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The characteristics of tree-level scattering amplitudes in theories with nonlinear (super)symmetries
were recently proposed by Kallosh to be encoded in a simple way directly from the action, based on a
background field method. We check this conjecture to lowest nontrivial order in the Volkov-Akulov theory,
where the local 6-point diagram cancels and the results up to 6 points indeed are in agreement with S-matrix
computations.
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I. INTRODUCTION

Nonlinear symmetries are of interest e.g. in the setting
where constrained superfields give rise to Volkov-Akulov
(VA) models [1], since those symmetries are useful for
describing features within cosmology, such as inflation
[2–5]. For example, de Sitter supergravity is characterized
by a local version of VA supersymmetry [6–9]. The
properties inferred by the symmetries are central to under-
standing these models, and one question concerns what
characterizes the scattering amplitudes.
Amplitudes in theories with nonlinear (super)symmetries

can be determined e.g. through Feynman rules (introduced
for VA in [10]),1 recursion relations as in [12], and the
Cachazo-He-Yuan (CHY) representation [13–15]. In each
setting, the symmetries of the S-matrix are represented in
different ways, in part giving rise to the question of what
the general effects of nonlinear symmetries of the action on
the S-matrix are. Recently, this problem was investigated in
[16], giving rise to a conjecture for a generating functional
of the S-matrix in terms of the tree-level diagrams.
Generating functionals for scattering amplitudes have

been studied before, e.g. for gauge and gravity theories in
[17–20], a method which applies more widely and relations

to the background field method are mentioned in [21].
However, the relation between the method of generating
functionals and nonlinear symmetries remains to be under-
stood. Here, the approach in [16] represents an extension to
theories with global nonlinear symmetries in general, rather
than for specific examples. This makes the conjecture in
[16] interesting to investigate further, not only for its
potential use in understanding the symmetries of the
amplitudes in question, but also to see if it may highlight
the connection between generating functionals and non-
linear symmetries.
The conjecture of [16] is that the n-point tree amplitudes

Ai1…in should be encoded in

ðSðϕÞ − S;iϕiÞjϕ¼ϕ½ϕ0� ¼
X∞
n¼4

1

n!
Ai1…inϕ

i1
0 …ϕin

0 ; ð1:1Þ

with S;i ¼ δS/δϕi and a solution to the set of a fields ðϕiÞ
given by a method inspired by the background field method
in the formalism of DeWitt [22–24]. Note that ϕ is the
background field, with the classical field equation

δS
δϕi ¼ ϕj

0S⃗
0
;ji; S0;ijG

jk
0 ¼ −δik; ð1:2Þ

with Gij
0 a free propagator. Moreover, ϕi includes all fields

of the given model and (in DeWitt’s formalism) there is a
summation convention such that repeated indices include
integrations over the spacetime coordinates, implied in
(1.1). ϕ0 is a general solution of the free field equation
and ϕ½ϕ0� encodes the interactions through

*annakarl@stanford.edu
†hui.luo@desy.de
‡divyansh@stanford.edu

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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ϕi½ϕ0�≡ ϕi
0 þ Gij

0

X∞
n¼2

1

n!
tji1…inϕ

i1
0 …ϕin

0 ; ð1:3Þ

obtained by iteration from

ϕi ¼ ϕi
0 þ Gij

0

δSintðϕÞ
δϕj : ð1:4Þ

In a theory of interactions, ϕ½ϕ0� ≠ ϕ0, which is crucial
in (1.1).
The relation (1.1) is especially interesting in that it

represents a prediction of the amplitudes based on the
symmetries of the action, rather than observations of the
symmetries of the amplitudes once they have been con-
structed. In construction, it represents a generalization to
nonlinear symmetries originating in global symmetry
breaking of a method known to describe properties of
tree-level S-matrix elements in non-Abelian gauge theories
and gravity. As such, its foundation is sound, yet the
crucial question of whether or not the conjecture (1.1)
indeed holds, remains. A priori, this is not guaranteed. As
mentioned previously, the connection between generating
functionals and nonlinear symmetries (in general) is an
open question.
The objective of this paper is to analyze the consistency

of the conjecture (1.1), in the simplest nontrivial setting.
For this, we look to the VA model [1], which encodes
nonlinear symmetries. The VA model is comparatively
simple, relevant in the setting of investigating amplitudes,
and represents a type of nonlinear symmetry not previ-
ously investigated in relation to generating functionals.
Moreover, its characteristics are well known. In specific,
the local 6-point vertex is known to vanish. It vanishes in
S-matrix computations, and there is a field redefinition
(nonlinear change of variables) which maps the VA theory
onto the Komargodski-Seiberg (KS) action [25,26], where
the absence of the 6-point vertex is manifest. We will not
discuss the different merits of the two dual theories, useful
as they are in different settings,2 but one thing is clear—in
the VA theory, the absence of the 6-point vertex is a product
of the symmetries in the theory in a nontrivial way, and
this must be captured by the relation in (1.1). Hence, the
simplest nontrivial check (relevant in the amplitude setting
discussed earlier) of (1.1) is the analysis of what the lhs
gives for the VA 6-point amplitude. For the generating
functional to work at the lowest nontrivial order, the lhs
must encode the vanishing of the local vertex at that order,
through the symmetries of the VA theory.
The paper is organized as follows. In Sec. II the relation

(1.1) is analyzed up to 6-point interactions in free fields,
beginning with the lhs and ending with the subsequent

predictions for the 4- and 6-point amplitudes, where the
local 6-point term indeed vanishes, indicating that the
correct physics is captured. We then proceed to make
comparisons with the known results for the aforementioned
tree-level amplitudes, in Sec. III, noting an agreement
between the methods, also confirmed by direct S-matrix
computations. Finally, we discuss how the cancellation of
the VA local 6-point vertex comes about through the
generating functional in (1.1).

II. PURE VOLKOV-AKULOV THEORY
UP TO 6-POINT INTERACTIONS

For a check of (1.1) to lowest order in the VA model
(N ¼ 1, D ¼ 4), we are interested in the VA action up to
6-point interactions. Here, ðϕiÞ corresponds to the VA
goldstino ðψa; ψ̄ ̇aÞ, and we use the normalization in [27,28],

SVA½ψ ; ψ̄ � ¼ −
1

2κ2

Z
d4x det ðδμν þ iκ2ψ ∂↔μσ

νψ̄Þ: ð2:1Þ

To lowest order in fields, up to the local 6-point term and
with κ2 ¼ 1, this is

S2 ¼ i
Z

d4xð∂μψÞσμψ̄ ; ð2:2aÞ

S4 ¼ −2
Z

d4xðψσ½μ∂μψ̄Þð∂νψσ
ν�ψ̄Þ; ð2:2bÞ

S6jðψ ;ψ̄Þ¼ðλ;λ̄Þ ¼ −
i
2

Z
d4xðλσb∂aλ̄Þðλσc∂b

↔
λ̄Þð∂cλσaλ̄Þ;

ð2:2cÞ

where ðλ; λ̄Þ represent the free fields ðϕi
0Þ subject to the

equations

−iðλ=⃖∂ Þ̇a ¼ 0; −ið=∂λ̄Þa ¼ 0: ð2:3Þ

The solution to (1.3) given in [29] for ψ is easily extended
to ψ̄ , also to lowest order in perturbation,

ψ ¼ λþ i
δSintðψ ; ψ̄Þ

δψ̄
=⃖∂−1;

δS4
δψ̄

����
ðψ ;ψ̄Þ¼ðλ;λ̄Þ

¼ −ðλσμ∂↔νλ̄Þð∂μλσ
νÞ; ð2:4aÞ

ψ̄ ¼ λ̄þ i=∂−1 δS
intðψ ; ψ̄Þ
δψ

;

δS4
δψ

����
ðψ ;ψ̄Þ¼ðλ;λ̄Þ

¼ −ðσν∂μλ̄Þðλσμ∂
↔

νλ̄Þ; ð2:4bÞ

with the notation

2The KS action has no terms with six spinors, but does have
terms with eight spinors [27], while the opposite is true for the VA
action [28].
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ðλσ∂↔ λ̄Þ ¼ ðλσ∂λ̄Þ − ð∂λσλ̄Þ: ð2:5Þ

Note that ðψ ; ψ̄Þ in (2.4) needs to be solved iteratively to
get the correct answer to all orders, i.e. by replacing

ψ → ðλþ…Þ in δSint/δψ̄ , etc. Also, =∂∂2 =∂λ ≠ 0—the free
equation of motion cannot be employed when propagators
are present.
For spinor conventions, we use

σðμνÞ ¼ 1

2
ðσμσν þ σνσμÞ ¼ −ημν ð2:6Þ

and the Fierz identities

ðλσμη̄Þðλσνη̄0Þ ¼ 1

2
ðησμσνη0Þλ2;

ðλσμη̄Þðλ0σνη̄Þ ¼ 1

2
ðλσμσνλ0Þη̄2: ð2:7Þ

We have λσλ̄ ¼ −λ̄σλ, keeping σ̄ implicit.

A. Amplitudes from the action

To begin with, we note that

S;iϕi ¼ ψ i ∂S
∂ψ i þ ψ̄ i ∂S

∂ψ̄ i ð2:8Þ

is required for (1.1) to give the correct result in the VA
theory. We analyze (1.1) up to the 6-point contributions in
free fields, with

ðS½ψ � − S;iψ iÞ

¼ −
1

4

Z
d4xðλσν∂↔μλ̄Þðλσμ∂

↔

νλ̄Þ

− i
Z

d4xðλσμ∂↔νλ̄Þ
�
∂μλσ

ν
⃗�∂δ

∂2

�
σδσρ∂τλ̄

�
ðλστ∂↔ρλ̄Þ

þ i
Z

d4xλ2ð∂μλ̄∂νλ̄Þð∂νλσμλ̄Þ þOðλ4λ̄4Þ; ð2:9Þ

as described below. Note that the 4-point vertex equals
S4ðλ; λ̄Þ, and that the third term is S6ðλ; λ̄Þ.

1. Contribution from S2
The contribution to (1.1) from (2.2a) is

ðS2½ψ � − ðS2Þ;iψ iÞ ¼ i
Z

d4xψ=∂ψ̄ ð2:10Þ

up to total derivatives, and contributes to both the 4- and
6-point amplitudes. In part, the contributions follow a
simple pattern. In inserting (2.4), with one ðλ; λ̄Þ in the
expansion the contribution is

−
�
λ=∂=∂−1 δS

int

δψ
þ δSint

δψ̄
=⃖∂−1=∂λ̄

�����
ðψ ;ψ̄Þ¼ðλ;λ̄Þ

¼ ½ϕi ¼ ðψ ; ψ̄Þ� ¼ ϕi
0

δSintðϕiÞ
δϕi : ð2:11Þ

There are two parts to this expression. One with
ðψ ; ψ̄Þ ¼ ðλ; λ̄Þ,

ð4S4 þ 6S6Þjðψ ;ψ̄Þ¼ðλ;λ̄Þ; ð2:12Þ

and a second where an additional correction from S4 in
(2.4) is of relevance, since amplitudes up to 6 points are
under consideration. This extra correction is distributed
on the three fields ðλ; λ̄Þ of (2.4), but due to the form of
(2.11), this effectively corresponds to an extra insertion on
each field in 3S4, the same as considering the 6-point
contribution of

3S4ðψ ; ψ̄Þj6-pt: ð2:13Þ

In addition, we have a final contribution from inserting
(2.4) into (2.10)

− i
δS4
δψ̄

=∂−1δS4
δψ

����
ðψ ;ψ̄Þ¼ðλ;λ̄Þ

¼ −i
Z

d4xðλσμ∂↔νλ̄Þ
�
∂μλσ

ν
⃗�∂δ

∂2

�
σδσρ∂τλ̄

�
ðλστ∂↔ρλ̄Þ;

ð2:14Þ

which corresponds to a symmetric 6-point diagram with a
propagator between two 3-point vertices. The derivative in
the middle denotes an overall derivative, acting on all of the
fields to the right of it.

2. Contributions from S4 and S6
Equation (2.2b) gains a factor of −3 through (1.1). This

gives a 4-point interaction

−3S4jðψ ;ψ̄Þ¼ðλ;λ̄Þ ¼ −3ðλσμ∂νλ̄Þð∂μλσ
νλ̄Þ

¼ 3

4
ðλσμ∂↔νλ̄Þðλσν∂

↔

μλ̄Þ; ð2:15aÞ

and a 6-point interaction

−3ðλσμ∂↔νλ̄Þ½∂μλσ
νψ̄ jOðλλ̄2Þ − ψ jOðλ2 λ̄Þσν∂μλ̄�; ð2:15bÞ

which is −6 times the contribution from S2, shown in
(2.14). However, this contribution directly cancels the one
from (2.13).
The local 6-point term from S6 acquires a factor of −5

through (1.1). Moreover, the free equation of motion, the
Fierz identity and λ3 ¼ 0 can be used to simplify (2.2c) into
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S6jðψ ;ψ̄Þ¼ðλ;λ̄Þ ¼ i
Z

d4xλ2ð∂μλ̄∂νλ̄Þð∂νλσμλ̄Þ: ð2:16Þ

In total, this gives (2.9).

B. Tree amplitude diagrams

Reconnecting to the lhs of (1.1), the 4-point part
of (2.9) is

−
Z

d4xðλσν∂μλ̄Þðλσμ∂νλ̄Þ ¼ð2.7Þ
1

2

Z
d4xλ2∂2λ̄2: ð2:17Þ

Recall that ∂2λ ¼ 0 since the expressions are modulus the
free equation of motion.
In translating (2.17) to momentum space, we use ∂ ¼ ip̂

and the amplitude conventions of [10]

hiji≡ðλ0iλ0jÞ; ½ij�≡ðλ̃0iλ̃0jÞ; sij≡ðpiþpjÞ2: ð2:18Þ

Since (2.17) only has two λ and two λ̄, there is no support
for 4-point scattering amplitudes with different numbers
of external positive and negative helicity fermions. With
the convention that evenly labeled external particles have
positive helicity (λ, whereas λ̄ has odd labels), the 4-point
scattering amplitude, illustrated in Fig. 1, gives the (1.1)
prediction

A4 ¼ 2s13h24i½13�: ð2:19Þ
Here, (2.17) has beenmultiplied by−4. The sign is to ensure
the enumeration of the fields to be compatible with ordering
from S-matrix contractions, as after (10) in [10], where a
positive enumeration corresponds to the choice in (3.8). This
is required for the results to be comparable, and should be
done after all rearrangements of the spinors, as the amplitude
and vertex definitions are different. The translation between
the two descriptions includes ðλa; λ̄ ̇aÞ → ðλ0a; λ̃0̇aÞ and sign
corrections for permutations from a positive ordering from
the right,

ðλ4λ2Þðλ̄3λ̄1Þ → −h42i½31� ¼ h42i½13�: ð2:20Þ

The factor of 4 is to capture the permutations 1 ↔ 3 and
2 ↔ 4, symmetries already present through

λ2ij ¼ λ2ðijÞ; λ̄2ij ¼ λ̄2ðijÞ: ð2:21Þ

In (1.1) this correcting factor shows as n! (4! rather than 4)
but there the lhs includes permutations over all of the free

fields, disregarding the separation between the two chir-
alities. For consistency, we take the rhs of (1.1) to encode an
effective removal of the permutations over the different
channels, with n! replaced by ðn/2Þ!ðn/2Þ! in the VAmodel,

ð1.1Þ∶
X∞
n¼4

1

n!
Ai1…inϕ

i1
0 …ϕin

0 ⟶
VA

X∞
k¼2

1

k!k!
Ai1…ikj1…jkλ

i1…λik λ̄j1…λ̄jk : ð2:22Þ

1. The 6-point diagram, with cancellation

The second term in (2.9) is

i
Z

d4x

�
ð∂2λ2Þλ̄ − 1

2
ðλ2Þλ̄ ∂⃖2

�
=∂
∂2

�
λð∂2λ̄2Þ − 1

2
∂⃗2λðλ̄2Þ

�
:

ð2:23Þ

Here we have used

ðλσμ∂↔νλ̄Þð∂μλσ
νÞα ¼ þð∂2λ2Þλ̄α −

1

2
½ðλ2Þλ̄α�∂⃖2

þ ½ðλσμλ̄Þð∂νλσ
νÞα�∂⃖μ ð2:24Þ

and the corresponding for ðσρ∂τλ̄Þβðλστ∂
↔

ρλ̄Þ, which differs
by a sign, while noting that the third term only is nonzero
when coupled to =∂−1, corresponding to a matching with the
first term, and never gives a contribution to (2.9) in that
combination.
In (2.23), the cross terms vanish due to the free equation

of motion (2.3):

ð∂2λ2Þ½ðλ̄σμ∂μλÞλ̄2 þ ðλ̄σμλÞ∂μλ̄
2�

¼ 2ð∂2λ2Þðλ̄σμλÞðλ̄∂μλ̄Þ ∝ ð∂2λ2Þλ̄2ðλσμ∂μλ̄Þ ¼ 0:

ð2:25Þ

The two last terms give

−iλ2ð∂μλ̄∂νλ̄Þð∂νλσμλ̄Þ; ð2:26Þ

which cancels against the contribution from S6, the last
term in (2.9). This represents the important cancellation of
the local 6-point vertex.
The remaining term is

−ið∂2λ̄2Þλ
⃖�
=∂
∂2

�
λ̄ð∂2λ2Þ: ð2:27Þ

Using the same procedure as for A4 for the (1.1) prediction
for A6, this should be multiplied by the number of diagrams
included once enumeration is taken into account, and
corrected by a sign due to ordering. Since the labels in

FIG. 1. Depiction of the 4-point scattering amplitude, with
labels on the external states.
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(2.27) have the symmetries3 (135) and (246) respectively,
ð3!Þ2 ¼ 36 (rather than 6!) separate diagrams exist, which
in combination gives the nine different terms

A6 ¼ 4h24i½35�h6j3þ 5j1� s24s35
s124

þ ðcyclic in 1; 3; 5 and 2; 4; 6Þ; ð2:28Þ

due to that the default symmetry properties only include
hiji and ½ij� as specified in (2.21).

III. COMPARISONS WITH OTHER
AMPLITUDE APPROACHES

In comparing results in the VA theory, to describe using
different actions and different normalizations, mappings
between the settings have to be taken into consideration. In
the previous section, we used (2.1). The KS action [25,26]

SKS¼
Z

d4x

�
−iG=∂Ḡþκ2

2
Ḡ2∂2G2−

κ6

2
G2Ḡ2∂2G2∂2Ḡ2

�

ð3:1Þ

corresponds to (2.1) through a nonlinear relation ψðG; ḠÞ
[27,30]. Here, the absence of the local 6-point vertex is
manifest, which makes it especially convenient for analyses
up to 6-point interactions.
With a different normalization of the VA action, κ2 ≠ 1

in (2.1), the parts of the action change as

S02n ¼ ðκ2Þn−1ðS2nÞjκ2¼1: ð3:2Þ

This also alters the field expansion in free fields in (2.4), in
the same way at each order in fields, giving the general
expression

A0
2n ¼ ðκ2Þn−1ðA2nÞjκ2¼1: ð3:3Þ

This can also be seen directly from that each 4-point vertex
is accompanied by a difference amounting to a factor of κ2

(and κ4 for local 6-point vertices), giving (3.3) for tree
diagrams.

A. The 4- and 6-point amplitudes

In comparing with amplitude results obtained using
recursion relations in [12], the CHY representation in
[15] and one instance of S-matrix computations in [10],
we note that some of the results are given with the
normalization choice κ2 ¼ 1/2. As a consequence, the
amplitude predictions from the previous section, in
(2.19) and (2.28), need to be reinterpreted using (3.3).
The 4-point amplitude of [10] is precisely the A4 in

(2.19). The amplitude in [12,15], with κ2 ¼ 1/2, is

A0
4 ¼ s13h24i½13�; ð3:4Þ

in agreement with the expression from (1.1). The same is
true for the 6-point amplitude [12,15]

A0
6 ¼ h24i½35�h6j3þ 5j1� s24s35

s124
þ ðcyclic in 1; 3; 5 and 2; 4; 6Þ: ð3:5Þ

B. Feynman tree amplitudes

A double-check of the comparison between the ampli-
tude derivations can be made through deriving the 4- and
6-point amplitudes directly from the KS action in (3.1). If
done for the VA action (2.1) the S-matrix procedure simply
gives an expression equivalent to the lhs of (1.1), i.e. (2.9),
before contraction with external particles. In this way, (1.1)
reduces to the same expression as the S-matrix result. For
a second check, the interaction Hamiltonian for the KS
action is

HI ¼
Z

d4x

�
−κ2G2∂μG∂μG − κ2G2G∂2Gþ κ6

2
G2G2∂2G2∂2G2

�
; ð3:6Þ

and the nontrivial part of the S-matrix (S ¼ 1þ iT ) can be computed from

hp1…pnjiT jp0
1…p0

ki ¼ lim
T→∞ð1−iϵÞ0

hp1…pnjT exp

�
−i

Z
T

−T
dtHIðtÞ

�
jp0

1…p0
ki0: ð3:7Þ

1. The 4-point amplitude

To derive the 4-point amplitude (with κ2 ¼ 1), it is sufficient to consider only incoming particles

0h0jiT jp1; p2; p3; p4i0 ¼ 0h0jT
�
i
Z

d4xḠ2∂μG∂μG

�
jp1; p2; p3; p4i0; ð3:8Þ

3With ðabcÞ ¼ ðbacÞ etc.
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where all the particles are treated as incoming particles. The
term containing ∂2G in the four-point interaction vanishes
due to the external fields being on shell (p2 ¼ 0), and
Wick’s theorem gives that only normal ordered operators
contribute. Following the conventions in the Appendix, we
derive the four-point amplitude of two initial left-handed
fermions ðψ2;ψ4Þ and two initial right-handed fermions
ðψ̄1; ψ̄3Þ. For this scattering process, (3.8) gives four terms

ð3:9Þ

where all possible equivalent contractions are counted in,
i.e. with G to p2 or p4 and Ḡ to p1 and p3. The amplitude
with these specific initial and final states is

A4 ¼ Mðψ̄1;ψ2; ψ̄3;ψ4Þ ¼ 2s13h24i½13�: ð3:10Þ

2. The 6-point amplitude

Since there is no 6-point interaction in the Hamiltonian
(3.6), the 6-point amplitude only receives contributions
from the 4-point interactions

0h0jT
�
i2

2!

Z
d4xðḠ2∂μG∂μGþ Ḡ2G∂2GÞ

×
Z

d4yðḠ2∂μG∂μGþ Ḡ2G∂2GÞ
�
jp1…p6i0; ð3:11Þ

where, again, all particles are treated as incoming
(
P

6
i¼1 pi ¼ 0). This can be manipulated as described in

the Appendix, in total giving the full 6-point amplitude

A6 ¼ Mðψ̄1;ψ2; ψ̄3;ψ4; ψ̄5;ψ6Þ
¼ 4h24i½35�h6j3þ 5j1� s24s35

s124
þ ðcyclic in 1; 3; 5 and 2; 4; 6Þ; ð3:12Þ

in agreement with (2.28).

IV. DISCUSSION

We have checked the internal consistency of the method
for determining tree-level scattering amplitudes in theories
with nonlinear (super)symmetry suggested in [16], amount-
ing to (1.1), to lowest order in the VA model. The
conjectured relation, representing a specific generalization
of the background field method to nonlinear global
symmetries, reproduces the 4- and 6-point amplitudes well
known from e.g. [10,12,15], with the modifications (2.8),
(2.22) and signs due to ordering of the fields as in (2.20). At
higher orders, signs may appear in the comparisons, since

the conventions used for the metric and the propagator
differ from what is typically used in amplitude calculations.
Importantly, the vanishing of the local 6-point vertex
represents a nontrivial result since the check is done in
the traditional VA action, and not the dual KS action where
its absence is manifest. As such, the conjecture in (1.1) is
quite likely to capture the correct physics of the amplitude
diagrams.
The separate way of determining the amplitudes through

the method inspired by the background field method works
in that the background field solutions substituted into the
action provide the same structure as S-matrix derivations.
Basically, the solutions of the fields in terms of free fields
give rise to an overcounting of the terms contributing to the
amplitudes, when introduced in the action alone. This is
amended by the additional consideration of S;i, which alters
the relative factors between the parts of the action ðSnÞ.
This simplification happens in a comparatively roundabout
manner—(1.1) is not a convenient way to determine
amplitudes compared with S-matrix computations. The
symmetry (1.1) represents is however interesting in what
it says about the structure of the amplitudes, and it would be
interesting to see what would characterize a corresponding
description for loops. Beyond tree level, further nonlocal
effects are expected, in a general expression corresponding
to (1.1).
As to the relation between the generating functional in

(1.1) and the nonlinear VA symmetries, implied by the rhs
of (1.1), those symmetries are implicit in the connections
between the terms with different numbers of spinors in the
action, i.e. the Sn. The key to the nonlinear symmetries is
how the structures of Sn and Snþ2 are related. In the
amplitude setting, this is exemplified in cancellations
between diagrams originating from different Sn. While
local 6-point terms are absent in an analysis of the KS
action, the case of the VA theory presents a cancellation
between the S6 term and connected 4-point vertices. Herein
lies a difference, and the generating functional in (1.1)
captures the relative symmetries, relevant for the cancella-
tion to take place. Considering the VA generating func-
tional in (2.9), the key feature is the relative coefficients of
the 6-point terms (the second and third term on the rhs), as
well as the reduction of the second term into the two parts
(2.26) (local) and (2.27) (nonlocal). In fact, the third term is
just S6 with free fields, so the interesting part from a
symmetry point of view is how the generating functional
gives the second term in (2.9), with the crucial local part. It
does this by using the structure of the action itself. In a
sense, (1.1) is partly a shell correcting relative coefficients,
and partly an iterative procedure giving terms built on the
interactions through the solution for the background field
in (1.4). The latter is what produces the interesting 6-point
term, as shown in (2.14), where two S4 vertices (both
products of ϕ½ϕ0�) are connected by a propagator. Hence,
while the generating functional in (1.1) does not contain the
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specific symmetries, it does encode iterative interactions of
the theory, which in the end has the desired effects—the
consequences of the nonlinear symmetries.
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APPENDIX: FEYNMAN TREE AMPLITUDES:
CONVENTIONS AND 6-POINT DERIVATION

In the S-matrix derivations, we use ημν ¼
diagð−1;þ1;þ1;þ1Þ and σμα̇α and ðσ̄μÞ̇αα:

σ0 ¼ σ̄0 ¼
�
1 0

0 1

�
; σ1 ¼ −σ̄1 ¼

�
0 1

1 0

�
;

σ2 ¼ −σ̄2 ¼
�
0 −i
i 0

�
; σ3 ¼ −σ̄3 ¼

�
1 0

0 −1

�
:

ðA1Þ

Quantized fermionic fields are written as

GαðxÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p X
s

ðu−α ðp; sÞaðp; sÞeip·x

þ v−α ðp; sÞa†ðp; sÞe−ip·xÞ;

Ġ̄αðxÞ ¼
Z

d3p
ð2πÞ3

1ffiffiffiffiffiffiffiffi
2Ep

p X
s

ðvþ̇α ðp; sÞaðp; sÞeip·x

þ uþ̇α ðp; sÞa†ðp; sÞe−ip·xÞ; ðA2Þ

where the creation and annihilation operators obey the
anticommutation

faðp; sÞ; a†ðp0; s0Þg ¼ δ3ðp − p0Þδss0 : ðA3Þ

For massless particles, u−α ðp; sÞ, v−α ðp; sÞ, uþ̇α ðp; sÞ and
vþ̇α ðp; sÞ satisfy

ðp · σ̄Þ ̇ααu−α ¼ ðp · σ̄Þ̇ααv−α ¼ 0;

uþ̇α ðp · σ̄Þ̇αα ¼ vþ̇α ðp · σ̄Þ̇αα ¼ 0; ðA4Þ

indicating v−α ðp; sÞ ¼ u−α ðp; sÞ≡ λ0αðp; sÞ and vþ̇α ðp; sÞ ¼
uþ̇α ðp; sÞ≡ λ̃0̇αðp; sÞ. The summations over spins areP

su
−
α ðp;sÞuþ̇α ðp;sÞ¼p·σα̇α and

P
su

þ̇αðp; sÞu−αðp; sÞ ¼
p · σ̄ ̇αα.
Covariant normalization of the one-particle states jp; si≡

ð2πÞ3 ffiffiffiffiffiffiffiffi
2Ep

p
a†ðp; sÞj0i is used, and the two-component

external state spinors are assigned to be the following:
(i) Initial states (incoming) are left-handed fermions:

GαðxÞjp; si ∼ λ0αðp; sÞ,
(ii) Initial states (incoming) are right-handed fermions:

Ḡ ̇αðxÞjp; si ∼ λ̃0̇αðp; sÞ,
(iii) Final states (outgoing) are left-handed fermions:

hp; sjḠ ̇αðxÞ ∼ λ̃0̇αðp; sÞ,
(iv) Final states (outgoing) are right-handed fermions:

hp; sjGαðxÞ ∼ λ0αðp; sÞ.
With the definition in (1.4), the propagators are

ðA5Þ

This differs from the most common conventions, where
ημν ¼ diagðþ1;−1;−1;−1Þ (incoming particles with e−ipx

and vice versa) and=∂=∂−1 ¼ δ rather than−δ, the latter which
gives rise to an overall sign in the equation above.

1. The 6-point derivation

Denoting V41 ¼ Ḡ2∂μG∂μG and V42 ¼ Ḡ2G∂2G, (3.11)
consists of the sum of four terms

0h0jT
�
i2

2!

Z
d4xV4iðxÞ

Z
d4yV4jðyÞ

�
jp1; p2; p3; p4; p5; p6i0 ðA6Þ

with ði; jÞ equal to (1,1), (1,2), (2,1) and (2,2). The term with two V42 vanishes due to p2 ¼ 0 for external particles. The
term with two V41 can be computed using Wick’s theorem to obtain

ðA7Þ
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where ∶∶ denotes normal ordering. Both lines in the above give the same result, and the combined factor of four in each line
comes from four possible internal Wick contractions. The different contractions of G or Ḡ with the incoming states give
different helicity configurations, and following the 4-point amplitude derivation we analyze the scattering process with half
of the initial states left- and right-handed, respectively. That is, G contracts with the incoming particles with momenta p2,
p4, p6 to form left-handed states while Ḡ contracts with the incoming p1, p3, p5 to form right-handed states. As a result, the
contribution from the first term of (A6) consists of 9 terms

Mðψ̄1;ψ2; ψ̄3;ψ4; ψ̄5;ψ6ÞjT1
¼ 16½35�h24ih6jp3 þ p5j1�

ðp2 · p4Þðp6 · ðp1 þ p2 þ p4ÞÞ
ðp1 þ p2 þ p4Þ2

þ ðcyclic in 1; 3; 5 and 2; 4; 6Þ:

ðA8Þ
The contribution from ði; jÞ ¼ ð1; 2Þ in (A6) is

ðA9Þ

which results in

Mðψ̄1;ψ2; ψ̄3;ψ4; ψ̄5;ψ6ÞjT2
¼ 4h24iðp2 · p4Þ½35�h6jp2 þ p4j1� þ ðcyclic in 1; 3; 5 and 2; 4; 6Þ: ðA10Þ

Eventually, this expression is zero, which is quite easy to see—it corresponds to three sets of the cross terms in (2.25). The
contribution from ði; jÞ ¼ ð2; 1Þ is identical, so neither part contributes to the 6-point amplitude. Moreover, with this, (A8)
can be rearranged into an expression equal to (3.12), giving the full 6-point amplitude.

[1] D. V. Volkov and V. P. Akulov, Is the neutrino a Goldstone
particle?, Phys. Lett. 46B, 109 (1973).

[2] I. Antoniadis, E. Dudas, S. Ferrara, and A. Sagnotti, The
Volkov-Akulov-Starobinsky supergravity, Phys. Lett. B
733, 32 (2014).

[3] S. Ferrara, R. Kallosh, and A. Linde, Cosmology with
nilpotent superfields, J. High Energy Phys. 10 (2014) 143.

[4] S. Ferrara, R. Kallosh, and J. Thaler, Cosmology with
orthogonal nilpotent superfields, Phys. Rev. D 93, 043516
(2016).

[5] J. J. M. Carrasco, R. Kallosh, and A. Linde, α attractors:
Planck, LHC and dark energy, J. High Energy Phys. 10
(2015) 147.

[6] E. A. Bergshoeff, D. Z. Freedman, R. Kallosh, and A. Van
Proeyen, Pure de Sitter supergravity, Phys. Rev. D 92,
085040 (2015).

[7] F. Hasegawa and Y. Yamada, Component action of nilpotent
multiplet coupled to matter in 4 dimensional N ¼ 1 super-
gravity, J. High Energy Phys. 10 (2015) 106.

[8] S. M. Kuzenko, Complex linear Goldstino superfield and
supergravity, J. High Energy Phys. 10 (2015) 006.

[9] I. Bandos, L. Martucci, D. Sorokin, and M. Tonin, Brane
induced supersymmetry breaking and de Sitter supergravity,
J. High Energy Phys. 02 (2016) 080.

[10] W.-M. Chen, Y.-t. Huang, and C. Wen, New Fermionic Soft
Theorems for Supergravity Amplitudes, Phys. Rev. Lett.
115, 021603 (2015).

[11] H. Liu, H. Luo, M. Luo, and L. Wang, Leading-order
actions of Goldstino fields, Eur. Phys. J. C 71, 1793 (2011).

[12] H. Luo and C. Wen, Recursion relations from soft theorems,
J. High Energy Phys. 03 (2016) 088.

[13] F. Cachazo, S. He, and E. Y. Yuan, Scattering of Massless
Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113,
171601 (2014).

[14] S. He, Z. Liu, and J.-B. Wu, Scattering equations, twistor-
string formulas and double-soft limits in four dimensions,
J. High Energy Phys. 07 (2016) 060.

[15] F. Cachazo, P. Cha, and S. Mizera, Extensions of theories
from soft limits, J. High Energy Phys. 06 (2016) 170.

[16] R. Kallosh, Nonlinear (super)symmetries and amplitudes,
J. High Energy Phys. 03 (2017) 038.

[17] A. A. Rosly and K. G. Selivanov, On amplitudes in self-
dual sector of Yang-Mills theory, Phys. Lett. B 399, 135
(1997).

[18] A. A. Rosly and K. G. Selivanov, Gravitational SD per-
turbiner, arXiv:hep-th/9710196.

[19] K. G. Selivanov, SD perturbiner in Yang-Millsþ gravity,
Phys. Lett. B 420, 274 (1998).

[20] K. G. Selivanov, On tree form-factors in (supersymmetric)
Yang-Mills theory, Commun. Math. Phys. 208, 671 (2000).

[21] M. Srednicki, Quantum Field Theory (Cambridge
University Press, Cambridge, 2007).

[22] B. S. DeWitt, Quantum theory of gravity. 2. The manifestly
covariant theory, Phys. Rev. 162, 1195 (1967).

ANNA KARLSSON, HUI LUO, and DIVYANSHU MURLI PHYS. REV. D 97, 045019 (2018)

045019-8

https://doi.org/10.1016/0370-2693(73)90490-5
https://doi.org/10.1016/j.physletb.2014.04.015
https://doi.org/10.1016/j.physletb.2014.04.015
https://doi.org/10.1007/JHEP10(2014)143
https://doi.org/10.1103/PhysRevD.93.043516
https://doi.org/10.1103/PhysRevD.93.043516
https://doi.org/10.1007/JHEP10(2015)147
https://doi.org/10.1007/JHEP10(2015)147
https://doi.org/10.1103/PhysRevD.92.085040
https://doi.org/10.1103/PhysRevD.92.085040
https://doi.org/10.1007/JHEP10(2015)106
https://doi.org/10.1007/JHEP10(2015)006
https://doi.org/10.1007/JHEP02(2016)080
https://doi.org/10.1103/PhysRevLett.115.021603
https://doi.org/10.1103/PhysRevLett.115.021603
https://doi.org/10.1140/epjc/s10052-011-1793-0
https://doi.org/10.1007/JHEP03(2016)088
https://doi.org/10.1103/PhysRevLett.113.171601
https://doi.org/10.1103/PhysRevLett.113.171601
https://doi.org/10.1007/JHEP07(2016)060
https://doi.org/10.1007/JHEP06(2016)170
https://doi.org/10.1007/JHEP03(2017)038
https://doi.org/10.1016/S0370-2693(97)00268-2
https://doi.org/10.1016/S0370-2693(97)00268-2
http://arXiv.org/abs/hep-th/9710196
https://doi.org/10.1016/S0370-2693(97)01514-1
https://doi.org/10.1007/s002200050006
https://doi.org/10.1103/PhysRev.162.1195


[23] R. E. Kallosh, Renormalization in non-Abelian gauge the-
ories, Nucl. Phys. B78, 293 (1974).

[24] M. T. Grisaru, P. van Nieuwenhuizen, and C. C. Wu,
Background-field method versus normal field theory in
explicit examples: One-loop divergences in the S matrix
and Green’s functions for Yang-Mills and gravitational
fields, Phys. Rev. D 12, 3203 (1975).

[25] R. Casalbuoni, S. De Curtis, D. Dominici, F. Feruglio, and R.
Gatto, Nonlinear realization of supersymmetry algebra from
supersymmetric constraint, Phys. Lett. B 220, 569 (1989).

[26] Z. Komargodski and N. Seiberg, From linear SUSY to con-
strained superfields, J. High Energy Phys. 09 (2009) 066.

[27] S. M. Kuzenko and S. J. Tyler, Relating the Komargodski-
Seiberg and Akulov-Volkov actions: Exact nonlinear field
redefinition, Phys. Lett. B 698, 319 (2011).

[28] S. M. Kuzenko and S. A. McCarthy, On the component
structure of N ¼ 1 supersymmetric nonlinear electrody-
namics, J. High Energy Phys. 05 (2005) 012.

[29] R. Kallosh, A. Karlsson, and D. Murli, Origin of soft limits
from nonlinear supersymmetry in Volkov-Akulov theory,
J. High Energy Phys. 03 (2017) 081.

[30] H. Luo, M. Luo, and S. Zheng, Constrained superfields and
standard realization of nonlinear supersymmetry, J. High
Energy Phys. 01 (2010) 043.

TREE AMPLITUDES FROM NONLINEAR SUPERSYMMETRIES … PHYS. REV. D 97, 045019 (2018)

045019-9

https://doi.org/10.1016/0550-3213(74)90284-3
https://doi.org/10.1103/PhysRevD.12.3203
https://doi.org/10.1016/0370-2693(89)90788-0
https://doi.org/10.1088/1126-6708/2009/09/066
https://doi.org/10.1016/j.physletb.2011.03.020
https://doi.org/10.1088/1126-6708/2005/05/012
https://doi.org/10.1007/JHEP03(2017)081
https://doi.org/10.1007/JHEP01(2010)043
https://doi.org/10.1007/JHEP01(2010)043

