curve
in class β. The genus-zero contribution to the free
energy contains the classical contribution

R
X ω ∧

ω ∧ ω which gives the triple intersection numbers

[ω ¼ PdimH1;1ðX;CÞ
i¼1 xiωi where ωi ∈ H1;1ðX;CÞ],

Z
X
ω ∧ ω ∧ ω ¼ cijkxixjxk

where cijk ¼
Z
X
ωi ∧ ωj ∧ ωk: ð2:12Þ

From this, we see that the triple intersection numbers
and hence the Chern-Simons coefficients appear in
the definition of F0 (the genus-zero amplitude) and
hence in the partition function. However, this is not
the only place the Chern-Simons terms appear. Since
the geometry of the Calabi-Yau threefold is related
to the triple intersection numbers, the Gopakumar-
Vafa invariants ngðβÞ change as the triple intersec-
tion numbers change. One can see this very clearly
when the topological string partition function is
expressed in the form of Nekrasov’s instanton
partition function.

In the case of SUðNÞ gauge theory we discussed
above, the Chern-Simons coefficient can take values
from −N to þN, where theories of opposite sign
Chern-Simons coefficients are related by charge-
parity conjugation. So, there are (N þ 1) distinct
gauge theories.This is reflected in the geometry as
well since the fibration of the AN−1 singularity over
P1 is not unique either and there are actually (N þ 1)
distinct fibrations corresponding to distinct five-
dimensional gauge theories. We denote by YN;k

the Calabi-Yau threefolds which engineer SUðNÞ
gauge theory with Chern-Simons coefficient k.

The topological string partition function of YN;k

were calculated in [58] (for the refined case, see
[63]) and it was found that partition functions for
different k were related to each other. Define the
topological string partition function of YN;k as

ZYN;k
¼

X
ν1���νN

Qjν1jþ���þjνN j
B Zk

ν1���νN ðt; ϵÞ; ð2:13Þ

where − lnQB is the Kähler parameter of the base
P1. Then,

Zk
ν⃗ðt; ϵÞ ¼ fkν⃗ðt; ϵÞZ0

ν⃗ðt; ϵÞ; ð2:14Þ

where the k-dependent part reads
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fkν⃗ðt; ϵÞ ¼
� Y⌊Nþk−1

2
⌋

i¼1

QðNþk−2iÞðjν1jþ���þjνijÞ
ti

×
YN−1

i¼⌊Nþkþ1
2

⌋

Q−ðNþk−2iÞðjνiþ1jþ���þjνN jÞ
ti

�
q

1
2
k
P

N
i¼1

κðνiÞ;

where κðνÞ ¼ P
ði;jÞ∈νðj − iÞ. Thus, we see that the

effect of the Chern-Simons coefficient is to modify
the prefactor once the topological string partition
function is expressed in the form of the Nekrasov
partition function.

The nonperturbative gauge theory partition function for a
theory with the gauge group G in Eq. (2.8) can be obtained
by writing ZN;M as a series expansion in powers of
exp½−1=g2a�. In practice, we will identify sets of parameters,
the decoupling parameters da, such that in the limit da↦∞
the ðN;MÞ web breaks up into pieces whose partition
function can be identified with the perturbative part of
gauge theory partition function. The parameters da are
related to the gauge theory coupling constants 1

g2a
such that

da ↦ ∞ ⇒
1

g2a
↦ ∞: ð2:15Þ

The da’s differ from 1
g2a

by a combination of Coulomb

branch parameters and masses of the bifundamental hyper-
multiplets. Thus, we are naturally led to studying different
types of series expansions of Eq. (2.3), as we shall do in the
following.

2. Series expansions and building blocks

The topological string partition function ZN;M appears
naturally in the form of an infinite series when computed
using the refined topological vertex. Indeed, gluing the
trivalent vertices together according to the web diagram of
XN;M requires to choose a preferred direction common to
all vertices. Thus, the preferred direction is a feature
of the entire web diagram and not only of an individual
vertex. A given brane web, however, may allow for
several different choices, which lead to different (but
equivalent) representations of the topological string par-
tition function. For web diagrams of the form shown in
Fig. 1, we have three different choices of the preferred
direction, namely, horizontal along (1,0), vertical along
(0,1) and diagonal along (1,1). For each of the three, the
web diagram can be cut into strips as shown in Fig. 3,
which represent the basic building blocks for comput-
ing ZN;M.
Here, the external legs of each of the strips are labeled in

terms of two sets of integer partitions fα1;…;Lg and
fβ1;…;Lg (where L ¼ M or L ¼ N or L ¼ NM

k for (a),
(b) or (c), respectively, and βt denotes the transposed
partition of β).
Since the three strips can be transformed into one another

with the help of an SLð2;ZÞ-symmetry (under which the
partition function is invariant), they can all be computed in
the same fashion (using the refined topological vertex).
Indeed, the common generic expression has been calculated
explicitly in [36] for a generic parametrization. In order to
find the strips in Fig. 3, we simply need to adapt the Kähler
parameters accordingly. To be precise, in [36], the so-called

(a) (b) (c)

FIG. 3. Basic building blocks for decomposition of the web diagram Fig. 1: (a) strip of length M representing the building block
suitable for horizontal preferred direction (b) strip of length N representing the building block suitable for vertical preferred direction
(c) strip of length NM

k [with k ¼ gcdðN;MÞ] representing the building block suitable for diagonal preferred direction.
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“staircase diagram” shown in Fig. 4 was considered,
which is parametrized by ðâ1;…;L; b̂1;…;L; SÞ (whereP

L
i¼1ðâi− b̂iÞ¼0). The latter can directly be adapted to fit

each of the three strips (a), (b), and (c) in Fig. 3. Specifically,
for i ¼ 1;…; L, we have the following correspondence

Strip (a) Strip (b) Strip (c)

âi viþ1 þmi hi þmi vi þ hiþ1

b̂i vi þmi hi þmi−1 hi þ vi
S v1 mN h1
L M N NM

k

where we identified hLþ1 ¼ h1, vLþ1 ¼ v1 and m0 ¼ mL.
Defining q ¼ e2πiϵ1 , t ¼ e−2πiϵ2 and

Qai ¼ e−âi ; Qbi ¼ e−b̂i ; QS ¼ e−S; ð2:16Þ

as well as the following quantities

Q̂i;j ¼ QS

Yi
r¼1

ðQarQ
−1
br
Þ
Yj−1
k¼1

Qai−k ;

Q̄i;j ¼
(
1 if j ¼ LQj

k¼1Qai−k if j ≠ L

_Qi;j ¼
Yj
k¼1

Qbiþk
: ð2:17Þ

We can write the generic building block associated with
the strip in Fig. 4 in the following fashion [36] (see also
[26,29] for earlier results working in the particular region
(2.2) of the moduli space of XN;M)

Wα1…αL
β1…βL

¼ WLð∅Þ · Ẑ ·
YL
i;j¼1

J αiβjðQ̂i;i−j; q; tÞJ βjαiððQ̂i;i−jÞ−1Qρ; q; tÞ
J αiαjðQ̄i;i−j

ffiffiffiffiffiffiffi
q=t

p
; q; tÞJ βjβið _Qi;j−i

ffiffiffiffiffiffiffi
t=q

p
; q; tÞ ; ð2:18Þ

where the prefactors are given by (with Qρ ¼
Q

L
i¼1Qai)

WLð∅Þ ¼
YL
i;j¼1

Y∞
k;r;s¼1

ð1 − Q̂i;jQk−1
ρ qr−

1
2ts−

1
2Þð1 − Q̂−1

i;j Qk
ρqs−

1
2tr−

1
2Þ

ð1 − Q̄i;jQk−1
ρ qrts−1Þð1 − _Qi;jQk−1

ρ qs−1trÞ ;

Ẑ ¼
YL
i¼1

t
jjαk jj2

2 q
jjαt

k
jj2

2 ~Zαkðq; tÞ ~Zαtk
ðt; qÞ; ~Zνðt; qÞ ¼

Y
ði;jÞ∈ν

ð1 − tν
t
j−iþ1qνi−jÞ−1; ð2:19Þ

and the function J μν (for two partitions μ and ν) is
defined as

J μνðx; t; qÞ ¼
Y∞
k¼1

JμνðQk−1
ρ x; t; qÞ;

Jμνðx; t; qÞ ¼
Y

ði;jÞ∈μ
ð1 − xtν

t
j−iþ1

2qμi−jþ1
2Þ

×
Y

ði;jÞ∈ν
ð1 − xt−μ

t
jþi−1

2q−νiþj−1
2Þ:

Gluing several of strips together (see [36] for more details),
we get

ZN;M ¼
X
α

� YM;N

i¼1;j¼1

e−uijjα
i
jj
�YN

j¼1

W
α1j ���αMj
α1jþ1

���αMjþ1

ð2:20Þ

where e−uij are the parameters used to glue the strips
together and we are using the fact that the compactification
of the web gives αiNþ1 ¼ αi1. We can obtain three different
series representations of ZN;M which we write in the
following form,

FIG. 4. Generic strip of length L with a labeling of the various
parameters suitable for the computation of the building block in
Eq. (2.18). The external legs are labeled by integer partition
fα1;…;Lg and fβ1;…; βLg (where βti denotes the transposed
partition).
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ZN;Mðh; v;m; ϵ1;2Þ ¼ Zpðv;mÞ
X
k⃗

e−k⃗·hZk⃗ðv;mÞ ¼ ZðN;MÞ
hor

¼ Zpðh;mÞ
X
k⃗

e−k⃗·vZk⃗ðh;mÞ ¼ ZðN;MÞ
vert

¼ Zpðh; vÞ
X
k⃗

e−k⃗·mZk⃗ðh; vÞ ¼ ZðN;MÞ
diag ;

ð2:21Þ

where Zp denotes the perturbative part in each of the three

descriptions. The first two of these expansions (ZðN;MÞ
hor and

ZðN;MÞ
vert ) have been extensively studied in the literature

[26,29] at a point in the Kähler moduli space of XN;M
where mi ¼ mj (for i; j ¼ 1;…; NM). The diagonal ex-

pansion ZðN;MÞ
diag has recently [36] been used to prove the

duality [11] XN;M ∼ XN0;M0 [with N0M0 ¼ NM and
gcdðN;MÞ ¼ k ¼ gcdðN0;M0Þ] explicitly for k ¼ 1 and
give further evidence for k > 1. However, its gauge theory
interpretation has not been studied so far.
The main proposition of this paper is to interpret the

three different expansions in (2.21) as instanton expansions
in field theory. Therefore, we associate a triality of gauge
theories to a given Calabi-Yau threefold XN;M. However,

identifying ZðN;MÞ
hor , ZðN;MÞ

vert or ZðN;MÞ
diag in Eq. (2.21) with the

instanton series of a gauge theory is, however, a priori
delicate: indeed, due to the consistency conditions dis-
cussed in Sec. II A 2, in general, the parameters ðh; v;mÞ
are not independent of one another and therefore it is not
clear whether (2.21) can be interpreted as (consistent)
power series expansions in a set of independent parameters
that can be identified with the gauge coupling parameters of
a gauge theory. For this to be the case, we need to show that
there exists a codimension n region in the Kähler moduli
space of XN;M in which either all h or v or m become
infinite, while all the remaining parameters are finite. From
the gauge theory perspective, this region corresponds to the
weak-coupling regime and in a finite neighborhood of it

either ZðN;MÞ
hor or ZðN;MÞ

vert or ZðN;MÞ
diag in (2.21), respectively, are

well defined power series expansions of ZN;M that can be
identified as an instanton expansion.

3. Kähler cone

To give a more geometric picture of the situation, we first
recall that the Kähler moduli space of XN;M takes the form
of a cone, as shown in Fig. 5. Denoting the Kähler form of
XN;M by ω, the interior of this cone is parametrized byZ

XN;M

ω ∧ ω ∧ ω > 0; and
Z
Pa

ω ∧ ω > 0;

and
Z
Σi

ω > 0; ð2:22Þ

where Pa are two-complex-dimensional submanifolds and
Σi ∈ fh; v;mg are holomorphic curves in XN;M.

1 The walls
of the cone are given byZ

XN;M

ω ∧ ω ∧ ω ¼ 0; and
Z
Pa

ω ∧ ω ¼ 0;

and
Z
Σi

ω ¼ 0; ð2:23Þ

and, in particular, include loci in which any of the
parameters ðh; v;mÞ vanish. In these loci, the Calabi-
Yau XN;M develops a singularity.
The weak coupling regions (from the point of view of the

gauge theories engineered by XN;M) proposed above are
shown as the three colored areas in Fig. 5. They are
characterized by (for i ¼ 1;…;MN)

• red∶
Z
mi

ω → ∞; and
Z
hi;vi

ω ¼ finite;

• blue∶
Z
hi

ω → ∞; and
Z
mi;vi

ω ¼ finite;

• green∶
Z
vi

ω → ∞; and
Z
vi;mi

ω ¼ finite: ð2:24Þ

respectively. Notice that the codimension of these regions
are in general not the same. In the following section, we
will give evidence that such three regions indeed exist in the
interior of the Kähler cone of XN;M for generic ðN;MÞ.

4. Type IIB 5-brane web interpretation

The triality of gauge theories alluded to in the previous
subsubsection can also be argued for from the point of view
of the ðp; qÞ-brane web, which is dual to XN;M. Indeed, the
web contains D5-branes, NS5-branes and (1,1) branes,

FIG. 5. Different regions in the Kähler cone of XN;M .

1By abuse of notation, we use the same name for the curve as
well as its area.
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associated with the horizontal, vertical and diagonal line
segments in Fig. 1, respectively. The SLð2;ZÞ symmetry of
type IIB string theory acts in the form of rotations on the
web and allows us to exchange the roles of these branes,
respectively. This not only gives rise to a duality between
the horizontal and vertical description in the notation above
(which has been discussed in the literature at various places
[22,26,27]), the S-duality also allows us to convert (1,1)
branes to D5-branes, thus providing another nonlocally
dual description [i.e., the diagonal expansion in (2.21)].
With each brane web we can associate the gauge theory

that lives on the world volume of the D5-branes. Since
different line segments (from the perspective of the original
ðp; qÞ-brane web) play the role of the D5-branes in the
various S-duality frames, we therefore also expect that the
above SLð2;ZÞ symmetry allows us to relate different
gauge theories. As already mentioned above (see Sec. II A
1), while specific details of the theories (e.g., the precise
form of the gauge group) are different, they share certain
quantities in common (e.g., the rank of the gauge group).
Specifically, in the ðp; qÞ 5-brane web shown in Fig. 1

with M horizontal D5-branes and N NS5-branes intersect-
ing them vertically, the theory on the former is a Ghor ¼
½UðMÞ�N quiver gauge theory of AN−1 type, with bifunda-
mental matter arising at the intersections. Furthermore, for
nonzero separation between the branes, the gauge group is
broken to Uð1ÞNM. Using the S-duality of the type IIB
string theory, we can map the above ðp; qÞ 5-brane web to
the S-dual web in which the identification of D5-branes and
NS5-branes get exchanged so that we have N D5-branes in
the background of M NS5-branes. This configuration then
gives rise to another five-dimensional Gvert ¼ ½UðNÞ�M
quiver gauge theory of AM−1 type. As we shall discuss
below, a similar duality frame allows us to associate a
gauge theory with gauge group Gdiag ¼ ½UðNM=kÞ�k [for
k ¼ gcdðN;MÞ] with the diagonal line segments.

III. WEAK COUPLING LIMIT

In the previous section, we have seen that a crucial step
in associating a quiver gauge theory with a given Calabi-
Yau manifold is to identify a region in the Kähler moduli
space of the latter that can be identified with the weak
coupling regime. In this section, we will analyze this weak
coupling limit in more detail to provide evidence for the
triality of gauge theories suggested by (2.21): we will first
consider two examples in detail [namely, ðN;MÞ ¼ ð2; 2Þ
and (3,2)] and generalize to generic ðN;MÞ later on.

A. Configuration ðN;MÞ= ð2;2Þ
As remarked above, the key aspect of interpreting

ZðN;MÞ
hor , ZðN;MÞ

vert or ZðN;MÞ
diag in (2.21) as instanton gauge

theory partition functions, is to find a region in the
Kähler moduli space of XN;M in which either all h or all
v or all m become infinitely large, while the remaining

parameters remain finite. In order to find such a region in
the moduli space, we require a particular basis for the
Kähler parameters, which provides a solution for the
consistency conditions discussed in Sec. II A 2. While such
a basis is very involved for generic ðN;MÞ (see Sec. III C
for a proposal in the most general case), we first consider as
a simple example the configuration ðN;MÞ ¼ ð2; 2Þ (with
k ¼ gcdðN;MÞ ¼ 2), to illustrate the point. In this case,
three different parametrizations (suitable for the horizontal,
vertical and diagonal gauge theory) along with a graphical
interpretation of the weak coupling limit are shown in
Table I. The three different expansions (and, in particular,
the weak coupling limit) can be interpreted as follows:

(i) horizontal expansion in the basis ðρ; b̂1; ĉ1; ĉ2; τ;EÞ
Upon taking the limit

ρ − b̂1 → ∞; and b̂1 → ∞; ð3:1Þ

all horizontal lines of the toric diagram are effec-
tively cut, since h1;…;4 → ∞, while v1;…;4 and
m1;…;4 remain finite.2 The remaining diagram takes
the form of two vertical strips,3 thus implying that
the gauge group associated with the horizontal
expansion is

Ghor ¼ Uð2Þ ×Uð2Þ: ð3:2Þ

Indeed, ρ − b̂1 and b̂1 are related to the gauge
couplings associated with each of the two Uð2Þ
factors, while the parameters ĉ1;2 can be interpreted
as the (simple, positive) roots of each of two a1
related to the two Uð2Þ factors. Furthermore, τ can
be interpreted as an additional root, that extends each
of these algebras to affine â1, while E is a parameter
associated with the compactification of the toric web
on a torus.

(ii) vertical expansion in the basis ðτ; ĉ1; b̂1; b̂2; ρ; DÞ
In the limit

τ − ĉ1 → ∞; and ĉ1 → ∞; ð3:3Þ

all vertical lines of the toric diagram are cut, since
v1;…;4 → ∞, while h1;…;4 and m1;…;4 remain finite
[and positive for certain values of ρ; b̂1; b̂2; DÞ]. In
this way, the diagram decomposes into two hori-
zontal strips, which implies that the gauge group
associated with the vertical expansion is, in fact,

2Notice, in particular, that there exists a region in the parameter
space of ðτ; ĉ1; ĉ2; EÞ in which ðv1; v2; v3; v4; m1; m2; m3; m4Þ
are positive, which is important for their interpretation from the
point of view of gauge theory as Coulomb branch parameters and
hypermultiplet masses, respectively.

3While we call them strips, we point out that they are still
defined on a cylinder; i.e., their ends are being identified (see also
Fig. 3).
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TABLE I. Three different choices of maximal sets of independent Kähler parameters for the configuration ðN;MÞ ¼ ð2; 2Þ. In each
case, the 12 lines ðh1;…;4; v1;…;4; m1;…4Þ are parametrized by six independent variables. The last row shows the weak coupling limit,
which is obtained by sending two of the parameters (related to the coupling constants of the respective gauge theories) to infinity.
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Gvert ¼ Uð2Þ ×Uð2Þ: ð3:4Þ

This group is in fact the electromagnetic S-dual (i.e.,
the Langlands dual) of the horizontal gauge group
(3.2). Indeed, τ − ĉ1 and ĉ1 can be related to the
gauge couplings associated with each of the two
Uð2Þ factors, and the parameters b̂1;2 can be inter-
preted as the (simple, positive) roots of each of two
a1 related to the two Uð2Þ factors. The parameter, τ
can be interpreted as an additional root, that extends
each of these algebras to affine â1, while D is a
parameter associated with the compactification of
the toric web on a torus.

(iii) diagonal expansion in the basis ðV1; V2; â1; â2;F; LÞ
In the limit V1;2 → ∞, all diagonal lines [along

direction (1,1)] of the toric diagram are cut, since
m1;…;4 → ∞, while h1;…;4 and v1;…;4 remain finite
(and positive for certain values). In this way, the
diagram decomposes into two diagonal strips (which
were called “staircase strips” in [36]), which implies
that the gauge group associated with the vertical
expansion is as well

Gdiag ¼ Uð2Þ ×Uð2Þ: ð3:5Þ

Indeed, V1;2 can be related to the gauge couplings
associated with each of the two Uð2Þ factors, and the
parameters â1;2 can be interpreted as the (simple,
positive) roots of each of two a1 related to the two
Uð2Þ factors. The parameter,L can be interpreted as an
additional root, that extends each of these algebras to
affine â1, while F is a parameter associated with the
compactification of the toric web on a torus.

It is important to notice that in all three cases, the
connection to a certain gauge theory relies on the fact that
in the weak coupling limit the web diagram decomposes
into a number of parallel strips (either horizontally,
vertically or diagonally): physically, the latter can be
interpreted as parallel NS5 branes with semi-infinite
D5-branes ending on either side in equal numbers [64].
When the strips are glued together the world-volume theory
on these D5-branes is the corresponding gauge theory, as
explained above in Sec. II B 4.
In the current case, since the orientation of the strips can

be changed through an SLð2;ZÞ transformation, the dia-
grams in the last line of Table I are identical up to a
relabeling of the parameters. This indicates that the gauge
theories engineered from the three expansions in (2.21)
have the same gauge group, i.e.,

Ghor ¼ Gvert ¼ Gdiag ¼ Uð2Þ ×Uð2Þ: ð3:6Þ

This is a peculiarity of the configuration ðN;MÞ ¼ ð2; 2Þ as
in general the three gauge groups are different (albeit that

their rank is the same as argued above), as we shall see from
the next example ðN;MÞ ¼ ð3; 2Þ.

B. Configuration ðN;MÞ= ð3;2Þ
The next nontrivial configuration corresponds to

ðN;MÞ ¼ ð3; 2Þ with k ¼ gcdð3; 2Þ ¼ 1. The correspond-
ing web diagram contains 18 lines which are the Kähler
parameters of various rational curves in the Calabi-Yau
threefold X3;2:

h ¼ ðh1;…; h6Þ; v ¼ ðv1;…; v6Þ;
m ¼ ðm1;…; m6Þ: ð3:7Þ

As discussed before, these parameters are not linearly
independent but they can be parametrized by choosing
eight independent variables (for more details see also [36]).
Three different such parametrizations are shown in Table II,
leading to the following expansions:

(i) horizontal expansion in the basis ðρ; b̂1; b̂2; ĉ1; ĉ2; ĉ3;
τ; EÞ

In the limit

ρ− b̂1− b̂2→∞; and b̂1 →∞; b̂2 →∞; ð3:8Þ

we find h1;…;6 → ∞, while v1;…;6 and m1;…;6 remain
finite. Therefore, as indicated in Table II, in the limit
(3.8) the toric web diagram decomposes into 3 vertical
strips, implying that the horizontal expansion gives
rise to a gauge theory with gauge group

Ghor ¼ Uð2Þ × Uð2Þ ×Uð2Þ; ð3:9Þ

More specifically, the parameters ðρ−b̂1−b̂2;b̂1;b̂2Þ
are related to the gauge coupling constants, while ĉ1,
ĉ2 and ĉ3 can be interpreted as the (simple positive)
roots of a1 algebras associated with each of the Uð2Þ
factors. Each of these algebras is further extended to
affine â1 through the parameter τ.

(ii) vertical expansion in the basis ðτ; ĉ1; b̂1; b̂2;
b̂3; b̂4; ρ; DÞ

In the limit

τ − ĉ1 → ∞; ĉ2 → ∞; ð3:10Þ

we find v1;…;6 → ∞, while h1;…;6 and m1;…;6 remain
finite. Therefore, the (3,2) web diagram decomposes
into two horizontal strips, indicating that the vertical
expansion is associated with a gauge theory with
gauge group

Gvert ¼ Uð3Þ ×Uð3Þ: ð3:11Þ

In this manner, ðτ− ĉ1; ĉ1Þ are related to the cou-
pling constants and ðb̂1; b̂2Þ and ðb̂3; b̂4Þ correspond

BASTIAN, HOHENEGGER, IQBAL, and REY PHYS. REV. D 97, 046004 (2018)

046004-12



TABLE II. Three different parametrizations of the web diagram ðN;MÞ ¼ ð3; 2Þ. The last line shows the decomposition of the
diagram in the weak coupling limit in the horizontal, vertical, and diagonal description, respectively.
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to the (simple positive) roots of two copies of a2,
associated with the to the Uð3Þ factors in (3.11).
These algebras are extended to affine â2 by the
parameter ρ.

(iii) diagonal expansion in the basis ðV;
â1; â2; â3; â4; â5;M;FÞ
In the limit V → ∞ we find m1;…;6 → ∞, while

h1;…;6 and v1;…;6 remain finite, such that the web
diagram decomposes into a single diagonal strip.
This indicates that the diagonal expansion is asso-
ciated with a gauge theory with gauge group

Gdiag ¼ Uð6Þ: ð3:12Þ
Here V is related to the coupling constant, while
ðâ1;…; â5Þ play the role of the (simple positive)
roots of a5 associated with Gdiag.
The fact that such a gauge theory exists also

outside of the weak coupling limit V → ∞ can be
inferred from the duality of the web diagram shown
in Table II with the toric web of X6;1 through a series
of flop and symmetry transformations. The latter
was first discussed in [11] and is schematically
shown in Fig. 6. In this duality transformation, the
diagonal lines in the left part of the Fig. 6 do not
undergo flop transitions, such that the Kähler
parameters h01;2;3;4;5;6 and m0 of X6;1 are independent
of V. Therefore, the vertical expansion of the
partition function Z6;1 is a power series in
QV ¼ e−V , which can be interpreted as the instanton

partition function Zð6;1Þ
vert of a gauge theory with gauge

group Uð6Þ. Moreover, through the duality map

implied by Fig. 6, Zð6;1Þ
vert can also be related to Zð3;2Þ

diag

Zð6;1Þ
vert ðV; h01;…;6; mÞ ¼ Zð3;2Þ

diag ðV; â1;…;5;M; FÞ;
ð3:13Þ

which was proven explicitly in [36]. This shows that

Zð3;2Þ
diag (as a power series expansion in QV) can be

read as the instanton partition function of a gauge
theory with gauge group Uð6Þ also outside of the
region V → ∞.

In the case of ðN;MÞ ¼ ð3; 2Þ, the gauge groups Ghor,
Gvert and Gdiag are different4 however, as discussed in the
previous section, their rank is identical.
Furthermore, we stress that in all three cases the specific

form of the parametrization is not unique: Different choices
of parameters leading to the same decomposition of the
toric web diagram as in Table II are possible. Indeed, in
[36], we have chosen a slightly different parametrization
suitable for the explicit computations of the general
building block of the partition function.

C. General web configuration

The discussion of the previous examples (2,2) and (3,2)
can be generalized to a web diagram with generic ðN;MÞ.
Indeed, in the following, we make a proposal for three
different parametrizations of the Kähler moduli space of
XN;M, facilitating the three expansions of ZN;M that were
schematically written in (2.21). In the following, we present
sets—in general not unique—of NM þ 2 independent
parameters (which we shall refer to as a basis in the
following) suitable for the description of the horizontal,
vertical and diagonal theory.5

The geometric interpretation of (some of) the parameters
in the bases is shown in Fig. 7. The orange box in Fig. 7

FIG. 6. Flop and symmetry transformations relating the diagonal presentation (rightmost column in Table II) to the toric web of X6;1.

4We remark, however, that at a generic point in moduli space,
the gauge groups are broken down to Uð1Þ;6 respectively.

5This choice of bases is motivated by studying numerous
examples with small values of N orM such as those in Secs. III A
and III B. A proof of the linear independence for generic ðN;MÞ
is currently still missing.
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highlights a generic hexagon in the ðN;MÞ web diagram,
which can be labeled by two integers

r ∈ f0; 1…;M − 1g mod M;

and s ∈ f1;…; Ng mod N: ð3:14Þ

With the parameters shown in Fig. 7, we propose the
following three (inequivalent) bases

(i) horizontal basis
We propose as a basis suitable for the description

of the horizontal expansion ZðN;MÞ
hor in (2.21) the

following

Bhor¼fb̂M−1;s¼1;…;N−1;ρ;fĉgu¼1;…;N;τ;Eg; ð3:15Þ

with

fĉgu ¼ fĉr;ujr ∈ f0; 1;…;M − 2gg;
∀u ¼ 1;…; N: ð3:16Þ

This basis indeed suggests that ZðN;MÞ
hor is the in-

stanton partition function of gauge theory with
gauge group Ghor ¼ ½UðMÞ�N : indeed fcgu¼1;…;N

furnish N sets of (simple positive) roots for the
N factors of UðMÞ, while the N decoupling
parameters,�
b̂M−1;1; b̂M−1;2;…; b̂M−1;N−1; ρ −

XN−1

i¼1

b̂M−1i

�

ð3:17Þ
are related with the gauge coupling constants as
mentioned in Eq. (2.15) (one associated with every
factor ofUðMÞ inGhor), in the sense

6 that in the limit

ρ −
XN−1

i¼1

b̂M−1;i → ∞; and

b̂M−1;i → ∞ ∀ i ¼ 1;…; N − 1; ð3:18Þ
we have h1;…;NM → ∞, while fv1;…;NM;m1;…;NMg in
the diagram in Fig. 7 remain finite. Graphically, the
diagram therefore composes into N vertical strips of
length M, each of which associated with the theory
corresponding to a single UðMÞ. The expansion of

the partition functionZðN;MÞ
hor [schematicallywritten in

(2.21)] can therefore be more concisely be written as
an instanton expansion in (3.17).

Finally, the parameter τ extends each of the
algebras aM−1 [whose roots are given in (3.16)] to
affine âM−1.

(ii) vertical basis
A basis suitable for describing the vertical ex-

pansion ZðN;MÞ
vert in (2.21) can be found through a

judicious exchange of vertical and horizontal param-
eters of the horizontal basis. Indeed, we propose the
vertical basis to be

Bvert ¼ fĉr¼0;…;M−2;N; τ; fb̂gu¼0;…;M−1; ρ; Dg;
ð3:19Þ

with

fb̂gu ¼ fb̂u;sjs ∈ f1;…; N − 1gg;
∀u ¼ 0;…;M − 1; ð3:20Þ

which suggests that ZðN;MÞ
vert can be interpreted

as the instanton partition function of a gauge theory
with gauge group Gvert ¼ ½UðNÞ�M. Specifically
fbgu¼0;…;M−1 furnish M sets of (simple positive)
roots for theM different factors of UðNÞ. Moreover,
the M parameters

�
ĉ0;N;…; ĉM−2;N; τ −

XM−2

i¼0

ĉi;N

�
ð3:21Þ

are the decoupling parameters [Eq. (2.15)] which are
associated with the gauge coupling constants [one
associated with each of the M factors UðNÞ] in the
sense that in the limit

τ −
XM−2

i¼0

ĉi;N → ∞;

and ĉi;N → ∞ ∀ i ¼ 0;…;M − 2; ð3:22Þ

we have v1;…;NM while fh1;…;NM;m1;…;NMg remain
finite. Thus, the diagram in Fig. 7 therefore decom-
poses into M horizontal strips of length N each of
which begin associated with the theory correspond-

ing to a single UðNÞ. The series expansion ZðN;MÞ
vert

[which is schematically given in (2.21)] can there-
fore be more concisely be written as an instanton
expansion in (3.21).

Finally, the parameter ρ extends each of algebras
aN−1 [whose roots are given in (3.20)] to affine âN−1.

(iii) diagonal basis
The diagonal expansion is somewhat more in-

volved to describe. Indeed, we propose the following
NM þ 2 parameters as a basis [with k ¼ gcdðN;MÞ]
for the diagonal expansion

6Notice, depending on the explicit realization of the gauge
theory, the coupling constants can be shifted by some of the
remaining parameters as long as they lead to the same weak
coupling theory. We will be more specific on this point later on,
when we discuss explicit examples.
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FIG. 7. Three different maximally independent sets of Kähler parameters for a generic toric web ðN;MÞ. For concreteness, we assume
N ≥ M. Furthermore, for the sets â, b̂ and ĉ (which will constitute the roots in the three different gauge theory descriptions), we have
only shown the first few explicitly in the diagram, along with an assignment for a generic hexagon in the web. The latter is labeled by two
integers ðr; sÞ whose range is specified in Eq. (3.14).
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Bdiag ¼ fV1;…; Vk; fâgu¼0;…;k−1; L; Fg; ð3:23Þ

with

fâgu ¼
�
âM−1−a−u;Nþaja ∈

�
0;…;

MN
k

− 2

��
;

ð3:24Þ

which suggest that ZðN;MÞ
diag in (2.21) is the instanton

partition function of a gauge theory with gauge
group Gdiag ¼ ½UðNM=kÞ�k. In (3.23), the parame-
ters V1;…;k are difficult to directly identify in the web
diagram in Fig. 7. They can, however, be written as a
linear combination of ðh; v;mÞ. To this end, we
introduce a similar notation as in [11]: for any
diagonal line of area ma (with a ¼ 1;…; NM)
stretched between two vertices A and B

ð3:25Þ

we define PLðmaÞ as the path starting at A and following N
distinct horizontal and N − 1 distinct vertical lines (going
to the left), as well as PRðmaÞ the path starting at B and
following N distinct horizontal and N − 1 distinct vertical
lines (going to the right). Furthermore, we denote
ðpLðmaÞÞi¼1;…;2N−1 and ðpRðmaÞÞi¼1;…;2N−1 as the compo-
nents of PLðmaÞ and PRðmaÞ, respectively.7 With this
notation, we define8 the decoupling parameters [Eq. (2.15)]
(a ¼ 0;…; k)

Vaþ1¼m1þaN þ
�
N
k
−1

�
ððpLðm1þaNÞÞ1þðpRðm1þaNÞÞ1Þ

þ
XNk−2
i¼1

�
N
k
−1− i

�
½ðpLðm1þaNÞÞ2iþðpRðm1þaNÞÞ2i�

þ
XNk−2
i¼1

�
N
k
−1− i

�
½ðpLðm1þaNÞÞ2iþ1

þðpRðm1þaNÞÞ2iþ1�: ð3:26Þ

Indeed, for V1;…;k → ∞ we have m1;…;NM → ∞, while
ðh1;…;MN; v1;…;MNÞ remain finite. In this way, the ðN;MÞ
web diagram decomposes into k diagonal strips of length
NM
k , which can be interpreted as the weak coupling limit of a
quiver gauge theory whose gauge group is Gdiag ¼
½UðNM

k Þ�k.9 The existence of this theory outside of the
weak coupling limit can be argued by the fact that XN;M is
dual to XNM=k;k through a combination of flop and
symmetry transformations proposed in [11]. Throughout
this series of transformations, the diagonal lines (labeled by
m1;…NM) do not undergo flop transitions, such that the
V1;…;k are related to the coupling constants of the ½UðNM

k Þ�k
quiver gauge theory furnished by the vertical expansion of
ZNM=k;k. Moreover, due to the fact that the partition
function is expected to be invariant under the duality
proposed in [11] (this was explicitly proven for k ¼ 1 in
[36]), we propose that the expansion of ZN;M in powers of
QVa

¼ e−Va (for a ¼ 1;…; k) can also be interpreted as the
instanton partition function of a quiver gauge theory with
gauge group ½UðNM

k Þ�k. From this perspective, the
fâgu¼0;…;k−1 in (3.24) furnish k sets of (simple positive)
roots, each associated with a factor UðNM

k Þ ⊂ Gdiag.
Finally, the parameter L extends each of algebras

aNM=k−1 [whose roots are given in (3.24)] to affine âNM=k−1.
To summarize, based on the proposed bases Bhor, Bvert

and Bdiag (as well as the examples discussed above) we
conjecture that for given ðN;MÞ we can engineer three
different gauge theories

(i) horizontal gauge theory with gauge group Ghor ¼
½UðMÞ�N

(ii) vertical gauge theory with gauge group Gvert ¼
½UðNÞ�M

(iii) diagonal gauge theory with gauge group Gdiag ¼
½UðNM=kÞ�k with k ¼ gcdðN;MÞ

whose gauge groups have the same rank. Moreover, since
the partition functions of these three theories are identical
(indeed, by construction they are simply different

expansions of ZN;M, namely ZðN;MÞ
hor , ZðN;MÞ

vert , and ZðN;MÞ
diag ,

respectively) they are mutually dual to each other leading to
the triality

Ghor ¼ ½UðMÞ�N ↔ Gvert ¼ ½UðNÞ�M ↔ Gdiag

¼ ½UðMN=kÞ�k: ð3:27Þ

Notice that this duality is not limited to the weak coupling
limit: by decomposing the web diagram in parallel strips
(whose explicit form was recently computed in [36] in full
generality), the triality can be extended to the full non-
perturbative partition function.

7We refer the reader to Sec. V of [11], pointing out, however,
that in the latter work N < M had been assumed such that the
roles of the horizontal and vertical lines have been exchanged.

8While the definition (3.26) is very abstract, it is inspired by
the definition of the gauge coupling constants of the vertical
expansion associated with the dual Calabi-Yau XNM

k ;k as explained
in [11]. 9Each strip can be associated with an individualUðNM

k Þ⊂Gdiag.
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IV. TRIALITY AND W-ALGEBRAS

In this section, we briefly discuss the implication of the
triality of gauge theories, that we discussed in the previous
sections, for theW-algebras. Recall that the six-dimensional
(2,0) theory can be compactified on a Riemann surface Σ
with punctures to obtain the four-dimensional class S
theories [65]. Since the AN−1 type six-dimensional (2,0)
theory can be realized on the world volume of the N
coincident M5-branes, we can take the world volume to be

R4
ϵ1;ϵ2 × Σ; ð4:1Þ

to obtain an Ω deformed four-dimensional gauge theory
whose details such as the gauge group and thematter content
depend on the details of Σ (its punctures and its pair of pants
decomposition). In [37], it was conjectured (the AGT
conjecture) that the compactification of the A1 (2,0) theory
on the Riemann surface Σ gives rise to Liouville theory such
that the instanton partition function of the four-dimensional
theory can be obtained from the conformal blocks of the
two-dimensional Liouville theory. The conjecture was
extended to the case of AN−1 (2,0) six-dimensional theory
in which case the two-dimensional theory on the Riemann
surface is the AN−1 Toda theory [38]. It was shown in [66]
that the AGT conjecture and its extension to the AN−1 case
can be understood using B-model topological strings.
The two-dimensional theory on the Riemann surface has

the Virasoro symmetry for the N ¼ 2 case which general-
izes to WN for the general AN−1. In lifting the four-
dimensional instanton counting to five dimensions, with
N ¼ 1 theory on R4 × S1, a q-deformation is introduced
which corresponds to considering the K-theory of instanton
moduli spaces rather than the cohomology. It was shown in
[39–41] that the q-deformed instanton counting or the
K-theoretic instanton partition functions [30,67] satisfy the
q-deformed WN constraints. More recently it was shown in
[68] that for a quiver gauge theory with quiver Γ the
partition function can be written as a correlation function in
the free field representation of the WðΓÞ algebra. Lifting it
further to six dimensions gives an elliptic deformation of
the instanton counting which can be related to the elliptic
deformation of the Virasoro and the WN algebras [69–73].
Therewas a parallel development on themathematics side in

the study of geometry of instanton moduli spaces which was
greatly helped by the AGT conjecture. Maulik-Okounkov [74]
and Schiffmann-Vesserot [75] proved that for the instanton
moduli space of typeG,MG, one can construct an action of the
W-algebra of type G on the cohomology of MG such that the
unit cohomology class is related to the Gaiotto state and its
pairing with itself gives the Nekrasov instanton partition
function. It was shown in [76,77] that the construction of
Maulik-OkounkovandSchiffmann-Vesserot canbe realized for
theK-theoryof the instantonmoduli spaces giving the analogof
the AGT conjecture for the five-dimensional N ¼ 1 theories.
In [78],N ¼ 2 the Seiberg-Witten geometry of the four-

dimensional gauge theories with gauge group given by a

quiver were studied. As was discussed in [79] some of these
theories, depending on the quiver and the gauge group
factors associated with the nodes of the quiver, can be
realized geometrically in terms of Calabi-Yau threefolds and
are dual to other gauge theories via the fiber-base duality. It
was argued in [80–82] that because of the fiber base duality
two different W-algebras can be associated with the gauge
theory. If we denote the gauge group of the two dual theories
by G1 and G2, respectively, then both theories realize WG1

andWG2
. For theories coming from six-dimensional theories

on T2, the W-algebra is deformed to the elliptic W-algebras
[73]. The triality we discussed in the previous sections
extends the class of (elliptic) W-algebra associated with a
theory by identifying new dual theories. From the results of
the previous sections it follows that if we consider the
ðN;MÞ web then associated to it are several dual gauge
theories, as shown in Fig. 8, and hence several elliptic W-
algebras. Since these theories have the same partition
function ZN;M, which is the topological string partition
function of XN;M, with gauge theory parameters associated
with Kähler parameters of XN;M in different ways therefore
the identification of generators of different elliptic
W-algebras is in terms of distinct parameters [43].

V. CONCLUSIONS

In this paper, we have analyzed dualities of a class of
little string orbifold theories with eight supercharges as well
as the supersymmetric gauge theories given by their low-
energy limit below the string tension scale. Among other
approaches, the (nonperturbative) gauge theory partition
functions are captured by the refined topological string
partition function ZN;Mðh; v;m; ϵ1;2Þ of a class of toric
Calabi-Yau threefolds XN;M, whose generic web diagram is
shown in Fig. 1. The latter consists of three sets of parallel
lines whose associated Kähler parameters are denoted
collectively by fhg, fvg, and fmg, respectively.10 We

FIG. 8. The gauge groups and W-algebras associated to the
gauge theories coming from the ðN;MÞ web. There are poten-
tially more branches of this tree depending on the product NM
and the gcdðN;MÞ as discussed in previous sections.

10Of these 3NM parameters, however, only NM þ 2 are
independent of each other.
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have argued that for a given such toric web there exist three
(generically distinct) dual ðp; qÞ 5-brane web descriptions
in type II string theory in which each of these three sets of
parallel lines is identified with the D5-branes, respectively.
In each of these three brane configurations, the world-
volume theory on the latter can be identified with a quiver
gauge theory. Therefore, we find a triality of gauge theories
associated with a given toric Calabi-Yau manifold XN;M,
whose gauge groups are

Ghor ¼ ½UðMÞ�N; and Gvert ¼ ½UðNÞ�M;
and Gdiag ¼ ½UðMN=kÞ�k: ð5:1Þ

The duality between the horizontal and vertical theory has
been discussed previously in the literature [22,27,29] and is
a consequence of an SLð2;ZÞ symmetry of type IIB string
theory. However, to give evidence for the full triality
(including, in particular, the diagonal theory) we have
argued11 for the existence of three different regions in the
Kähler cone of XN;M in which the toric web diagram
decomposes into a number of horizontal, vertical or diagonal
strips, respectively. From the point of view of the ðp; qÞ five-
brane theories, a strip correspond to the NS5-brane with
equal number of D5-branes ending on it from either side.
Since the distance between the NS5-branes correspond to
the inverse gauge coupling the configuration of discon-
nected strips is therefore identified with the weak coupling
limit of the associatedworld-volume theory.More precisely,
for each of these three descriptions, we have identified the
Kähler parameters of the toric web of XN;M (see (3.17),
(3.21), and (3.26), respectively) that govern the distances of
the NS5-branes in the brane web picture and which are
related to the inverse coupling constants of the respective
gauge theories. In turn, expanding ZN;Mðh; v;m; ϵ1;2Þ as a
power series in (the exponential of) these parameters,
respectively, can be interpreted as the Nekrasov instanton
partition function of the three gauge theories (5.1), as
explained in (2.21). From the point of view of the (refined)
topological vertex [which is used to compute ZN;Mðh;
v;m; ϵ1;2Þ] these three different expansions correspond to
choosing a preferred direction in the web diagram (which
can either be horizontally, vertically or diagonally). The
diagonal expansion has recently been discussed in [36],
wheremoreover a generic building block has been computed
that allows to determine these three expansions of
ZN;Mðh; v;m; ϵ1;2Þ explicitly for generic ðN;MÞ.
For the sake of clarity, we provide an overview over

the three different gauge theories (along with an overview
of which Kähler parameters of XN;M govern the coupling

constants and constitute the Coulomb branches and hyper-
multiplet masses, respectively) in the following table.

Theory
Partition
function

Gauge
group

Decoupling
parameters

Coulomb
branch

Hypermultiplet
masses

Horizontal ZðN;MÞ
hor

½UðMÞ�N Equation (3.17) fvg fmg
Vertical ZðN;MÞ

vert
½UðNÞ�M Equation (3.21) fhg fmg

Diagonal ZðN;MÞ
diag

½UðNM
k Þ�k Equation (3.26) fh; vg fh; vg

From the point of view of the gauge theories, however, the
above table in general does not exhaust all possible dual
theories. As will be discussed in [43] a larger set of dual
theories can be found by studying the extended moduli
space associated with XN;M.
It would be interesting to extend the web of dualities we

have found to other classes of little string theories (or
supersymmetric gauge theories). The theories we have
studied in this paper can be geometrically realized as
resolutions of a ZN × ZM orbifold of X1;1, which is a
toric Calabi-Yau manifold that resembles the conifold in a
certain decompactification limit. The dualities we have
studied here, are based on the fact that different super-
conformal gauge theories can be associated with different
resolutions of these A-type singularities, which, however,
all lie in a common (extended) moduli space. They can
therefore be related through various symmetry transforma-
tions or geometric transitions. It is an interesting question,
whether similar relations can be obtained for different types
of orbifolds, where ZN × ZM is replaced by G1 ×G2, with
Gi some other discrete subgroup of SUð2Þ.
It would also be interesting to compactify the theories

studied in this work to four-dimensional N ¼ 2 super-
symmetric gauge theories. As long as the compactification
keeps the Coulomb branch compact, these theories would
also exhibit an extensive web of dualities: the duality
between the theories with ½UðMÞ�N and ½UðNÞ�M gauge
group is known to correspond to exchange of quiver group
and gauge group. The extended duality that encompasses
½UðMN=kÞ�k is to our knowledge new.
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APPENDIX: SPECIAL CASES:
SELF-TRIALITY AND SCFT LIMIT

In Secs. III and IV, we have discussed different ways of
associating gauge theories to a generic web diagram

11Wehave supplementedour reasoningby a number of examples
in which the existence of these regions was shown explicitly.
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characterized by the parameters ðN;MÞ. In general, the
three gauge theories with gauge groups given in (3.27),

Ghor ¼ ½UðMÞ�N; and Gvert ¼ ½UðNÞ�M;

and Gdiag ¼
�
U

�
MN
k

��
k
; ðA1Þ

are distinct, as can be seen by the fact the gauge groups are
typically different. However, for particular web configura-
tions the gauge groups of two or even all three of these
gauge theories may become identical and the latter can be
related to one another through a mere exchange of the
parameters involved. In this sense some of these theories
may be self-dual. In the following, we shall list examples of
configurations in which this indeed happens.

1. Web diagrams ðN;NÞ
A class of examples in which horizontal, vertical, and

diagonal expansion yield gauge theories with the same
gauge group (albeit with a different choice of parameters)
are the configurations with M ¼ N, giving rise to gauge
theories with gauge group ½UðNÞ�N . This is obvious for the
vertical and horizontal points of view. However it is less
obvious for the diagonal point of view. Below, we show that
the diagonal description again yields ½UðNÞ�N quiver gauge
theory, but the parameters are different from either the
vertical or horizontal description.
Starting from the ðN;NÞ web diagram, the idea is that

there always exists a way to cut N diagonal lines simulta-
neously, as shown in the figure below
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where the subscript p ¼ ⌊ N
2
⌋. Notice that not all of the 3N2

parameters are independent due to the necessity of impos-
ing linear constraints to guarantee the consistency of the
web. Solving for these constraints, there are only N2 þ 2
independent parameters.

After cutting along the diagonal red line and re-gluing
the diagram along the legs ai (for i ¼ 1;…; N), we obtain
the following equivalent web (after an appropriate
SLð2;ZÞ-transformation that leaves the vertical lines
invariant)

Here, the nodes bi indicate the gluing of the lines
that have been cut in the previous step along the red
line. As we can see, the diagram is again of the form
of a ðN;NÞ web, except that the parameters fmg
and fhg have been exchanged. This indicates, that

the diagonal expansion also leads to a gauge theory
with gauge group UðNÞN where the mass parameters
(from the perspective of the horizontal or vertical
description) fmg are now related to the coupling
constants.
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Finally, due to the known SLð2;ZÞ duality ðN;MÞ ↔
ðM;NÞ of the compact brane configurations (i.e., those
compactified on a torus), we can find a similar trans-
formation that exchanges the parameters fmg and fvg. As
a result, we find a self-triality for the configurations ðN;NÞ,
given by the exchange of any of the three sets of parameters
fhg, fvg or fmg

fmg ↔ fhg ↔ fvg: ðA2Þ

Since the transformation described above transforms a
ðN;NÞ web diagram into a ðN;NÞ web diagram, it is
clear that (A2) is a symmetry of the partition function
ZN;Nðh; v;m; ϵ1; ϵ2Þ Eq. (2.20). As seen from the
above figures, the precise map is somewhat complicated
in the generic case. However, it can be made very
explicit for specific examples: in the simplest case (2,2),
the transformation is shown in detail in the following
figure

We see that the cutting and regluing procedure simply
amounts to an exchange12:

m1 → h1; m2 → h2;

h1 → m1; h2 → m2: ðA3Þ

This indicates that the (2,2) web indeed enjoys the triality
symmetry

�
m1

m2

�
↔

�
h1
h2

�
↔

�
v1
v2

�
: ðA4Þ

2. Configurations ðnM;MÞ with n ∈ N

The argument of the previous subsection for self-triality
among the descriptions associated with the horizontal,
vertical and diagonal expansions of ðN;NÞ configuration
does not directly generalize to other generic ðM;NÞ
configurations. However, for configurations ðN;MÞ with
N ¼ nM for n ∈ N (and n > 1), i.e., in the case that N is an
integer multiple of M, we find that the partition function is
still invariant under the exchange of the parameters
fvg ↔ fmg. While, in this case, there is no single cut
like in the previous section that allows us to argue for
this duality, the latter is still apparent from the Newton
polygon of XnM;M given below. As is well known the
Newton polygon is the dual graph of the web diagram
of the toric Calabi-Yau threefold [49]. Indeed, for
N ¼ nM, the two fundamental domains in the latter,
associated with the vertical and diagonal description, are
as follows:

12Notice that here the six parameters ðh1;2; v1;2; m1;2Þ are all
independent and satisfy the consistency conditions of the dia-
gram.
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Here, the four points A, B, C andD are all equivalent, such that the diagonal lines AB and CD are identified with each other.
Therefore, the web diagram dual to the green fundamental domain is again of the type ðnM;MÞ, except that the diagonal
parameters fmg are exchanged with the vertical ones fvg. Thus, the theories ðnM;MÞ are self-dual under the exchange

fmg ↔ fvg: ðA5Þ
For example, we can make this map more precise in the simplest case M ¼ 2 and n ¼ 2, i.e., for the configuration
ðN;MÞ ¼ ð4; 2Þ, whose web diagram and Newton polygon are given by
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FIG. 9. Noncompact web diagram (top) with a generic strip (bottom) that runs between two lines stretching to infinity and is only
composed of horizontal and vertical lines.

BASTIAN, HOHENEGGER, IQBAL, and REY PHYS. REV. D 97, 046004 (2018)

046004-24



This web diagram can also be presented in the form

which is equivalent to the original diagram under the
following exchange of parameters

v1 ↔ m4; v2 ↔ m7; v3 ↔ m2; v4 ↔ m5;

v5 ↔ m8; v6 ↔ m3; v7 ↔ m6; v8 ↔ m1;

h1 ↔ h7; h3 ↔ h5;

with h2;4;6;8 remaining invariant. This makes the self-
duality relation (A5) precise for the case (4,2). Note,
however, that these parameters are not independent one

another, but instead the consistency conditions associated
with the web diagram need to be imposed.

3. Noncompact web diagrams

Up to this point, we have studied ðN;MÞ web configu-
rations that are defined on a torus (i.e., both the horizontal
and vertical directions are periodic with radii ρ and τ,
respectively). This setup defines the corresponding little
string theories, as outlined in the introduction. It is also of
interest to examine if various dualities we identified so far
also hold for noncompact web configurations, where one of
the two directions is decompactified by sending, e.g.,
ρ → i∞. These brane configurations, at a particular point
in the moduli space, give rise to superconformal field
theories. See [83–90] for a recent discussion of six-dimen-
sional SCFTs.
It turns out that we can equally compute the equivalent of

the diagonal expansion Eq. (2.21) while the SLð2;ZÞ
transformation maps between the vertical and diagonal
expansion.
To show this, we consider a generic configuration of the

type ðN;MÞ whose horizontal direction is decompactified
and decompose it into M strips of length N that are glued
together along the diagonal lines. A generic configuration
of such strips (labeled by n ∈ f0;…;M − 1g) along with a
labeling of the parameters involved is highlighted in Fig. 9,
where the ∅ indicates that the horizontal lines stretch to
infinity. Furthermore, for a given n, r runs over all elements
Sn ¼ fr ∈ N ∪ f0gjnþ rM þ 1 ≤ Ng and

rmax ¼
�
max½fr∈N ∪ f0gjnþ rMþ 1≤Ng� if Sn ≠ fg
−1 it Sn ¼ fg:

ðA6Þ

FIG. 10. Gluing the M individual strips constructed in Fig. 9 yields another diagram of the type ðN;MÞ. For better visibility, three
different strips have been colored.
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Note that, for Sn ¼ fg, the strip never reaches the bottom of
the diagram.

For two strips ~mðnþ1Þ
i ¼ mðnÞ

i for i ¼ 1;…; N and
n ¼ 0;…;M − 1, the M strips are glued together to form
another diagram that (with the help of an SLð2;ZÞ trans-
formation) can be brought into the form of a ðN;MÞweb, as
shown in Fig. 10. However, comparing the two diagrams,
we see that the role of diagonal and vertical lines is
exchanged, leading to the self-duality

fmg ↔ fvg: ðA7Þ

The precise duality map requires also to impose the
consistency conditions, which can be worked out explicitly
for specific examples. As an example, we may consider the
noncompact ðN;MÞ ¼ ð3; 2Þ configuration, whose web
diagram (along with a labeling of the various lines) is
given by Fig. 11. In this configuration, the consistency
conditions for the various Kähler parameters are

m1 þ h1 ¼ h3 þm5; v1 þm1 ¼ m5 þ v2;

m2 þ h2 ¼ h4 þm6; v2 þm2 ¼ v3 þm6; ðA8Þ

h1 þm2 ¼ m4 þ h3; v4 þm4 ¼ m2 þ v5;

h2 þm3 ¼ m5 þ h4; v5 þm5 ¼ m3 þ v6; ðA9Þ

v1 þm1 þ v4 þm4 ¼ v2 þm2 þ v5 þm5

¼ v3 þm3 þm6 þ v6: ðA10Þ

This web diagram can represented in an equivalent fashion
as shown in Fig. 12. Under an SLð2;ZÞ transformation, this
web can again be presented in the form of a (3,2)
configuration which is dual to the original configuration
upon the change of variables

m1 → v3; m1 → v3; m3 → v1;

m4 → v6; m5 → v2; m6 → v4;

v1 →m6; v2 →m2; v3 →m4;

v4 →m3; v5 →m5; v6 →m1;

h1 → h2; h2 → h3; h3 → h4; h4 → h1: ðA11Þ

FIG. 11. Noncompact (3,2) web diagram with a labeling of the
Kähler parameters. Notice that the consistency conditions (A8)–
(A10) still need to be imposed.

FIG. 12. Different representation of the (3,2) diagram (left) and dual diagram after an SLð2;ZÞ transformation (right).
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