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Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble
nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever
the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square
roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-
wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves
through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very
formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of
the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show
that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions
with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical
values and the bound is saturated. The bounce solution then disappears and a static planar domain wall
solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this
is only guaranteed along the trajectory in field space traced out by the bounce.
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I. INTRODUCTION

In their classic study of vacuum decay via bubble
nucleation, Coleman and De Luccia (CDL) [1] discovered
a surprising feature of decays from a Minkowski vacuum to
an anti-de Sitter (AdS) vacuum or from one AdS vacuum to
another. If a potential has two vacua of differing energy,
decay from the higher energy false vacuum to the lower
energy truevacuum is always possible, if gravitational effects
are ignored. However, if the higher vacuum has either zero or
negative energy, such decays are quenched if the two vacua
are sufficiently close in energy. In the thin-wall approxima-
tion of CDL, bubble nucleation is only possible if

σ <
2ffiffiffiffiffi
3κ

p
� ffiffiffiffiffiffiffiffiffiffi

jUtvj
p

−
ffiffiffiffiffiffiffiffiffiffi
jUfvj

p �
: ð1:1Þ

Here σ is the surface tension in the bubble wall, Ufv andUtv
are the energy densities of the false and true vacua,
and κ ¼ 8πGN .

As in the nongravitational case, the CDL thin-wall
approximation requires that the two vacua be close in
energy. In addition, one must require that the radius of
curvature of the wall can be treated as being constant as one
moves through the bubble wall. Recently it was shown [2]
that there are regions of parameter space that allow a new
type of thin-wall regime in which the latter requirement is
violated. In this case not only does the CDL derivation of
Eq. (1.1) fail, but also its very formulation becomes
ambiguous, because the surface tension is not well-defined.
In this paper we will show how this inequality can be
generalized to this new thin-wall regime. Furthermore, we
show how these bounds for the thin-wall cases can be seen
as special cases of a more general bound, applicable even to
bounce solutions that are in no sense thin-wall.
We also discuss the case where the parameters of the

theory are taken to the boundary beyond which nucleation
is quenched. As the boundary is approached, the bubble
radius at nucleation increases without bound. When the
critical values of the parameters are actually achieved, the
bounce solution is absent. In its stead there is a static planar
domain wall [3,4]. Such walls have been constructed as
BPS solutions in supergravity theories [5–9], but they can
also arise as solutions that only possess what has been
termed “fake supersymmetry” [10–12]. We will describe
how this happens in our approach. We will also recall the
related work of Abbott and Park [13,14] connecting the
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existence of bounces to the vacuum stability results of
Boucher [15].
The remainder of this manuscript is organized as follows.

In Sec. II we review the CDL formalism, including their
thin-wall approximation. In Sec. III the new thin-wall
regime is described and the generalization of Eq. (1.1)
to this new regime is derived. In Sec. IV we derive the more
general bound that applies to all bounces. In Sec. V we
discuss the approach to the critical quenching limit where
the Euclidean bounce disappears and a static planar domain
wall appears, and make connections to supersymmetry.
Section VI summarizes our results and comments on the
extension to theories with multiple scalar fields. There is an
appendix that addresses some special issues that arise when
the false vacuum is Minkowskian.

II. THE CDL FORMALISM

We consider a theory with a real scalar field ϕ governed
by a potential UðϕÞ that has two metastable vacua at ϕtv
and ϕfv. The values of the potential at these vacua satisfy
Utv < Ufv ≤ 0. Thus, the higher false vacuum can be either
Minkowski or AdS, while the true vacuum is AdS.1 The
AdS vacua have characteristic lengths given by

lfv ¼
�
κ

3
jUfvj

�
−1/2

¼
�
−
κ

3
Ufv

�
−1/2

ð2:1Þ

and similarly for ltv. Following CDL, we seek bounce
solutions of the Euclidean field equations. Making the
standard assumption of O(4) symmetry, we can write the
Euclidean metric in the form

ds2 ¼ dξ2 þ ρðξÞ2dΩ2
3: ð2:2Þ

For the cases we are considering, decays from a Minkowski
or AdS vacuum, ρðξÞ has a single zero and ξ runs from
0 to ∞. The bounce thus has R4 topology, in contrast with
the de Sitter bounces that are topologically four-spheres.
The Euclidean action can then be written in the form2

S ¼ 2π2
Z

∞

0

dξ

�
ρ3
�
1

2
ϕ02 þ UðϕÞ

	
−
3

κ
ðρρ02 þ ρÞ



ð2:3Þ

and a bounce must satisfy

ϕ00 þ 3ρ0

ρ
ϕ0 ¼ dU

dϕ
; ð2:4Þ

ρ02 ¼ 1þ κ

3
ρ2
�
1

2
ϕ02 −UðϕÞ

	
; ð2:5Þ

subject to the boundary conditions

ϕ0ð0Þ ¼ 0; ϕð∞Þ ¼ ϕfv; ρð0Þ ¼ 0; ð2:6Þ

where primes denote derivatives with respect to ξ.
Equations (2.4) and (2.5) imply the useful equation

ρ00 ¼ −
κ

3
ρ½ϕ02 þ UðϕÞ�: ð2:7Þ

We now note that ρðξÞ is a monotonically increasing
function. To establish this, note first that the boundary
conditions imply that ρ0ð0Þ ¼ 1. Requiring that the bounce
approach the pure false vacuum solution at large ξ implies
that ρ must asymptotically increase with ξ either linearly
(for a Minkowski false vacuum) or exponentially (for an
AdS false vacuum). If ρ were not monotonic between these
limits, it would have a local minimum at some finite ξ̄.
This would require that ρ0ðξ̄Þ ¼ 0 and ρ00ðξ̄Þ > 0. However,
this cannot be, since Eq. (2.5) shows that UðϕÞ must be
positive at any zero of ρ0, while Eq. (2.7) implies that ρ00 can
only be positive if UðϕÞ is negative.
We will find it useful to rewrite some of these results in

terms of a Euclidean pseudoenergy

E ¼ 1

2
ϕ02 −UðϕÞ: ð2:8Þ

Because of the ϕ0 “friction” term in Eq. (2.4), this is not
conserved, but instead obeys

E0 ¼ −
3ρ0

ρ
ϕ02

¼ −ϕ02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

ρ2
þ 3κE

s
ð2:9Þ

with the second line following with aid of Eq. (2.5). We just
showed that ρ is a monotonically increasing function of ξ.
It then follows that E is monotonically decreasing from an
initial maximum Eð0Þ < jUtvj to an asymptotic minimum
Eð∞Þ ¼ jUfvj.
The tunneling exponent B is obtained by subtracting the

action of the homogeneous false vacuum solution from that
of the bounce. For configurations that satisfy Eq. (2.5) the
action can be rewritten as

1Note that an AdS vacuum can correspond to a local maximum
of UðϕÞ, provided that the Breitenlohner-Freedman bound is
respected.

2The Gibbons-Hawking boundary term [16] does not appear
here because it is exactly canceled by the surface term from the
integration by parts that removes the ρ00 that appears in the
curvature scalar R. In fact, the tunneling rate is unaffected by
the inclusion or omission of the boundary term, because its
contributions to the bounce action and the false vacuum action are
equal, and so cancel in the tunneling exponent B [2].
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S ¼ 4π2
Z

∞

0

dξ

�
ρ3UðϕÞ − 3

κ
ρ

	

¼ 4π2
Z

∞

0

dρ
1

ρ0

�
ρ3UðϕÞ − 3

κ
ρ

	
: ð2:10Þ

The actions of the bounce and the false vacuum are both
divergent, so we must regulate the integrals. Thus, we
define

SðLÞ ¼ 4π2
Z

L

0

dρ
1

ρ0

�
ρ3UðϕÞ − 3

κ
ρ

	
ð2:11Þ

and obtain a finite value for

B ¼ lim
L→∞

½SbounceðLÞ − SfvðLÞ�: ð2:12Þ

In particular, for an AdS false vacuum, with ϕ ¼ ϕfv
everywhere,

ρfv ¼ lfv sinhðξ/lfvÞ: ð2:13Þ

Integrating the action density gives

SfvðLÞ ¼ Afvð0; LÞ ð2:14Þ

where

Afvðρ1; ρ2Þ ¼ 4π2
Z

ρ2

ρ1

dρ
1

ρ0

�
ρ3Ufv −

3

κ
ρ

	

¼ −
4π2

κ
l2
fv

��
1þ ρ22

l2
fv

�
3/2

−
�
1þ ρ21

l2
fv

�
3/2
	
:

ð2:15Þ

A. The CDL thin-wall approximation

In the CDL thin-wall approximation the bounce solution
is divided into three parts: an exterior region of pure false
vacuum, an interior region of pure true vacuum, and a thin
wall that separates the two. For such a configuration we can
write

BðρÞ ¼ BexteriorðρÞ þ BinteriorðρÞ þ BwallðρÞ ð2:16Þ
with ρ being the curvature radius of the wall. In the false
vacuum exterior region the actions of the bounce and the
false vacuum cancel completely, and so Bexterior ¼ 0. The
contribution in the interior region is the difference of true-
and false-vacuum terms,

Binterior ¼ Atvð0; ρÞ − Afvð0; ρÞ: ð2:17Þ

Finally, we have the contribution from the wall, which can
be written in the form

Bwall ¼ 2π2ρ3σ ð2:18Þ

where the surface tension σ is given by the flat-spacetime
expression3

σ ¼ 2

Z
wall

dξ½UðϕbounceÞ −Ufv� ð2:19Þ

and the integration over ξ is restricted to the wall region.4

It is crucial here that the field profile in the wall, and
hence σ, are to a good approximation independent of ρ, a
consequence of the fact that the bounce radius is much
greater than the thickness of the wall. This approximation
becomes better as the difference between the true and false
vacuumenergies decreases, not because thewall gets thinner
(it doesn’t), but because the bounce gets bigger. Indeed, one
might term this the “large-bounce approximation.”
Note that Eq. (2.18) implicitly assumes that ρ is

essentially constant as one moves through the wall. The
CDL thin-wall analysis is only valid if this is the case.
In Sec. III we will consider thin-wall configurations for
which this assumption fails.
The bounce is obtained by requiring that the wall radius

be a stationary point ρ̄ of BðρÞ. Setting dB/dρ ¼ 0 leads to

σ ¼ 2

κ

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l2
tv
−

1

ρ̄2

s
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l2
fv

−
1

ρ̄2

s !

<
2

κ

 
1

ltv
−

1

lfv

!
ð2:20Þ

with the bound being approached in the limit ρ̄ → ∞.
Using Eq. (2.1) to rewrite the inequality on the second line
yields the bound in Eq. (1.1).

III. THIN-WALL BOUNCES BEYOND CDL

Reference [2] examined tunneling in the more general
case where the true and false vacua are not close in energy
and the conditions for CDL’s thin-wall approximation are
not met. It was found that as the mass scales in the potential
are increased, making gravitational effects stronger, a new
type of thin-wall regime emerges. More specifically, for
any given potential one can define a quantity β as the ratio
of a mass scale in the potential to the Planck mass.5

Gravitational effects become stronger as β is increased.
Eventually, as β approaches a critical value, the bounce
radius tends to infinity. In the limit the bounce solution
disappears, tunneling is completely quenched, and the false
vacuum is stabilized.

3The absence of gravitational corrections in the CDL expres-
sion for the surface tension will be justified in Sec. III.

4More precisely, CDL replace U in the integral by a function
U0 that has minima at ϕtv and ϕfv and is equal to Ufv at both
minima. In the thin-wall limit the effect of this replacement is
higher order.

5Explicitly, β ¼ ffiffiffiffiffi
8π

p
v/MPl, where v is the difference of the

vevs of the true and false vacua.
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In this new thin-wall regime the scalar field profiles are
qualitatively similar to those in the CDL thin-wall bounces.
There is an interior region, 0 < ξ < ξ1, that is approxi-
mately pure true vacuum, an exterior region, ξ2 < ξ < ∞,
that is almost pure false vacuum, and a narrow transition
region, or wall, that separates the two, with the wall
thickness6 Δξ ¼ ξ2 − ξ1 being small compared to ξ1.
However, they differ from their CDL counterparts in that
ρðξÞ grows considerably as one passes through the wall,
and so cannot be approximated as being constant.
As with the CDL thin-wall approximation, it is conven-

ient to write the tunneling exponent as the sum of three
terms, each of which is the difference between a bounce
action term and a corresponding false vacuum term. In
order to be consistent with the form of the long-distance
regulator of the action integrals, Eq. (2.12), the correspond-
ing regions of the bounce and the false vacuum must be
defined by values of ρ, rather than ξ. Thus, if the wall in the
bounce solution runs between ξ1 and ξ2, then the corre-
sponding false vacuum region is bounded by ρ1 ≡ ρðξ1Þ
and ρ2 ≡ ρðξ2Þ.
With this understanding, we obtain for the interior

region, ρ < ρ1,

Binterior ¼ Atvð0; ρ1Þ − Afvð0; ρ1Þ

¼ −
4π2

κ

�
l2
tv

��
1þ ρ21

l2
tv

�
3/2

− 1

	

− l2
fv

��
1þ ρ21

l2
fv

�
3/2

− 1

	

; ð3:1Þ

i.e., the CDL result with ρ ¼ ρ1. In the exterior region the
actions of the bounce and the false vacuum exactly cancel,
so Bexterior ¼ 0.
In the wall region we have

Bwall ¼ 4π2
Z

ρ2

ρ1

dρ

�
1

ρ0b

�
ρ3UðϕbÞ −

3

κ
ρ

	

−
1

ρ0fv

�
ρ3Ufv −

3

κ
ρ

	


¼ 4π2
Z

ξ2

ξ1

dξ

�
ρ3UðϕbÞ −

3

κ
ρ

	
− Afvðρ1; ρ2Þ: ð3:2Þ

In the first line the subscripts on ρ0 and in the potential term
indicate that in the first term these are to be evaluated from
the bounce solution, and in the second term from the pure
false vacuum solution.
This expression for Bwall should reduce to the CDL result

in the limit where Δρ ¼ ρ2 − ρ1 is small. To verify this, we
write the false vacuum contribution to Eq. (3.2) as

−Afvðρ1; ρ1 þ ΔρÞ ¼ 4π2

κ
ð3ρ1Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ21

l2
fv

s
ΔρþO½ðΔρÞ2�:

ð3:3Þ

Now Δρ ¼ ρ0ðξ1ÞΔξ. In the false vacuum, ρ0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2/l2

fv

q
. Using these facts, we obtain

−Afvðρ1; ρ1 þ ΔρÞ ¼ 4π2

κ
ð3ρ1Þ

�
1þ ρ21

l2
fv

�
ΔξþO½ðΔξÞ2�

¼ 4π2
�
3ρ1
κ

− ρ31Ufv

�
ΔξþO½ðΔξÞ2�:

ð3:4Þ

Combining this result with the contribution from the
bounce, and working to first order in Δξ, we recover the
CDL result, with the surface tension given by Eq. (2.19).
Note that this justifies CDL’s use of the flat-spacetime
expression for the surface tension.
Let us now return to the more general case, with ρ2 − ρ1

not assumed to be small. We can no longer approximate ρ
as being constant through the wall. One consequence is that
the identification of a surface tension becomes problematic.
One usually defines surface tension in terms of an energy
per unit area (or action per unit hypersurface area). Because
ρðξÞ grows in the wall, the area of the outer surface of the
wall is larger than that of the inner surface of the wall.
Which, if either, should be used? In fact, it is not even
obvious that the wall action can be written as the product of
an area and a radius-independent factor.
To answer these questions we need to examine the form

of these new thin-wall solutions in more detail. The scalar
field at the center of the bounce, ϕð0Þ, is very close to ϕtv.
The field remains close to ϕtv until ξ ≈ ξ1, so for the interior
region, ξ≲ ξ1, we have, analogously to Eq. (2.13),

ρ ≈ ltv sinhðξ/ltvÞ: ð3:5Þ

If gravitational effects are made stronger by increasing β, ξ1
increases and ρ1 grows exponentially.
In the near critical regime the growth of ρ in the interior

region is such that at ξ1 the first term on the right-hand side
of Eq. (2.5) can be neglected. If ρ1 ≫ lfv this remains true
throughout the wall, and beyond. We can then write

ρ0

ρ
¼

ffiffiffi
κ

3

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ϕ02 −UðϕÞ

r
ð3:6Þ

so that Eq. (2.4) becomes

ϕ00 þ
ffiffiffiffiffi
3κ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ϕ02 −UðϕÞ

r
ϕ0 ¼ dU

dϕ
: ð3:7Þ6This definition of the wall thickness differs from that used

in [2], which only included regions where UðϕÞ > Ufv.
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Note that ρ does not appear in this equation. Hence the
profile of ϕðξÞ in the wall is independent of ρ.
Furthermore, integration of Eq. (3.6) gives

ρðξÞ ¼ ρ1eGðξÞ ð3:8Þ
where

GðξÞ ¼
ffiffiffi
κ

3

r Z
ξ

ξ1

dξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ϕ02 −UðϕÞ

r
ð3:9Þ

is also independent of ρ. This allows us to rewrite
Eq. (3.2) as

Bwall ¼ 4π2
Z

lnðρ2/ρ1Þ

0

dG

�
1

G0
b

�
ρ31UðϕbÞe3G −

3

κ
ρ1eG

	

−
ffiffiffi
3

κ

r
1ffiffiffiffiffiffiffiffiffiffi
−Ufv

p
�
ρ31Ufve3G −

3

κ
ρ1eG

	

: ð3:10Þ

In the limit of large bounce radius (ρ1 ≫ lfv), the terms
cubic in ρ1 dominate. Keeping only these, we have

Bwall ¼ 4π2ρ31

ffiffiffi
3

κ

r Z
lnðρ2/ρ1Þ

0

dGe3G

×

"
UðϕbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ϕ02
b −UðϕbÞ

q þ
ffiffiffiffiffiffiffiffiffiffi
−Ufv

p #
: ð3:11Þ

This suggests that we write

Bwall ¼ 2π2ρ31σ̃ ð3:12Þ
where 2π2ρ31 is the area of the inner surface of the wall and

σ̃ ¼
ffiffiffiffiffi
12

κ

r Z
lnðρ2/ρ1Þ

0

dGe3G

2
64 UðϕbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
ϕ02
b −UðϕbÞ

q þ
ffiffiffiffiffiffiffiffiffiffi
−Ufv

p 3
75

ð3:13Þ
can be viewed as a generalization of the CDL surface
tension σ.7 (Note that, like σ, it is independent of ρ.) With
this definition, the total expression for B takes the same
form as in the CDL thin-wall limit, but with the replace-
ments ρ̄ → ρ1 and σ → σ̃. The line of reasoning that led to
Eq. (2.20) and then to Eq. (1.1) now leads to

σ̃ <
2ffiffiffiffiffi
3κ

p
� ffiffiffiffiffiffiffiffiffiffi

jUtvj
p

−
ffiffiffiffiffiffiffiffiffiffi
jUfvj

p �
: ð3:14Þ

IV. A BOUND FOR ALL BOUNCES

We have obtained upper bounds on the surface tension
for both the thin-wall approximation of CDL and the
generalized thin-wall regime of [2]. However, thin-wall
bounces of either type are special cases. There are bounce
solutions that are not in any sense thin-wall, including some
for which it is difficult to even define a surface tension. This
raises the question of whether there is a more general bound
that applies to all bounces and that reduces to Eqs. (1.1)
and (3.14) in the appropriate limits.
We now show that there is. To begin, we recall the

definition of the pseudoenergy, Eq. (2.8), and the expression
for its derivative, Eq. (2.9). If follows from the latter that

d
ffiffiffiffi
E

p

dξ
¼ −

ffiffiffiffiffi
3κ

p

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

κEρ2

s
ϕ02: ð4:1Þ

Integrating this, we find that

ffiffiffiffiffiffiffiffiffiffi
Eð0Þ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffi
Eð∞Þ

p
¼

ffiffiffiffiffi
3κ

p

2

Z
∞

0

dξ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

κEρ2

s
ϕ02

>

ffiffiffiffiffi
3κ

p

2

Z
∞

0

dξ ϕ02: ð4:2Þ

Noting that Eð0Þ ≤ jUtvj and recalling that Eð∞Þ ¼ jUfvj,
we have Z

∞

0

dξ ϕ02
b <

2ffiffiffiffiffi
3κ

p ð
ffiffiffiffiffiffiffiffiffiffi
jUtvj

p
−

ffiffiffiffiffiffiffiffiffiffi
jUfvj

p
Þ: ð4:3Þ

This inequality is exact, and does not depend on any
approximations. It therefore applies to any bounce solution.
In particular, it should reduce to our previous results for thin-
wall bounces. In these bounces ϕ0 is taken to vanish outside
the wall region, so the integration can be restricted to the
range ξ1 < ξ < ξ2. In the CDL thin-wall approximation the
bounce profile in the wall region is approximately that of a
(1þ 1)-dimensional kink. Equation (2.19) gives the surface
tension in terms of an integral of the potentialUðϕbÞ. Avirial
theorem [17] relates this to the integral of ϕ02 and shows that
the bounds of Eqs. (1.1) and (4.3) are equivalent within the
accuracy of the approximation.
For the new thin-wall case, demonstrating the equiv-

alence of Eqs. (1.1) and (3.14) requires a bit more work.
We begin by noting the identity

1

3κ

Z
ξ2

ξ1

dξ
d
dξ

ðρ3
ffiffiffiffi
E

p
Þ ¼

Z
ξ2

ξ1

dξ ρ3UðϕbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

κEρ2

s
;

ð4:4Þ

which is obtained by evaluating the derivative inside the
integral on the left-hand side and using Eq. (4.1).

7In the CDL expression for the surface tension, Eq. (2.19), the
integrand is everywhere positive so σ is manifestly positive. This
is not the case for σ̃. Indeed, the integrand in Eq. (3.13) is negative
in the lower part of the integration range and positive in the upper
part. In the next section we will show that this expression for σ̃ is
a special case of a more general expression that is manifestly
positive.
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Alternatively, using the fact that the integrand is a total
derivative gives

1

3κ

Z
ξ2

ξ1

dξ
d
dξ

ðρ3
ffiffiffiffi
E

p
Þ

¼ 1

3κ
½−ðρ32 − ρ31Þ

ffiffiffiffiffiffi
E2

p
− ρ31ð

ffiffiffiffiffiffi
E2

p
−

ffiffiffiffiffiffi
E1

p
Þ�

¼ 1

3κ

�
−ðρ32 − ρ31Þ

ffiffiffiffiffiffi
E2

p
− ρ31

Z
ξ2

ξ1

dξ
d
ffiffiffiffi
E

p

dξ

	

¼ −
1

κlfv
ðρ32 − ρ31Þ −

1

2
ρ31

Z
ξ2

ξ1

dξ ϕ02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

κEρ2

s
: ð4:5Þ

In the last equality we have used the definition of the AdS
length, Eq. (2.1), and the fact that E2 ¼ −Ufv. Comparing
Eqs. (4.4) and (4.5), we have

Z
ξ2

ξ1

dξ ρ3UðϕbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

κEρ2

s
þ 1

κlfv
ðρ32 − ρ31Þ

¼ −
1

2
ρ31

Z
ξ2

ξ1

dξ ϕ02
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

κEρ2

s
: ð4:6Þ

In the range of integration, ξ1 ≤ ξ ≤ ξ2, the pseudoe-
nergy satisfies E ≥ E2 ¼ jUfvj, while ρ ≥ ρ1. It follows that

3

κEρ2
<

l2
fv

ρ21
: ð4:7Þ

Hence in the limit of large bounce radius, ρ1 ≫ lfv, the
square roots in Eq. (4.6) can be set equal to unity, giving

Z
ξ2

ξ1

dξ ρ3UðϕbÞ þ
1

κlfv
ðρ32 − ρ31Þ ¼ −

1

2
ρ31

Z
ξ2

ξ1

dξ ϕ02:

ð4:8Þ

In this same limit Eq. (3.2) reduces to

Bwall ¼ 4π2
Z

ξ2

ξ1

dξ ρ3UðϕbÞ þ
4π2

κlfv
ðρ32 − ρ31Þ

¼ 2π2ρ31

Z
ξ2

ξ1

dξ ϕ02 ð4:9Þ

where the second line follows from Eq. (4.8). Dividing by
the surface area, 2π2ρ31, gives

σ̃ ¼
Z

ξ2

ξ1

dξ ϕ02 ð4:10Þ

and demonstrates the equivalence of Eqs. (3.14) and (4.3)
in this regime.

V. BOUNCES AND WALLS IN THE
CRITICAL LIMIT

It is instructive to examine the behavior of the bounce
solution as the parameters of the theory approach the
critical limit where the nucleation of AdS bubbles is totally
quenched. As this limit is approached the wall radius of the
bounce solution grows without bound, with both ξ1 and ρ1
diverging. When the parameters are actually at their limit-
ing values, there is no Euclidean bounce at all.
Now let us focus on the fixed time slice through the

center of the bounce, t ¼ 0, when the bubble is nucleated.
The bubble is instantaneously at rest, while the spatial part
of the metric is

dl2 ¼ dξ2 þ ρðξÞ2dΩ2
2 ð5:1Þ

with ρðξÞ taken over from the bounce and ξ again being a
radial coordinate. The limit of infinite bubble radius can be
viewed, in a certain sense, as a planar wall separating two
metastable vacua.
The metric for a static planar wall can be written as

ds2 ¼ AðzÞð−dt2 þ dx2 þ dy2Þ þ dz2 ð5:2Þ

with z being the spatial coordinate orthogonal to the
wall. For our theory with a single scalar field, the field
equations are

A02 ¼ κ

3
A2

�
1

2
ϕ02 −U

�
ð5:3Þ

ϕ00 þ 3A0ϕ0

A
¼ dU

dϕ
ð5:4Þ

with primes indicating differentiation with respect to z.
These are to be solved subject to the boundary conditions
that ϕ take its false (true) vacuum value at z ¼ ∞ (z ¼ −∞).
If we make the correspondence

ξ ⟷ z; ρ ⟷ A; ð5:5Þ

these equations differ from Eqs. (2.4) and (2.5) only by the
omission of the factor of unity on the right-hand side of
Eq. (2.5). The boundary conditions at ξ ¼ ∞ and z ¼ ∞
agree. Although those at ξ ¼ 0 and z ¼ −∞ differ, they
coincide in the limit of infinite bubble radius.
There is an interesting connection with supersymmetry

when the parameters are near the critical limit. Let us
suppose that we are given ϕðξÞ and ρðξÞ satisfying the
bounce equations Eqs. (2.4) and (2.5). Because ϕ is a
monotonic function of ξ, we can view ξ, and therefore ϕ0, E,
and ρ, as functions of ϕ in the neighborhood of the bounce
solution. We can then define a function fðϕÞ by

MASOUMI, PABAN, and WEINBERG PHYS. REV. D 97, 045017 (2018)

045017-6



fðϕÞ2 ¼ 1

3κ

�
1

2
ϕ02 − U

�
¼ 1

3κ
E: ð5:6Þ

The derivative of f with respect to ϕ is

df
dϕ

¼ df/dξ
dϕ/dξ

¼ 1ffiffiffiffiffi
3κ

p d
ffiffiffiffi
E

p

dξ
1

ϕ0

¼ −
1

2
ϕ0α−1 ð5:7Þ

where the last line follows from Eq. (4.1) and

αðϕÞ ¼
�
1þ 1

κ2ρ2f2

�
−1/2

: ð5:8Þ

Solving Eq. (5.7) for ϕ0 and substituting the result into
Eq. (5.6) leads to

U ¼ 2α2
�
df
dϕ

�
2

− 3κf2: ð5:9Þ

If α were equal to unity, this would be the form for the
potential in a supergravity theory, with f being the super-
potential. In fact, α ≈ 1 wherever ρ ≫ lfv. Thus, for a near-
critical bounce the deviation from the supersymmetric form
is confined to a region of approximate true vacuum in the
center of the bounce.8

Repeating the calculation for the static planar wall, one
finds that α ¼ 1 everywhere in space. The domain wall
would then have the form of a supersymmetric wall
interpolating between isolated vacua of an N ¼ 1 super-
gravity potential, with the disappearance of the bounce
solution guaranteeing the stability of each of these vacua
against decay by nucleation of bubbles of the other. Note,
however, that our construction is restricted to the interval of
field space between the two vacua; the form of UðϕÞ
outside this interval is unconstrained and need not be
derivable from a superpotential.
An alternative path to demonstrating vacuum stability is

to prove a positive energy theorem or a BPS bound. In the
presence of gravity, Boucher [15], generalizing Witten’s
work [18,19], gave the following criteria: an extremum ϕ̄ of
a potential UðϕÞ with Uðϕ̄Þ < 0 is stable if there exists a
real function WðϕÞ such that

2

�
dW
dϕ

�
2

− 3κW2 ¼ UðϕÞ ∀ϕ ð5:10Þ

and

Wðϕ̄Þ ¼ ½−Uðϕ̄Þ/3κ�1/2: ð5:11Þ

These criteria make no direct reference to bubble nucle-
ation. That connection was drawn by Abbott and Park [14].
Given a potentialUðϕÞ, one can obtainWðϕÞ by integrating
Eq. (5.10), provided that U þ 3κW2 remains positive.
Abbott and Park showed that if the latter becomes negative
at some ϕ ¼ ϕs before one reaches an extremum ofU, then
ϕs is the starting point ϕð0Þ for a bounce solution that
governs the decay via bubble nucleation of the ϕ̄ vacuum.

VI. CONCLUDING REMARKS

Gravity can quench the nucleation of bubbles in a
Minkowski or AdS false vacuum. This result was proven
analytically by Coleman and De Luccia in a thin-wall limit
where the energy difference between the true and false
vacua is small. Their analysis implies an inequality,
Eq. (1.1), that relates the surface tension σ and the true-
and false-vacuum energies. It is essential for this inequality
that σ is independent of the radius of curvature of the
bounce wall, and that the contribution of the wall to the
Euclidean action is the product of σ and the surface area of
the wall.
Subsequently, numerical analyses have generalized this

claim to a wider variety of potentials [2,20–22]. As the
boundary beyond which nucleation is quenched is
approached, the bubble radius at nucleation increases
without bound and a new thin-wall regime emerges [2].
This new thin-wall regime differs from the CDL thin-wall
regime in that the wall radius of curvature ρ grows
exponentially as one moves through the bubble wall. It
is then far from obvious that the wall action can be
decomposed as the product of a surface tension and an
area. Indeed, it is not even clear how the area should be
defined. In Sec. III we used the fact that the matter field
profile in the wall is independent of the curvature of
the wall to define a modified surface tension σ̃ that is
ρ-independent. We were then able to show analytically that
the wall action is σ̃ times the area of the inner surface of the
bounce wall. Closely following the reasoning of CDL then
led to the bound of Eq. (3.14) on σ̃.
In Sec. IV we proved that the upper bounds on the

surface tensions in the two thin-wall regimes are limiting
cases of a more general bound, Eq. (4.3), that is satisfied by
all bounces. Gravity sources a frictional force that depletes
the pseudoenergy as it evolves through the radial direction
of the bounce. This bound expresses the constraint on this
frictional force that is required if the bounce is to interpolate
between the two vacua.
The work presented here was limited to single-field

potentials, but the proof of the bound of Eq. (4.3), the
existence of the generalized thin-wall regime [2], and the
definition of surface tension in this regime, Eq. (3.13),
should extend to multifield potentials. With N scalar fields
ϕi the bounce should satisfy

8This assumes that the false vacuum is AdS. The case of a
Minkowski false vacuum is addressed in the Appendix.

GENERALIZED SURFACE TENSION BOUNDS IN VACUUM … PHYS. REV. D 97, 045017 (2018)

045017-7



ϕi
00 þ 3ρ0

ρ
ϕ0
i ¼

dU
dϕi

; ð6:1Þ

ρ02 ¼ 1þ κ

3
ρ2
�X

i

1

2
ϕ02
i −UðϕiÞ

	
: ð6:2Þ

Solving these will lead to a trajectory through field space of
the form ϕiðξÞ ¼ giðξÞ. In the neighborhood of this bounce
trajectory we can introduce a coordinate Φ along the
trajectory, defined by

dΦ2 ¼
XN
i¼1

dg2i ð6:3Þ

together with N − 1 fields normal to the trajectory.
In these new coordinates the action along the bounce

S ¼ 2π2
Z

∞

0

dξ

�
ρ3
�
1

2
Φ02 −UðΦÞ

	
−
3

κ
ðρρ02 þ ρÞ



ð6:4Þ

only depends on Φ. The form of UðΦÞ depends on the
explicit bounce solution, but the only information that was
assumed about the potential was that it was a continuous
function interpolating between Utv and Ufv. The formal
arguments made in Secs. III and IV should extend to the
field Φ, and the bound of Eq. (4.3) will be satisfied.
In the single-field case UðϕÞ approached a supersym-

metric form as the parameters of the theory approached the
boundary where nucleation was quenched. Precisely on this
boundary, where the false vacuum becomes stable against
decay by tunneling, a static planar domain wall appears.
UðϕÞ takes on the supergravity form and can be written in
terms of a fake superpotentialWðϕÞ. However, this form is
only guaranteed on the interval in field space lying between
the true and false vacua. For the multifield case similar
arguments allow one to define a fake superpotential, but
only along the trajectory of the bounce in field space and
only encoding a dependence on Φ, but not on the fields
normal to the trajectory.
Even though these restrictions weaken the connection

between stability and supersymmetry, recent claims [23–25]
based on the weak gravity conjecture [26] assert the
instability of all nonsupersymmetric vacua in a UV complete
theory. Said differently, theories for which stable domain
walls do not obey Eq. (1.1) live in the swampland, with
gravity never strong enough to quench a decay. See [27–30]
for more examples of this instability.
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APPENDIX: MINKOWSKI FALSE VACUUM

At some points in our analysis we have relied on the
condition that ρ1 ≫ lfv. With an AdS false vacuum this
can always be achieved by going sufficiently close to the
critical limit. This is not the case if the false vacuum is
Minkowskian, with Ufv ¼ 0 implying lfv ¼ ∞. Here we
examine the consequences of this fact.
In our analysis we used this inequality to argue that in the

wall and in the entire exterior region the right-hand side of
Eq. (2.5) was dominated by the second term. This led to the
conclusion that the field profile in the wall was independent
of ρ. It also allowed us to approximate the square roots
in Eq. (4.6) as unity, which led to Eq. (4.10) and the
equivalence of Eqs. (3.14) and (4.3).
Now suppose that the false vacuum is Minkowskian.

By going sufficiently close to the critical limit we can
always ensure that the second term dominates the right-
hand side of Eq. (2.5) near the inner edge of the wall, but as
E decreases with increasing ξ there comes a ξ̄ where

κ

3
E ¼ κ

3

�
1

2
ϕ02 −U

	
¼ 1

ρ2
: ðA1Þ

For a thin-wall bubble (of either kind) ρ is already
exponentially large at ξ1, which means that E, UðϕbÞ,
and ϕ02 will all have become exponentially small by the
time that ξ̄ is reached. Thus, the nontrivial part of the field
profile will lie in the region ξ < ξ̄ and will be independent
of ρ, just as with an AdS false vacuum. Near the critical
limit ξ̄ will lie outside the wall (i.e., ξ̄ > ξ2), so the square
roots in Eq. (4.6) will remain close to unity for the entire
range of integration.
We saw in Sec. V that the potential closely approximates

the supergravity form wherever α ≈ 1 or, equivalently,
κEρ2 ≫ 1. With an AdS false vacuum E has a nonzero
lower bound, and so for near-critical bounces these con-
ditions hold everywhere except for a region of approximate
true vacuum in the center of the bounce. With a Minkowski
false vacuumE tends to zero as ρ → ∞, so the large-distance
behavior requires closer examination. To begin, note that

ðEρ2Þ0 ¼ 2ρρ0Eþ ρ2E0

¼ ρρ0ð2E − 3ϕ02Þ
¼ −2ρρ0ðU þ ϕ02Þ: ðA2Þ

MASOUMI, PABAN, and WEINBERG PHYS. REV. D 97, 045017 (2018)

045017-8



Whenϕ is close to its value at theMinkowski false vacuum
minimum, UðϕÞ is positive, so the quantity in parentheses
on the last line is positive definite, but exponentially
decreasing in magnitude. Near the false vacuum ρ grows
linearly with ξ, so the integrated decrease in Eρ2 as ξ → ∞

is finite. Hence, for near-critical bounces where Eρ2 is
large even near the end of the wall region, it will remain
large as ξ increases. Just as with an AdS false vacuum, in a
near-critical bounce αwill only deviate from unity near the
center of the bounce, far from the wall.
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