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We investigate effective holographic models for QCD arising from five-dimensional dilaton gravity. The
models are characterized by a dilaton with a mass term in the UV, dual to a CFT deformation by a relevant
operator, and quadratic in the IR. The UV constraint leads to the explicit breaking of conformal symmetry,
whereas the IR constraint guarantees linear confinement. We propose semianalytic interpolations between
the UV and the IR and obtain a spectrum for scalar and tensor glueballs consistent with lattice QCD data.
We use the glueball spectrum as a physical constraint to find the evolution of the model parameters as the
mass term goes to 0. Finally, we reproduce the universal result for the trace anomaly of deformed CFTs and
propose a dictionary between this result and the QCD trace anomaly. A nontrivial consequence of this
dictionary is the emergence of a β function similar to the two-loop perturbative QCD result.

DOI: 10.1103/PhysRevD.97.046001

I. INTRODUCTION

QCD is probably the most striking example of conformal
symmetry breaking in a quantum field theory. In QCD
conformal symmetry is broken already in the UV by a
negative β function (asymptotic freedom) that, at the
same time, leads to strong coupling and confinement in
the IR. Despite the huge success of perturbative QCD in
describing hard scattering processes, basic QCD features
in the IR, such as the hadronic spectrum or chiral sym-
metry breaking, require the development of nonperturba-
tive methods. The most well-established nonperturbative
approach consists of Monte Carlo simulations for QCD on
a lattice. The so-called lattice QCD is very successful in
describing static properties such as the hadronic spectrum

and thermodynamic properties of the quark-gluon plasma.
However, real-time dynamics usually demands the devel-
opment of other nonperturbative methods.
Holographic QCD provides a nonperturbative descrip-

tion of real-time QCD dynamics in terms of the dynamics
of a five-dimensional gravitational (string) theory. In the
so-called bottom-up approach, the dictionary arising from
the AdS=CFT correspondence is used to build a set of
five-dimensional fields dual to the QCD operators respon-
sible for describing the QCD vacuum. In the large-Nc limit
one focuses on the stress-energy tensor Tμν of the gluon
field, as well as on the scalar operator TrF2 responsible for
the gluon condensate and the QCD scale anomaly, i.e.
Tμ

μ ∼ TrF2 [1]. In holography the operators Tμν and TrF2

couple to a five-dimensional metric and scalar field (the
dilaton), respectively. The dynamics of the metric and
dilaton fields is determined by the equations of the dilaton-
gravity theory, and the dilaton potential contains a negative
cosmological constant leading to AdS geometry in the UV.
Since Lorentz invariance is not broken by the QCD
vacuum, in holographic QCD one takes a conformally flat
metric with a warp factor A depending solely on the radial
coordinate z. Then a nonconstant dilaton ΦðzÞ leads to a
deformation of the anti–de Sitter (AdS) spacetime geom-
etry. This is the holographic realization of conformal
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symmetry breaking in large-Nc QCD. Assuming that ΦðzÞ
couples directly to the operator TrF2 at the boundary one
would expect, according to the AdS=CFT dictionary,
ΦðzÞ is to behave as ϕ0 þGz4 near the boundary. This
assumption, however, was shown not to be consistent with
the glueball spectrum [2], because in that case conformal
symmetry is spontaneously broken, leading to a zero mode
in the spectrum (a Nambu-Goldstone boson).
There are two possible solutions to this problem.

The first one consists of making the dilaton potential
compatible with asymptotic freedom in the UV, as
advocated in [2]. This scenario was realized in the so-
called improved holographic QCD (IHQCD) models
[3,4], proposed by Gursoy et al. These authors also
found the right physical constraint for the dilaton in
the IR: a confining background, which corresponds to a
quadratic dilaton for large z and leads to an approximate
linear glueball spectrum. Interestingly, that behavior had
already been anticipated in the soft-wall model [5] from
the analysis of the meson spectrum. The second solution
consists of introducing a mass term for the dilaton
potential in the UV. In this case the near-boundary
behavior of the dilaton field becomes ϕ0zϵ þ Gz4−ϵ, with
ϵ related to the dilaton mass M by M2l2 ¼ −ϵð4 − ϵÞ,
where l is the AdS radius. This UV asymptotics was
proposed by Gubser et al. in [6,7], within the context of
finite-temperature holographic QCD as a model for
describing the equation of state of a nonconformal plasma
through a five-dimensional black hole. In [6,7] the
parameter ϵ was interpreted in terms of the anomalous
dimension of the operator TrF2.
Inspired by the seminal works [3,4] and [6,7], we

investigate in this paper a family of holographic QCD
backgrounds where the IR is driven by linear confinement
and the UV, although asymptotically AdS, is deformed by a
dilaton field with nonzero mass. We interpret the dilaton
mass term in the UV as the holographic description of a
CFT deformation δL ¼ ϕ0O, where O is a relevant
operator and ϕ0 is the corresponding coupling. This
interpretation was advocated in [6,7] and is consistent
with previous studies in holographic renormalization [8,9].
The main motivation for this work is to understand how
holography realizes conformal symmetry breaking in the
UV without introducing explicitly the β function of large-
Nc QCD. Our guide in this investigation is the spectrum of
scalar and tensor glueballs, because it allows us to fix the
source and the vacuum expectation value (VEV) coeffi-
cients in the near-boundary expansion.1 As in Refs. [6,7],
we assume that the CFT deformation takes place at a UV
energy scale μ�. However, although 4 − ϵ is indeed the

conformal dimension of the operatorO (responsible for the
CFT deformation), the relation between O and the QCD
operator TrF2 is not direct. Therefore, we do not interpret
the parameter ϵ as the anomalous dimension ϵan of the
operator TrF2, as was advocated in [6,7]. We, however,
propose a relation between these two quantities.
We show in this work that for arbitrary values of ϵ, in the

range 0.001 < ϵ < 0.1, it is always possible to reproduce
the spectrum of scalar and tensor glueballs obtained in
lattice QCD. This is achieved by using the first two scalar
glueball masses as a physical criterion to fix the source
and VEV coefficients, ϕ0 and G, respectively, for each
value of ϵ. We find that the evolution of these parameters
as functions of ϵ admits simple fits that allow us to
predict their behavior in the ϵ → 0 limit (where the
dilaton becomes massless). On the other hand, from the
analysis of the vacuum energy density hT00i and the VEV
of O we calculate the corresponding trace anomaly
hTμ

μi ¼ −ϵϕ0hOi, which is consistent with the general
result of deformed CFTs [9,14]. We suggest a reinterpre-
tation of this result in terms of the QCD trace anomaly,
which in turn suggests a dictionary for the parameters ϕ0

and ϵ.
Our approach is quite different from the one considered

in [3,4], where the four-dimensional theory does not have a
UV cutoff and the dilaton potential is built to reproduce the
two-loop perturbative β function of large-Nc QCD (asymp-
totic freedom). It is not clear, however, how the holographic
map between the energy μ and the warp factor AðzÞ,
proposed in [3,4], should be modified in our case in order
to accommodate the energy cutoff μ�. In recent works
[15,16], a massive term for the dilaton in the UV was
interpreted as the dual of a CFT deformation by a nearly
marginal operator and the corresponding renormalization
group (RG) flow was investigated (see also [17]). Our
results, however, support the interpretation of the CFT
deformation δL ¼ ϕ0O in terms of the large-Nc Yang-
Mills Lagrangian. In some sense this is a reinterpretation of
the RG flow in holographic QCD where now the operator
TrF2 is interpreted as the source of a nontrivial β function.
This may also shed some light on the origin of the dilaton
potentials considered in holographic QCD models without
relying on a stringy top-down approach.
This paper is organized as follows. In Sec. II we review

the holographic QCDmodels arising from five-dimensional
dilaton-gravity theory, with focus on the linearized equa-
tions that lead to the glueball spectrum. Then, in Sec. III,
we describe the physical constraints in the UV and IR,
compatible with explicit conformal symmetry breaking and
linear confinement, and present two interpolations where
the dilaton admits an analytic form. In Sec. IV we find a
spectrum for scalar and tensor glueballs compatible with
lattice QCD data and describe how the model parameters
evolve with the conformal dimension ϵ. In Sec. V we
calculate the trace anomaly for our model, which agrees

1This approach is similar to the one used in the holographic
model for chiral symmetry breaking [10,11] where the quark
masses and chiral condensates are fixed by the meson masses and
decay constants. See also [12,13].
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with the general expectation of deformed CFTs and
compare this result with the QCD scale anomaly. We finish
this paper with our conclusions and two appendixes.
Appendix A describes massless scalar modes in holographic
QCD. In Appendix B we present two holographic QCD
models where the warp factor admits an analytic form.

II. REVIEW OF HOLOGRAPHIC QCD

In this section we review the holographic QCD (HQCD)
backgrounds in a bottom-up approach, which makes
use of the field/operator correspondence unveiled by the
AdS=CFT correspondence. In order to describe the large-
Nc QCD vacuum the focus is on the stress-energy tensor
Tμν as well as the Yang-Mills Lagrangian operator TrF2.
The former couples to a five-dimensional metric gmn and
the latter couples to the scalar dilaton field Φ. Then the
natural five-dimensional framework is the dilaton-gravity
theory, where besides the Einstein-Hilbert action one
considers a dilaton kinetic term and a dilaton potential.
First we exploit the fact that HQCD backgrounds are

conformally flat and map the perturbed metric to linearized
gravity around the Minkowski spacetime. Then we briefly
review the general features of the models proposed in [3,4],
also known as IHQCD. We finish the section with a full
description of the linearized dilaton-gravity equations
leading to the glueball spectrum.

A. Ricci tensor in HQCD backgrounds

Consider a Weyl transformation for a five-dimensional
metric,

gmn ¼ e2AðxÞḡmn: ð1Þ

We take the transformation (1) as a field redefinition for the
metric, or as an ansatz for the background spacetime.2

In holography the five-dimensional coordinates xm of the
bulk spacetime decompose as ðxμ; zÞ where xμ are the four-
dimensional coordinates associated with the field theory at
the boundary and z is the bulk radial coordinate.
The metrics gmn and ḡmn include also the fluctuations

around the unperturbed background, and so they admit the
expansions

ḡmn ¼ ḡð0Þmn þ ḡð1Þmn þ � � � ; gmn ¼ gð0Þmn þ gð1Þmn þ � � � ; ð2Þ

where we take ḡð0Þmn as the metric associated with a
reference background. Analogously, the Christoffel sym-
bols Γp

mn ¼ 1
2
gpqð∂mgqn þ ∂ngqm − ∂qgmnÞ and the Ricci

tensor Rmn≡Rp
mpn ¼ ∂pΓ

p
nm−∂nΓ

p
pmþΓp

pqΓq
nm−Γp

nqΓq
pm

also admit the expansions

Γ̄p
mn ¼ Γ̄pð0Þ

mn þ Γ̄pð1Þ
mn þ � � � ; Γp

mn ¼ Γpð0Þ
mn þ Γpð1Þ

mn þ � � � ;
R̄mn ¼ R̄ð0Þ

mn þ R̄ð1Þ
mn þ � � � ; Rmn ¼ Rð0Þ

mn þRð1Þ
mn þ � � � :

ð3Þ

The Ricci tensor transforms under (1) as

Rmn ¼ R̄mn − 3½∂m∂nA − Γ̄p
mn∂pA� þ 3∂mA∂nA

− ḡmnḡpq½∂p∂qA − Γ̄r
pq∂rAþ 3∂pA∂qA�: ð4Þ

In HQCD we are interested in the case where the
reference background is flat, i.e.

ḡð0Þmn ¼ ηmn; Γ̄pð0Þ
mn ¼ 0; R̄ð0Þ

mn ¼ 0; ð5Þ

and we take the warp factor A as a function of the radial
coordinate only, i.e. A ¼ AðzÞ, so that four-dimensional
Poincaré symmetry, associated with the coordinates xμ, is
preserved. Then at 0th order the Ricci tensor of the dual
metric takes the form

Rð0Þ
mn ¼ −3∂m∂nAþ 3∂mA∂nA − ηmnðA00 þ 3A02Þ; ð6Þ

where 0 means d=dz. Projecting out the Ricci tensor we
obtain the components

Rð0Þ
zz ¼ −4A00; Rð0Þ

zμ ¼ 0; Rð0Þ
μν ¼ −ημνðA00 þ 3A02Þ; ð7Þ

and the 0th order Ricci scalar R≡ gmnRmn takes the form

Rð0Þ ¼ −e−2Að8A00 þ 12A02Þ: ð8Þ

On the other hand, the reference metric at first order is that
of linearized gravity around flat space, i.e.

ḡð1Þmn ¼ hmn;

Γ̄pð1Þ
mn ¼ ∂ðmh

p
nÞ −

1

2
∂phmn;

R̄ð1Þ
mn ¼ ∂p∂ðmh

p
nÞ −

1

2
∂p∂phmn −

1

2
∂m∂nhpp; ð9Þ

where the parentheses around the indices denote symmet-
rization, VðmnÞ ≡ ðVmn þ VnmÞ=2, and the indices of hmn

are raised (lowered) using the Minkowski metric ηmn (ηmn).
Expanding both sides of (4), we find that the first order

perturbations of the Ricci tensor can be written as

Rð1Þ
mn ¼ R̄ð1Þ

mn þ 3A0Γ̄zð1Þ
mn þ ðA00 þ 3A02Þðhzzηmn − hmnÞ

þ A0ηpqΓ̄zð1Þ
pq ηmn: ð10Þ

Decomposing the tensor of linearized gravity hmn as ðhzz;
hzμ; hμνÞ anddefininghzz ≡ 2ϕ andhzμ ≡Aμ,we canproject
out the Ricci tensor (10) and find the following components:

2This is in contrast with the Weyl transformations used in
string theory where the conformal factor is also a field.
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Rð1Þ
zz ¼ ½∂z þ A0�

�
∂μAμ −

1

2
h0
�
þ 4A0ϕ0 −□ϕ;

Rð1Þ
zμ ¼ 1

2
∂νh0 νμ −

1

2
∂μh0 þ

1

2
∂νF ν

μ þ 3A0∂μϕ

− ðA00 þ 3A02ÞAμ;

Rð1Þ
μν ¼ ½∂z þ 3A0�∂ðμAνÞ −

1

2
½∂2

z þ 3A0∂z þ□�hμν

þ ∂ρ∂ðμh
ρ
νÞ −

1

2
∂μ∂νð2ϕþ hÞ

þ 1

2
A0½2ϕ0 − h0 þ 2∂ρAρ�ημν

þ ðA00 þ 3A02Þ½2ϕημν − hμν�; ð11Þ

where □≡ ∂μ∂μ is the d’Alembertian operator in the
boundary spacetime, the scalar h is defined by the trace
h≡ hμμ and F μν ≡ ∂μAν − ∂νAμ is the field strength
associated with the vector Aμ.

B. HQCD backgrounds from dilaton gravity

The goal of holographic QCD is to find the gravity
(string) dual of QCD in the large-Nc limit. This is
motivated by the ’t Hooft planar limit [18] and the
AdS=CFT correspondence [19–21]. QCD is, on the one
hand, well approximated by a CFT in the UV and, on the
other hand, confining in the IR. These facts suggest that
the holographic dual spacetime should be AdS near
the boundary. Far from the boundary, it should be such
that dual probe fields (and strings) living in that five-
dimensional background reproduce confinement and the
four-dimensional hadronic physics. In the pioneer work of
[3,4], a very general family of HQCD backgrounds was
proposed and, based on the work of [22], a universal IR
criterion for confinement was found. Moreover, the require-
ment of linear Regge trajectories led the authors of [4] to
conclude that a quadratic dilaton field was necessary in the
IR. This supports the early work of [5], where a quadratic
dilaton was proposed on the basis of the meson spectrum,
the so-called soft-wall model.
In this subsection, we briefly review the HQCD back-

grounds proposed in [3,4] focusing on the IR physics. In
the next subsection, we describe the scalar and gravitational
perturbations that lead to the Schrödinger equations asso-
ciated with the glueball spectrum.
In the HQCD approach, we start with a five-dimensional

dilaton-gravity action of the form

S ¼ M3
pN2

c

Z
d5x

ffiffiffiffiffiffi
−g

p ½Rþ LΦ�; ð12Þ

where Mp is the five-dimensional Planck scale, Nc is the
number of colors, and the dilaton Lagrangian has a kinetic
term and a potential,

LΦ ¼ −
4

3
gmn∂mΦ∂nΦþ VðΦÞ: ð13Þ

Variating the action (12) with respect to Φ and the metric
gmn, we obtain the dilaton-gravity equations

Rmn −
1

2
gmnR ¼ 1

2M3
pN2

c
Tmn; ð14Þ

4

3
∇2Φþ 1

2

dV
dΦ

¼ 0; ð15Þ

where ∇2 is the Laplacian operator3 and we have defined
an energy-momentum tensor Tmn for the dilaton field,

Tmn ≡M3
pN2

c

�
8

3
∂mΦ∂nΦþ gmnLΦ

�
: ð16Þ

It is also convenient to write the Einstein equations (14) in
the Ricci form,

Rmn ¼
4

3
∂mΦ∂nΦ −

1

3
gmnV: ð17Þ

The HQCD backgrounds correspond to solutions for the
dilaton-gravity equations of the form

ds2 ¼ e2AðzÞ½dz2 þ ημνdxμdxν�; Φ ¼ ΦðzÞ: ð18Þ

The warp factor AðzÞ and dilaton ΦðzÞ are usually mapped
to the energy scale and coupling of the dual four-
dimensional theory. Using (7) and the definition of the
scalar Laplacian ∇2, the dilaton-gravity equations (15)
and (17) take the form

12A00 þ 4Φ02 ¼ e2AV;

3A00 þ 9A02 ¼ e2AV;

8

3
½∂z þ 3A0�Φ0 ¼ −e2A

dV
dΦ

: ð19Þ

The last equation in (19) can be obtained from the first two,
which in turn can be rewritten as

A02 − A00 ¼ 4

9
Φ02;

3A02 þ A00 ¼ 1

3
e2AV: ð20Þ

At this point it is very convenient to define the quantity

ζðzÞ≡ exp½−AðzÞ�; ð21Þ

3The Laplacian operator ∇2 applied to a scalar function f is
given by ∇2f ¼ 1ffiffiffiffi−gp ∂mð ffiffiffiffiffiffi−gp

gmn∂nfÞ.
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so that the first equation in (20) takes a linear form in ζ,

ζ00 −
4

9
Φ02ζ ¼ 0: ð22Þ

The Schrödinger form of this equation is useful to under-
stand the AdS deformation due to a nonconstant dilaton,
which is the dual of a conformal symmetry breaking. In the
case of a constant dilaton, the interesting solution for the
holography is ζ ¼ z=l, corresponding to the usual AdS
spacetime with curvature radius l. In this paper we describe
how the presence of dilaton mass, associated with a CFT
deformation, leads to an explicit breaking of conformal
symmetry and gives a reasonable glueball spectrum. Note
from Eq. (22) that ζ00 ≥ 0 for all values of z. AdS
asymptotics implies that ζ0ð0Þ ¼ 1=l so we conclude that
ζ0 ≥ 1=l.4

Following Ref. [4] we write the equations (20) as a
system of first order differential equations

ζΦ0 ¼ dW
dΦ

; ζ0 ¼ 4

9
W;

V ¼ −
4

3

�
dW
dΦ

�
2

þ 64

27
W2; ð23Þ

where W ¼ WðΦÞ is the superpotential associated with
the dilaton-gravity dynamics. Another useful quantity is
the field X defined by the relations

X ≡ 1

3

dΦ
dA

¼ −
1

3

ζΦ0

ζ0
¼ −

3

4

d logW
dΦ

: ð24Þ

This field can be interpreted as a bulk beta function X ∼ βΦ
describing the evolution of the dilaton Φ with the warp
factor A. In the next subsection we describe how this field
appears in the Schrödinger equation associated with scalar
glueballs. In [3,4] the authors proposed a dictionary that
maps the bulk field X to the β function of the four-
dimensional dual theory. In our work the CFT deformation
in the UV implies the existence of a cutoff μ� in the energy
scale of the four-dimensional theory. This feature suggests
a departure from the map proposed in [3,4] so we take X as
a pure bulk field. In particular, we see that while X goes to 0
as we approach the boundary the dual β function is still
finite.
We finish this subsection describing the confining

constraint found in [4]. The discussion takes place in the
string frame, where the metric is given by

ds2 ¼ e2AsðzÞ½dz2 þ ημνdxμdxν�; ð25Þ

and the string-frame warp factor is related to the Einstein-
frame warp factor by

AsðzÞ ¼ AðzÞ þ 2

3
ΦðzÞ: ð26Þ

Consider a static string living in the spacetime (25), with
end points attached to the boundary and separated by a
distance L in one of the boundary directions. As shown in
[22], inspired by [23], this problem maps to a rectangular
Wilson loop describing in the large-L limit the potential
energy of a heavy quark-antiquark pair. Solving the
Nambu-Goto equations one finds that in the large-L limit
the energy of the static string takes the form

EðLÞ ¼ μsfðz�ÞLþ � � � ; ð27Þ

where μs is the fundamental string tension, fðzÞ ¼
expð2AsÞ, and z� is the point where fðzÞ has a minimum
and the dots represent subleading terms in the large-L limit.
Following Ref. [22], the energy (27) maps to the quark-
antiquark potential and confinement is achieved for
fðz�Þ > 0. In this case, the quantity μsfðz�Þ is identified
with the confining string tension σ.
Thus we conclude that confining backgrounds are

those where the function fðzÞ ¼ expð2AsÞ has a nonzero
minimum. Since we always consider backgrounds that
are asymptotically AdS we have that fðzÞ → ∞ in the
UV (z → 0). We are interested in backgrounds where 0 <
z < ∞ so we conclude that in the IR fðz → ∞Þ > 0 to
guarantee confinement. Taking a power ansatz for the
dilaton ΦðzÞ ¼ Czα we find from (20) that at large z

AðzÞ ¼ −
2

3
ΦðzÞ þ 1

2
log jΦ0ðzÞj þ � � � ; ð28Þ

so that

AsðzÞ ¼
α − 1

2
log

�
C

1
αz

�
þ � � � : ð29Þ

Then the confinement criterion becomes the condition
α ≥ 1. From (8) and (28) we find that the condition
α ≥ 1 implies the existence of a curvature singularity at
z → ∞. Interestingly, a WKB analysis of the glueball
spectrum [4] leads to the stronger restriction α ¼ 2 that
corresponds to asymptotically linear Regge trajectories
m2

n ∼ n. In this work we take a quadratic dilaton ΦðzÞ ¼
z2 in the IR to guarantee confinement and an approximate
linear glueball spectrum. The UV, on the other hand, differs
significantly from the proposal of [3,4] where instead of
imposing asymptotic freedom we consider a CFT defor-
mation, inspired by the work of [6,7]. But first we finish
this section by reviewing below how the Schrödinger
equations, which determine the glueball spectrum, arise
from the linearized dilaton-gravity equations.

4This is equivalent to the statement ∂uA ≤ −1=l, obtained in
[4], where u is the domain-wall coordinate related to z by
dz ¼ ζdu.
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C. Linearized dilaton-gravity equations

The linearized version of the dilaton-gravity equations
is obtained by expanding at first order both sides of (15)
and (17), with Φ → Φþ χ and gmn → e2Aðηmn þ hmnÞ,
where χ and hmn are first order perturbations in the dilaton
and the reference background metric, respectively. The
resulting equations take the form

Rð1Þ
mn ¼ 8

3
∂ðmΦ∂nÞχ −

1

3
e2A½Vhmn þ ð∂ΦVÞχηmn�; ð30Þ

4

3
ð∇2ΦÞð1Þ ¼ −

1

2
ð∂2

ΦVÞχ; ð31Þ

where Rð1Þ
mn is given by (11),

ð∇2ΦÞð1Þ ¼e−2A
�
½∂2

zþ3A0∂zþ□�χ

−
�
ϕ0þ∂μAμ−

1

2
h0þ2ϕð∂zþ3A0Þ

�
Φ0
�
; ð32Þ

and recall that hzz ¼ 2ϕ, hzμ ¼ Aμ and hμμ ¼ h. Taking the
components ðzz; zμ; μνÞ of the linearized Einstein equa-
tions (30), the system (30) and (31) becomes

½∂z þ A0�
�
∂μAμ −

1

2
h0
�
þ 4A0ϕ0 −□ϕ −

8

3
Φ0χ0

þ 2ϕðA00 þ 3A02Þ − 8

9
χ½∂z þ 3A0�Φ0 ¼ 0; ð33Þ

1

2
∂νh0 νμ −

1

2
∂μh0 þ

1

2
∂νF μ

ν þ 3A0∂μϕ −
4

3
Φ0∂μχ ¼ 0;

ð34Þ

½∂z þ 3A0�∂ðμAνÞ −
1

2
½∂2

z þ 3A0∂z þ□�hμν þ ∂ρ∂ðμh
ρ
νÞ

−
1

2
∂μ∂νð2ϕþ hÞ þ A0

�
ϕ0 þ ∂ρAρ −

1

2
h0
�
ημν

þ 2ðA00 þ 3A02Þϕημν −
8

9
χ½∂z þ 3A0�Φ0ημν ¼ 0; ð35Þ

½∂2
z þ 3A0∂z þ□�χ −

�
ϕ0 þ ∂μAμ −

1

2
h0 þ 2ϕð∂z þ 3A0Þ

�
Φ0

þ 3

8
e2Að∂2

ΦVÞχ ¼ 0; ð36Þ

where we have used the result (11) for the Ricci tensor and
we have also used the following background relations:

1

3
e2AV ¼ A00 þ 3A02;

1

3
e2A∂ΦV ¼ −

8

9
½∂z þ 3A0�Φ0:

ð37Þ

As explained in [24], the next step is to decompose the
four-vector Aμ and the symmetric tensor hμν into irreduc-
ible representations of the Lorentz group, i.e.,

Aμ ¼ AT
μ þ ∂μW;

hμν ¼ hTTμν þ 2∂ðμVT
νÞ þ 2∂μ∂νE þ 2ψημν; ð38Þ

where AT
μ and VT

μ are divergenceless vectors, hTTμν is a
traceless and divergenceless tensor andW, E, ψ are Lorentz
scalars. Applying the decomposition (38) into the dilaton-
gravity equations (33)–(36), we find one tensorial equation,

½∂2
z þ 3A0∂z þ□�hTTμν ¼ 0; ð39Þ

two vectorial equations,

½∂z þ 3A0�ðAT
μ − VT 0

μ Þ ¼ 0; ð40Þ

□ðAT
μ − VT 0

μ Þ ¼ 0; ð41Þ

and five scalar equations,

½∂z þ 3A0�ðW − E0Þ − 2ψ − ϕ ¼ 0; ð42Þ

− ½∂2
z þ 3A0∂z þ□�ψ þ A0½ϕ0 − 4ψ 0 þ□ðW − E0Þ�

þ 2ϕðA00 þ 3A02Þ − 8

9
χ½∂z þ 3A0�Φ0 ¼ 0; ð43Þ

−3ψ 0 þ 3A0ϕ −
4

3
Φ0χ ¼ 0; ð44Þ

½∂z þA0�½□ðW − E0Þ− 4ψ 0� þ 4A0ϕ0 −□ϕ

−
8

3
Φ0χ0 þ 2ϕðA00 þ 3A02Þ− 8

9
χ½∂z þ 3A0�Φ0 ¼ 0; ð45Þ

½∂2
z þ 3A0∂z þ□�χ − ½ϕ0 þ□ðW − E0Þ − 4ψ 0

þ 2ϕð∂z þ 3A0Þ�Φ0 þ 3

8
e2Að∂2

ΦVÞχ ¼ 0: ð46Þ

The tensorial equation (39) leads to the spectrum of spin 2
glueballs. The vectorial equations (40) and (41) do not lead
to normalizable modes so we can set AT

μ ¼ VT
μ ¼ 0. From

the five scalar equations (42)–(46) only one combination
decouples from the rest and describes the spectrum of
spin 0 glueballs. Below we describe how this equation can
be obtained. Subtracting (43) from (45) and using (42), we
obtain the equation

½∂2
z − A0∂z −□�ψ − A0ϕ0 þ A0

□ðW − E0Þ þ 8

9
Φ0χ0 ¼ 0:

ð47Þ

This equation can be combined with (46) to get rid of the
term □ðW − E0Þ and to find
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½∂2
z þ 3A0∂z −□�ψ þ 1

3X
½∂2

z þ 3A0∂z þ□�χ − 2A0ϕ0

− 2
ϕ

X
½∂z þ 3A0�ðA0XÞ þ 8

3
A0Xχ0 þ 1

8X
e2Að∂2

ΦVÞχ ¼ 0;

ð48Þ

where X was defined in (24). Using Eq. (44) to replace ϕ
in terms of ψ and χ and the background relations (20)
and (37), we arrive at the decoupled equation

ξ00 þ
�
3A0 þ 2

X0

X

�
ξ0 þ□ξ ¼ 0; ð49Þ

where the field ξ is defined by

ξ ¼ ψ −
χ

3X
: ð50Þ

The solutions of Eq. (49) lead to the spectrum of spin 0
glueballs.

1. Schrödinger-like equation—scalar sector

It is possible to rewrite Eq. (49) in a Schrödinger-like
form. To do so, we define an auxiliary function Bs as

Bs ¼
3

2
Aþ logX: ð51Þ

Substituting ξ ¼ e−Bsψ s and introducing the Fourier trans-
form (□ → m2

s) in Eq. (49), we get

−ψ 00
s þ Vsψ s ¼ m2

sψ s; ð52Þ

where the potential is defined as

Vs ¼ ðB0
sÞ2 þ B00

s : ð53Þ

2. Schrödinger-like equation—tensor sector

Following the same procedure as above in the tensor
sector we use the auxiliary function

Bt ¼
3

2
A; ð54Þ

to rewrite (39) in the Schrödinger-like form

−ψ 00
t þ Vtψ t ¼ m2

tψ t; ð55Þ

where the potential is defined as

Vt ¼ ðB0
tÞ2 þ B00

t : ð56Þ

Interestingly, the difference between the spin 0 and spin 2
sectors lies in the term Bs − Bt ¼ logðXÞ. This is an

important feature when calculating the glueball spectrum
that explains the nondegeneracy of scalar and tensor
glueballs.

III. EFFECTIVE HOLOGRAPHIC QCD

As anticipated in the previous sections, our work
explores the idea of a massive term for the dilaton in the
UV as the dual of a CFT deformation δL ¼ ϕ0O. The
coupling ϕ0 and the operatorO have conformal dimensions
ϵ and 4 − ϵ, respectively. The latter is related to the QCD
operator TrF2. The idea of a CFT relevant deformation was
proposed in [6,7] when constructing a holographic model
for QCD at finite temperature. Since the CFT deformation
takes place at a particular energy scale μ�, which becomes
an upper energy bound for the four-dimensional theory,
we dub this approach effective holographic QCD.
In this work we show that this type of UVasymptotics, at

zero temperature, is compatible with (explicit) conformal
symmetry breaking, confinement, and the glueball spec-
trum. To achieve this we also constrain the IR in the way
proposed in [3,4], namely by considering a quadratic
dilaton. Below we describe in more detail the universal
UV and IR asymptotic behavior for the family of HQCD
backgrounds considered in this work. We also describe
specific models that interpolate smoothly between the UV
and IR asymptotics. Then in the next section we calculate
the glueball spectrum and investigate how the model
parameters evolve with the conformal dimension ϵ.

A. CFT deformation in the UV

In the pioneer work [2], Csaki and Reece identified a
dynamical dilaton as the five-dimensional scalar field dual
to the operator TrF2. They initially considered a massless
dilaton and obtained a nonzero gluon condensate. However,
as found in [2], a massless dilaton leads to a Nambu-
Goldstone boson in the spectrum of scalar glueballs, indica-
ting that conformal symmetry was spontaneously broken.
It is important to remark, however, that the background of [2]
requires additional boundary conditions at the singularity,
which brings some ambiguities [4]. As a mechanism for
explicit conformal symmetry breaking, the authors of [2]
proposed the holographic implementation of asymptotic
freedom in the UV. This was correctly implemented in
the IHQCD background developed by Gursoy et al. [3,4].
The background of [3,4] is also consistent with linear
confinement in the IR and does not require additional
boundary conditions at the singularity.
As explained above, instead of implementing asymptotic

freedom in the UV, we are interested in explicitly breaking
conformal invariance through a UV mass term for the
dilaton. According to the AdS=CFT dictionary, the massM
of a five-dimensional dilaton, responsible for deforming
AdS space, is related to the conformal dimension Δ of a
dual scalar operator O, responsible for deforming the
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four-dimensional CFT, by the equationM2l2 ¼ ΔðΔ − 4Þ.
Then by considering a relevant operator with dimension
Δ ¼ 4 − ϵ, we end up with a nonzero mass for the dilaton.
We later relate this operator to the QCD operator TrF2 and
investigate the connection between the trace anomaly of
deformed CFTs and the QCD trace anomaly. This in turn
sheds some light on the role played by the conformal
dimension ϵ in effective holographic QCD.
Let us first consider an expansion of the dilaton potential

around the UV minimumΦ ¼ 0, which includes a constant
term, associated with a negative cosmological constant, and
a nonzero mass term,

VðΦÞ ¼ 12

l2
−
4

3
M2Φ2 þ � � � ; ð57Þ

where the ellipses denote higher powers of Φ. On the basis
of Eqs. (19), one finds that the constant term in (57) leads to
the AdS asymptotics whereas the mass term implies the
following near-boundary behavior for the dilaton,

Φ ¼ ϕ0zΔ− þ GzΔþ þ � � � ; ð58Þ

where Δþ ¼ Δ ¼ 4 − ϵ and Δ− ¼ 4 − Δþ ¼ ϵ, both
related to the five-dimensional mass by M2l2¼−ΔþΔ−.
Following the AdS=CFT dictionary, we interpret the
coefficient ϕ0 as the source for the dual operator O. The
coefficient G is related to the VEV of O. We also remind
the reader that the CFT deformation δL ¼ ϕ0O takes place
at some cutoff energy μ�.
Considering the perturbative expansion for Φ, given by

(58), we find from Eq. (22) the asymptotic expansions for
ζðzÞ and the warp factor AðzÞ ¼ − log ζðzÞ,

ζðzÞ ¼ z
l

�
1þ 2Δ−

9ð1þ 2Δ−Þ
ϕ2
0z

2Δ− þ 2Δ−Δþ
45

ϕ0Gz4

þ 2Δþ
9ð1þ 2ΔþÞ

G2z2Δþ þ � � �
�
;

AðzÞ ¼ − log ðz=lÞ − 2Δ−

9ð1þ 2Δ−Þ
ϕ2
0z

2Δ− −
2Δ−Δþ

45
ϕ0Gz4

−
2Δþ

9ð1þ 2ΔþÞ
G2z2Δþ − � � � : ð59Þ

If instead of a mass term for the dilaton, we followed the
prescription of [3,4] and imposed asymptotic freedom, we
would obtain a UVasymptotics involving logarithmic terms
to be consistent with the logarithmic dependence of the
’t Hooft coupling with the energy.
Since we know the asymptotic behavior of the warp

factor (59) we are also able to find, from the second
equation in (23), the small z behavior of the superpotential,

lWðzÞ ¼ 9

4
þ Δ−

2
ϕ2
0z

2Δ− þ Δ−Δþ
2

ϕ0Gz4

þ Δþ
2

G2z2Δþ þ � � � : ð60Þ

Alternatively, we can solve the differential Eq. (23) for
the superpotentialWðΦÞ for a dilaton potential VðΦÞ given
by (57) and find [16,17]

lW�ðΦÞ ¼ 9

4
þ Δ�

2
Φ2 þ � � � ; ð61Þ

which is in agreement with Eq. (60). From the above results
it is easy to find the asymptotic expansion for the field XðzÞ,
defined in (24). The expansion takes the form

3XðzÞ ¼ −Δ−ϕ0zΔ− − ΔþGzΔþ þ � � � : ð62Þ

The results above also tell us how the metric behaves near
the boundary,

ds2 ¼ l2

z2

�
1−

4Δ−

9ð1þ 2Δ−Þ
ϕ2
0z

2Δ− −
4Δ−Δþ

45
ϕ0Gz4 − � � �

�

× ½dz2 þ ημνdxμdxν�: ð63Þ

We finish this subsection writing the asymptotic expansion
of the dilaton (58) in a form that is useful when implement-
ing the numerical procedure,

ΦðzÞ ¼ ϕ̂0ðΛzÞϵ þ ðΛzÞ4−ϵ þ � � � ; ð64Þ

where the parameters ϕ̂0 and Λ are related to ϕ0 and G by

ϕ0 ¼ ϕ̂0Λϵ; G ¼ Λ4−ϵ: ð65Þ

The parameter Λ has conformal dimension 1 and plays a
role similar to ΛQCD whereas the parameter ϕ̂0 is the
dimensionless version of the coupling ϕ0. For all practical
purposes ϕ̂0, Λ and ϵ are the relevant parameters of the
model. We see later that, for fixed ϵ, the parameters ϕ̂0 and
Λ can be fit in order to reproduce the glueball spectrum.

B. Confinement in the IR

In Ref. [4], Gursoy et al. did a careful analysis that is
universal for holographic QCD backgrounds arising from a
dilaton-gravity theory. Specifically, considering the general
confinement criterion of [22] and also a WKB analysis for
the glueball spectrum, they found that a quadratic dilaton in
the IR guarantees confinement and an approximate linear
spectrum for glueballs. Remarkably, this quadratic dilaton
had been already proposed in the phenomenological soft-
wall model [5], in order to arrive at a linear spectrum for
mesons. Interestingly, a quadratic dilaton in the IR also
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provides the T2 correction to the stress tensor trace anomaly
of a deconfined plasma [25].
Motivated by the results of [4], we consider in this work

the following dilaton asymptotic behavior at large z:

ΦðzÞ ¼ Cz2 þ � � � ; ð66Þ

where the dots indicate terms that depend on negative
powers of z. Using the IR asymptotic relation (28) between
AðzÞ and ΦðzÞ, we construct the asymptotic forms for the
warp factor AðzÞ and the function ζðzÞ,

AðzÞ ¼ −
2

3
Cz2 þ 1

2
log ð

ffiffiffiffi
C

p
zÞ þ � � � ;

ζðzÞ ¼ ð
ffiffiffiffi
C

p
zÞ−1=2 exp

�
2

3
Cz2

�
þ � � � : ð67Þ

With this information at hand, we use the second equation
in (23) to write down the superpotential,

WðzÞ ¼ 3C
3
4

ffiffiffi
z

p
exp

�
2

3
Cz2

�
þ � � � : ð68Þ

We get the asymptotic expansion of X using Eqs. (66)
and (67) and the definition (24),

X ¼ −
1

2

�
1þ 3

8Cz2
þ � � �

�
¼ −

1

2

�
1þ 3

8

1

Φ
þ � � �

�
: ð69Þ

Substituting this expression for XðΦÞ in (24) and integrat-
ing the resulting equation in Φ, we obtain the asymptotic
behavior for the superpotential in terms of Φ,

WðΦÞ ∝ Φ1=4 exp
�
2

3
Φ
�
þ � � � ; ð70Þ

which is consistent with (68). Similarly, the asymptotic
expression for the dilaton potential in the radial coordinate
z can be found from Eqs. (20) and (67),

VðzÞ ¼ 16C
3
2z exp

�
4

3
Cz2

�
þ � � � ;

V 0ðzÞ
VðzÞ ¼ 8

3
Czþ 1

z
þ � � � : ð71Þ

For completeness, we write down the dilaton potential as a
function of Φ. Substituting Eq. (70) into the differential
Eq. (23) and taking the leading term, we get

VðΦÞ ∝ Φ1=2 exp

�
4

3
Φ
�
þ � � � ;

∂ΦVðΦÞ
VðΦÞ ¼ 4

3
þ 1

2Φ
þ � � � : ð72Þ

The results (68) and (71) satisfy the general criteria
presented in [3,4] to guarantee linear confinement in the
IR. It is interesting to point out the difference between this
IR asymptotics and the one considered in [6,7]. In that case
the ratio ∂ΦVðΦÞ=VðΦÞ is a constant because the potential
goes like expðγΦÞ, where γ is a constant. Here we have
considered the IR asymptotics of [3,4], where the ratio
∂ΦVðΦÞ=VðΦÞ has a subleading term that decreases as
1=z2 because the dilaton is quadratic in the IR.
From the result (67), we see that the metric shrinks to 0

at large z as

ds2 ¼
ffiffiffiffi
C

p
z exp

�
−
4

3
Cz2 þ � � �

�
½dz2 þ ημνdxμdxν�: ð73Þ

As explained above, this leads to a curvature singularity at
z → ∞, i.e. a divergent Ricci scalar.
The above results were obtained in the Einstein frame,

where the warp factor decreases monotonically. If we
calculated the warp factor in the string frame, AsðzÞ, we
would see that it has a minimum, associated with the
fundamental string tension [4].
Again, we write the IR dilaton asymptotics (66) in a

convenient form,

ΦðzÞ ¼ ðΛzÞ2 þ � � � : ð74Þ

Note that we are using the same coefficient Λ that appeared
already in the UV expansion. This implies a relation
between the IR coefficient C at large z and the UV
coefficient G at small z. In the next section, we show that
the parameter Λ is responsible for fixing the scale of the
glueball masses when comparing the numerical results
against lattice data.

C. UV/IR interpolation

In the pioneer soft-wall model [5], a quadratic dilaton
was introduced by hand to get the desired behavior in the
dual QCD-like theory, namely, the Regge-like behavior
m2 ∝ n. As explained before, starting from [2] there have
been interesting proposals for holographic QCD consider-
ing a dilaton field dynamically coupled to the metric. This
in turn leads to a nonzero gluon condensate and confine-
ment. A particularly interesting proposal was considered
recently in [26,27] where an analytic function was used to
interpolate the dilaton between a quartic form in the UVand
a quadratic form in the IR. However, as explained before, a
quartic dilaton in the UV necessarily leads to an unaccept-
able massless mode in the scalar sector of glueballs [2].5

In Sec. II C we described the process of linearizing
the dilaton-gravity equations to arrive at the equations

5This result is missing in Ref. [26,27] because the authors did
not describe scalar glueballs in terms of scalar perturbations in
dilaton gravity.
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governing the dynamics of the scalar and tensor glueballs.
A careful analysis of these equations suggests two possible
solutions for the massless mode problem. The first solution,
originally proposed in [2] and beautifully realized in [3,4],
consists of introducing asymptotic freedom in the UV.
However, the price to be paid when introducing asymptotic
freedom is the presence of logarithmic corrections in the
warp factor and the dilaton which make the AdS=CFT
dictionary more involved [28,29]. The second solution,
considered in this work, is implementing a CFT deformation
of the form δL ¼ ϕ0O, O being a relevant operator dual to
the dilaton. The conformal dimension of O was set to Δ ¼
4 − ϵ in Eq. (58), with ϵ being small. Mapping this operator
to the QCD operator TrF2 signalizes the presence of a UV
cutoff μ� in the QCD-like theory, as advocated in [6,7].
The UV asymptotics corresponding to the CFT defor-

mation was described in Sec. III A whereas the IR asymp-
totics leading to linear confinement was described in
Sec. III B. In particular, the UV and IR asymptotics for
the dilaton were given in (64) and (74) respectively. There
are two immediate options for interpolating between the
UVand IR asymptotics. We can define an analytic function
for the dilaton that interpolates from the UV to the IR and
solve numerically for the warp factor and the potential
VðzÞ. The models arising in this approach are called models
A. The second possibility is to interpolate the warp factor
between the two regimes, so that we get numerically the
dilaton and the potential VðzÞ. The models in this second
approach are called models B. In the following we present
and analyze the first case (models A) and leave the analysis
of models B for Appendix B.
In Sec. IV we show how these effective holographic

QCD models (models A and B) lead to a realistic spectrum
for scalar and tensor glueballs. In Sec. V we take advantage
of the fact that the effective holographic QCD approach
allows the use of the standard AdS=CFT dictionary and
calculate the VEVof the operator O. We relate this VEV to
the gluon condensate hTrF2i and discuss the trace anomaly
of deformed CFTs in connection with the QCD scale
anomaly. A general discussion of the massless mode and its
resolution is made in Appendix A.

1. Models A: Analytic form for the dilaton field

As explained above, in models A we interpolate the
dilaton field, from the UV asymptotics (64) to the IR
asymptotics (74), in order to describe a CFT deformation
in the UV and confinement in the IR. Among the many

possibilities for interpolating the dilaton between the UV
and IR asymptotics, we choose two of them.
The first interpolation (model A1) is constructed in terms

of powers of the holographic coordinate,

ΦðzÞ ¼ ϕ̂0ðΛzÞϵ þ
ðΛzÞ4−ϵ

1þ ðΛzÞ2−ϵ ; ð75Þ

where the parameters ϕ̂0, Λ, and ϵ were already defined
below Eq. (64). This is the simplest way of interpolating
from the UV to the IR.
The second interpolation (model A2) introduces a

hyperbolic tangent function,

ΦðzÞ ¼ ϕ̂0ðΛzÞϵ þ ðΛzÞ2 tanh ½ðΛzÞ2−ϵ�: ð76Þ

It is easy to see that both equations (75) and (76) recover the
previous asymptotic expansions in the UVand IR, Eqs. (64)
and (74), respectively. Thewarp factor, on the other hand, is
obtained by solving the first differential equation in (20).
As explained previously, the dilaton field ΦðzÞ and warp

factor AðzÞ depend only on the parameters ϕ̂0, Λ and ϵ.
The parameter Λ is used to fix the energy scale while the
value of ϕ̂0 plays the role of a dimensionless coupling. Our
numerical strategy is to fix the conformal dimension ϵ and
fit the parameters ϕ̂0 and Λ using the masses of the first two
scalar glueballs (taken from lattice QCD). This analysis is
developed in Sec. IV.

2. Numerical analysis of the background

Having specified the models A, where the dilaton is an
analytic function, we can solve numerically the dilaton-
gravity equations (20), with the appropriate boundary
conditions, and explore the evolution of the geometric
quantities such as the warp factor AðzÞ, the field XðzÞ and
the superpotential WðzÞ. The parameters that we use to get
the results and plot the figures in this section are presented
in Table I and are justified in Sec. IV D. Our goal here is to
show the nonsingular behavior of these quantities. The
dilaton field ΦðzÞ, dual to the relevant operatorO, is shown
in Fig. 1. The effect of the conformal dimension ϵ is evident
near the boundary where the dilaton field goes as ∼ϕ0zϵ

(see the box in the figure), with ϕ0 ¼ ϕ̂0Λϵ. This is the
dominant term responsible for the explicit breaking of
conformal invariance. Figure 1 also shows the asymptotic
behavior of the dilaton ∼Λ2z2 in the IR, responsible for

TABLE I. The values of the parameters for models A1 and A2 used to get the results presented in Sec. III C 2 for
ϵ ¼ 0.1.

Models ϕ̂0 ΛðMeVÞ ϕ0ðMeVϵÞ Gð1011 MeV4−ϵÞ Cð105 MeV2Þ
Model A1 5.59 742.75 10.83 1.57 5.52
Model A2 5.33 677.98 10.23 1.10 4.60
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confinement and a linear spectrum. The difference between
models A1 and A2 lies in the values of the parameters ϕ̂0

and Λ, in addition to the interpolation form.
On the left panel of Fig. 2, we plot the numerical solution

for the Einstein-frame warp factor AðzÞ in models A1 and
A2. These results are consistent with the UV and IR
asymptotics, given by Eqs. (59) and (67), respectively.
The difference between models A1 and A2 lies in the
region for large z. As we see in Sec. IV, the effect of this
difference is realized in the glueball spectrum. The right
panel in Fig. 2 shows the string-frame warp factor AsðzÞ,
obtained from Eq. (26). This function has a minimum at
some z ¼ z�, which is consistent with the confinement
criterion described in Sec. II B.
Another important geometric quantity is the field XðzÞ,

defined in Eq. (24). As shown on the left panel in Fig. 3,
this quantity has the same asymptotic behavior for both
models A1 and A2, and the relevant difference lies in the
intermediate region. The presence of confinement in the
IR is consistent with XðzÞ approaching a constant value
for large z. As discussed in [15,16], the field X can be
interpreted as a bulk effective β-function associated with
the four-dimensional RG flow driven by the operator O.
The breaking of conformal invariance can be appreciated

by looking at the superpotential WðzÞ, obtained from the
second equation in (23). As a consequence of the CFT
deformation in the UV, the superpotential raises rapidly
with the coordinate z, as shown on the right panel in Fig. 3.
This behavior was previously noticed for the case of nearly
marginal operators [15]. In contrast with XðzÞ, the differ-
ence in WðzÞ between models A1 and A2 lies in the IR.
Those differences play a role in the spectrum of glueballs,
which are calculated in Sec. IV.

D. The vacuum energy density

A very important quantity in holographic QCD is the
vacuum energy density hT00i. In the absence of a CFT

deformation, we expect hT00i to vanish since the four-
dimensional theory lives in Minkowski spacetime.6 In our
case, the CFT deformation δL ¼ ϕ0O generates a non-
trivial negative hT00i that is interpreted as the QCD vacuum
energy density.
In holography the vacuum energy of a four-dimensional

theory corresponds to the on-shell Euclidean action asso-
ciated with the five-dimensional gravitational background.
In dilaton gravity the action is given by

S ¼ SE þ SGH; ð77Þ

where

SE ¼ −M3
pN2

c

Z
d4x

×
Z

∞

z0

dz
ffiffiffi
g

p �
R −

4

3
gmn∂mΦ∂nΦþ VðΦÞ

�
; ð78Þ

and

SGH ¼ M3
pN2

c

Z
d4x

ffiffiffi
γ

p
2Kjz¼z0 ð79Þ

is the Gibbons-Hawking boundary term. In holographic
renormalization one first defines the boundary at z ¼ z0
and takes the limit z0 → 0 only at the very end of the
renormalization process. We have introduced in (79)
the induced metric γμν ¼ expð2AÞημν and the trace of the
extrinsic curvature K, given by

K ¼ ∇mη
m; ηm ¼ ζðzÞδmz ; ð80Þ

where ζðzÞ is defined in (21). As shown in [4], using the
equations of motion (19) the on-shell (o-s) action densities
take the form

So−s
E ¼ So−sE

V4

¼ −2M3
pN2

ce3Aðz0ÞA0ðz0Þ;

So−s
GH ¼ So−sGH

V4

¼ 8M3
pN2

ce3Aðz0ÞA0ðz0Þ; ð81Þ

where V4 is the four-dimensional volume. Thus we find the
bare energy density

hT00i ¼ So−s
E þ So−s

GH ¼ 6M3
pN2

ce3Aðz0ÞA0ðz0Þ: ð82Þ

The near-boundary asymptotic behavior of the warp factor
AðzÞ was obtained in (59). Using that result in (82) one
finds terms that diverge when z0 goes to 0. We consider a
minimal subtraction (MS) scheme where the divergent
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FIG. 1. Dilaton profiles for models A1 and A2, defined in (75)
and (76) respectively, for ϵ ¼ 0.1 and the parameters given in
Table I.

6When the four-dimensional CFT lives in a curved background
one usually gets a nonvanishing vacuum energy density.
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terms are eliminated by adding the appropriate counter-
terms. After this renormalization process one finally takes
the limit z0 → 0. Most of the nondivergent terms vanish
in this limit and the surviving finite piece becomes the
renormalized vacuum energy density,

Eren
QCD ¼ hT00iren ¼ −

4

15
ðMplÞ3N2

cϵð4 − ϵÞϕ0G; ð83Þ

where the superscript renmeans renormalized. The numeri-
cal results for this renormalized vacuum energy density
are shown in the next section. Here we just notice that
the vacuum energy density is negative and therefore lower
than the (zero) energy of the CFT vacuum. We remark,
however, that the result (83) may change if we use a
different renormalization scheme. Note also from (65) that
ϕ0G ¼ ϕ̂0Λ4 has conformal dimension 4, which is indeed
the protected conformal dimension of Tμν.

IV. GLUEBALL SPECTRUM

Glueballs are bound states of gluons predicted by QCD.
So far, they have not been detected although there is a
recent claim that the f0ð1710Þ scalar particle may actually
be the scalar glueball state 0þþ [30,31]. Furthermore, it was
also recently proposed that the odd glueball (oddball) 0−−

could be detected soon by the experiments BESIII,
BELLEII, Super-B, PANDA, and LHCb [32], although
there is some controversy on this prediction [33]. Other
interesting glueball states, as for example, 2þþ, 0−þ and
1−− are under investigation and have candidates in the
particle spectrum [34].
In this work, we are particularly interested in the scalar

0þþ and tensor 2þþ glueball states, as well as their radial
excitations. The investigation of those glueball states has
been made in lattice QCD and other nonperturbative
approaches. For a review, see for instance [34]. Previous
holographic approaches to the glueball spectrum include
the Witten’s model [35–37], the Klebanov-Strassler model
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FIG. 3. Left panel: The field XðzÞ for models A1 and A2, obtained from Eq. (24). Right panel: The superpotential WðzÞ for models
A1 and A2, obtained from the second equation in (23). The results shown in this figure correspond to ϵ ¼ 0.1 and the parameters given
in Table I.
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figure correspond to ϵ ¼ 0.1 and the parameters given in Table I.
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[38–40], the Maldacena-Nunez model [41,42], the hardwall
model [43–45], the soft-wall model [46] and extensions
[47,48], dynamical soft-wall models [26,27,49,50] and
IHQCD models [4].
We find the spectrum of scalar 0þþ and tensor 2þþ

glueball states from solving the differential equations (52)
and (55), respectively. In those Schrödinger-like equations
the glueball states are represented by wave functions ψ s
and ψ t. Under suitable boundary (asymptotic) conditions on
these wave functions, the mass spectrum of the respective
sector is found. As explained in the previous section, the
parameters in our models are ϕ̂0, Λ and ϵ and the strategy is
the following: for each value of ϵ the parameters ϕ̂0 and Λ
are fixed using as input the lattice QCD results for the first
two scalar glueballs [51]. At the end of the numerical
calculation, we compare our results for all the other glueball
states against lattice QCD data [51], and the results obtained
in the IHQCD model [4].
In the numerical calculation it is convenient to rewrite

the interpolations (75) and (76) in terms of a dimensionless
coordinate u ¼ Λz,

ΦðzÞ ¼ ϕ̂0uϵ þ
u4−ϵ

1þ u2−ϵ
; ð84Þ

ΦðuÞ ¼ ϕ̂0uϵ þ u2 tanhðu2−ϵÞ: ð85Þ

Notice that the parameter Λ has disappeared in (84) and
(85). This is because the u coordinate is dimensionless and
the Schrödinger-like equation in this coordinate leads to a
spectrum where the masses are given in units of Λ. We
remind the reader that fixing Λ fixes also the VEV
coefficient G ¼ Λ4−ϵ in the UVas well as the IR coefficient
C ¼ Λ2 characterizing confinement.

A. Analysis of the effective potentials

The spectrum of glueballs depends on the form of the
effective potentials Vs and Vt, which appear in the
Schrödinger-like equations (52) and (55). Here we present
an analysis of those potentials.
Let us start with the effective potential Vs for the scalar

sector, defined in Eq. (53). In terms of the dimensionless
variable u, this potential takes the form

VsðuÞ
Λ2

¼ ½∂uBsðuÞ�2 þ ∂2
uBsðuÞ; ð86Þ

with

BsðuÞ ¼
3

2
AðuÞ þ log½XðuÞ�: ð87Þ

From Eqs. (59) and (62), we know how AðuÞ and XðuÞ
behave in the UV. Using those results we get the UV
asymptotic behavior of BsðuÞ,

BsðuÞ ¼
�
−
3

2
þ ϵ

�
log uþ � � � : ð88Þ

Our hypothesis is that the conformal dimension ϵ is
small. Then the leading term of the scalar potential (86)
takes the form

VsðuÞ
Λ2

¼
�
15

4
þM2l2

�
1

u2
; ð89Þ

where we have introduced the dilaton mass term M2l2 ¼
ϵðϵ − 4Þ. This term is responsible in the UV for the explicit
break of conformal symmetry.
Now we turn attention to the effective potential Vt for

the tensor sector, defined in Eq. (56). In terms of the u
coordinate it takes the form

VtðuÞ
Λ2

¼ ½∂uBtðuÞ�2 þ ∂2
uBtðuÞ; ð90Þ

with

BtðuÞ ¼
3

2
AðuÞ: ð91Þ

The UV asymptotic behavior of this potential is obtained
from the asymptotic behavior of AðuÞ, given by Eq. (59).
The result is simply

VtðuÞ
Λ2

¼ 15

4u2
: ð92Þ

Notice that the conformal dimension ϵ does not affect the
UV asymptotic behavior of the tensor potential.
In the IR regime, at large u, the asymptotic behavior for

AðuÞ and XðuÞ is given by Eqs. (67) and (69) respectively.
Then the functions Bs;tðuÞ have the IR asymptotic form

Bs;tðuÞ ¼ −u2 þ � � � : ð93Þ

Therefore, the IR asymptotic behavior of the effective
potentials (for both sectors) takes the form

Vs;tðuÞ
Λ2

¼ 4u2: ð94Þ

In Fig. 4 we show the effective potentials, obtained
numerically, for models A1 and A2 at ϵ ¼ 0.01 and
ϕ̂0 ¼ 50. The plots are consistent with the asymptotic
results (89), (92) and (94). As expected, the difference
between models A1 and A2 lies in the intermediate region.
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B. UV and IR asymptotic solutions
for the wave functions

In this section we find the UV and IR asymptotic
solutions for the wave functions ψ s and ψ t in the
Schrödinger-like equations (52) and (55).
First we look for the UV asymptotic solution for the

wave function ψ s of the scalar sector. Substituting the UV
asymptotic form (89) of the potential Vs in the differential
Eq. (52), we find

−ψ 00
s ðuÞ þ

�
3

2
− ϵ

��
5

2
− ϵ

�
1

u2
ψ sðuÞ ¼ m̂2

sψ sðuÞ; ð95Þ

where m̂s ¼ ms=Λ parametrizes the four-dimensional
masses of scalar glueballs in units of Λ. Near the boundary
the wave function ψ s behaves as a power law, ψ sðuÞ ¼ uα1 .
Substituting this ansatz into the differential Eq. (95), and
solving the resulting indicial equation, we find two sol-
utions for α1, namely, α−1 ¼ −ϵþ 5=2 and αþ1 ¼ ϵ − 3=2,
which means that the asymptotic general solution is of
the form

ψ sðuÞ ¼ c1u−ϵþ
5
2 þ c2uϵ−

3
2: ð96Þ

The coefficient c2 is set to 0 because we are looking for a
normalizable solution.
We perform a similar analysis to obtain the UV asymp-

totic behavior of the wave function ψ t of the tensor sector.
Using the UV asymptotic form of the potential (92), the
differential Eq. (55) becomes

−ψ 00
t ðuÞ þ

15

4u2
ψ tðuÞ ¼ m̂2

tψ tðuÞ; ð97Þ

where m̂t ¼ mt=Λ parametrizes the masses of tensor glue-
balls in units of Λ. Again, we select the normalizable
solution

ψ tðuÞ ¼ c3u5=2: ð98Þ

Finally we look for the IR asymptotic behavior of ψ s and
ψ t. As shown in Eq. (94), the effective potentials of the
scalar and tensor sectors have the same asymptotic behav-
ior in the IR. Then both Schrödinger-like equations assume
the form

−ψ 00
s;tðuÞ þ 4u2ψ s;tðuÞ ¼ m̂2

s;tψ s;tðuÞ: ð99Þ

Solving this equation, we find the IR asymptotic solutions
that converge at infinity can be written as

ψ s;tðuÞ ¼ c4uðm̂
2
s;t−2Þ=4e−u2 : ð100Þ

C. Glueball spectrum at fixed ϵ

The task now is to solve the eigenvalue problem for the
differential equations (52) and (55). We solve this problem
numerically using a shooting method, which was imple-
mented in a Mathematica code.
In order to find a unique solution to a second order

differential equation, we need two boundary conditions.
There are two typical ways of doing this. We can use the
asymptotic UV solutions (96) and (98) and its derivatives,
respectively for the scalar and tensor sectors, as boundary
conditions at some u ¼ umin, with umin being very small.
Then, we integrate numerically from small u to large u and
require that the wave function at large u should behave as in
(100). Using those conditions and fixing the parameters ϵ and
ϕ̂0, we get a discrete spectrum (in units of Λ). Alternatively,
we may take the asymptotic IR solutions (100) and their
derivatives as initial conditions at some u ¼ umax, with umax
being very large, and integrate numerically from large u to
small u requiring the numerical solutions for ψ s and ψ t at
small u to behave as (96) and (98), respectively.
The numerical results presented in this section were

obtained using the first procedure described above. Here we
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FIG. 4. The scalar (left panel) and tensor (right panel) effective potentials for models A1 and A2 at ϵ ¼ 0.01, ϕ̂0 ¼ 50. An analogous
figure for models B is shown in Appendix B.
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present our results for models A (introduced in the previous
section) as well as for models B1 and B2 (introduced in
Appendix B).
In this subsection we present the results for the glueball

spectrum at a fixed value of the conformal dimension,
namely ϵ ¼ 0.01. At fixed ϵ the parameter ϕ̂0 can be fixed
by using as input the ratio between the first two scalar
glueballs

R00 ¼
m0þþ�

m0þþ
¼ m̂s;1

m̂s;0
; ð101Þ

where m̂s;0 and m̂s;1 represent the first two scalar masses
and m0þþ and m0þþ� are extracted from lattice QCD data
[51]. Once ϕ̂0 is determined from the ratio R00, we also
fix the parameter Λ by comparing the first scalar mass
ms;0 ¼ Λm̂s;0 with the first glueball state m0þþ , extracted
from lattice QCD data [51]. Below we describe the results
for the glueball spectrum obtained for each one of models A
and B.

1. Models A

Implementing the procedure described above for model
A1, where the dilaton is given by Eq. (75), we find for
ϵ ¼ 0.01 that ϕ̂0 ¼ 53.62 and Λ ¼ 737 MeV. Any other
parameter is defined in terms of ϵ, ϕ̂0 and Λ and most of
them are shown in Table II.
The results for the spectrum of scalar and tensor glue-

balls in model A1 are shown in the second column of
Table III. These results are in good agreement with the
lattice QCD calculations [51], and also with the IHQCD
model [4]. The largest difference between our results and
lattice QCD data is about 4.2% in the case of m0þþ�� . We
remind the reader that the first two masses in Table III,m0þþ

and m0þþ� , were used to fix ϕ̂0 and Λ. Therefore, the
predictions of the present models are the ones displayed
from the third state (0þþ��) and below in that table.
The numerical results for the glueball spectrum are well

fitted by linear trajectories. For the scalar sector we find the
linear trajectory

m2
s;n ¼ Λ2ð8.65nþ 4.85Þ; n ¼ 0; 1; 2;…; ð102Þ

while for the tensor sector we obtain

m2
t;n ¼ Λ2ð8.13nþ 7.92Þ; n ¼ 0; 1; 2;… ð103Þ

The largest difference between the masses obtained with
these fits and the lattice QCD results occurs for the state
0þþ and is of about 10%.
The same procedure was done for model A2, where

the dilaton is given by Eq. (76), and for ϵ ¼ 0.01 the values
ϕ̂0 ¼ 49.41 and Λ ¼ 682 MeV were found. The other
parameters are displayed in Table II.
The mass spectrum obtained in model A2 is shown in the

third column of Table III. We find again a good agreement
between our results and those of the lattice QCD [51]
and the IHQCD model [4]. In comparison to the lattice
QCD masses, the largest difference is of about 2.4% in the
case of m0þþ��� .
The spectrum of model A2 is also well approximated by

linear fits. The linear trajectories in this case are

m2
s;n ¼ Λ2ð8.62nþ 6.37Þ; n ¼ 0; 1; 2;… ð104Þ

for the scalar sector and

m2
t;n ¼ Λ2ð7.89nþ 10.16Þ; n ¼ 0; 1; 2;… ð105Þ

for the tensor sector. When compared to the lattice QCD
results, the maximum error obtained for these fits is of
about 16.8%, and it occurs for the state 0þþ.

2. Models B

The two models we named B1 and B2 are described in
Appendix B and correspond to the case where the warp
factor AðzÞ has an analytic form, while the dilaton is solved
numerically from the first equation in (20).
The parameters obtained for models B1 and B2 at

ϵ ¼ 0.01 are shown in the third and fourth rows of

TABLE II. The values of the parameters we use to get the
spectrum for the glueballs with ϵ ¼ 0.01.

Model ϕ̂0 ΛðMeVÞ ϕ0ðMeVϵÞ GðMeV4−ϵÞ CðMeV2Þ
A1 53.79 736 57.46 2.75 × 1011 5.42 × 105

A2 49.41 682 52.75 2.03 × 1011 4.65 × 105

B1 48.40 668 51.65 1.86 × 1011 4.46 × 105

B2 46.57 709 49.73 2.36 × 1011 5.02 × 105

TABLE III. The glueball masses (in MeV) obtained in our
model, compared against the results of IHQCD [4] and lattice
QCD [51]. The first two values of masses for 0þþ and 0þþ� are
used as input data in our procedure. The results here were
obtained with ϵ ¼ 0.01.

n A1 A2 B1 B2 IHQCD [4] Lattice [51]

0þþ 1475 1475 1475 1475 1475 1475(30)(65)
0þþ� 2755 2755 2755 2755 2753 2755(70)(120)
0þþ�� 3507 3376 3361 3449 3561 3370(100)(150)
0þþ��� 4106 3891 3861 4019 4253 3990(210)(180)
0þþ���� 4621 4349 4313 4514 4860
0þþ����� 5079 4762 4721 4956 5416
2þþ 2075 2180 2182 2130 2055 2150(30)(100)
2þþ� 2945 2899 2887 2943 2991 2880(100)(130)
2þþ�� 3619 3468 3444 3568 3739
2þþ��� 4185 3962 3928 4102 4396
2þþ���� 4680 4404 4365 4576 5530
2þþ����� 5127 4807 4763 5006
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Table II. The glueball spectra obtained for models B1 and B2
are shown in the fourth and fifth columns of Table III. The
numerical results for models B1 and B2 are also in good
agreement with the lattice QCD and IHQCD model. The
approximate linear trajectories for model B1 are

m2
s;n ¼ Λ2ð8.80nþ 6.74Þ;

m2
t;n ¼ Λ2ð8.04nþ 10.62Þ; n ¼ 0; 1; 2;…; ð106Þ

while for model B2 we obtain

m2
s;n ¼ Λ2ð8.80nþ 5.47Þ;

m2
t;n ¼ Λ2ð8.17nþ 9.03Þ; n ¼ 0; 1; 2;…: ð107Þ

In Fig. 5 we plot the results for the spectra of scalar and
tensor glueballs obtained in the four models considered in
this work (A1, A2, B1 and B2) and, for comparison, we
include the data of lattice QCD [51]. The results for models
A1 and B1 are shown in Fig. 6. The plots show clearly the
patternms;n < mt;n, also observed in the IHQCDmodel [4].
Notice that the difference between the scalar and tensor

glueball masses decreases as n increases. This indicates
a degeneracy of the scalar and tensor glueballs at very
large n.

D. Running parameters

So far in this section, all the calculations were done for a
specific value of the conformal dimension, ϵ ¼ 0.01. But
what happens when this parameter varies? Here we find the
evolution of the parameters ϕ̂0 and Λ with the conformal
dimension ϵ for models A1 and A2. As explained pre-
viously in this section, for any given ϵ we use the masses of
the first two scalar glueballs, extracted from lattice QCD, as
an input for fixing ϕ̂0 and Λ.
The results for ϕ̂0 are displayed on the left panel of

Fig. 7. A numerical fit shows that ϕ̂0 diverges as 1=ϵ as the
parameter ϵ goes to 0. The evolution of Λ with ϵ is shown
on the right panel of Fig. 7. The evolution is very slow
suggesting that Λ should be approximated by a constant.
Linear fits for these results give Λ ¼ 735.18þ 75.48ϵ for
model A1 and Λ ¼ 682.27 − 43.22ϵ for model A2, both in
MeV units.
Additionally, we find the evolution of the parameters ϕ0

and G, related to ϕ̂0 and Λ by Eq. (65). The results for ϕ0

are shown on the left panel of Fig. 8. A fit for model A1
gives ϕ0 ¼ 4.47þ 0.53=ϵ, while for model A2 one finds
ϕ0 ¼ 4.42þ 0.49=ϵ (both in MeVϵ units). The evolution
of the parameter G is displayed on the right panel of Fig. 8.
A numerical fit of the data corresponding to such figures,
shows that, when ϵ goes to 0, G reaches a finite value:
2.92 × 1011 MeV4 for model A1 and 2.16 × 1011 MeV4

for model A2.
We have also obtained numerically the vacuum energy

density, given by (83). The results are shown in Fig. 9
where we have set ðMplÞ3N2

c to 1. One clearly sees that the
vacuum energy density converges to a finite value when ϵ
goes to 0. This can be understood as follows. We showed
previously that, when ϵ goes to 0, the source ϕ0 goes as
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FIG. 5. The glueball spectrum for the scalar (left panel) and tensor (right panel) sectors obtained in models A1, A2, B1, and B2 at
ϵ ¼ 0.01, compared against lattice QCD data [51].
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c1 þ c2=ϵ. Therefore, the renormalized vacuum energy
density (Eren

QCD ∝ ϵϕ0) goes as c2 þ c1ϵ. The numerical
results shown in Fig. 9 indicate that the vacuum energy
density evolves very slowly with the conformal dimension
ϵ, in both models A1 and A2, and can be approximated by a
constant. Our predictions for Eren

QCD, in the limit ϵ → 0, are

−0.17 GeV4 in model A1, and −0.11 GeV4 in model A2.
We remark that we have set ðMplÞ3N2

c to 1. For
comparison, an analysis made in [52], by considering
the large-Nc limit, led to EQCD ¼ −c40N2

cσ
2
0, where σ0 is

the QCD string tension and c0 is a constant of order 1.
Considering a phenomenological value for the string
tension, e.g. σ0 ¼ ð0.44 GeVÞ2 [53], and taking Nc ¼ 3

and c0 ¼ 1 one gets EQCD ≈ −0.34 GeV4.

V. THE TRACE ANOMALY: FROM DEFORMED
CFTS TO QCD

In this section we take advantage of the AdS=CFT
dictionary and reproduce the universal result for the
trace anomaly of deformed CFTs [9,14] for the particular
backgrounds considered in this work. This result in turn
suggests a map between deformed CFTs and large-Nc
QCD. An important ingredient in this map is the reinter-
pretation of the CFT deformation δL ¼ ϕ0O in terms of the
large-Nc Yang-Mills Lagrangian LYM.
In Euclidean signature the large-Nc Yang-Mills

Lagrangian can be written as [54]

LYM ¼ NcL̄YM; ð108Þ
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FIG. 7. Evolution of the parameters ϕ̂0 (left panel) and Λ (right panel) with the conformal dimension ϵ for models A1 and A2.
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with

L̄YM ¼ 1

λ

�
1

2
TrF2

�
: ð109Þ

Here we can make use of the mass parameter Λ, defined
previously in (65), which has conformal dimension 1.
Multiplying and dividing Eq. (109) by Λϵ, we get

L̄YM ¼ Λϵ

λ

�
1

2

TrF2

Λϵ

�
: ð110Þ

In this way we have dressed the inverse ’t Hooft coupling
1=λ and the QCD operator 1

2
TrF2 so that they acquire

conformal dimensions ϵ and 4 − ϵ, respectively. Matching
the Lagrangian L̄YM to the CFT deformation δL ¼ ϕ0O,
we obtain the map

ϕ0 ¼
Λϵ

λ
; O ¼ 1

2

TrF2

Λϵ : ð111Þ

Below we use this map for calculating the gluon condensate
and to find a connection between the trace anomaly of
deformed CFTs and the QCD trace anomaly.

A. The gluon condensate

According to the AdS=CFT dictionary the VEV of an
operator O is obtained from the variation of the on-shell
action [9,14,20,21]

δSo−s ¼
Z

d4xδϕ0hOi; ð112Þ

where δϕ0 is the variation of the source. In the case of
holographic QCD backgrounds, the on-shell action was
obtained in Sec. III D with the result

So−s ¼ 6M3
pN2

c

Z
d4xe3Aðz0ÞA0ðz0Þ; ð113Þ

with small z0 and, as usual, the limit z0 → 0 is taken at the
very end of the calculation process. We then variate this
on-shell action by considering the warp factor A as a field
whose dynamics is completely determined by the dilaton
field Φ, A ¼ AðΦÞ. Therefore, we get

δSo−s ¼ 6M3
pN2

c

Z
d4xδΦ

d
dΦ

½e3Aðz0ÞA0ðz0Þ�

¼ 6M3
pN2

c

Z
d4xδϕ0zϵ0

1

Φ0ðz0Þ
d
dz0

½e3Aðz0ÞA0ðz0Þ�;

ð114Þ

where we used the asymptotic form of the dilaton (64) to
rewrite Φ in terms of the source ϕ0. From Eqs. (112) and
(114) we find the bare VEV of the operator O,

hOi ¼ 6M3
pN2

czϵ0
1

Φ0ðz0Þ
e3Aðz0Þ½A00ðz0Þ þ 3A02ðz0Þ�: ð115Þ

Using the field equations (20) and the definition (24), we
may rewrite this VEV as

hOi ¼ 24M3
pN2

czϵ0e
3Aðz0Þ A

0ðz0Þ
3Xðz0Þ

½1 − X2ðz0Þ�: ð116Þ

As it was done previously for the case of the bare energy
density, we use the UV asymptotic form of A and X to
identify the divergent and nondivergent terms in (116).
Again, we consider a MS scheme for renormalization.
Eliminating the divergent terms and taking the z0 → 0
limit, we obtain the renormalized VEV,

hOiren ¼ 16

15
ðMplÞ3N2

cð4 − ϵÞG: ð117Þ

Using the map (111) and the definitions in (65), we find the
gluon condensate

hTrF2iren ¼ 32

15
ðMplÞ3N2

cð4 − ϵÞΛ4: ð118Þ

In Fig. 10 we plot our numerical results for the gluon
condensate h 1

4π2
TrF2iren as a function of ϵ for models A1

and A2, where we have set ðMplÞ3N2
c to 1. We remark that

the gluon condensate in (118) was obtained in a particular
renormalization scheme. Taking the limit ϵ → 0, the
results for the gluon condensate h 1

4π2
TrF2iren are 0.063

and 0.047 GeV4 for models A1 and A2, respectively. For
comparison, we present other results in the literature. The
values obtained using Shifman-Vainshtein-Zakharov sum
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FIG. 10. Evolution of the renormalized gluon condensate
h 1
4π2

TrF2iren with the conformal dimension ϵ for models A1
and A2. We have set ðMplÞ3N2

c to 1.

ALFONSO BALLON-BAYONA et al. PHYS. REV. D 97, 046001 (2018)

046001-18



rules are 0.013 [55] and 0.012 GeV4 [56]. Previous results
in holographic QCD include 0.043 [2] and 0.01 GeV4 [57].
We also mention two different results in SU(3) lattice gauge
theory: 0.10 [58] and 0.04 GeV4 [59].

B. The trace anomaly

The renormalized vacuum energy density Eren
QCD for

our model is given by Eq. (83). At zero temperature, the
pressure is just−Eren

QCD, so the trace of the energy-momentum
tensor is given by

hTμ
μiren ¼ 4Eren

QCD ¼ −
16

15
ðMplÞ3N2

cϵð4 − ϵÞϕ0G: ð119Þ

From Eqs. (117) and (119), we find the relation

hTμ
μiren ¼ −ϵϕ0hOiren: ð120Þ

This is the universal trace anomaly of four-dimensional CFTs
deformed by an operator O with dimension Δ ¼ 4 − ϵ and
coupling ϕ0 [9,14]. The quantity −ϵϕ0 is the classical β
function associated with the coupling ϕ0. We have repro-
duced this trace anomaly within the context of effective
holographic QCD backgrounds, where the dilaton and warp
factor depend solely on the radial coordinate z. This trace
anomaly describes the explicit breaking of conformal sym-
metry and, as described in the previous section, a nontrivial
consequence of this symmetry breaking is the discrete
spectrum of scalar and tensor glueballs. It is interesting to
note that the limit ϵ → 0, with ϕ0 fixed, corresponds to the
case where conformal symmetry is spontaneously broken.
In that case, as explained in Appendix A, the first scalar
glueball becomes a Nambu-Goldstone boson.
The trace anomaly (120) holds for more general back-

grounds where the dilaton and metric are more involved. In
any case the conformal dimension of O always maps to a
mass term for the dilaton via the relationM2l2 ¼ ΔðΔ − 4Þ.
Although a general proof of (120) was developed in [9,14],
it is always illuminating to reproduce this trace anomaly
case by case. In particular, it would be interesting to prove
(120) for the case of black hole solutions, such as those
considered in [6,7].
We finish this section proposing a dictionary between

the conformal trace anomaly (120) and the QCD
trace anomaly. Making use of the map (111) we can
rewrite (120) as

hTμ
μiren ¼ −

ϵ

2λ
hTrF2iren: ð121Þ

This result looks very similar to the QCD trace anomaly

hTμ
μiren ¼

β

2λ2
hTrF2iren; ð122Þ

suggesting the identification ϵ ¼ −β=λ. We remind the
reader that the CFT deformation takes place at some UV
energy scale μ� so the coupling λ appearing in Eq. (121) is
actually evaluated at that scale.
A few remarks are in order here. The dictionary proposed

in this work differs from the original proposal [6,7] because
we map the conformal dimension ϵ to the β function of the
four-dimensional theory, instead of the anomalous dimen-
sion of TrF2. Our approach also differs from [3,4] where
the four-dimensional β function is mapped to the five-
dimensional field X. In [3,4] the four-dimensional RG
energy scale μ and coupling λ are mapped to the five-
dimensional warp factor AðzÞ and dilaton ΦðzÞ in a very
natural way. However, evaluating correlation functions at
any RG energy scale μ� appears to be a difficult task due to
the necessity of introducing a geometric cutoff z�.7 In the
effective holographic approach considered here, although
the dictionary proposed in [3,4] can still be used, we have to
distinguish between the β function and RG energy scale
of the effective theory and the QCD β function and RG
energy scale. In particular, approaching a UV cutoff μ� in
the QCD RG energy scale corresponds to the limit μ → ∞
in the effective theory. While the QCD β function does not
vanish there, it is mapped to the conformal dimension ϵ,
the effective theory β function goes to 0 because we
approach a CFT fixed point. Moreover, in our approach
a QCD RG energy cutoff μ� does not imply cutting the five-
dimensional geometry so that one can make use of the usual
AdS=CFT dictionary by embedding holographic QCD in
the framework of holographic deformed CFTs, developed
in [8,9,14].
Figure 11 shows the numerical results for the emergent

QCD β function in terms of λ. According to the dictionary
proposed in this work, these quantities are identified
with −ϵ=ϕ̂0 and 1=ϕ̂0, respectively. We made a numerical

Model A1

Model A2

0.00 0.05 0.10 0.15

0.015

0.010

0.005

0.000

FIG. 11. The four-dimensional β function in terms of λ, for
models A1 and A2, obtained from the dictionary proposed in
this section.

7See, however, the recent progress made in [29].
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fit for small λ and interestingly the fit takes the form
β ¼ −b0λ2 − b1λ3. This is the same form arising in large-
Nc perturbative QCD at two loops, with b0 and b1 being
scheme independent. For model A1 we find b0 ≈ 0.54 and
b1 ≈ 0.48b20, while for model A2 we obtain b0 ≈ 0.49 and
b1 ≈ 1.04b20. For comparison, the coefficients of the large-
Nc perturbative QCD β function are b0 ≈ 0.046 and
b1 ≈ 0.42b20.
We finish this section describing the relation between

the anomalous dimension ϵan of TrF2 and the conformal
dimension ϵ. Following Ref. [7], the anomalous dimension
ϵan can be extracted from the QCD trace anomaly (122)
with the result

ϵan ¼ −λ2∂λ½βλ−2�: ð123Þ

At small λ the anomalous dimension (123) is approximated
by ϵan ≈ b1λ2. Using the identifications proposed in this
work, namely ϕ̂0 ¼ 1

λ and ϵ ¼ − β
λ, this relation becomes

ϵan ¼ ∂ϕ̂0
½−ϵϕ̂0� ¼ ∂ϕ̂0

βϕ̂0
; ð124Þ

where in the last equality we have introduced the beta
function associated with ϕ̂0, defined as the derivative of ϕ̂0

with respect to log μ�. Interestingly, the relation (124) looks
very similar to the anomalous dimensions that arise in
holographic RG flows [60].

VI. CONCLUSIONS

In this work we have investigated effective holographic
models where QCD is described in terms of a four-
dimensional CFT deformation. The deformation is of the
form δL ¼ ϕ0O, where O is a relevant operator and ϕ0 the
coupling, and takes place at a UV energy scale μ�. It is
characterized by the conformal dimension of the relevant
operator Δ ¼ 4 − ϵ, which according to the AdS=CFT
dictionary maps to the five-dimensional mass of the dual
dilaton field. The IR dilaton asymptotics was constrained
by the criteria of confinement and linear glueball spectrum,
namely a dilaton quadratic in the radial coordinate z. We
have proposed UV/IR semianalytic interpolations that lead
to a spectrum of scalar and tensor glueballs consistent with
lattice QCD. A key ingredient in our description was the
evolution of the model parameters with ϵ. In particular,
the evolution of the coupling ϕ0 with ϵ was essential to
guarantee an explicit breaking of conformal symmetry
consistent with the glueball spectrum.
Making use of the AdS=CFT correspondence we have

evaluated the renormalized vacuum energy density hT00iren
and the VEV of the relevant operator hOiren in the four-
dimensional theory. Both quantities are different from 0 as
a consequence of the CFT deformation. We have mapped
those quantities to the QCD vacuum energy and gluon
condensate respectively. We have also reproduced the

universal result for the trace anomaly in four-dimensional
deformed CFTs, namely hTμ

μiren ¼ −ϵϕ0hOiren, and rein-
terpreted this result in terms of the QCD trace anomaly.
This led us to suggest a map between the conformal
dimension ϵ and the β function of the QCD-like theory.
The dictionary found in this work differs from the one
proposed in [3,4], but establishes a novel connection
between QCD and deformed CFTs. Moreover, from the
evolution of ϕ0 with ϵ and the dictionary proposed in this
work we found a four-dimensional emergent β function that
behaves qualitatively as the large-Nc QCD β function in the
perturbative regime. This nontrivial result indicates that the
holographic description of QCD as a CFT deformation can
be consistent with asymptotic freedom without the neces-
sity of building a specific potential.
There are some pieces of the dictionary that remain to

be found, such as a more precise relation between the
five-dimensional warp factor and the four-dimensional
RG energy of the QCD-like theory. As described in the
previous section, although the dictionary proposed in [3,4]
could still be used to extract the RG energy scale of the
effective theory the challenge is to map this to the RG
energy scale of the original QCD-like theory. A map
between the backgrounds developed in this work and the
backgrounds developed in [3,4] would also be desirable.
That map should be such that the metric and dilaton
near a geometric cutoff z� in the background of [3,4]
becomes an AdS metric slightly deformed by a massive
dilaton. The holographic description of the Callan-
Symanzik equations, following [29,60], would also shed
some light on the connection between holographic QCD
and deformed CFTs.
We finish this work mentioning some of its possible

extensions. The description of mesons and chiral symmetry
breaking in terms of gauge fields and a tachyonic field can
be done, inspired by the progress made in [5,61,62].
Investigating black hole solutions at finite temperature will
allow the description of a nonconformal plasma, comple-
menting the progress made in [6,7,63]. In this context, a
particularly interesting phenomenon is the so-called glue-
ball melting [64]. Finally, the study of higher spin glueballs
and the pomeron could be pursued, along the lines of [65]
and more recently [49,66–68].
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APPENDIX A: THE MASSLESS MODE
IN THE SCALAR SECTOR

In this appendix we develop a semianalytic approach to
treat the massless mode; additionally we are setting the
AdS radius to be 1, l ¼ 1. We find general criteria to
identify whether a massless mode appears or not. Such an
approach follows the same idea of Refs. [4,24]. The starting
point is the Schrödinger-like Eq. (52), which can be written
as [4,24]

P†Pψ sðzÞ ¼ m̂2
sψ sðzÞ; ðA1Þ

where P ¼ −∂z þ B0
sðzÞ and P† ¼ ∂z þ B0

sðzÞ.
Our goal here is to prove that there is a massless state

with normalizable wave function in the bulk. In order to do
that, we need the asymptotic expansions of the dilaton in
the UV and IR regimes, which are respectively of the form

ΦðzÞ ¼ ϕ0zΔ− þGzΔþ ; z → 0;

ΦðzÞ ¼ Cz2; z → ∞; ðA2Þ

where Δþ ¼ 4 − Δ−.
Since we are looking for the wave function of the

massless mode, we substitute m̂2
s ¼ 0 in Eq. (A1) to get

½∂z þ B0
sðzÞ�½−∂z þ B0

sðzÞ�ψ sðzÞ ¼ 0: ðA3Þ

The solutions of this equation may be written as [24]

ψ ð1Þ
s ðzÞ¼eBsðzÞ; ψ ð2Þ

s ðzÞ¼eBsðzÞ
Z

z

0

e−2Bsðz0Þdz0: ðA4Þ

The next step is to verify the normalizability of such
solutions, which means that the integral

I ¼
Z

∞

0

dzψ sðzÞψ�
sðzÞ ðA5Þ

must be finite. Following the procedure developed in
Sec. IVA, we write down the leading terms of the
asymptotic expansions for BsðzÞ in the UVand IR regimes,

BsðzÞ ¼ log

�
1

3
ϕ0Δ−zðΔ−−3=2Þ þ 1

3
GΔþzðΔþ−3=2Þ þ � � �

�
;

z → 0; ðA6aÞ

BsðzÞ ¼ −Cz2 þ � � � ; z → ∞; ðA6bÞ

where ϕ0, G and C are the constant parameters pre-
viously introduced, with C being a positive real
parameter.

We start by analyzing the first solution, ψ ð1Þ
s ðzÞ, in the IR

regime. Using Eqs. (A4), (A5) and (A6), we conclude that
the first solution is normalizable. In fact, one has in this

case the solution ψ ð1Þ
s ðzÞ ¼ e−Cz

2

, so the integral (A5) is
finite in the IR.
We now analyze the first solution in the UV regime. In

such a limit, this solution can be written as

ψ ð1Þ
s ðzÞ ¼ c1zð−3=2þΔ−Þ þ c2zð5=2−Δ−Þ; where

c1 ¼
1

3
Δ−ϕ0; c2 ¼

1

3
ΔþG: ðA7Þ

We see that the coefficients c1 and c2 in Eq. (A7) are
related to the source ϕ0 and to the condensate G,
respectively.
Considering the solutions of equation ΔðΔ − 4Þ ¼ M2,

and taking into account the Breitenlohner-Freedman bound
[69], 0 ≤ Δ− ≤ 2 and 2 ≤ Δþ ≤ 4, we have the following
four possibilities.
(1) Δ− ¼ 0 and Δþ ¼ 4. This represents the extremal

case, for which M ¼ 0. In this case the conformal
dimension does not show, but there are still the
source and the condensate, the last effect being
responsible for the spontaneous break of the con-
formal symmetry. The dilaton expansion in the UV
becomes

ΦðzÞ ¼ ϕ0 þ Gz4; z → 0: ðA8Þ

By using the result (A7), the solution in the UV

becomes ψ ð1Þ
s ðzÞ ¼ 4Gz5=2=3. This means the inte-

gral (A5) is finite in the UV. It follows that the
solution is normalizable in the UV limit. Then, there
exists a massless mode in the extremal case, as
previously studied by Csaki and Reece [2].

(2) 0 < Δ− < 1 and 3 ≤ Δþ < 4. In this case the
first term in (A7) is divergent close the boundary
unless its coefficient is 0 (after the integration).
This means that the source should be turned off,
ϕ0 ¼ 0, in order to have a resulting normalizable
wave function. This means that we are breaking
explicitly the conformal symmetry (because
Δþ ¼ 4 − Δ−), but the massless mode is present
since the corresponding wave function is normal-
izable from the UV to the IR limit in the bulk.
However, if the source is turned on, the wave
function becomes non-normalizable, i.e., the inte-
gral diverges. The conclusion is that there is no
massless mode in the presence of a source. In the
case studied in this work, we have a small
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deformation Δ− ¼ ϵ that we are interpreting as
conformal dimension, and the source is turned on.
This explains why there are no massless modes in
the analysis of Sec. IV. At this point it is worth
emphasizing that we must have both, source and
deformation, to eliminate the massless mode.

(3) Now let us look at the caseΔ− ¼ 1 andΔþ ¼ 3. The

solution (A7) becomes ψ ð1Þ
s ðzÞ ¼ c1z−1=2 þ c2z3=2.

The analytical model presented in Appendix G
of Ref. [4] is included here as a particular case with
Δ− ¼ 1 and ϕ0 ≠ 0. As seen in the above analysis,
there exists a massless mode if we turn off the
source, i.e., c1 ¼ 0, and there are no massless
modes when the source is turned on. An alternative
analysis of this case, studying nearly marginal
operators, was developed in [15].

(4) 1 < Δ− ≤ 2 and 2 ≤ Δþ < 3. According to the
exponent in the solution (A7) there are three
situations to be considered.
(a) 1 < Δ− < 3=2 and 5=2 < Δþ < 3. In this

case the integral (A5) converges in the UV.
Therefore, there is a massless mode for these
ranges of Δ� values.

(b) Δ− ¼ 3=2 and Δþ ¼ 5=2. For these specific
values of Δ�, the integral is a constant that
depends on the source value (which is finite) and
therefore the wave function is normalizable. So,
there is a massless mode also for these specific
values of Δ�.

(c) 3=2 < Δ− ≤ 2 and 2 ≤ Δþ < 5=2. In this case
the integral (A5) converges (as z → 0). There-
fore, there is a massless mode.
As the integral is always finite in case iv, it

means that both terms of the wave function (A7)
are normalizable, and the source and the con-
densate can exchange their roles [16].

Now let us look at the second solution, ψ ð2Þ
s ðzÞ. In the IR

regime we have

ψ ð2Þ
s ðzÞ ¼ e−Cz

2

Z
e2Cz

2

dz ¼ 1

2

ffiffiffiffiffiffi
π

2C

r
e−Cz

2

Erfi½
ffiffiffiffiffiffi
2C

p
z�;

ðA9Þ

where Erfi½ ffiffiffiffiffiffi
2C

p
z� is the imaginary error function. The last

term in the above equation is divergent. Then the wave
function is non-normalizable. On the other hand, in the UV
regime we have

ψ ð2Þ
s ðzÞ ¼ eðΔ−−3=2Þ log z

Z
z

0

e−2ðΔ−−3=2Þ log z0dz0: ðA10Þ

This solution may or may not be normalizable in the UV.
But as the solution in the IR is always non-normalizable,
there is not a massless mode in this case.
In conclusion, the normalizability of the first solution

ψ ð1Þ
s ðzÞ depends on the values of Δ− and ϕ0. As this

solution is normalizable in the IR, by choosing appro-
priately these two parameters, it can be made normal-
izable also in the UV regime, and then a massless mode
can be obtained in this case. On the other hand, the
second solution is non-normalizable in the IR. This result
excludes the possibility of getting a massless mode from
the second solution.

APPENDIX B: MODELS B: ANALYTIC FORM
FOR THE WARP FACTOR

Alternatively to what was presented in the main
body of this work, we can choose to interpolate the
warp factor between the UV and IR, instead of the
dilaton. An analytic warp factor is useful when exploring
finite temperature effects. We call this approach to
interpolating the warp factor model B. Inspired by the
interpolations done above for the dilaton field, we care-
fully seek the form of the interpolating functions so that
they produce the asymptotic forms of Eqs. (59) and (67),
respectively.
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FIG. 12. The scalar (left panel) and tensor (right panel) normalized potentials for ϵ ¼ 0.01 and ϕ̂0 ¼ 50, in models B1 and B2.
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Our first choice, motivated by model A1, is

AðzÞ ¼ − log ðz=lÞ − 2ϵϕ2
0

9ð1þ 2ϵÞ z
2ϵ −

2ϵð4 − ϵÞϕ0Λ4−ϵ

45

×
z4

1þ a1ðzÞ
−

ðΛzÞ8−2ϵ
9ð9−2ϵÞ
2ð4−ϵÞ þ b1ðzÞ

; ðB1Þ

where the functions a1ðzÞ ¼ 7ðΛzÞ5=50 and b1ðzÞ ¼
5ðΛzÞ4 þ 3ðΛzÞ6−2ϵ=2 were introduced to guarantee the
compatibility of the results of the model with those of the
lattice QCD [51]. These functions also guarantee that
the warp factor decreases monotonically from the UV to
the IR, as required in dilaton-gravity models [24]. We
named this interpolation form model B1.
The second model, called B2, that produces the asymp-

totic forms of Eqs. (59) and (67), respectively, is inspired by
model A2. The chosen warp factor is

AðzÞ ¼ − log ðz=lÞ − 2ϵϕ2
0

9ð1þ 2ϵÞ z
2ϵ

−
2ϵð4 − ϵÞϕ0Λ4−ϵ

45

z4

1þ a2ðzÞ

−
ðΛzÞ6tanh2½ðΛzÞ1−ϵ�

9ð9−2ϵÞ
2ð4−ϵÞ þ b2ðzÞ

: ðB2Þ

As before, the functions a2ðzÞ ¼ 7ðΛzÞ4=50 and b2ðzÞ ¼
733ðΛzÞ2=100þ 3ðΛzÞ4=2 were adjusted to get compat-
ible results with those of the lattice QCD [51], and to yield a
monotonically decreasing warp factor.
To complete the analysis of these models, we show

in Fig. 12 the potentials of the Schrödinger-like equations
for both sectors, scalar and tensor, as indicated. The
spectra calculated using these models are presented in
Table III.
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