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We give a detailed analysis of an Abelianized gauge field model in which a Rarita-Schwinger spin-3
2
field

is directly coupled to a spin-1
2
field. The model permits a perturbative expansion in powers of the gauge field

coupling, and from the Feynman rules for the model we calculate the chiral anomaly.
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I. INTRODUCTION

A long-standing question in the theory of Rarita-
Schwinger spin-3

2
fields is whether, apart from the context

of OðNÞ supergravity theories [1], they can be consistently
gauged. There are several motivations for investigating this
question. First, despite three decades of effort at grand
unification of the particle forces, a satisfactory theory has not
been found. The conventional assumption is that in for-
mulating grand unification models, gauge anomalies must
be canceled within the fermionic spin-1

2
sector. If spin-3

2

theories can be gauged, then additional avenues for model
building are opened, in which anomalies cancel between the
spin-3

2
and spin-1

2
sectors. Second, the literature on gauge

anomalies in spin-3
2
theories is perplexing. While there are a

number of calculations of gauge anomalies in the spin-3
2
case

[2] for general gauge groups including SUðNÞ, there are no
supergravity theories in which SUðNÞ is gauged, raising the
question ofwhether there is someversion of the spin-3

2
theory

that admits a consistent gaugingwith a general gauge group.
Finally, the author has proposed [3] a unification model
based on an SUð8Þ gauge group, in which gauge anomalies
are canceled between the fermionic spin-3

2
and spin-1

2
sectors,

raising in this specific context the question of whether spin-3
2

theories can be consistently gauged.
The classic papers of Johnson and Sudarshan [4] and Velo

andZwanziger [5] on spin-3
2
theory foundproblems, including

nonpositivity of anticommutators and superluminalmodes, in
the massive field case. Since from a modern point of view
masses are never put in “by hand,” but insteadmust arise from

spontaneous symmetry breaking, the author undertook a
detailed study [6,7] of massless spin-3

2
theory, making

extensive use of the left chiral reduction to facilitate the
calculations. This work showed that in the massless case all
modes are luminal, and that by adding an auxiliary field, the
gauged theory could be extended to have a full off-shell
fermionic gauge invariance. A detailed investigation of the
extended theory by the author, Henneaux, and Pais [8]
showed that the extended model still has problems. When
covariant gauge fixing is correctly implemented, the extended
model has nonpositive anticommutators, and more seriously
from the point of view of quantization, the Dirac brackets in
the constrained theory have a weak field singularity in the
massless case that is shifted from the spin-3

2
bracket to the

auxiliary field bracket but is not removed.
With this motivation, in the present paper we study a

gauged model based on the specific manner in which
Rarita-Schwinger fields enter into the model of [3],
involving a direct coupling of the spin-3

2
field to a spin-1

2

field, which preserves chiral symmetry and so is not a
conventional mass term. We find that although the prob-
lems of nonpositive anticommutators and superluminal
modes appear in this model, as discussed in more detail
in the concluding section, the more serious problem of a
weak field singularity is eliminated. Thus the quantized
model admits a perturbation expansion in the gauge field
coupling and allows calculation of the gauge anomaly.
This paper is organized as follows. The first part,

comprising Secs. II–IX, introduces the coupled model
and reprises in this context the analysis of Refs. [6–8].
In Sec. II we recall how the chiral symmetry preserving
spin-3

2
to spin-1

2
coupling, but not a chiral symmetry

breaking mass term, arises in the model of [3]. In
Sec. III we abstract from this model a simplified,
Abelianized version, and we discuss the equations of
motion and constraints in four-component form. In
Sec. IV we give the left chiral reduction of the model.
In Sec. V we analyze the canonical momenta, constraint
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brackets, and counting of degrees of freedom. Zero external
field plane wave solutions are studied in Sec. VI, and the
wave velocity in an external gauge field is studied by the
method of characteristics in Sec. VII. In Sec. VIII we
derive the canonical brackets, the Dirac brackets, and the
Hamiltonian equations of motion, and in Sec. IX we
formulate path integral quantization.
The second part of this paper, comprising Secs. X–XIII, is

devoted to the calculation of the chiral anomaly in themodel.
In Sec. X we give a preliminary, heuristic discussion of the
ghost contribution to the chiral anomaly, which suggests that
it is equal to −1 times the standard spin-1

2
chiral anomaly. In

Sec. XI we derive the Feynman rules for propagators and
vertex parts in the coupledmodel and give theWard identities
that these obey in Sec. XII. Section XIII is devoted to chiral
anomaly calculations. In Sec. XIII A, we derive the standard
spin-1

2
chiral anomaly by the shiftmethod. InSecs.XIII B and

XIII C we give two alternative calculations of the fermion
loop contribution to the coupledmodel chiral anomaly. These
calculations show this is equal to 5 times the standard spin-1

2

chiral anomaly, just as in the uncoupled limit of the model.
Thus, if the ghost analysis of Sec. X is confirmed by further
study, the chiral anomaly in the coupled model takes a value
of 4 times that of the standard spin-1

2
chiral anomaly, and

evolves continuously from the uncoupled limit to the case of
nonzero coupling. A brief discussion of the results of this
paper and directions for future work are given in Sec. XIV.
Appendix A contains a summary of notational conventions
and useful identities, and Appendix B gives details of the
calculation of plane wave solutions.

II. THE NON-ABELIAN MODEL

Although most of this paper focuses on an Abelianized
model, we begin by sketching the non-Abelian SUð8Þ
gauge field model [3] from which it is abstracted. This
model has the field content shown in Table I. Because of the

group representation content, no SUð8Þ invariant Yukawa
type coupling of the Rarita-Schwinger field ψμ to the scalar
field ϕ can be constructed. That is, if one attempts to write
down a term trilinear in ψ̄μ, ψμ, and ϕ, which would
become a Rarita-Schwinger mass after the scalar field
acquires a vacuum expectation value, there is no way to
contract the internal symmetry indices shown in Table I to
form an SUð8Þ invariant. So gauge symmetry forbids the
appearance of a conventional Rarita-Schwinger mass term.
However, one can [9] write down a gauge invariant trilinear
coupling of the Rarita-Schwinger field and the scalar field
to a linear combination λ of the two representation 28 fields
λ1;2 of the model,

λ̄½αβ�γνψγ
νϕ

�
½αβγ�; ð1Þ

and its conjugate, which becomes a protomass term

λ̄½αβ�γνψγ
νϕ̄

�
½αβγ� − ψ̄νγγ

νλ½αβ�ϕ̄½αβγ� ð2Þ

when the scalar field ϕ develops an expectation ϕ̄. We use
the term “protomass” because the coupling of Eq. (2) still
couples left-chiral field components to left-chiral compo-
nents, rather than to right-chiral components as in a Dirac
mass term. For ψμ to develop a mass that couples left-chiral
to right-chiral components, a further stage of dynamical
symmetry breaking (not the focus of this paper) will be
needed. We note that both Eqs. (1) and (2) already break the
free Rarita-Schwinger field fermionic gauge symmetry
ψμ → ψμ þ ∂μϵ, so there is no change in the degree of
freedom counting when the model is gauged by replacing
the derivative ∂μ by the gauge-covariant derivative
Dμ ¼ ∂μ þ gAμ, with Aμ an anti-Hermitian gauge field.
This avoids the vexing issue of a discontinuity in the degree
of freedom counting when a Rarita-Schwinger field is
gauged, which is analyzed in detail in [8].
The SUð8Þ gauge model with field content set out in

Table I has a number of interesting properties, whichmake it
special, and possibly unique. (1) Although not supersym-
metric for nonzero gauge coupling, the model has boson-
fermion balance, that is, the numbers of boson and fermion
degrees of freedom are the same. This can play a role in
cancellation of leading order contributions to the cosmo-
logical constant. (2) The model cancels SUð8Þ gauge
anomalies between the two multiplets separated by the
horizontal line in Table I. The multiplet containing the
graviton and gravitino is anomalous by itself; the second
multiplet containing two 28 fermions and a complex spin 0
boson is needed to cancel anomalies. (3) Themodel is highly
frustrated, in the sense that many couplings of the spin 0
field to the fermions allowed by dimensional counting are
forbidden by the SUð8Þ gauge symmetry. Thus, as explained
above, a conventional Rarita-Schwinger mass term is for-
bidden, with only a chirality-preserving coupling of the
spin-3

2
field to spin-1

2
fields allowed.Additionally, noYukawa

TABLE I. Field content of the model of [3]. Square brackets
indicate complete antisymmetrization of the enclosed indices.
The indices α, β, γ range from 1 to 8, and the index A runs from 1
to 63. The top and bottom sections of the table each contain
bosons and fermions satisfying the requirement of boson-fermion
balance, with the helicity counts for top and bottom 128 and 112,
respectively.

Field Spin SUð8Þ representation Helicities

hμν 2 1 2
ψα
μ Weyl 3/2 8 16

AA
μ 1 63 126

χ½αβγ� Weyl 1/2 56 112

λ1½αβ� Weyl 1/2 28 56
λ2½αβ� Weyl 1/2 28 56
ϕ½αβγ� Complex 0 56 112
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couplings of the spin 0 field to the spin-1
2
fields are allowed

by the gauge symmetry. This means that the model has only
one dimensionless coupling constant, the coefficient of the
coupling term of Eqs. (1) and (2). Thus the theory is highly
“calculable” in the sense that most of its phenomenological
consequences will be calculable numbers as opposed to
renormalizable couplings and masses. We suspect also that
frustration may provide a way to generate a scale hierarchy
in the absence of full supersymmetry, since many couplings
in the effective phenomenological Lagrangian can only
appear in higher orders of perturbation theory. (4) The
gauge group SUð8Þ is just large enough to accommodate the
standard model gauge group with an additional “techni-
color” gauging, which can lead to generation of a composite
standard model Higgs field. (5) The model contains a hint
of a possible connection with the E8 root lattice, since the
helicity counts in the two multiplets of Table I are 128 and
112, suggesting that there may be a relation to the 240
shortest vectors of the E8 lattice. This is a direction to be
explored to find a further unification of the quantum field
theoretic SUð8Þ model with general relativity. Whether this
possibility, and others stemming from the features just
enumerated, is realized can only be determined by a detailed
study of the consequences of the model, which is the
program of which this paper is a part.

III. THE ABELIANIZED MODEL

We now abstract from the non-Abelian model discussed
in Sec. II an Abelianized model, in which the SUð8Þ gauge
field of Table I is replaced by an Abelian gauge field Aμ,
which is used to gauge the Rarita-Schwinger field ψμ and
the spin-1

2
field λ. To reflect the properties of the non-

Abelian model of Sec. I, we include no bare mass term for
the Rarita-Schwinger field, but incorporate a direct cou-
pling of ψμ to λ as in Eq. (2), relabeling the scalar field
expectation ϕ̄, which now carries no internal symmetry
indices, as a mass m. Thus, using the fermion field
normalization convention of the text of Freedman and
Van Proeyen [10] (which differs by an overall factor of 2
in the Lagrangian from the convention we used in our
earlier papers), we start from the Lagrangian density

S ¼ SðψμÞ þ SðλÞ þ Sinteraction;

SðψμÞ ¼
Z

d4xψ̄μRμ;

Rμ ¼ iϵμηνργ5γηDνψρ ¼ −γμνρDνψρ;

Dνψρ ¼ ð∂ν þ gAνÞψρ; ψ̄μ ¼ ψ†
μiγ

0;

SðλÞ ¼ −
Z

d4xλ̄γνDνλ;

Dνλ ¼ ð∂ν þ gAνÞλ; λ̄ ¼ λ†iγ0;

Sinteraction ¼ m
Z

d4xðλ̄γνψν − ψ̄νγ
νλÞ: ð3Þ

Varying the action with respect to ψ̄μ and λ̄ we get the
Euler-Lagrange equations of motion

Rμ ¼ mγμλ;

γνDνλ ¼ mγνψν: ð4Þ

The 0 component of the first line of Eq. (4) involves no
time derivatives, and so gives the primary constraint of the
theory,

−iγ5ϵenrγeDnψ r ¼ mγ0λ: ð5Þ

We see that in the limit m → ∞, this constraint forces λ to
vanish, a feature that will reappear later. Since ðγ0Þ2 ¼ −1,
Eq. (5) can be rewritten so that the term containing λ is a
spinor rather than the direct product of the time component
of a four-vector with a spinor,

0 ¼ χ̃ ≡ −iγ5γ0ϵenrγeDnψ r −mλ; ð6Þ

a form that will be used in Sec. X in discussing how the
constraints enter the path integral.1

Contracting Dν with the first line of Eq. (4), using
½Dμ; Dν� ¼ gð∂μAν − ∂νAμÞ ¼ gFμν, and substituting the λ
equation of motion gives the secondary constraint

−gγμνρFμνψρ ¼ 2m2γνψν: ð7Þ

We see that in the limit gFμν/m2 → 0, this constraint
reduces to the simplified form 0 ¼ γνψν, which is familiar
as a gauge constraint in the free Rarita-Schwinger theory.
The four-component covariant equations of this section will
be useful when we turn to path integral quantization and
Feynman rules, but for further analysis it will be simpler to
work with the left-chiral reduction of the covariant equa-
tions, to which we proceed next.

IV. LEFT CHIRAL REDUCTION

Since the left-chiral and right-chiral components are
uncoupled, for many calculations it is simpler to work with
the left-chiral reduction of the model. This is obtained by
converting the action to two-component form for the left-
chiral components of ψμ and λ, using the Dirac matrices
and left-chiral projector PL given in Appendix A of [6].
Defining the two-component four-vector spinor Ψμ and its

1The ψr term in Eq. (6) is a linear combination of a Lorentz
spinor and a Lorentz tensor-spinor, but using the ψμ equation of
motion in Eq. (4) it is easy to see that the latter vanishes
identically, and so does not give an additional constraint: Form
Tμν ≡ γνRμ þ γμRν ¼ 2mημνλ. The Lorentz tensor-spinor part of
Tμν is Tμν − 1

4
ημνTθ

θ ¼ 0. But T00 equals −2 times the ψr term in
Eq. (6), so the Lorentz tensor-spinor part of Eq. (6) vanishes by
virtue of the Euler-Lagrange equations.
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adjoint Ψ†
μ, and the two-component spinor l and its

adjoint l†, by

PLψμ ¼
�Ψμ

0

�
;

ψ†
μPL ¼ ðΨ†

μ 0 Þ;

PLλ ¼
�
l

0

�
;

λ†PL ¼ ðl† 0 Þ; ð8Þ

the action is reduced to its left-chiral part, with Dirac
gamma matrices replaced by Pauli spin matrices. We find

S ¼ SðΨμÞ þ SðlÞ þ Sinteraction;

SðΨμÞ ¼
Z

d4xð−Ψ†
0σ⃗ · D⃗ × Ψ⃗þ Ψ⃗† · σ⃗ × D⃗Ψ0

þ Ψ⃗† · D⃗ × Ψ⃗ − Ψ⃗† · σ⃗ ×D0Ψ⃗Þ;

SðlÞ ¼ i
Z

d4xl†ðD0 − σ⃗ · D⃗Þl;

Sinteraction ¼ im
Z

d4xð−l†Ψ0 þ l†σ⃗ · Ψ⃗þΨ†
0l − Ψ⃗† · σ⃗lÞ:

ð9Þ

Varying S with respect to Ψ⃗† and l† gives the Euler-
Lagrange equations

0 ¼ V⃗ ≡ σ⃗ × D⃗Ψ0 þ D⃗ × Ψ⃗ − σ⃗ ×D0Ψ⃗ − imσ⃗l;

0 ¼ ðD0 − σ⃗ · D⃗Þlþmðσ⃗ · Ψ⃗ − Ψ0Þ; ð10Þ

while varying S with respect to Ψ†
0 gives the primary

constraint in the form

0 ¼ χ ≡ σ⃗ · D⃗ × Ψ⃗ − iml: ð11Þ

Contracting the first line of Eq. (10) with g−1D⃗, using
D⃗ × D⃗ ¼ −igB⃗, ½D⃗;D0� ¼ −igE⃗, and D0χ ¼ 0, gives the
secondary constraint in the form

0 ¼ σ⃗ · B⃗Ψ0 − ðB⃗þ σ⃗ × E⃗Þ · Ψ⃗þ g−1mðD0 − σ⃗ · D⃗Þl:
ð12Þ

Substituting the second line of Eq. (10) (the Euler-
Lagrange equation for l) into Eq. (12) turns the secondary

constraint into an equation relating Ψ0 to Ψ⃗,

Ψ0 ¼Ψ0½Ψ⃗� ¼ ðm2þ gσ⃗ · B⃗Þ−1½gðB⃗þ σ⃗× E⃗Þ · Ψ⃗þm2σ⃗ · Ψ⃗�:
ð13Þ

In the zero field limit, this reduces to Ψ0 ¼ σ⃗ · Ψ⃗, which
is the left-chiral projection of the four-component rela-
tion γνψν ¼ 0.
A simplified form of the equation of motion for Ψ⃗ is

obtained by forming σ⃗ × V⃗ − iV⃗, which gives

D0Ψ⃗¼ D⃗Ψ0þ
1

2
½−σ⃗× ðD⃗× Ψ⃗Þþ iD⃗× Ψ⃗−mσ⃗l�; ð14Þ

and substituting σ⃗χ, which becomes

−σ⃗ × ðD⃗ × Ψ⃗Þ ¼ iD⃗ × Ψ⃗þmσ⃗l; ð15Þ

leading to

D0Ψ⃗ ¼ D⃗Ψ0 þ iD⃗ × Ψ⃗: ð16Þ

As a check, we can verify that Eq. (16) together with the
primary constraint of Eq. (11) imply the l field equation of

motion, with Ψ0 related to Ψ⃗ by Eq. (13). Form D⃗ ×D0Ψ⃗
using Eq. (16), and then form imD0l using the primary
constraint; combining these and some algebra then gives

0 ¼ im½ðD0 − σ⃗ · D⃗Þlþmðσ⃗ · Ψ⃗ −Ψ0½Ψ⃗�Þ�: ð17Þ

The fact that the l field equation of motion is a conse-

quence of the Ψ⃗ field equation of motion and constraints
will be used subsequently to expedite the analysis.

V. CANONICAL MOMENTA, CONSTRAINT
BRACKETS, AND COUNTING OF

DEGREES OF FREEDOM

The canonical momentum P⃗ conjugate to Ψ⃗ and the
canonical momentum P conjugate to l are defined by

P⃗ ¼ ∂LS

∂ð∂0Ψ⃗Þ
; P ¼ ∂LS

∂ð∂0lÞ
: ð18Þ

From the action of Eq. (9) written as

S ¼
Z

d4xð−Ψ⃗† × σ⃗ · ∂0Ψ⃗þ il†∂0l

þ terms with no time derivativesÞ; ð19Þ

we see that the canonical momenta are given by

P⃗ ¼ Ψ⃗† × σ⃗; P ¼ −il†; ð20Þ

which can be inverted to give

Ψ⃗† ¼ 1

2
ðiP⃗ − P⃗ × σ⃗Þ; l† ¼ iP: ð21Þ
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From the canonical bracket definitions [11]

½Ψiαðx⃗Þ; Pjβðy⃗Þ� ¼ −δijδαβδ3ðx⃗ − y⃗Þ;
½lαðx⃗Þ; Pβðy⃗Þ� ¼ −δαβδ3ðx⃗ − y⃗Þ ð22Þ

(with α, β denoting spinor indices, which will be sup-
pressed henceforth), we find that the primary constraint

χ ¼ σ⃗ · D⃗ × Ψ⃗ − iml and its adjoint χ† ¼ Ψ⃗† × σ⃗ · D⃖þ
iml† ¼ P⃗ · D⃖ −mP obey the bracket2

½χðx⃗Þ; χ†ðy⃗Þ� ¼ −iðm2 þ gσ⃗ · B⃗ðx⃗ÞÞδ3ðx⃗ − y⃗Þ: ð23Þ

This shows that irrespective of whether the external fields
are zero or nonzero, the primary constraints χ; χ† are second
class in the Dirac terminology. As a consequence of this,
the degree of freedom counting does not change discon-
tinuously when the external field is turned on or off, and
Eq. (23) also shows that the constraint bracket is invertible
for small enough g when m ≠ 0, allowing the interacting
theory to be developed in a perturbation expansion.
We can now apply the standard formula for counting

degrees of freedom [11],

degrees of freedom ¼ 1

2
ðN − 2F − SÞ; ð24Þ

in which N is the number of real canonical variables, F is
the number of real first class constraints, and S is the
number of real second class constraints. In our case we have
NΨ⃗ ¼ 3 × 2 × 2 ¼ 12, Nl ¼ 2 × 2 ¼ 4, F ¼ 0, and
S ¼ 2 × 2 ¼ 4, giving 6 for the number of degrees of

freedom for the combined left-chiral Ψ⃗ and l fields. This
counting of degrees of freedom will be confirmed in the
next section.

VI. ZERO EXTERNAL FIELD PLANE
WAVE SOLUTIONS

Let us now consider the case when the external fields B⃗

and E⃗ are zero, so that the equations of motion for Ψ⃗ and l
become linear partial differential equations. We look for
plane wave solutions of the form

Ψ⃗ ¼ C⃗eiΩtþiKz; l ¼ LeiΩtþiKz: ð25Þ

With this ansatz, and using the zero field limit Ψ0 ¼ σ⃗ · Ψ⃗
of Eq. (13), the equations of motion and constraints become

ΩC⃗ ¼ Kẑ σ⃗ ·C⃗þ iKẑ × C⃗;

iKσ⃗ · ẑ × C⃗ ¼ imL;

ðΩ − σ3KÞL ¼ 0; ð26Þ

with ẑ a unit vector along the z axis. Since we saw above

that the l equation of motion is a consequence of the Ψ⃗
equation of motion and constraints, we expect the third
equation in Eq. (26) to be a consequence of the first two,
and we can verify this explicitly. Taking the cross product
of ẑ with the first equation, and then contracting with iKσ⃗,
we get

ΩiKσ⃗ · ẑ × C⃗ ¼ −K2σ⃗ · ðẑ × ðẑ × C⃗ÞÞ: ð27Þ

Substituting the second equation into the left-hand side,
this becomes

ΩimL ¼ −K2σ⃗ · ðẑ × ðẑ × C⃗ÞÞ: ð28Þ

But multiplying the second equation byKσ3 ¼ Kσ⃗ · ẑ gives

imKσ3L ¼ iK2ðσ⃗ · ẑÞðσ⃗ · ẑ × C⃗Þ ¼ −K2σ⃗ · ðẑ × ðẑ × C⃗ÞÞ:
ð29Þ

Subtracting Eq. (29) from Eq. (28) gives

imðΩ − Kσ3ÞL ¼ 0; ð30Þ

which when m ≠ 0 gives the third equation in Eq. (26).
Hence in looking for zero external field plane wave
solutions we need only solve the first two equations
in Eq. (26).
We now consider two cases: (i) C1 ¼ C2 ¼ 0 and

C3 ≠ 0, and (ii) C1 ≠ 0 or C2 ≠ 0 with C3 either zero or
nonzero, with the x, y, z axes numbered, respectively,
1, 2, 3. Writing C⃗⊥ ¼ C1x̂þ C2ŷ, case (i) corresponds to
C⃗⊥ ¼ 0 and case (ii) corresponds to C⃗⊥ ≠ 0.
We begin with case (i), which is easier to analyze. The

second equation of Eq. (26) becomes L ¼ 0, while the first
equation, after factoring away ẑ, becomes

ΩC3 ¼ Kσ3C3; ð31Þ

with the solutions

C3 ¼ χ↑; Ω ¼ K;

C3 ¼ χ↓; Ω ¼ −K; ð32Þ

where we have introduced the notation for Pauli spinors

2Since the standard Dirac theory of constraints assumes a
Lagrangian with no explicit time dependence [11], and hence
time-independent constraints, we will take the external fields E⃗; B⃗
to be time-independent. This restriction can be avoided by
treating the gauge fields, as well as the fermions, as dynamical
quantized fields.
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χ↑ ¼
�
1

0

�
;

χ↓ ¼
�
0

1

�
: ð33Þ

Next we examine case (ii), for which the transverse part
of the first equation of Eq. (26) becomes

Ωðx̂C1 þ ŷC2Þ ¼ iKðŷC1 − x̂C2Þ ð34Þ

with the solutions

C2 ¼ iC1; Ω ¼ K;

C2 ¼ −iC1; Ω ¼ −K: ð35Þ

In terms of C1 and C2, the second equation of Eq. (26)
becomes

L ¼ K
m
ðσ2C1 − σ1C2Þ: ð36Þ

When C1 ¼ χ↑ for Ω ¼ K, or C1 ¼ χ↓ for Ω ¼ −K,
Eq. (36) gives L ¼ 0. But when C1 ¼ χ↓ for Ω ¼ K,
Eq. (36) gives

L ¼ −i
K
m
χ↑; ð37Þ

and when C1 ¼ χ↑ for Ω ¼ −K, Eq. (36) gives

L ¼ i
K
m
χ↓: ð38Þ

These last two solutions are not true eigenvectors, but
rather Jordan canonical form eigenvectors, as detailed in
Appendix B. The six plane wave solutions that we have
found are summarized in Table II.

VII. WAVE VELOCITY FOR THE COUPLED
MODEL IN AN EXTERNAL GAUGE FIELD

We turn next to an analysis of wave propagation in an
external gauge field, to determine whether there are super-
luminal modes. As in [6] we employ the method of

characteristics, in which one studies the propagation of
wave fronts, that is discontinuities in l and the first

derivatives of Ψ⃗, in the neighborhood of a fiducial point

around which Ψ⃗ and the external fields are continuous.
Dropping terms that do not contribute to the equations

governing discontinuities, the Ψ⃗ field equation of motion of
Eq. (16) and primary constraint of Eq. (11) become

∂0Ψ⃗ ¼ ∇⃗ R⃗ ·Ψ⃗þ i∇⃗ × Ψ⃗;

σ⃗ · ∇⃗ × Ψ⃗ ¼ iml: ð39Þ

We do not have to separately consider the l equation of
motion because we have seen that this is a consequence
of Eqs. (39).
Absorbing the gauge field coupling g into the definitions

of B⃗ and E⃗, the quantity R⃗ is given by

R⃗ ¼ ðm4 − B⃗2Þ−1½m4σ⃗ − im2σ⃗ × ðB⃗þ iE⃗Þ − Q⃗�;
Q⃗ ¼ B⃗ × E⃗þ B⃗ σ⃗ ·ðB⃗þ iE⃗Þ − iB⃗ · E⃗ σ⃗ : ð40Þ

Since we are treating R⃗ as a constant, Eqs. (39) form a
linear system of equations, which can be studied by making
the Fourier ansatz of Eq. (25), giving

0 ¼ F⃗≡ ðΩC⃗ − iKẑ × C⃗Þ
− ðm4 − B⃗2Þ−1Kẑ½m4σ⃗ − im2σ⃗ × ðB⃗þ iE⃗Þ − Q⃗� · C⃗;

ð41Þ

with L determined in terms of C1;2 by

L ¼ K
m
ðσ1C2 − σ2C1Þ: ð42Þ

To solve Eq. (41) for C⃗, we split it into a part that
determines C⃗⊥ ≡ ðC1; C2Þ and a part that determines C3.
These equations become

0 ¼ F3 ¼ ΩC3 − ðm4 − B⃗2Þ−1K½m4σ⃗ − im2σ⃗

× ðB⃗þ iE⃗Þ − Q⃗� · C⃗;
0 ¼ F⃗⊥ ¼ ðΩC⃗⊥ − iKẑ × C⃗⊥Þ: ð43Þ

The second line of Eq. (43) implies that

0 ¼ ðΩC⃗⊥ − iKẑ × C⃗⊥Þ2 ¼ ðΩ2 − K2ÞC⃗2⊥; ð44Þ

and soΩ ¼ �K and the propagation of modes with C⃗⊥ ≠ 0
is luminal. The first line of Eq. (43) can then be solved for
the C3 value accompanying these solutions, some of which
are eigenvectors in the Jordan canonical form sense, and L
is then determined by Eq. (42).

TABLE II. The six plane wave modes.

Eigenvector C1 C2 C3 L
½W�

×eigenvector
Eigenvalue

¼ Ω
K

v1 0 0 χ↑ 0 v1 1
v2 0 0 χ↓ 0 −v2 −1
v3 χ↑ iχ↑ 0 0 v3 1
v4 χ↓ −iχ↓ 0 0 −v4 −1
v5

1
2
χ↓

1
2
iχ↓ 0 −iðK/mÞχ↑ v5 þ v1 1

v6
1
2
χ↑ − 1

2
iχ↑ 0 iðK/mÞχ↓ −v6 þ v2 −1
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For modes with C⃗⊥ ¼ 0, the first line of Eq. (43) reduces
to the set of homogenous equations

0 ¼ F3 ¼ ½Ω − ðm4 − B⃗2Þ−1
× K½m4σ3 − im2ðσ⃗ × ðB⃗þ iE⃗ÞÞ3 −Q3��C3; ð45Þ

which for C3 ≠ 0 requires that

0 ¼ det½Ω − ðm4 − B⃗2Þ−1
× K½m4σ3 − im2ðσ⃗ × ðB⃗þ iE⃗ÞÞ3 −Q3�: ð46Þ

This condition gives a quadratic equation for Ω/K, with
solutions

Ω�
K

¼ X �p
Y

B⃗2 −m4
;

X ¼ B1E2 − B2E1;

Y ¼ X2 þ ðm4 − B⃗2Þðm4 þ E2
1 þ E2

2 − B2
3Þ

¼ X2 þ ðm4 − B⃗2Þðm4 − B⃗2 þ E2⊥ þ B2⊥Þ; ð47Þ

where E2⊥ ¼ E2
1 þ E2

2, B
2⊥ ¼ B2

1 þ B2
2. From this we find

−
Ωþ
K

Ω−

K
¼ 1þ E2⊥ þ B2⊥

m4 − B⃗2
; ð48Þ

which shows that when m4 − B⃗2 > 0, at least one of the
two longitudinal modes must have jΩ/Kj > 1 and be
superluminal. Implications of this will be discussed in
the final section. Whenm ¼ 0, Eq. (47) reduces to Eq. (B5)
of [6], where it is shown that in the standard massless

Rarita-Schwinger theory, with no coupling to a spin-1
2
field,

there are no superluminal modes.

VIII. CANONICAL BRACKETS, DIRAC
BRACKETS, AND HAMILTONIAN EQUATIONS

OF MOTION

In Eq. (20) we introduced the canonical momenta P⃗ and
P conjugate to Ψ⃗ and l, and then computed the constraint
bracket ½χ; χ†�. We can similarly compute the canonical
brackets ½Ψi;Ψ

†
j � and ½l;l†� with the results

½Ψiðx⃗Þ;Ψ†
jðy⃗Þ� ¼ −i

1

2
σjσiδ

3ðx⃗ − y⃗Þ

¼ −i
�
δij −

1

2
σiσj

�
δ3ðx⃗ − y⃗Þ;

½lðx⃗Þ;l†ðy⃗Þ� ¼ −iδ3ðx⃗ − y⃗Þ; ð49Þ

while the canonical brackets of Ψi with l† and l with Ψ†
j

vanish.
We turn next to calculating the Dirac brackets of the

various quantities. For any FðΨ⃗;lÞ andGðΨ⃗; Ψ⃗†;l;l†Þ the
Dirac bracket is given by

½Fðx⃗Þ; Gðy⃗Þ�D ¼ ½Fðx⃗Þ; Gðy⃗Þ�

−
Z

d3wd3z½Fðx⃗Þ; χ†ðw⃗Þ�M−1ðw⃗; z⃗Þ½χðz⃗Þ; Gðy⃗Þ�;

Mðx⃗; y⃗Þ ¼ ½χðx⃗Þ; χ†ðy⃗Þ� ¼ −iðm2 þ gσ⃗ · B⃗ðx⃗ÞÞδ3ðx⃗ − y⃗Þ:
ð50Þ

From this we calculate the following Dirac brackets:

½Ψiðx⃗Þ;Ψ†
jðy⃗Þ�D ¼ −i

��
δij −

1

2
σiσj

�
δ3ðx⃗ − y⃗Þ − D⃗x⃗i

δ3ðx⃗ − y⃗Þ
m2 þ gσ⃗ · B⃗ðx⃗Þ D⃖y⃗j

�
;

½lðx⃗Þ;l†ðy⃗Þ�D ¼ −iδ3ðx⃗ − y⃗Þ
�
1 −

m2

m2 þ gσ⃗ · B⃗ðx⃗Þ

�
¼ −iδ3ðx⃗ − y⃗Þ gσ⃗ · B⃗ðx⃗Þ

m2 þ gσ⃗ · B⃗ðx⃗Þ ;

½lðx⃗Þ;Ψ†
jðy⃗Þ�D ¼ im

δ3ðx⃗ − y⃗Þ
m2 þþgσ⃗ · B⃗ðx⃗Þ D⃖y⃗j: ð51Þ

The vanishing of the Dirac bracket ½lðx⃗Þ;l†ðy⃗Þ�D in the
m → ∞ limit is a result of the fact that the primary
constraint forces the vanishing of λ in this limit, and is
also reflected in the form of the ψ field propagator derived
in Sec. XI. The question of positivity of the quantum
correspondent of these Dirac brackets (obtained by multi-
plying by i and replacing Dirac brackets with anticommu-
tators) will be discussed in Sec. XIV.

Writing the total action S of Eq. (9) in the form

S ¼
Z

d4xð−P⃗ · ∂0Ψ⃗ − P∂0l −Ψ†
0χ − χ†Ψ0Þ −

Z
dtH;

ð52Þ

we identify the Hamiltonian H as
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H ¼
Z

d3x½−Ψ⃗† · D⃗ × Ψ⃗þ il†σ⃗ · D⃗lþ Ψ⃗† · σ⃗

× gA0Ψ⃗ − il†gA0lþ imðΨ⃗† · σ⃗l − l†σ⃗ · Ψ⃗Þ�: ð53Þ

By construction of the Dirac bracket ½χðx⃗Þ; H�D ¼ 0. So the
constraint χðx⃗Þ is a constant, which once zero at an initial
time is zero for all later times. From Eq. (53) we find, after
considerable algebra,

½Ψiðx⃗Þ; H�D ¼ −
1

2
iσiχðx⃗Þ − gA0ðx⃗ÞΨiðx⃗Þ þ iðD⃗x⃗ × Ψ⃗ðx⃗ÞÞi

þDx⃗iΨ0½Ψ⃗ðx⃗Þ�;
½lðx⃗Þ; H�D ¼ −gA0ðx⃗Þlðx⃗Þ þ σ⃗ · D⃗x⃗lðx⃗Þ

þmðΨ0½Ψ⃗ðx⃗Þ� − σ⃗ · Ψ⃗ðx⃗ÞÞ; ð54Þ

where

Ψ0½Ψ⃗ðx⃗Þ� ¼
Z

d3y
δ3ðx⃗ − y⃗Þ

m2 þ gσ⃗ · B⃗ðx⃗Þ
× ½m2σ⃗ þ gðB⃗ðy⃗Þ þ σ⃗ × E⃗ðy⃗ÞÞ� · Ψ⃗ðy⃗Þ ð55Þ

is Eq. (13) with the right-hand side written out in full. Thus
comparing with Eqs. (10) and (16), we see that modulo a
term proportional to the vanishing constraint χ, the Dirac

brackets of Ψ⃗ and l with H reproduce their time develop-
ment equations of motion.

IX. PATH INTEGRAL QUANTIZATION

Path integral quantization of theories with time-
independent second class constraints has been addressed
by Senjanovic [12] and Fradkin and Fradkina [13].
Continuing for the moment to work in the left chiral sector,
their recipe gives

houtjSjini ∝
Z

dμei½
R

d4xð−P⃗·∂0Ψ⃗−P∂0lÞ−
R

dtH�;

dμ ¼ δðχÞδðχ†Þ
�
det

�
0 ½χ; χ†�

½χ†; χ� 0

��−1/2

× dΨ⃗dΨ⃗†dldl†: ð56Þ

For A a general 2 × 2 matrix A ¼ A0 þ A⃗ · σ⃗, explicit
evaluation shows that

det

�
0 A

A 0

�
¼ ðdetAÞ2: ð57Þ

Since ½χ; χ†� ¼ ½χ†; χ� ¼ −iM, with M¼ðm2þgσ⃗ ·B⃗Þ×
δ3ðx⃗−y⃗Þ, Eq. (57) shows that

�
det

�
0 ½χ; χ†�

½χ†; χ� 0

��−1/2
¼ ðdetMÞ−1: ð58Þ

A further simplification of Eq. (56) is obtained by noting
that

δðχÞδðχ†Þ ∝
Z

dΨ0dΨ
†
0e

i½
R

d4xð−Ψ†
0
χ−χ†Ψ0Þ�; ð59Þ

allowing us to write

houtjSjini ∝
Z

dμeiS;

dμ ¼ ðdetMÞ−1dΨ0dΨ
†
0dΨ⃗dΨ⃗

†dldl†; ð60Þ

with S in the exponent the total action of Eq. (9). Going
back to the full four component action, the path integral
takes the form

houtjSjini ∝
Z

dμeiS;

dμ ¼ ðdetMÞ−1dΨμdΨ
†
μdλdλ†; ð61Þ

with S in the exponent the action as written in Eq. (3), and
with σ⃗ in M replaced by the Dirac matrix diagðσ⃗; σ⃗Þ ¼ σ⃗1.
Equation (61) will be the starting point for a calculation of
the chiral anomaly in the model with the Rarita-Schwinger
field coupled to a spin-1

2
field.

X. THE GHOST CONTRIBUTION TO THE
CHIRAL ANOMALY

Since we have seen in Sec. V that the interacting theory
can be developed in a perturbation expansion in the gauge
coupling g, we expect there to be a well-defined chiral
anomaly. Calculation of this anomaly is the principal aim of
the remainder of this paper. The anomaly is the sum of two
distinct contributions, one from triangle diagrams involving
propagation of the fermion fields ψμ and λ, and one from
triangle diagrams involving propagation of bosonic spin-1

2

ghosts that enforce the constraints. Since the latter are
algebraically much simpler than the former, we will discuss
the ghost contribution to the anomaly first, before turning to
the more complex calculations of the spin-3

2
contribution in

subsequent sections.
The first thing to note about ghost triangles is that

there are two sources of multiplicative factors −1 in their
anomalies, relative to the standard spin-1

2
chiral anomaly.

The first comes from the fact that ghosts are bosons, and
so lack the closed loop factor of −1 present for fermion
closed loops. The second is that the ghosts can have either
the same chiral transformation properties as the physical
fermion fields or the opposite chiral transformation
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properties, and in the latter case there is an additional factor
of −1 in their anomaly contribution.
With this in mind, let us recall the heuristic explanation

given by Alvarez-Gaumé and Witten [14] of the ghost
counting rules for spin-3

2
given by Nielsen [15]. To quote

from [14]: “In the quantization of the Rarita-Schwinger
field, it is necessary to introduce several spin-1

2
Faddeev-

Popov ghosts. Specifically, one needs two ghosts of the
same chirality as ψμ and one of opposite chirality. Although
this counting of ghosts sounds odd at first, it really has a
simple explanation. Consider a physical propagating spin-3

2

particle of momentum kμ. The constraints kμψμ ¼ 0 and the
gauge invariance under ψμ → ψμ þ kμα (for any spin-1

2

field α) remove two spin-1
2
degrees of freedom of the same

chirality as ψμ. The additional constraint γμψμ ¼ 0 removes
one spin-1

2
degree of freedom of opposite chirality to ψμ.

These conditions leave only a physical spin-3
2
particle.”

In terms of anomaly contributions, the above reasoning
implies a contribution of −2 times the usual spin-1

2

chiral anomaly from the two same chirality ghosts, and
a contribution of þ1 times the usual anomaly from the
opposite chirality ghost, giving a total anomaly contribu-
tion of −1. Now contrast this with what happens in the
coupled model of this paper. Since there are neither a
transversality condition nor a fermionic gauge invariance,
there is no analog of the two same chirality ghosts and their
anomaly contribution of −2. There is a constraint that is
imposed, but this takes the form of Eq. (6) and involves the
removal of a degree of freedom of the same chirality as ψμ

and λ, rather than of opposite chirality as in the case of the
gauge constraint γμψμ ¼ 0. So the ghost corresponding to
the constraint of Eq. (6) will contribute −1 times the
standard spin-1

2
chiral anomaly. This gives the same total −1

as comes from the ghosts in the free spin-3
2
theory case, but

arises in a very different manner.
Returning now to the path integral of Eq. (61), let us try

to implement these remarks through a ghost construction.
Introducing a bosonic complex spin-1

2
field θðx⃗Þ, one can

turn the factor ðdetMÞ−1 into a Gaussian by writing

ðdetMÞ−1 ∝
Z

dθdθ†ei
R

d3xθ†ðx⃗Þðm2þgσ⃗·B⃗ðx⃗ÞÞθðx⃗Þ; ð62Þ

which can be written in a formally Lorentz-covariant
way as

ðdetMÞ−1 ∝
Z

dθdθ̄ei
R

dΣμθ̄ðΣÞGμθðΣÞ;

Gμ ¼ im2γμ −
1

2
ϵμνλσγνFλσðΣÞ; ð63Þ

with dΣμ the volume element of the spacelike surface
with coordinate Σ. However, neither of these formulas

corresponds to a propagating ghost field θ, and both yield a
ghost anomaly contribution of 0.
An alternative result is obtained by treatingM as a limit,

M ∝ limδ→0ðm2 þ gσ⃗ · B⃗ðx⃗Þ þ δmγμDμÞδ4ðx − yÞ; ð64Þ
which gives for nonzero δ

ðdetMÞ−1 ∝
Z

dθdθ̄ei
R

d4xθ̄ðxÞðγμDμþm/δþðg/ðmδÞÞ⃗σ ·⃗Bð⃗xÞÞθðxÞ;

ð65Þ
in which θ is now a bosonic, spin-1

2
propagating ghost field

with effective mass m/δ. This ghost will have a triangle
anomaly, and since the anomaly is a topological quantity
independent of its mass, and unaffected by the coupling to
the field B⃗ðx⃗Þ, the ghost will give an anomaly contribution
of −1 times the standard spin-1

2
chiral anomaly, in agree-

ment with what is expected from the role of the ghost in
implementing the same chirality constraint of Eq. (6).
Both of the arguments just given for a ghost contribution

of −1 are clearly heuristic, so this question invites further
investigation using the formal theory of ghosts in con-
strained theories [16–18].

XI. FEYNMAN RULES FOR PROPAGATORS
AND VERTEX PARTS

We turn next to calculating the ψμ and λ field contri-
butions to the chiral anomaly. The first step is to derive the
Feynman rules for propagator and vertex parts. Introducing
Fourier transforms

ψμðxÞ ¼
1

ð2πÞ4
Z

d4keik·xψμ½k�;

λðxÞ ¼ 1

ð2πÞ4
Z

d4keik·xλ½k�; ð66Þ

the action of Eq. (3) takes the form (with =k ¼ γνkν)

S ¼ 1

ð2πÞ4
Z

d4keik·xS½k�;

S½k� ¼ −iψ̄μ½k�γμνρkνψρ½k� − iλ̄½k�=kλ½k�
þmðλ̄½k�γνψν½k� − ψ̄ν½k�γνλ½k�Þ

¼ ðψ̄μ½k� λ̄½k�ÞM
�
ψρ½k�
λ½k�

�
; ð67Þ

with MðkÞ the matrix

M ¼
�−iγμνρkν −mγμ

mγρ −i=k

�
: ð68Þ

The propagator for the coupled ψμ and λ fields is the
matrix N ðkÞ that is inverse to MðkÞ,
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MN ¼
�
δμσ 0

0 1

�
;

N ¼
�
N1ρσ N2ρ

N3σ N4

�
; ð69Þ

which can be solved to give the unique answer

N1ρσ ¼
−i
2k2

�
γσ=kγρ þ 2

�
1

m2
−

2

k2

�
kρkσ=k

�
;

N2ρ ¼
=kkρ
mk2

;

N3σ ¼ −
=kkσ
mk2

;

N4 ¼ 0: ð70Þ
Two properties of N are worth noting. First is the fact
that N4 ¼ 0 mirrors the vanishing of the zero external
field Dirac bracket ½l;l†�D. Second, when m → ∞, the
off diagonal elements N2ρ and N3σ vanish, and N1ρσ

simplifies to

ÑρσðkÞ ¼
−i
2k2

�
γσ=kγρ −

4

k2
kρkσ=k

�
; ð71Þ

which obeys

γρÑρσ ¼ Ñρσγ
σ ¼ 0: ð72Þ

This is a reflection of the fact that asm → ∞, the secondary
constraint of Eq. (7) reduces to γρψρ ¼ 0. For comparison
with these formulas, we note that in our conventions (which
have been chosen to agree with [10]), the propagator for a
free spin-1

2
fermion is

sðkÞ ¼ i/=k: ð73Þ
From the action of Eq. (3) we find that for a Hermitian

vector gauge field carrying index ν, the vertex part
Feynman rule is

Vν ¼
�−igγμνρ 0

0 −igγν

�
; ð74Þ

with the free indices μ and ρ understood to act on the
corresponding indices in row and column vectors standing
to the left and right of Vν in the same matter as these indices
act in Eqs. (67) and (68). Since we will compute the chiral
anomaly by evaluating the AVV triangle, which is linear in

the axial-vector vertex, we omit the factor −i in the axial-
vector vertex part, which we take as

Aν ¼
�
γμνργ5 0

0 γνγ5

�
: ð75Þ

The corresponding vector vertex and axial-vector vertex for
a free spin-1

2
fermion are, respectively, −igγν and γνγ5.

It is also of interest to contrast Eq. (71) with the
propagator for a gauge-fixed free Rarita-Schwinger field.
Noting the identity γμνρ ¼ 1

2
ðγμγνγρ − γργνγμÞ, and adding

the usual gauge fixing proportional to ζψ̄μγ
μ=∂γρψρ to the

covariant Lagrangian density, the gauge fixed propagator
N̂ρσðkÞ is obtained by solving

−i
��

1

2
þ ζ

�
γμ=kγρ −

1

2
γρ=kγμ

�
N̂ρσ ¼ δμσ; ð76Þ

giving

N̂ρσðkÞ ¼
−i
2k2

�
γσ=kγρ −

1

k2

�
4þ 2

ζ

�
kρkσ=k

�
: ð77Þ

When ζ ¼ − 1
2
, the gauged fixed propagator N̂ takes the

usual “reverse index” form for the Rarita-Schwinger
propagator widely used in the literature; when ζ → ∞
the propagator N̂ limits to that of Ñ given in Eq. (71). The
vector and axial-vector vertices corresponding to the wave
operator in Eq. (76) are

V̂ν ¼ −ig
��

1

2
þ ζ

�
γμγνγρ −

1

2
γργνγμ

�
;

Âν ¼
��

1

2
þ ζ

�
γμγνγρ −

1

2
γργνγμ

�
γ5: ð78Þ

XII. WARD IDENTITIES

The usual spin-1
2
propagator of Eq. (73) obeys the vector

and axial-vector Ward identities

−iγμkμ ¼ s−1ðpþ kÞ − s−1ðpÞ;
−iγμγ5kμ ¼ s−1ðpþ kÞγ5 þ γ5s−1ðpÞ: ð79Þ

From the linearity of the wave operators on the left-hand
sides of Eqs. (69) and (76) we see that N , Ñ, and N̂ obey
similar Ward identities, with indices μ and ρ implicit on the
right-hand side,

�−iγμνρkν 0

0 −iγνkν

�
¼N −1ðkþpÞ−N −1ðpÞ;

�−iγμνργ5kν 0

0 −iγνγ5kν

�
¼N −1ðkþpÞγ5þ γ5N −1ðpÞ;

−iγμνρkν ¼ Ñ−1ðkþpÞ− Ñ−1ðpÞ;−iγμνργ5kν ¼ Ñ−1ðkþpÞγ5þ γ5Ñ−1ðpÞ;

−i
��

1

2
þ ζ

�
γμ=kγρ−

1

2
γρ=kγμ

�
¼ N̂−1ðkþpÞ− N̂−1ðpÞ;−i

��
1

2
þ ζ

�
γμ=kγρ−

1

2
γρ=kγμ

�
γ5 ¼ N̂−1ðkþpÞγ5þ γ5N̂

−1ðpÞ: ð80Þ
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We will use these in the chiral anomaly calculations of the
subsequent sections.

XIII. CHIRAL ANOMALY CALCULATIONS

There are now many methods in the literature for
calculating the chiral anomaly. Because the vertices and
propagators of the preceding section involve products of
three gamma matrices, to minimize the Dirac algebra we
use the observation in the original papers [19,20] that the
anomaly results from a failure of shift invariance inside a
linearly divergent integral, and follow closely the formu-
lation of this given in [21]. We begin by using the shift
method to calculate the usual spin-1

2
chiral anomaly, and

then give two calculations of the anomaly in the model with
the spin-3

2
field ψμ coupled to the spin-1

2
field λ.

A. The standard spin-12 chiral anomaly by
the shift method

The two triangle diagrams with vector vertices −igγσ and
−igγτ, with respective incoming momenta k1 and k2,
coupled to an axial-vector vertex γνγ5 with incoming
momentum −ðk1 þ k2Þ, correspond to the amplitude

T ν
στ ¼

Z
d4r
ð2πÞ4 ð−1Þtr

�
i

=rþ=k1
ð−igγσÞ

i
=r
ð−igγτÞ

i
=r−=k2

γνγ5

�

þ
Z

d4r
ð2πÞ4 ð−1Þtr

�
i

=rþ=k2
ð−igγτÞ

i
=r
ð−igγσÞ

i
=r−=k1

γνγ5

�
:

ð81Þ

Forming the axial-vector divergence −ðk1 þ k1ÞνT ν
στ, and

substituting −ð=k1 þ =k2Þγ5 ¼ ð=r − =k2Þγ5 þ γ5ð=rþ =k1Þ into
the first line and −ð=k1 þ =k2Þγ5 ¼ ð=r − =k1Þγ5 þ γ5ð=rþ =k2Þ
into the second line, one gets a sum of four terms, each of
which contains only k1 or k2 but not both, and hence
vanishes, since there are not enough external momentum
factors to form the pseudoscalar ϵτσμνk1μk2ν. Hence with the
chosen routing of momenta in the triangle, the axial-vector
divergence vanishes. Since the sum of the two diagrams is
symmetric under the interchange of the vector vertices, it
suffices to test the single vector divergence kσ1T

ν
στ, by

substituting =k1 ¼ ð=rþ =k1Þ − =r into the first line and =k1 ¼
=r − ð=r − =k1Þ into the second line. This gives a sum of four
terms, two of which contain only k2, and hence vanish,
leaving the other two terms,

kσ1T
ν
στ ¼ ig2

Z
d4r
ð2πÞ4 tr

�
1

ð=rþ =k1Þ
γτ

1

=r − =k2
γνγ5

−
1

ð=rþ =k2Þ
γτ

1

=r − =k1
γνγ5

�
: ð82Þ

If we could make the shift of integration variable r →
rþ k2 − k1 in the first term of Eq. (82), the two terms

would cancel, but this shift is not permitted inside a linearly
divergent integral. Following [21] we proceed as follows.
Taking k1 − k2 to be infinitesimal, we can write Eq. (82) as

kσ1T
ν
στ≃ ig2

Z
d4r
ð2πÞ4 ðk1−k2Þκ

∂
∂rκ tr

�
1

ð=rþ=k2Þ
γτ

1

=r−=k1
γνγ5

�
:

ð83Þ

Let us now make the usual Wick rotation to a Euclidean
integration region for r, which introduces an overall factor
of i, and use the Stokes theorem, which for a Euclidean
four-dimensional integration over a volume V bounded by
a surface S states that

Z
V
d4r

∂
∂rκ fðrÞ ¼

Z
S
dSκfðrÞ: ð84Þ

Applying Eq. (84) to Eq. (83), and rationalizing the
Feynman denominators, we have

kσ1T
ν
στ ≃

−g2

ð2πÞ4 ðk1 − k2Þκ
Z
S
dSκ

tr½ð=rþ =k2Þγτð=r − =k1Þγνγ5�
ðrþ k2Þ2ðr − k1Þ2

:

ð85Þ

The trace in the numerator can be simplified to
tr½ðð=k1 þ =k2Þγτ=r − =k2γτ=k1Þγνγ5�. Taking now the surface S
to be a large three-sphere of radius R, the denominator
ðrþ k2Þ2ðr − k1Þ2 ≃ R4 and so can be pulled outside the
integral. Since the volume of the sphere is 2π2R3, and
noting that dSκ is a vector parallel to rκ, we have

Z
S
dSκtr½ðð=k1 þ =k2Þγτ=r − =k2γτ=k1Þγνγ5�

¼ 2π2R4tr½ð=k1 þ =k2Þγτðγκ/4Þγνγ5�: ð86Þ

Thus the R factors cancel out as the sphere radius
approaches ∞, and we find for the vector vertex anomaly

kσ1T
ν
στ ¼

−g2

ð2πÞ4 ðk1 − k2Þκ2π2tr½ð=k1 þ =k2Þγτðγκ/4Þγνγ5�

¼ g2

16π2
tr½=k1γτ=k2γνγ5�: ð87Þ

When vector vertex conservation is enforced by adding a
polynomial to the amplitude, Eq. (87) yields the usual
answer for the axial-vector anomaly.

B. The coupled model anomaly using the propagator Ñ

We turn next to the calculation of the anomaly in the
coupled model. Using the propagator N of Eqs. (69) and
(70) and the vertices of Eqs. (74) and (75) in the triangle
diagram, one gets a polynomial of second degree in 1/m2.
Since the anomaly is a topological quantity independent of
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m, only the term in the triangle of zeroth order in 1/m2 can
contribute, so we can simplify the anomaly calculation by
using the m → ∞ limit of N given in Eq. (71). Thus in
place of Eq. (81) of the preceding subsection, we consider

T̃ ν
στ ¼

Z
d4r
ð2πÞ4 ð−1Þtr½Ñðrþ k1ÞVσÑðrÞVτÑðr − k2ÞAν

þ Ñðrþ k2ÞVτÑðrÞVσÑðr − k1ÞAν�; ð88Þ
where the vector and axial vertex parts are, respectively,
the upper left diagonal elements of Eqs. (74) and (75).
Contracting with iðk1 þ k2Þν to test the axial divergence
and using the respective Ward identities (with indices μ and
ρ implicit on the right-hand side)

iγμνργ5ðk1þk2Þν¼ Ñ−1ðr−k2Þγ5þγ5Ñ−1ðrþk1Þ;
iγμνργ5ðk1þk2Þν¼ Ñ−1ðr−k1Þγ5þγ5Ñ−1ðrþk2Þ; ð89Þ

in the first and second lines of Eq. (88), we get again a
sum of four terms, each of which contains only k1 or k2
and so vanish. So the axial-vector divergence vanishes.
Contracting with kσ1 to test the vector divergence, and using
the respective Ward identities (again with indices μ and ρ
implicit on the right)

−iγμσρk1σ ¼ Ñ−1ðrþ k1Þ − Ñ−1ðrÞ;
−iγμσρk1σ ¼ Ñ−1ðrÞ − Ñ−1ðr − k1Þ; ð90Þ

in the first and second lines of Eq. (88), we get a sum of four
terms, two of which contain only k2 and vanish, leaving the
other two terms

kσ1T̃
ν
στ ¼ g

Z
d4r
ð2πÞ4 tr½Ñðrþ k1ÞVτÑðr − k2ÞAν

− Ñðrþ k2ÞVτÑðr − k1ÞAν�: ð91Þ

We can now use the identity

γατβ ¼ 1

2
½γα; γτ�γβ − γαητβ þ ηαβγτ ð92Þ

and the projection property of Eq. (72) to eliminate the
terms in Eq. (92) in which γβ stands to the right or γα stands
to the left, allowing us to replace the vertex Vτ by −igγτ and
the vertex Aν by γνγ5, giving the simplified formula

kσ1T̃
ν
στ ¼ −ig2

Z
d4r
ð2πÞ4 tr½Ñðrþ k1ÞγτÑðr − k2Þγνγ5

− Ñðrþ k2ÞγτÑðr − k1Þγνγ5�: ð93Þ

Taking k1 − k2 to be infinitesimal, making the Wick
rotation to a Euclidean integration region for r, and
applying the Stokes theorem, this gives

kσ1T̃
ν
στ ≃

g2

ð2πÞ4 ðk1 − k2Þκ

×
Z
S
dSκtr½Ñðrþ k2ÞγτÑðr − k1Þγνγ5�: ð94Þ

Substituting Eq. (71) for the Ñ factors, this becomes

kσ1T̃
ν
στ ≃ −

g2

ð2πÞ4 ðk1 − k2Þκ
Z
S
dSκ

T
ðrþ k2Þ2ðr − k1Þ2

;

ð95Þ

with T given by

T ¼ 1

4
tr

�
ðγβð=rþ =k2Þγα −

4

ðrþ k2Þ2
ðrþ k2Þβðrþ k2Þαð=rþ =k2ÞÞγτ

× ðγαð=r − =k1Þγβ −
4

ðr − k1Þ2
ðr − k1Þαðr − k1Þβð=r − =k1ÞÞγνγ5

�

¼
�
1þ 4

½ðrþ k2Þ · ðr − k1Þ�2
ðrþ k2Þ2ðr − k1Þ2

�
tr½ð=rþ =k2Þγτð=r − =k1Þγνγ5�

¼ ½5þOð1/r2Þ�tr½ð=r þ =k2Þγτð=r − =k1Þγνγ5�: ð96Þ

We obtained this result by calculation “by hand,” and
checked it using the program FEYNCALC [22]. Without
carrying the computation further, by comparing Eqs. (95)
and (96) with Eq. (85) of the preceding subsection, we see
that the answer for the coupled system anomaly, excluding
the ghost contribution, is 5 times the standard spin-1

2
chiral

anomaly. This is the same as the nonghost part of the
model in the uncoupled limit m ¼ 0, where the spin-3

2
triangle contributes 4 times the standard chiral anomaly
[23], and the spin-1

2
triangle contributes 1 times the

standard chiral anomaly, for a total of 5 times the standard
anomaly.

STEPHEN L. ADLER PHYS. REV. D 97, 045014 (2018)

045014-12



C. An alternative calculation: The coupled model
anomaly using the propagator N̂

An alternative calculation starts from the triangle for the
gauged fixed free massless spin-3

2
theory, using the propa-

gator and vertices of Eqs. (77) and (78). Starting from the
definition

T̂ ν
στ ¼

Z
d4r
ð2πÞ4 ð−1Þtr½N̂ðrþ k1ÞV̂σN̂ðrÞV̂τN̂ðr − k2ÞÂν

þ N̂ðrþ k2ÞV̂τN̂ðrÞV̂σN̂ðr − k1ÞÂν�; ð97Þ

and using the Ward identities of Eq. (80), we find by the
same reasoning as used above that the axial divergence is
zero, and the vector divergence is given after Wick rotation,
Taylor expansion, and application of Stokes theorem, by

kσ1T̂
ν
στ ≃

ig
ð2πÞ4 ðk1 − k2Þκ

×
Z
S
dSκtr½N̂ðrþ k2ÞV̂τN̂ðr − k1ÞÂν�: ð98Þ

This equation contains many more gamma matrices than
appeared in the previous calculations, so we used the
program FEYNCALC to evaluate it. The result is that the
anomaly is independent of the gauge fixing parameter ζ,
and is 4 times the standard spin-1

2
anomaly, in agreement

with the result obtained in [23] for ζ ¼ −1/2 using the heat
kernel regularization method.
To see the relation between this calculation and that of

the previous subsection, let us consider the behavior of the
propagator-vertex product N̂ðrÞV̂σ as ζ → ∞, since with
the replacements of r by rþ k2 or r − k1 and σ by τ or ν
this gives (up to a factor of i in the axial vertex case) the
behavior of the propagator-vertex products appearing in
Eq. (98). Decomposing the product into a sum of four
terms, we write

ðN̂ðrÞV̂σÞδα ¼ N̂ðrÞαβðV̂σÞβδ
¼ term 1þ term 2þ term 3þ term 4; ð99Þ

with

term 1 ¼ −i
2r2

�
γβ=rγα −

4

r2
rβrα=r

�
ð−igÞγβσδ;

term 2 ¼ i
ζðr2Þ2 rβrα=rð−igÞγ

βσδ;

term 3 ¼ −i
2r2

�
γβ=rγα −

4

r2
rβrα=r

�
ð−igÞζγβγσγδ;

term 4 ¼ i
ζðr2Þ2 rβrα=rð−igÞζγ

βγσγδ ¼ g
rα
r2

γσγδ: ð100Þ

We see that term 1 equals the propagator-vertex product
ÑðrÞṼσ of the preceding subsection, and term 3 vanishes
by the projection property of Eq. (72). Also, in the limit
ζ → ∞, term 2 vanishes, and term 4 approaches a constant,
which by the projection property annihilates the term 1
coming from the second propagator-vertex product. Thus
Eq. (98) yields the calculation of the preceding section,
coming from the product of the two terms 1, plus the
product of the two terms 4, giving

kσ1T̂
ν
στ ¼ term 1 contributionþ ig

ð2πÞ4 ðk1 − k2Þκ

×
Z
S
dSκ

tr½ðgðrþ k2ÞαγτγδÞðiðr − k1Þδγνγαγ5Þ�
ðrþ k2Þ2ðr − k1Þ2

¼ term 1 contributionþ g2

ð2πÞ4 ðk1 − k2Þκ

×
Z
S
dSκ

tr½ð=rþ =k2Þγτð=r − =k1Þγνγ5�
ðrþ k2Þ2ðr − k1Þ2

: ð101Þ

Comparing the final term in Eq. (101) with Eq. (85), we see
that the term 4 contribution is −1 times the standard spin-1

2

anomaly. Since the total is 4 times the spin-1
2
anomaly, the

term 1 contribution is determined to be 5 times the spin-1
2

anomaly, confirming the result found by direct calculation
in the preceding subsection.

XIV. DISCUSSION AND DIRECTIONS
FOR FURTHER WORK

The calculations of the preceding sections show that
the coupled model eliminates some, but not all, of the
problems associated with gauged Rarita-Schwinger fields.
Specifically,
(1) The coupled model eliminates the discontinuity in

the number of degrees of freedom when an external
field is present, relative to the zero field case,
discussed in detail in [8].

(2) The nonperturbative behavior of the Dirac bracket,
already clear from the zero mass limit of [4,5],
and discussed in detail in [6–8] is eliminated. The
coupled model admits a perturbative expansion in
powers of the gauge coupling g, as well as permitting
calculation of the perturbative chiral anomaly.

(3) The zero external field plane wave solutions in the
coupled model are not all eigenvectors of the wave
matrix. Because the wave matrix is non-Hermitian,
as detailed in Appendix B, some of the plane wave
solutions are only eigenvectors in the Jordan canoni-
cal form sense.

(4) Tachyonic behavior of the longitudinal spin-3
2

modes, first noted in [5], is not eliminated, unlike
the uncoupled Rarita-Schwinger field studied in [6],
where the longitudinal modes are luminal. This
could indicate a problem with the coupled theory,
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or could indicate that there is an instability in the
presence of gauge fields that triggers dynamical
breakdown of chiral symmetry, in which left- and
right-chiral modes become coupled through a con-
ventional mass term. There is an extensive literature
on dynamical chiral symmetry breaking through
condensate formation in unified models [24], as
well as on dynamical chiral symmetry breaking in
quantum chromodynamics [25]. Because the model
studied in this paper contains both helicity � 3

2
and

� 1
2
fields, chiral symmetry breaking leading to a

massive spin-3
2
field is kinematically allowed. An

important issue for the future is to set up the gap
equation to study whether dynamical chiral sym-
metry breaking is realized in the coupled model.

(5) The problem with nonpositivity of Dirac brackets (or
more precisely, of the corresponding quantum anti-
commutators) in the presence of an external field,
first noted in [4], verified in [5], and discussed in
detail in [8], is not eliminated. In the large m2 limit
the ψ field brackets are positive semidefinite, but as
noted in the early papers nonpositivity occurs for
strong enough external fields. As first noted in [5],
this does not prevent a perturbative expansion in the
gauge coupling g. It also does not appear to cause a
difficulty in formulating path integral quantization.
However, as discussed in [8], canonical quantization
in strong external fields will require an indefinite
metric Hilbert space, and this deserves study. The
brackets for the field λ are nonpositive for arbitrarily
weak fields, and vanish in the large m2 limit.

(6) Although there are internal cross-checks on most of
the calculations of this paper, including the fermion
loop contribution to the chiral anomaly, the argu-
ments we have given for a ghost contribution of−1 as
opposed to 0 are purely heuristic and need to be
supported (or refuted) by better methods. The re-
striction to time-independent constraints, which re-
quires a restriction to time-independent external
fields B⃗ and E⃗, may obscure the correct way to
handle the ghost contribution. This restriction can be
eliminated by including a kinetic term for the gauge
fields and treating them as dynamical fields, which
will lead to amore complicated system of constraints,
with both bosonic and fermionic constraints.

We believe the most immediate avenues for further
investigation are (i) the study of dynamical chiral symmetry
breaking, to see whether the coupled model generates a
mass term, and (ii) dealing with the ghost issue, which will
determine whether the coupled model chiral anomaly is
unchanged from the uncoupled model value, as suggested
by the calculations of this paper. Beyond this, it will be
important to extend the analysis of this paper to non-
Abelian gauge models, such as the model of [3] from which
the Abelianized model treated in this paper is abstracted.
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APPENDIX A: CONVENTIONS AND SUMMARY
OF IDENTITIES

We follow the metric and gamma matrix conventions
of [10] that were used in [6–8], but change the action
normalization by a factor of 2 to bring that also into
agreement with [10]. We note the following covariant
derivative and Pauli matrix identities from [6] that we
use here:

D⃗ × D⃗ ¼ D⃖ × D⃖ ¼ −igB⃗;

½D⃗;D0� ¼ −igE⃗;

ðσ⃗ × D⃗Þ2 ¼ 2D⃗2 þ gσ⃗ · B⃗;

ðσ⃗ · D⃗Þ2 ¼ D⃗2 þ gσ⃗ · B⃗;

D⃗ · ðσ⃗ × D⃗Þ ¼ igσ⃗ · B⃗;

ðσ⃗ × D⃖Þ · D⃖ ¼ −igσ⃗ · B⃗;

σ⃗ × σ⃗ ¼ 2iσ⃗;

σ⃗ · v⃗σj ¼ vj þ iðσ⃗ × v⃗Þj;
σjσ⃗ · v⃗ ¼ vj − iðσ⃗ × v⃗Þj;

ðσ⃗ × v⃗Þiσjσi ¼ 2ivj;

B⃗ ¼ iA⃗ − A⃗ × σ⃗ ↔ A⃗ ¼ 1

2
ðB⃗ × σ⃗Þ: ðA1Þ

Additionally, we use the following Dirac gamma matrix
identities:

γμνρ ¼ 1

2
ðγμγνγρ − γργνγμÞ;

¼ 1

2
½γμ; γν�γρ − γμηνρ þ ημργν: ðA2Þ
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APPENDIX B: CALCULATION OF PLANE
WAVE MODES

Writing the first equation in Eq. (26) in the form

ðΩ/KÞ½C� ¼ ½W�½C�; ðB1Þ

with [C] the column vector listing the six components of
the vector spinor C⃗ written in the order ðC↑

1C
↓
1C

↑
2C

↓
2C

↑
3C

↓
3 Þ,

the wave matrix [W] takes the form

½W� ¼

2
66666666664

0 0 −i 0 0 0

0 0 0 −i 0 0

i 0 0 0 0 0

0 i 0 0 0 0

0 1 0 −i 1 0

1 0 i 0 0 −1

3
77777777775
: ðB2Þ

Since [W] is not self-adjoint, the best one can do is to
transform it to Jordan canonical form. The corresponding
right eigenvectors are readily seen to be

vT1 ¼ ð 0 0 0 0 1 0 Þ;
vT2 ¼ ð 0 0 0 0 0 1 Þ;
vT3 ¼ ð 1 0 i 0 0 0 Þ;
vT4 ¼ ð 0 1 0 −i 0 0 Þ;
vT5 ¼ ð 0 1

2
0 i

2
0 0 Þ;

vT6 ¼ ð 1
2

0 − i
2

0 0 0 Þ; ðB3Þ

where we have written the transposes T of the column
vectors as row vectors. Table II is constructed from
Eq. (B3).
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[14] L. Alvarez-Gaumé and E. Witten, [2] op. cit.
[15] N. K. Nielsen, Nucl. Phys. B140, 499 (1978).
[16] I. A. Batalin and I. V. Tyutin, Phys. Lett. B 302, 47

(1993).
[17] I. A. Batalin, Nucl. Phys. B381, 619 (1992).
[18] M. Henneaux, Phys. Rep. 126, 1 (1985).
[19] S. L. Adler, Phys. Rev. 177, 2426 (1969).
[20] J. S. Bell and R. Jackiw, Nuovo Cimento A 60, 47

(1969).
[21] R. Jackiw, in Lectures on Current Algebra and Its Appli-

cations, edited by S. B. Treiman, R. Jackiw, and D. J. Gross
(Princeton University Press, Princeton, 1972).

[22] V. Shtabovenko, R. Mertig, and F. Orellana, Comput. Phys.
Commun. 207, 432 (2016); R. Mertig, M. Böhm, and A.
Denner, Comput. Phys. Commun. 64, 345 (1991).

[23] N. K. Nielsen and H. Römer, [2] op. cit.
[24] M. Peskin, in Les Houches Summer School in Theoretical

Physics: Recent Advances in Field Theory and Statistical
Mechanics, edited by J. B. Zuber and R. Stora (North-
Holland, Amsterdam, 1984).

[25] S. L. Adler and A. C. Davis, Nucl. Phys. B244, 469 (1984),
and further references cited there.

ANALYSIS OF A GAUGED MODEL WITH A SPIN- … PHYS. REV. D 97, 045014 (2018)

045014-15

https://doi.org/10.1142/S0217751X87000120
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1016/0550-3213(84)90066-X
https://doi.org/10.1016/0370-2693(85)90574-X
https://doi.org/10.1016/0370-2693(85)90574-X
https://doi.org/10.1016/0370-2693(78)90857-2
https://doi.org/10.1016/0370-2693(78)90857-2
https://doi.org/10.1016/0550-3213(79)90516-9
https://doi.org/10.1016/0550-3213(79)90516-9
https://doi.org/10.1016/0550-3213(78)90008-1
https://doi.org/10.1016/0550-3213(78)90008-1
https://doi.org/10.1142/S0217751X14501309
https://doi.org/10.1088/1751-8113/49/31/315401
https://doi.org/10.1016/0003-4916(61)90030-6
https://doi.org/10.1016/0003-4916(61)90030-6
https://doi.org/10.1103/PhysRev.186.1337
https://doi.org/10.1103/PhysRevD.92.085022
https://doi.org/10.1103/PhysRevD.92.085023
https://doi.org/10.1103/PhysRevD.96.085005
https://doi.org/10.1103/PhysRevD.96.085005
https://doi.org/10.1088/1751-8121/aa768f
https://doi.org/10.1016/0003-4916(76)90062-2
https://doi.org/10.1016/0370-2693(78)90135-1
https://doi.org/10.1016/0370-2693(78)90135-1
https://doi.org/10.1016/0550-3213(78)90009-3
https://doi.org/10.1016/0370-2693(93)90633-S
https://doi.org/10.1016/0370-2693(93)90633-S
https://doi.org/10.1016/0550-3213(92)90493-U
https://doi.org/10.1016/0370-1573(85)90103-6
https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1007/BF02823296
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/j.cpc.2016.06.008
https://doi.org/10.1016/0010-4655(91)90130-D
https://doi.org/10.1016/0550-3213(84)90324-9

