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It has been shown earlier [Phys. Rev. D 72, 085006 (2005), Phys. Rev. D 73, 065010 (2006)] that, in the
mixed space, there is an unexpected simple relation between any finite temperature graph and its zero
temperature counterpart through a multiplicative scalar operator (termed thermal operator) which carries
the entire temperature dependence. This holds only in the imaginary time formalism and the closed time
path (σ ¼ 0) of the real time formalism (as well as for its conjugate σ ¼ 1). We study the origin of this
operator from the more fundamental Bogoliubov transformation which acts, in the momentum space, on
the doubled space of fields in the real time formalisms [Collective Phenomena 2, 55 (1975), Int. J. Mod.
Phys. B 10, 1755 (1996), Thermo Field Dynamics and Condensed States (North-Holland, Amsterdam,
1982), Phys. Rev. D 93, 125028 (2016)]. We show how the (2 × 2) Bogoliubov transformation matrix
naturally leads to the scalar thermal operator for σ ¼ 0, 1 while it fails for any other value 0 < σ < 1. This
analysis also suggests that a generalized scalar thermal operator description, in the mixed space, is possible
even for 0 < σ < 1. We also show the existence of a scalar thermal operator relation in the momentum
space.

DOI: 10.1103/PhysRevD.97.045015

I. INTRODUCTION

Equilibrium thermal field theory can be equally well
described in the imaginary time formalism (Matsubara
formalism) [1] or in the real time formalism [2,3]. In the
real time formalism, there is a one-parameter family of paths
in the complex t plane (see Fig. 1) [4,5] which give the same
result for the thermal ensemble averages of physical observ-
ables. In particular, for σ ¼ 0, the real time description is
known as the closed time path formalism [6–8] while σ ¼ 1

2

leads to thermo field dynamics [9–11].
In the real time formalism, the degrees of freedom are

doubled because of the two real branches of the time
contour in the complex t plane (there is no doubling in the
imaginary time formalism). Correspondingly, the Hilbert
space for the system, in a real time description, is a product
space of two Hilbert spaces—one for that of the physical

system and the other can be thought of as that of the heat
bath (environment). The real time formalism (for any value
of the arbitrary parameter σ) allows for a path integral
description [2,3] as well as an operator description [12].
Thermo field dynamics (σ ¼ 1

2
) has an operator description
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FIG. 1. The general time path contour in the complex t plane
with 0 ≤ σ ≤ 1 where β denotes the inverse temperature in units
of the Boltzmann constant. In the real time formalism, T can be
thought of as a time in the infinite past (T → −∞), while T 0
denotes a time in the infinite future (T 0 → ∞). In this description,
imaginary time formalism corresponds to T ¼ T 0 ¼ 0. (Please
note that in the text of the paper, on the other hand, T represents
the equilibrium temperature.)
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with the usual Dirac inner product for the doubled Hilbert
space [9,10,13]. For any other value of σ, however, the
Hilbert space develops a modified inner product (which
depends on the value of σ) [12,14,15].
A thermal vacuum as well as a thermal Hilbert space can

be defined (in the real time formalism) from the doublet of
fields (thermal doublet) through a Bogoliubov transforma-
tion [9,10,12]. The doublet of thermal field operators can
then be related to the original (zero temperature) doublet of
field operators (that of the original field and the doubled field
for the “heat bath”) through a 2 × 2 Bogoliubov trans-
formationmatrix in the momentum space. Correspondingly,
the Feynman propagator in momentum space, say for a real
scalar field theory on the general path (Fig. 1), becomes a
2 × 2 matrix propagator related to the zero temperature
propagator through the 2 × 2 Bogoliubov transformation
matrix [12],

Gðσ;TÞðpÞ ¼ UðσÞðT; pÞGðσ;T¼0ÞðpÞðUðσÞÞTðT;−pÞ; ð1Þ

where ðUðσÞÞT denotes the matrix transpose of UðσÞ and T
represents the equilibrium temperature.
Since vertices, in a thermal field theory, do not carry any

temperature dependence, all the temperature dependence,
in a Feynman diagram at finite temperature, is carried by
the internal propagators. However, as we have noted in (1),
the 2 × 2 thermal matrix propagator, in the momentum
space, is related to the zero temperature propagator through
the (2 × 2) Bogoliubov transformation matrix depending
on temperature. Therefore, there is a natural factorization of
any thermal Feynman graph, in momentum space, in terms
of the zero temperature graph and a product of 2 × 2
Bogoliubov transformation matrices carrying the temper-
ature dependence (and a factor of σ3 coming from every
internal thermal vertex [3]). However, keeping track of the
matrix indices in a general graph is not so easy and,
therefore, such a factorization, even though it arises
naturally, is not very useful in practical calculations.
On the other hand, it has been shown [16,17], both in the

imaginary time formalism and the closed time path for-
malism of real time, that each finite temperature Feynman
diagram in a quantum field theory, in the mixed space
ðt;pÞ, is related to the corresponding zero temperature
diagram through a product of simple multiplicative scalar
operators which carries the entire temperature dependence.
For example, the thermal propagator (for a real scalar field
theory) in the closed time path in the mixed space is related
to the zero temperature propagator simply as

GðTÞ
CT ðt;pÞ ¼ OðTÞðEÞGðT¼0Þ

CT ðt;pÞ
¼ ð1þ nBðEÞð1 − SðEÞÞÞGðT¼0Þ

CT ðt;pÞ; ð2Þ

where T denotes the equilibrium temperature,

E ¼ ðp2 þm2Þ12; ð3Þ

nBðEÞ represents the Bose-Einstein distribution and SðEÞ is
a reflection operator which changes E → −E in any
function, namely,

SðEÞfðEÞ ¼ fð−EÞ: ð4Þ

(We would like to comment here parenthetically that there
is no doubling of fields in the imaginary time formalism
and, consequently, there is a natural factorization of the
propagator in terms of a scalar thermal operator in the
mixed space. The imaginary time formalism, on the other
hand, has other subtleties involving the difference in the
range of time integration at finite temperature and at zero
temperature which have been discussed in detail in [16].)
This simple factorization of diagrams into a temperature
dependent part and a zero temperature part is quite
interesting and useful since the Feynman diagram calcu-
lations at nonzero temperature are, in general, tedious
compared to zero temperature. The thermal operator
description of finite temperature diagrams has also led to
a better understanding of several other questions at finite
temperature [18–23]. On the other hand, it is also known
[16] that such a factorization, in terms of a simple scalar
thermal operator, does not hold for a general time contour
(see Fig. 1) for which σ ≠ 0, 1.
In this paper, we would like to understand how the scalar

thermal operator OðTÞðEÞ, in the mixed space, arises from
the more fundamental Bogoliubov transformation matrix
UðT; pÞ (in momentum space) in the real time formalisms
for σ ¼ 0, 1 and why it fails for other values of σ.
Furthermore, we would like to study whether such an
analysis may suggest a possible generalization of the
thermal operator representation which holds for all values
of 0 ≤ σ ≤ 1. In Sec. II, we recapitulate briefly various
properties of the thermal propagator on a general path both
in the momentum space as well as in the mixed space. This
suggests that the two cases σ ¼ 0, 1 and 0 < σ < 1 are
inherently different and need to be studied separately. The
difference arises mainly because when σ ¼ 0, 1, all four
matrix elements of the zero temperature propagator are
nontrivial while for other values of σ, the zero temperature
propagator is a diagonal matrix. In Sec. III, we discuss the
Bogoliubov transformation matrix (in momentum space)
for the closed time path formalism, σ ¼ 0 (the other case,
σ ¼ 1 is related by a symmetry σ → 1 − σ). We show that
the Bogoliubov transformation, in momentum space, leads
to a matrix factorization of the propagator in the mixed
space as well. From the properties of this factorizing
matrix, we show how a scalar thermal operator arises for
σ ¼ 0, 1. In Sec. IV, we study the other case for 0 < σ < 1
in detail. From the Bogoliubov transformation matrix in the
momentum space, we show that the thermal propagator
naturally factorizes in the mixed space as well. However, a
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direct calculation shows that the factorizing matrix does not
lead to a scalar thermal operator in this case. On the other
hand, studying the properties of this factorizing matrix, we
show that a scalar thermal operator is possible if we treat
the 2 × 2 matrix propagator at zero temperature in a
limiting manner (containing all four elements and not just
the diagonal elements). In Sec. V, we summarize our results
and, in the Appendix, we show how the explicit matrix
factorization in mixed space arises from the more funda-
mental Bogoliubov transformation matrix in the momen-
tum space. For the interested reader, we point out that our
derivation of the scalar thermal operator for the closed time
path is given in (21)–(24), while for the case 0 < σ < 1, the
final result is given in (44) where the usual zero temperature
propagator is replaced by a generalized ḠðσÞðt;pÞ which is
given in (42).

II. THERMAL PROPAGATOR FOR AN
ARBITRARY PATH

The thermal propagator, Gðσ;TÞ, of a real scalar field for a
general path in the real time formalism (see Fig. 1) is a
2 × 2 matrix

Gðσ;TÞ ¼
0
@Gðσ;TÞ

11 Gðσ;TÞ
12

Gðσ;TÞ
21 Gðσ;TÞ

22

1
A; ð5Þ

whose components in the momentum space at finite
temperature are given by (0 ≤ σ ≤ 1, T represents temper-
ature and β denotes inverse temperature in units of the
Boltzmann constant)

Gðσ;TÞ
11 ðpÞ¼ i

p2−m2þ iϵ
þ2πnBðjp0jÞδðp2−m2Þ;

Gðσ;TÞ
12 ðpÞ¼ 2πeσβp0ðθð−p0ÞþnBðjp0jÞÞδðp2−m2Þ;

Gðσ;TÞ
21 ðpÞ¼ 2πe−σβp0ðθðp0ÞþnBðjp0jÞÞδðp2−m2Þ;

Gðσ;TÞ
22 ðpÞ¼−

i
p2−m2− iϵ

þ2πnBðjp0jÞδðp2−m2Þ: ð6Þ

In the mixed space, the propagator defined as

Gðσ;TÞðt;pÞ ¼
Z

dp0

2π
e−ip0tGðσ;TÞðpÞ; ð7Þ

has the components

Gðσ;TÞ
11 ðt;pÞ ¼ 1

2E
ððθðtÞ þ nBðEÞÞe−iEt

þ ðθð−tÞ þ nBðEÞÞeiEtÞ;

Gðσ;TÞ
12 ðt;pÞ ¼ 1

2E
ðnBðEÞe−iEðtþiσβÞ

þ ð1þ nBðEÞÞeiEðtþiσβÞÞ;

Gðσ;TÞ
21 ðt;pÞ ¼ 1

2E
ðð1þ nBðEÞÞe−iEðt−iσβÞ

þ nBðEÞeiEðt−iσβÞÞ;

Gðσ;TÞ
22 ðt;pÞ ¼ 1

2E
ððθð−tÞ þ nBðEÞÞe−iEt

þ ðθðtÞ þ nBðEÞÞeiEtÞ; ð8Þ

where, as we have pointed out earlier, E ¼ ðp2 þm2Þ12 and
nBðEÞ denotes the Bose-Einstein distribution.
There are several things to note from the structures of the

components of the propagator in (6) and (8). First, the
diagonal components of the propagator are independent of
the arbitrary parameter σ which characterizes the path in

Fig. 1. Second, the off-diagonal elements Gðσ;TÞ
12 and Gðσ;TÞ

21 ,
which do depend on σ, are related simply as (both in the
momentum space as well as in the mixed space)

Gðσ;TÞ
12 ¼ Gð1−σ;TÞ

21 ; Gðσ;TÞ
21 ¼ Gð1−σ;TÞ

12 ; ð9Þ

so that it is sufficient to study the propagator in the
parameter range 0 ≤ σ ≤ 1

2
. However, for completeness

we will allow the parameter σ to take on the full range
of values 0 ≤ σ ≤ 1 (keeping in mind this symmetry).
Finally, we note that the off-diagonal components in (6) and
(8) vanish for T ¼ 0 (β → ∞) when σ ≠ 0, 1. Therefore,
the zero temperature propagator for closed time path
(σ ¼ 0), for example, has four nontrivial components
(the same is true for σ ¼ 1) while, for any value
0 < σ < 1, the only nontrivial components of the zero
temperature propagator are the two diagonal elements. As a
result, the analysis for the two cases, σ ¼ 0, 1 and for
0 < σ < 1, needs to be done separately. In the next section,
we will study the propagator for the closed time path
corresponding to σ ¼ 0 with comments on the case σ ¼ 1.

III. SCALAR THERMAL OPERATOR FROM
BOGOLIUBOV TRANSFORMATION FOR

CLOSED TIME PATH

The momentum space propagator in the closed time path
is denoted by the 2 × 2 matrix (in the closed time path, the
components are conventionally labelled by �)

GðTÞ
CT ðpÞ ¼

0
@GðTÞ

þþðpÞ GðTÞ
þ−ðpÞ

GðTÞ
−þðpÞ GðTÞ

−−ðpÞ

1
A; ð10Þ
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whose components at finite temperature are given by (see
(6) with σ ¼ 0)

GðTÞ
þþðpÞ¼

i
p2−m2þ iϵ

þ2πnBðjp0jÞδðp2−m2Þ;

GðTÞ
þ−ðpÞ¼ 2πðθð−p0ÞþnBðjp0jÞÞδðp2−m2Þ;

GðTÞ
−þðpÞ¼ 2πðθðp0ÞþnBðjp0jÞÞδðp2−m2Þ;

GðTÞ
−−ðpÞ¼−

i
p2−m2− iϵ

þ2πnBðjp0jÞδðp2−m2Þ: ð11Þ

Correspondingly, the zero temperature propagator, in the
closed time path has the components

GðT¼0Þ
þþ ðpÞ ¼ i

p2 −m2 þ iϵ
;

GðT¼0Þ
þ− ðpÞ ¼ 2πθð−p0Þδðp2 −m2Þ;

GðT¼0Þ
−þ ðpÞ ¼ 2πθðp0Þδðp2 −m2Þ;

GðT¼0Þ
−− ðpÞ ¼ −

i
p2 −m2 − iϵ

: ð12Þ

As alluded to earlier, the zero temperature propagator, in
the closed time path, has four nontrivial components just
like at finite temperature (the same is true for σ ¼ 1 as
well). This is not the case for 0 < σ < 1 as we will see in
the next section.
The Bogoliubov transformation matrix, relating the

finite temperature propagator in (11) to the zero temper-
ature propagator in (12) in the closed time path, has
the form

UCTðT; pÞ ¼
1

ð2 sinh βjp0jÞ12

 
e
βjp0 j
2 e−

βjp0 j
2

e−
βjp0 j
2 e

βjp0 j
2

!

¼ UCTðT;−pÞ ¼ UT
CTðT;−pÞ; ð13Þ

so that we can write (see (1)

GðTÞ
CT ðpÞ ¼ UCTðT; pÞGðT¼0Þ

CT ðpÞUCTðT; pÞ: ð14Þ

In this case, the Bogoliubov transformation matrix
satisfies U† ¼ UT ¼ U. Furthermore, it can be checked
to satisfy U†σ3U ¼ σ3 (where σ3 is the Pauli matrix)
reflecting the fact that the Bogoliubov transformation
belongs to the noncompact group SOð2; 1Þ.
In the mixed space, the finite temperature propagator in

the closed time path (σ ¼ 0) has the components (see (8)

GðTÞ
þþðt;pÞ ¼

1

2E
ððθðtÞ þ nBðEÞÞe−iEt

þ ðθð−tÞ þ nBðEÞÞeiEtÞ;

GðTÞ
þ−ðt;pÞ ¼

1

2E
ðnBðEÞe−iEt

þ ð1þ nBðEÞÞeiEtÞ;

GðTÞ
−þðt;pÞ ¼

1

2E
ðð1þ nBðEÞÞe−iEt

þ nBðEÞeiEtÞ;

GðTÞ
−−ðt;pÞ ¼

1

2E
ððθð−tÞ þ nBðEÞÞe−iEt

þ ðθðtÞ þ nBðEÞÞeiEtÞ; ð15Þ
whereas at zero temperature, the components have the forms

GðT¼0Þ
þþ ðt;pÞ ¼ 1

2E
ðθðtÞe−iEt þ θð−tÞeiEtÞ;

GðT¼0Þ
þ− ðt;pÞ ¼ 1

2E
eiEt;

GðT¼0Þ
−þ ðt;pÞ ¼ 1

2E
e−iEt;

GðT¼0Þ
−− ðt;pÞ ¼ 1

2E
ðθð−tÞe−iEt þ θðtÞeiEtÞ: ð16Þ

The finite temperature propagator in (15) can now be
written in a factorized form in terms of the zero temperature
propagator in (16) as

GðTÞ
CT ðt;pÞ ¼ ŪðT;pÞGðT¼0Þ

CT ðt;pÞŪTðT;−pÞ
¼ ŪðT;pÞGðT¼0Þ

CT ðt;pÞŪðT;pÞ; ð17Þ

where

ŪðT;pÞ ¼ 1

ð2 sinh βEÞ12
�

e
βE
2 e−

βE
2

e−
βE
2 e

βE
2

�

¼ ŪðT;−pÞ ¼ ŪTðT;−pÞ; ð18Þ

with E defined in (3). Since the diagonal elements of the
zero temperature propagator in (12) have poles at p0 ¼ �E
where the off-diagonal elements also have nontrivial
contributions and since UCTðT; pÞ depends only on the
magnitude jp0j, it is clear that the matrix Ū in (18) arises
naturally from the momentum space Bogoliubov trans-
formation matrix (13) when we Fourier transform (14) to
the mixed space. We note that the factorizing matrix,
ŪðT;pÞ, is independent of the t coordinate in this case,
which we will see in the next section not to be the case for
0 < σ < 1. The factorizability of the thermal propagator in
the mixed space is a direct consequence of the Bogoliubov
transformation relating the finite temperature and zero
temperature propagators in the momentum space. As in
the momentum space, we note from (18) that
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ŪðT;pÞ ¼ Ū†ðT;pÞ ¼ ŪTðT;pÞ; ð19Þ

and that Ū satisfies the group property

Ū†ðT;pÞσ3ŪðT;pÞ ¼ σ3: ð20Þ

A. Derivation of the scalar thermal operator

As we have already pointed out, a matrix factorization of
the thermal propagator is always possible. In this sub-
section, we will discuss how a scalar thermal operator [see
(2)] arises from the matrix factorization in the case of the
closed time path. We note that we can write the matrix
factorization in (17) as (we are suppressing the arguments
for simplicity)

GðTÞ
CT ¼ ŪGðT¼0Þ

CT Ū ¼ ðŪσ3Þðσ3GðT¼0Þ
CT ÞŪ

¼ ðŪσ3ÞðŪðσ3GðT¼0Þ
CT Þ þ ½σ3GðT¼0Þ

CT ; Ū�Þ
¼ GðT¼0Þ

CT þ Ūσ3½σ3GðT¼0Þ
CT ; Ū�; ð21Þ

where we have used (19) and (20) in the last step. The zero
temperature part of the propagator comes out naturally in
(21) and, therefore, the second term must correspond to the
finite temperature correction to the propagator.
To proceed further, let us note some identities following

from (16),

GðT¼0Þ
þþ þGðT¼0Þ

−− ¼ GðT¼0Þ
þ− þGðT¼0Þ

−þ ;

SðEÞGðT¼0Þ
�� ¼ −GðT¼0Þ∓∓ ;

SðEÞGðT¼0Þ
�∓ ¼ −GðT¼0Þ

∓� : ð22Þ
Using these, it can be shown that

Ūσ3½σ3GðT¼0Þ
CT ; Ū�

¼ nBðEÞ
�
GðT¼0Þ

þþ þ GðT¼0Þ
−− GðT¼0Þ

þ− þ GðT¼0Þ
−þ

GðT¼0Þ
−þ þ GðT¼0Þ

þ− GðT¼0Þ
−− þ GðT¼0Þ

þþ

�

¼ nBðEÞð1 − SðEÞÞ
�
GðT¼0Þ

þþ GðT¼0Þ
þ−

GðT¼0Þ
−þ GðT¼0Þ

−−

�

¼ nBðEÞð1 − SðEÞÞGðT¼0Þ
CT ; ð23Þ

where SðEÞ denotes the reflection operator defined in (4).
As a result, we see from (21) that we can write the finite
temperature propagator in mixed space as

GðTÞ
CT ðt;pÞ ¼ ð1þ nBðEÞð1 − SðEÞÞÞGðT¼0Þ

CT ðt;pÞ
¼ OðTÞðEÞGðT¼0Þ

CT ðt;pÞ; ð24Þ

where OðTÞ coincides with the scalar thermal operator
defined in (2). A completely parallel analysis can be done
for the case σ ¼ 1 and leads to the fact that the scalar

thermal operator (2) naturally arises from the correspond-
ing Bogoliubov transformation matrix.
This analysis shows how the scalar thermal operator

naturally arises, in the mixed space, from the momentum
space Bogoliubov transformation matrix for closed time
path (as well as for σ ¼ 1). In the next section, we will do
the corresponding analysis for a general path for which
σ ≠ 0, 1.

IV. BOGOLIUBOV TRANSFORMATION
AND THE SCALAR THERMAL OPERATOR

FOR A GENERAL PATH

At finite temperature, the propagator for 0 ≤ σ ≤ 1 has
four nontrivial components. For σ ¼ 0, 1 this is also the
case at zero temperature [see, for example, (12) and (16)].
For σ ≠ 0, 1 (namely, when 0 < σ < 1), on the other hand,
the zero temperature propagator becomes diagonal, the
diagonal elements coinciding with those of the zero
temperature propagator of the closed time path (12) and
(16). For example, in the momentum space the components
of the zero temperature propagator have the forms

Gðσ;T¼0Þ
11 ðpÞ ¼ i

p2 −m2 þ iϵ
;

Gðσ;T¼0Þ
12 ðpÞ ¼ 0;

Gðσ;T¼0Þ
21 ðpÞ ¼ 0;

Gðσ;T¼0Þ
22 ðpÞ ¼ −

i
p2 −m2 − iϵ

; ð25Þ

while in the mixed space, they are given by

Gðσ;T¼0Þ
11 ðt;pÞ ¼ 1

2E
ðθðtÞe−iEt þ θð−tÞeiEtÞ;

Gðσ;T¼0Þ
12 ðt;pÞ ¼ 0;

Gðσ;T¼0Þ
21 ðt;pÞ ¼ 0;

Gðσ;T¼0Þ
22 ðt;pÞ ¼ 1

2E
ðθð−tÞe−iEt þ θðtÞeiEtÞ: ð26Þ

As a result, it is clear that a (well behaved) scalar thermal
operator acting on the trivial off-diagonal components in
(26) cannot generate the off-diagonal terms in the thermal
propagator in (8).
On the other hand, a matrix factorization of the thermal

propagator in terms of the zero temperature propagator
(even if it is diagonal) is always possible through the
Bogoliubov transformation matrix. We would like to
discuss next how the momentum space Bogoliubov trans-
formation matrix fails to lead to a scalar thermal operator in
the mixed space in this case and whether an analysis from
the point of view of the Bogoliubov transformation matrix
can suggest a possible way out for a scalar thermal operator
in the case of a general path 0 < σ < 1.

BOGOLIUBOV TRANSFORMATION AND THE THERMAL … PHYS. REV. D 97, 045015 (2018)

045015-5



It is known [12] that, for a general path, the finite
temperature and the zero temperature propagators (6) and
(26) respectively) are related by

Gðσ;TÞðpÞ ¼ UðσÞðT; pÞGðσ;T¼0ÞðpÞðUðσÞÞTðT;−pÞ; ð27Þ

where the 2 × 2 Bogoliubov transformation matrix has the
form

UðσÞðT; pÞ ¼ ðnBðjp0jÞÞ12
 

e
βjp0 j
2 eðσ−1

2
Þβp0

e−ðσ−1
2
Þβp0 e

βjp0 j
2

!
: ð28Þ

It follows from (28) that

ðUðσÞÞ†ðT; pÞ ¼ ðUðσÞÞTðT; pÞ
¼ UðσÞðT;−pÞ ¼ Uð1−σÞðT; pÞ: ð29Þ

As a result, the thermal propagator (27) can also be
written as

Gðσ;TÞðpÞ ¼ UðσÞðT; pÞGðσ;T¼0ÞðpÞUðσÞðT; pÞ: ð30Þ

The SOð2; 1Þ group property of the Bogoliubov trans-
formation, in the present case, is given by

ðUð1−σÞÞ†ðT; pÞσ3UðσÞðT; pÞ ¼ σ3: ð31Þ

This unusual relation of the group property, in this case, is a
consequence of the fact that the thermal Hilbert space of
states develops a nonstandard inner product for nontrivial σ
(for σ ≠ 1

2
) which leads to a modified definition of the

adjoint of an operator. (We refer the readers to [12] for
further details on this.)
We note from (28) that the Bogoliubov transformation

matrix, in this case, is not simply a function of jp0j, unlike
the Bogoliubov transformation matrix for closed time path
in (13), but depends on p0 as well. As a result, the Fourier
transform of (30) to the mixed space needs to be done
carefully (which we do in some detail in the Appendix).
The poles of the zero temperature propagator (25) are still
at p0 ¼ �E ¼ �ðp2 þm2Þ12. However, the off-diagonal
elements of the Bogoliubov transformation matrix in
(28) are now sensitive to the choice of the (p0) contour
of integration. The Fourier transform of (30) to mixed space

leads to a matrix factorization of the thermal propagator in
the mixed space of the form

Gðσ;TÞðt;pÞ
¼ ŪðσÞðT; t;pÞGðσ;T¼0Þðt;pÞðŪðσÞÞTðT;−t;−pÞ; ð32Þ

where

ŪðσÞðT; t;pÞ ¼ ðnBðEÞÞ12
 

e
βE
2 PðσÞðT; t; EÞ

PðσÞðT; t; EÞ e
βE
2

!

¼ ðŪðσÞÞTðT; t;pÞ: ð33Þ

Here PðσÞðT; t;pÞ denotes the function

PðσÞðT; t;pÞ ¼ θðtÞe−ðσ−1
2
ÞβE þ θð−tÞeðσ−1

2
ÞβE

¼ Pð1−σÞðT;−t;pÞ; ð34Þ

and we note that the matrix ŪðσÞðT; t;pÞ in (33) depends
only on the magnitude jpj. Using this, it follows that

ðŪðσÞÞTðT;−t;−pÞ ¼ ðŪð1−σÞÞTðT; t;−pÞ
¼ Ūð1−σÞðT; t;pÞ: ð35Þ

We note that the factorizing matrix, ŪðσÞðT; t;pÞ, now
depends on t unlike in the closed time path [see (18)]. As a
result, the finite temperature propagator, (32), in the mixed
space can also be written as

Gðσ;TÞðt;pÞ ¼ ŪðσÞðT; t;pÞGðσ;T¼0Þðt;pÞŪð1−σÞðT; t;pÞ:
ð36Þ

A. A possible scalar thermal operator representation

As we have emphasized repeatedly, since the zero
temperature propagator for 0 < σ < 1 has only two diago-
nal elements, a (well behaved) scalar thermal operator,
acting on the zero temperature propagator, cannot generate
all four components of the thermal propagator. From the
Bogoliubov transformation point of view, this can be seen
in the following way. Using the matrix form in (33) as well
as (34), we can work out (36) directly to give

Gðσ;TÞðt;pÞ ¼ ŪðσÞðT; t;pÞGðσ;T¼0Þðt;pÞŪð1−σÞðT; t;pÞ

¼ nBðEÞ
 

eβEGðσ;T¼0Þ
11 ðt;pÞ þ PðσÞPð1−σÞGðσ;T¼0Þ

22 ðt;pÞ e
βE
2 ðPð1−σÞGðσ;T¼0Þ

11 ðt;pÞ þ PðσÞGðσ;T¼0Þ
22 ðt;pÞÞ

e
βE
2 ðPðσÞGðσ;T¼0Þ

11 ðt;pÞ þ Pð1−σÞGðσ;T¼0Þ
22 ðt;pÞÞ eβEGðσ;T¼0Þ

22 ðt;pÞ þ PðσÞPð1−σÞGðσ;T¼0Þ
11 ðt;pÞ

!

≠ OðTÞ
scalar

 
Gðσ;T¼0Þ

11 ðt;pÞ 0

0 Gðσ;T¼0Þ
22 ðt;pÞ

!
; ð37Þ
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where OðTÞ
scalar is a scalar operator carrying the entire

temperature dependence [not necessarily the same one as
defined in (2)].
Since a direct thermal operator representation as in (2) is

not possible for 0 < σ < 1, let us ask if a modified thermal
operator representation, starting from the Bogoliubov
transformation, is possible which can be calculationally
simple. To study this question, let us note that the
Bogoliubov transformation matrix in (33) is, in fact,
factorizable as

ŪðσÞðT; t;pÞ ¼ V̄ðσÞðT; t;pÞAðσÞðT; t;pÞ; ð38Þ

where

V̄ðσÞðT; t;pÞ ¼ ðnBðEÞÞ12
 

e
βE
2 θð−tÞeðσ−1

2
ÞβE

θð−tÞeðσ−1
2
ÞβE e

βE
2

!

¼ ðnBðEÞÞ12ðe
βE
2 1þ θð−tÞeðσ−1

2
ÞβEσ1Þ

¼ ðV̄ðσÞÞTðT; t;pÞ; ð39Þ

and

AðσÞðT; t;pÞ ¼
 

1 θðtÞe−σβE
θðtÞe−σβE 1

!

¼ 1þ θðtÞe−σβEσ1
¼ ðAðσÞÞTðT; t;pÞ: ð40Þ

Here σ1 denotes the Pauli matrix. (Note that both V̄ðσÞ and
AðσÞ depend only on the magnitude jpj.)
As a result, we can write [see (32)]

Gðσ;TÞðt;pÞ¼ ŪðσÞðT;t;pÞGðσ;T¼0Þðt;pÞðŪðσÞÞTðT;−t;−pÞ
¼ V̄ðσÞðT;t;pÞḠðσÞðt;pÞV̄ðσÞðT;−t;−pÞ; ð41Þ

where

ḠðσÞðt;pÞ ¼ AðσÞðT; t;pÞGðσ;T¼0Þðt;pÞAðσÞðT;−t;−pÞ

¼
0
@Gðσ;T¼0Þ

11 ðt;pÞ eiðtþiσβÞE
2E

e−iðt−iσβÞE
2E Gðσ;T¼0Þ

22 ðt;pÞ

1
A: ð42Þ

This matrix has all four components nontrivial and we can
think of ḠðσÞðt;pÞ as a generalization of Gðσ;T¼0Þðt;pÞ with
temperature dependent off-diagonal elements which vanish
exponentially as T → 0 (β → ∞).
From (41), we see that we can now write

Gðσ;TÞðt;pÞ ¼ V̄ðσÞðT; t;pÞV̄ðσÞðT;−t;−pÞḠðσÞðt;pÞ
þ V̄ðσÞðT; t;pÞ½ḠðσÞðt;pÞ; V̄ðσÞðT;−t;−pÞ�:

ð43Þ

Each term on the right hand side of (43) can be worked out
easily using (39), the properties of the Pauli matrices and
(42) and lead to

Gðσ;TÞðt;pÞ ¼ ðð1þ nBðEÞÞ1þ nBðEÞeσβEσ1ÞḠðσÞðt;pÞ
− nBðEÞðSðEÞ þ eσβEσ1ÞḠðσÞðt;pÞ

¼ ð1þ nBðEÞð1 − SðEÞÞÞḠðσÞðt;pÞ
¼ OðTÞðEÞḠðσÞðt;pÞ: ð44Þ

Here SðEÞ is the reflection operator defined in (4) and
OðTÞðEÞ is the same scalar thermal operator as for the
closed time path in (2).
This analysis shows that while, for 0 < σ < 1, there is

no scalar thermal operator relating directly the finite
temperature propagator to the zero temperature one, the
same scalar thermal operator (as in the closed time path)
relates the finite temperature propagator to a generalized
form of the zero temperature propagator given in (42).
This generalized form of the zero temperature propaga-
tor, in fact, coincides with the zero temperature propa-
gator (16) of the closed time path when σ ¼ 0, thereby
unifying the description for all paths (for σ ¼ 1, the
propagator is the transpose of the one in closed time path
as we have already discussed). Having this scalar
thermal operator relation is indeed of great calculational
help and leads to a better understanding of various
phenomena.
Finally, we note here that the reflection operator SðEÞ as

well as the thermal operator OðTÞðEÞ in (2), (24) and (44)
are independent of the time variable. As a result, the entire t
dependence of Gðσ;TÞðt;pÞ in (44) is contained in the
generalized propagator ḠðσÞðt;pÞ defined in (42).
Consequently, if we were to inverse Fourier transform
Gðσ;TÞðt;pÞ in (44) to the p0 space, neither SðEÞ nor
OðTÞðEÞ would change and we can write

Gðσ;TÞðp0;pÞ ¼ OðTÞðEÞḠðσÞðp0;pÞ
¼ ð1þ nBðEÞð1 − SðEÞÞÞḠðσÞðp0;pÞ; ð45Þ

where the matrix components (i, j ¼ 1, 2) are given by

ḠðσÞ
ij ðp0;pÞ ¼

Z
∞

−∞
dt eip0t ḠðσÞ

ij ðt;pÞ: ð46Þ

Using (42), the momentum space components in (46) can
be calculated (with regularization where needed) in a
straight forward manner and have the forms
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ḠðσÞ
11 ðp0;pÞ ¼

i
p2
0 − E2 þ iϵ

;

ḠðσÞ
12 ðp0;pÞ ¼ 2π

e−σβE

2E
δðp0 þ EÞ;

ḠðσÞ
21 ðp0;pÞ ¼ 2π

e−σβE

2E
δðp0 − EÞ;

ḠðσÞ
22 ðp0;pÞ ¼ −

i
p2
0 − E2 − iϵ

: ð47Þ

We note that these components of ḠðσÞ
ij ðp0;pÞ do indeed

coincide with (12) when σ ¼ 0. Furthermore, substituting
these components into (45), we easily verify that this leads
to (6). This shows that a scalar thermal operator relation
holds in momentum space as well. However, as we have
pointed out earlier, calculations are much simpler in the
mixed space.

V. CONCLUSION

Calculations of thermal amplitudes are, in general,
simpler in the mixed space (t, p) [3], compared to the
zero temperature ones, although still quite involved since
the thermal propagators have nontrivial forms (both in the
imaginary time and the real time formalisms). We note that
the interaction vertices, in a thermal field theory, have no
temperature dependence although in the real time formal-
ism they have a 2 × 2 matrix structure (proportional to σ3).
In the imaginary time formalism, although the degrees

of freedom do not double, the Euclidean time interval
(0 ≤ τ ≤ β) is finite at finite temperature as opposed to zero
temperature where −∞ < τ < ∞. Therefore, a direct rela-
tion between finite temperature graphs and the correspond-
ing zero temperature ones seems unlikely. Nonetheless, the
existence of a multiplicative (scalar) thermal operator
relating the finite temperature and the zero temperature
propagators in the mixed space leads to a simple relation
between Feynman amplitudes graph by graph [16,17].
In the real time formalisms, the number of degrees of

freedom doubles and the propagators become 2 × 2 matri-
ces (both at zero and finite temperatures). The finite
temperature propagators are related to the zero temperature
ones through a temperature dependent 2 × 2 Bogoliubov
transformation matrix in the momentum space. Since the
interaction vertices do not carry temperature dependence,
this implies that in the real time formalisms there is, in
principle, a direct matrix relation between a thermal graph
and the corresponding zero temperature graph in momen-
tum space. This is, however, not very useful calculationally
since keeping track of the matrix indices becomes tedious
in a complicated Feynman graph.
On the other hand, it was shown [16,17] that, in the

closed time path (σ ¼ 0), the finite temperature (matrix)
propagator in the mixed space is, in fact, related to the
zero temperature (matrix) propagator by a multiplicative

scalar thermal operator. This also turns out to be the
case for σ ¼ 1. Therefore, in these two cases, a thermal
Feynman graph is simply related to the corresponding
zero temperature one by a product of the (multiplica-
tive) scalar operators carrying the entire temperature
dependence. This is not only very useful calculationally,
but is of considerable help in all order proofs of certain
results at finite temperature [18–23]. It had also been
shown [16] that such a factorization of the thermal
propagator (and, therefore, of thermal Feynman graphs)
in terms of a multiplicative scalar thermal operator is
not possible for other real time formalisms correspond-
ing to 0 < σ < 1.
In this paper, we have shown how the scalar thermal

operator, in the case of closed time path (σ ¼ 0) as well as
σ ¼ 1, in the mixed space, arises from the momentum
space 2 × 2 Bogoliubov transformation matrix in a thermal
field theory. Starting with the factorization in terms of the
Bogoliubov transformation matrix in momentum space, we
have also shown why a scalar thermal operator representa-
tion fails in the mixed space when 0 < σ < 1. On the other
hand, a systematic analysis following from the Bogoliubov
transformation matrix shows that a scalar thermal operator
acting on a limiting form of the zero temperature propa-
gator can give rise to the thermal propagator in this
case (0 < σ < 1) which can be calculationally useful.
Furthermore, this limiting form of the zero temperature
propagator coincides with that of the closed time path
when σ ¼ 0 unifying the thermal operator representation
for all paths. This analysis also shows the existence of a
scalar thermal operator relation in the momentum space.

ACKNOWLEDGMENTS

A. D. (Atri Deshamukhya) would like to thank, for
hospitality, IOP, Bhubaneswar, where part of this work
was done. S. P. acknowledges financial support received
through his J. C. Bose fellowship.

APPENDIX: DERIVATION OF THE
FACTORIZATION MATRIX IN THE MIXED

SPACE FROM THE BOGOLIUBOV
TRANSFORMATION MATRIX

In this appendix, we give a derivation of how the
factorizing matrix ŪðσÞðT; t;pÞ in the mixed space [see
(32)–(34)] arises from the more fundamental Bogoliubov
transformation matrix UðσÞðT; pÞ in the momentum space
defined in (27) and (28). Denoting the matrix elements of

UðσÞðT; pÞ in (28) as UðσÞ
ij , i, j ¼ 1, 2 for simplicity

[without writing explicitly the dependence on ðT; pÞ],
the matrix elements of the finite temperature propagtor
in (30) can be written as (recall that the propagator
Gðσ;T¼0ÞðpÞ is a diagonal matrix)
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Gðσ;TÞ
11 ðpÞ¼UðσÞ

11 G
ðσ;T¼0Þ
11 ðpÞUðσÞ

11 þUðσÞ
12 G

ðσ;T¼0Þ
22 ðpÞUðσÞ

21 ;

Gðσ;TÞ
12 ðpÞ¼UðσÞ

11 G
ðσ;T¼0Þ
11 ðpÞUðσÞ

12 þUðσÞ
12 G

ðσ;T¼0Þ
22 ðpÞUðσÞ

22 ;

Gðσ;TÞ
21 ðpÞ¼UðσÞ

21 G
ðσ;T¼0Þ
11 ðpÞUðσÞ

11 þUðσÞ
22 G

ðσ;T¼0Þ
22 ðpÞUðσÞ

21 ;

Gðσ;TÞ
22 ðpÞ¼UðσÞ

21 G
ðσ;T¼0Þ
11 ðpÞUðσÞ

12 þUðσÞ
22 G

ðσ;T¼0Þ
22 ðpÞUðσÞ

22 :

ðA1Þ

We note from (28) that the matrix elements, UðσÞ
ij , of the

Bogoliubov transformation matrix are functions only of p0

(and, of course, T). Furthermore, the diagonal components
of the zero temperature propagator, given in (25), can also
be written as (from the point of view of taking the Fourier
transform)

Gðσ;T¼0Þ
11 ðpÞ ¼ i

ðp0 − Eþ iϵÞðp0 þ E − iϵÞ ;

Gðσ;T¼0Þ
22 ðpÞ ¼ −

i
ðp0 − E − iϵÞðp0 þ Eþ iϵÞ ; ðA2Þ

with E defined in (3). The two components of the
propagator in (A2) have poles at p0 ¼ �ðE − iϵÞ and p0 ¼
�ðEþ iϵÞ respectively.
The Fourier transforms of the two diagonal components

in (A2) with respect to p0 leads to the components,

Gðσ;T¼0Þ
11 ðt;pÞ and Gðσ;T¼0Þ

22 ðt;pÞ, of the zero temperature
propagator in the mixed space given in (26). We note next,
from (A2), that the Fourier transform of a product of
functions together with the diagonal components can be
obtained simply as

Z
dp0

2π
e−ip0tfðp0ÞGðσ;T¼0Þ

11 ðpÞgðp0Þ

¼ 1

2E
ðθðtÞfðEÞe−iEtgðEÞ þ θð−tÞfð−EÞeiEtgð−EÞÞ

¼ ðθðtÞfðEÞ þ θð−tÞfð−EÞÞ 1

2E
ðθðtÞe−iEt þ θð−tÞeiEtÞ

× ðθðtÞgðEÞ þ θð−tÞgð−EÞÞ
¼ fðt; EÞGðσ;T¼0Þ

11 ðt;pÞgðt; EÞ; ðA3Þ

and similarly,

Z
dp0

2π
e−ip0tfðp0ÞGðσ;T¼0Þ

22 ðpÞgðp0Þ

¼ fðt;−EÞGðσ;T¼0Þ
22 ðt;pÞgðt;−EÞ: ðA4Þ

Here we have identified

fðt; EÞ ¼ θðtÞfðEÞ þ θð−tÞfð−EÞ;
gðt; EÞ ¼ θðtÞgðEÞ þ θð−tÞgð−EÞ: ðA5Þ

If we write the finite temperature propagator in
the mixed space, Gðσ;TÞðt;pÞ, in the factorized form
ŪðσÞGðσ;T¼0Þðt;pÞŨðσÞ [see, for example, (36), namely,
the matrices on the left and right do not have to be the
same unlike in the case of the closed time path (17)], the
components take the form

Gðσ;TÞ
11 ðt;pÞ ¼ ŪðσÞ

11 G
ðσ;T¼0Þ
11 ðt;pÞŨðσÞ

11

þ ŪðσÞ
12 G

ðσ;T¼0Þ
22 ðt;pÞŨðσÞ

21 ;

Gðσ;TÞ
12 ðt;pÞ ¼ ŪðσÞ

11 G
ðσ;T¼0Þ
11 ðt;pÞŨðσÞ

12

þ ŪðσÞ
12 G

ðσ;T¼0Þ
22 ðt;pÞŨðσÞ

22 ;

Gðσ;TÞ
21 ðt;pÞ ¼ ŪðσÞ

21 G
ðσ;T¼0Þ
11 ðt;pÞŨðσÞ

11

þ ŪðσÞ
22 G

ðσ;T¼0Þ
22 ðt;pÞŨðσÞ

21 ;

Gðσ;TÞ
22 ðt;pÞ ¼ ŪðσÞ

21 G
ðσ;T¼0Þ
11 ðt;pÞŨðσÞ

12

þ ŪðσÞ
22 G

ðσ;T¼0Þ
22 ðt;pÞŨðσÞ

22 : ðA6Þ

Each component of the finite temperature propagator
in mixed space is, of course, the Fourier transform of
the corresponding component in the momentum space,
namely,

Gðσ;TÞ
ij ðt;pÞ ¼

Z
dp0

2π
e−ip0tGðσ;TÞ

ij ðpÞ: ðA7Þ

Therefore, using the relations in (A1) and (A3)–(A5), we
can determine

ŪðσÞ
11 ¼ θðtÞUðσÞ

11 ðEÞ þ θð−tÞUðσÞ
11 ð−EÞ

¼ ðnBðEÞÞ12e
βE
2 ;

ŪðσÞ
12 ¼ θðtÞUðσÞ

12 ð−EÞ þ θð−tÞUðσÞ
12 ðEÞ

¼ ðnBðEÞÞ12ðθðtÞe−ðσ−1
2
ÞβE þ θð−tÞeðσ−1

2
ÞβEÞ;

ŪðσÞ
21 ¼ θðtÞUðσÞ

21 ðEÞ þ θð−tÞUðσÞ
21 ð−EÞ

¼ ðnBðEÞÞ12ðθðtÞe−ðσ−1
2
ÞβE þ θð−tÞeðσ−1

2
ÞβEÞ

¼ ŪðσÞ
12 ;

ŪðσÞ
22 ¼ θðtÞUðσÞ

22 ð−EÞ þ θð−tÞUðσÞ
22 ðEÞ

¼ ðnBðEÞÞ12e
βE
2 ¼ ŪðσÞ

11 : ðA8Þ

Similarly, we can show that
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ŨðσÞ
11 ¼ ðnBðEÞÞ12e

βE
2 ;

ŨðσÞ
12 ¼ ðnBðEÞÞ12ðθðtÞeðσ−1

2
ÞβE þ θð−tÞe−ðσ−1

2
ÞβEÞ;

ŨðσÞ
21 ¼ ðnBðEÞÞ12ðθðtÞeðσ−1

2
ÞβE þ θð−tÞe−ðσ−1

2
ÞβEÞ;

¼ ŨðσÞ
12 ;

ŨðσÞ
22 ¼ ðnBðEÞÞ12e

βE
2 ¼ ŨðσÞ

11 : ðA9Þ

Equation (A8) shows that the matrix ŪðσÞ in (33) does
indeed correspond to the matrix obtained from a Fourier
transformation of (30) to the mixed space while (A9)
identifies ŨðσÞ ¼ Ūð1−σÞ, so that the factorization in (36)
follows from the Fourier transform of the Bogoliubov
transformation relation (30).
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