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Once we put a quantum field theory on a curved manifold, it is natural to further assume that coupling
constants are position-dependent. The position-dependent coupling constants then provide an extra
contribution to the Weyl anomaly so that we may attempt to cancel the entire Weyl anomaly on the curved
manifold. We show that such a cancellation is possible for constant Weyl transformation or infinitesimal but
generic Weyl transformation in two- and four-dimensional conformal field theories with exactly marginal
deformations. When the Weyl scaling factor is annihilated by conformal powers of Laplacian (e.g., by the
Fradkin-Tseytlin-Riegert-Paneitz operator in four dimensions), the cancellation persists even at the finite
order thanks to a nice mathematical property of the Q curvature under the Weyl transformation.
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I. INTRODUCTION

The Weyl anomaly in quantum field theory has a long
history (see, e.g., Ref. [1] for a historical overview). It states
that the Weyl transformation of the metric in the curved
space-time may not be a symmetry of the system even
though the quantum field theory under consideration has
the conformal symmetry in the flat space-time. Indeed, in
most conformal field theories, the Weyl anomaly is non-
vanishing, and we say that the Weyl symmetry is quantum
mechanically broken in curved space-time.
The Weyl anomaly has played many important roles in

theoretical physics. The existence of the Weyl anomaly
gives a constraint on the expectation values of the energy-
momentum tensor in curved background [2] and may be
related to the nature of Hawking radiation [3–6]. The fact
that vanishing of the Weyl anomaly happens only in a
limited class of theories dictates the number of space-time
dimensions in critical string theory. More recently, we find
that the universal terms in the entanglement entropy of
conformal field theories are given by the coefficient of the
Weyl anomaly, suggesting a deep relation between geom-
etry and information [7].
What we would like to study in this paper is to find a way

to cancel the Weyl anomaly from the other source, e.g.,
from the position-dependent coupling constant.1 Once we
put a quantum field theory on a curved manifold, it is

natural to assume that coupling constants are position-
dependent. The position-dependent coupling constants then
provide an extra contribution to the Weyl anomaly so that
we may attempt to cancel the entire Weyl anomaly on the
curved manifold. We would like to find under which
condition such a cancellation is possible.
The similar idea of canceling more general anomalies

has been implicitly assumed in many places. For example,
if we try to introduce background gauge fields for chiral
current operators in the curved background (e.g., in the
context of supersymmetric localization), then they may be
mutually inconsistent due to the ’t Hooft anomaly. One way
to avoid this is to cancel the anomaly of the background
gauge field from the space-time curvature and vice versa.
Similarly, if preserving the Weyl anomaly is the critical
issue (e.g., if we try to gauge it), our new way of doing it
may be another option to consider.
The organization of the paper is as follows. In Sec. II, we

study the cancellation of the Weyl anomaly from the
position-dependent coupling constant in two-dimensional
conformal field theories. In Sec. III, we study it in three
dimensions, and in Sec. IV, we study it in four dimensions.
We supplement the holographic viewpoint in Sec. V and
conclude with some discussions in Sec. VI.

II. TWO DIMENSIONS

Let us consider a two-dimensional conformal field
theory with an exactly marginal deformation denoted by
λ. For instance, we may take the Gaussian c ¼ 1 boson with
the compactification radius as the exactly marginal defor-
mation here. We put the theory on a curved background
with the metric gμνðxÞ and then vary the coupling constant
λðxÞ over the manifold: schematically, we consider the
action S ¼ S0 þ

R
d2x

ffiffiffi
g

p
λðxÞOðxÞ. Even though the

1Sorry for the oxymoron. It is no longer constant. Probably, it
is Dirac who openly advocated this idea in the early days [8].
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theory is conformal invariant in the Euclidean space gμν ¼
δμν with λðxÞ ¼ λ, it is not necessarily so after turning on
the background metric and position-dependent coupling
constant.2 This obstruction is known as the Weyl anomaly
under the infinitesimal Weyl rescaling: δgμνðxÞ ¼ 2δσgμν.
In terms of the free energy functional e−F½gμνðxÞ;λðxÞ� ¼R
DΦe−S½Φ�, the Weyl anomaly for a two-dimensional

conformal field theory is given by (e.g., see Ref. [9])3

δσF ¼
Z

d2x
ffiffiffi
g

p
δσðxÞ

�
cR −

1

2
∂μλðxÞ∂μλðxÞ

�
ð1Þ

in a certain renormalization scheme so that the exactly
marginal deformation has a flat line metric. Otherwise, we
can always redefine the coupling constant or the renorm-
alization scheme so that it is flat. It is clear that when
λðxÞ ¼ λ the only way to cancel the Weyl anomaly is to
require c ¼ 0, which is typically what we demand in
critical string theory.
However, we see that this is not the only available option.

Now, given a positive curvature RðxÞ ≥ 0, we may try to
cancel the curvature term in the Weyl anomaly (1) against
the second term originating from the position-dependent
coupling constant by solving the equation

cR ¼ 1

2
∂μλðxÞ∂μλðxÞ: ð2Þ

This is possible for positive curvature RðxÞ ≥ 0 (assuming
c > 0 in unitary conformal field theories). Note that for an
exactly marginal coupling constant c does not depend on
λðxÞ due to the Wess-Zumino consistency condition.
For example, if we take the Fubini-Study metric on the

sphere with the complex coordinate z and z̄,

ds2 ¼ dzdz̄
ð1þ jzj2Þ2 ; ð3Þ

the solution of (2) is

λðxÞ ¼ ffiffiffi
c

p
· arctanðjzjÞ þ const: ð4Þ

In this way, one can cancel the Weyl anomaly on the sphere
by introducing the position-dependent coupling constant.
Note, however, that the position dependence of the cou-
pling constant reduces the symmetry of the sphere from
SOð3Þ down to SOð2Þ. The idea here is we gained extra

“Weyl symmetry” at the sacrifice of the rotational
symmetry.4

The above cancellation works both for infinitesimal
generic Weyl transformation δgμνðxÞ ¼ 2δσðxÞgμνðxÞ or
finite but constant Weyl transformation gμνðxÞ →
e2σ̄gμνðxÞ, where σ̄ is a finite constant. The latter is because
the equation to be solved in (2) trivially scales under the
constant Weyl transformation, so once it is solved, it is also
solved after finite but constant Weyl transformation. For
finite generic Weyl transformation, however, the cancella-
tion may not persist. The point is that the curvature term in
the Weyl anomaly nontrivially transforms under the Weyl
transformation,

R → e−2σðxÞðR − 2D2σÞ; ð5Þ

where D2 is the Laplacian, while the Weyl transformation
of the second term from the position-dependent coupling
constant ∂μλðxÞ∂μλðxÞ is trivial:

∂μλðxÞ∂μλðxÞ → e−2σðxÞ∂μλðxÞ∂μλðxÞ: ð6Þ

Thus, even though one may solve the cancellation con-
dition for a given gμνðxÞ with a certain position-dependent
coupling constant λðxÞ, the cancellation does not persist for
the Weyl transformed geometry.
Nevertheless, we realize that the cancellation is still

intact if we restrict5 ourselves to the harmonic Weyl
transformation, which satisfies D2σ ¼ 0. Thus, we may
construct a quantum field theory which is exactly invariant
under the harmonic Weyl transformation by canceling the
Weyl anomaly from the position-dependent coupling
constant.
More generically, one may consider theories with several

exactly marginal deformations. The Weyl anomaly has the
generalized form

δσF ¼
Z

d2x
ffiffiffi
g

p
δσðxÞðcR − χijðλÞ∂μλiðxÞ∂μλ

jðxÞÞ

þ ∂μδσðxÞwiðλÞ∂μλiðxÞ; ð7Þ

where χijðλÞ and wiðλÞmay depend on the exactly marginal
deformations λiðxÞ while c does not. For a constant Weyl
transformation, the condition for the cancellation is essen-
tially the same as before since the last term in (7) drops out.
For infinitesimal generic Weyl transformation, however,

we have to think about the cancellation of the third term
proportional to ∂μδσðxÞ. We did not talk about it in the
single coupling case because we were able to remove it

2We define the scale transformation by the change of the
difference of the coordinate as in Ref. [9] rather than the
coordinate itself [10].

3In this paper, we always assume that the conformal
field theories under consideration preserve the CP symmetry.
We also assume the absence of the gravitational anomaly so that
the free energy functional is diffeomorphism invariant:R
ddx

ffiffiffi
g

p ððDμvνþDνvμÞ δ
δgμνðxÞþvμDμλðxÞ δ

δλðxÞÞF½gμνðxÞ;λðxÞ�¼0.

4This is not necessarily a bad idea; for example, in the
supersymmetric localization, we often do not keep the full
isometry of the sphere but only the Uð1Þ subgroup of it.

5A similar restriction on the Weyl transformation has been
studied in Ref. [11].
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from the local counterterm
R
d2x

ffiffiffi
g

p
bðλÞR, but we have to

discuss it now with several coupling constants when it has
the nontrivial curvature ∂iwj − ∂jwi. While the Wess-
Zumino consistency condition does not say anything about
the (non)existence of this term [9], the recent analysis in
Ref. [12] tells that on the conformal manifold spanned by
the exactly marginal deformations the curvature is trivial
(i.e., ∂iwj − ∂jwi ¼ 0) and can be removed by the local
counterterm

R
d2x

ffiffiffi
g

p
bðλiÞR, so we actually do not have to

worry about its cancellation. The nonexistence of the
curvature ∂iwj − ∂jwi is related to the gradientness of
the beta functions, and it may have a deep implication in
renormalization group flows [9,13,14].

III. THREE DIMENSIONS

There is no curvature dependent Weyl anomaly in three
dimensions. The position-dependent exactly marginal
deformations do not introduce the additional Weyl anomaly
either under the assumption of the CP symmetry [15].
Thus, there is no interesting scenario we can imagine in
three dimensions.

IV. FOUR DIMENSIONS

Let us consider a four-dimensional conformal field
theory with an exactly marginal deformation denoted by
λ. We put the theory on a curved background with the
metric gμνðxÞ and then vary the coupling constant over the
manifold λðxÞ. In a certain renormalizaiton scheme, the
first-order Weyl transformation (i.e., the Weyl anomaly) is
given by Ref. [9] (see also Refs. [16,17]),

δσF ¼
Z

d4x
ffiffiffi
g

p
δσðxÞ

�
cðλÞWeyl2 − aEuler

þ
�
D2λD2λ − 2Gμν∂μλ∂νλ −

R
3
∂μg∂μλ

�

þ χ4ðλÞ∂μλ∂μλ∂νλ∂νλ

�
: ð8Þ

Here, Gμν ¼ Rμν −
Rgμν
2

is the Einstein tensor, and Dμ is the
covariant derivative. In addition, we have introduced
Weyl2¼R2

μνρσ−2R2
μνþ1

3
R2 and Euler¼R2

μνρσ−4R2
μνþR2.

From the Wess-Zumino consistency condition (e.g., see
Ref. [9]), one can conclude a does not depend on the
exactly marginal coupling λ. In principle, cðλÞ can depend
on λ, but the only such theories known are constructed in a
somewhat artificial holographic realization [18]. In super-
symmetric field theories with exactly marginal deforma-
tions, one can prove c does not depend on λ because they
are related to the ’t Hooft anomaly of the R current, and for
concreteness of the discussions below, one may assume this
is the case.
To simplify the analysis, let us focus on the regime in

which the last quartic term in (8), i.e., χ4ðλÞ∂μλ∂μλ∂νλ∂νλ,

can be neglected (e.g., in the small coupling regime).
Neglecting the quartic term, we try to solve the equation

− cWeyl2 þ aEuler

¼
�
D2λD2λ − 2Gμν∂μλ∂νλ −

R
3
∂μλ∂μλ

�
: ð9Þ

In particular, suppose that the metric gμνðxÞ is Ricci flat.
Then, Eq. (9) becomes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − cÞR2

μνρσ

q
¼ D2λ; ð10Þ

which may be solved by using Green’s function for the
Laplacian, assuming c does not depend on λ,

λðxÞ ¼
Z

d4x0Gðx; x0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða − cÞR2

μνρσðx0Þ
q

; ð11Þ

when the manifold is noncompact (otherwise, the regular
solution does not exist).
As in two dimensions, the above argument works both

for the infinitesimal Weyl transformation and finite but
constant Weyl transformation. For finite generic Weyl
transformation, one may define the analog of harmonic
Weyl transformation. For this purpose, it is more conven-
ient to choose a different renormalization scheme so that
the Weyl anomaly takes the form (e.g., Ref. [12])

δσF ¼
Z

d4x
ffiffiffi
g

p
δσðxÞððcðλÞ − aÞWeyl2 − 4aQþ λΔ4λ

þ χ4ðλÞ∂μλ∂μλ∂νλ∂νλÞ; ð12Þ

where Δ4 is the Fradkin-Tseytlin-Riegert-Paneitz con-
formal operator [19–22]

Δ4 ¼ ðD2Þ2 þ 2GμνDμDν þ 1

3
ðDμRÞDμ þ

1

3
RD2; ð13Þ

which is Weyl covariant Δ4 → e−4σΔ4, and Q is what is
called the Q curvature [23],

Q ¼ −1
6

D2R −
1

2
RμνRμν þ

1

6
R2; ð14Þ

which has a nice mathematical property under the Weyl
transformation

Q → e−4σðQþ Δ4σÞ: ð15Þ

The advantage of this rewriting or a choice of the
particular local counterterm is as follows. Suppose we
canceled the Weyl anomaly at a particular background by
demanding
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0¼ðcðλÞ−aÞWeyl2−4aQþ λΔ4λþχ4ðλÞ∂μλ∂μλ∂νλ∂νλ:

ð16Þ

Then, we are still able to cancel the Weyl anomaly on
theWeyl-transformedmanifoldwhenever theWeyl rescaling
is annihilated by the Fradkin-Tseytlin-Riegert-Paneitz
operator:

Δ4σ ¼ 0: ð17Þ

This is because all the terms in (12) except for theQ curvature
transform covariantly under the finiteWeyl transformation. If
the Weyl scaling factor satisfies (17), the cancellation of the
Weyl anomaly therefore persists even for finite Weyl trans-
formation. This is precisely analogous to the special role of
harmonic Weyl transformation in two dimensions.
Let us move on to the most generic cases with multiple

coupling constants. The Weyl transformation is given by

δσF ¼
Z

d4x
ffiffiffi
g

p
δσðxÞ

�
cðλÞWeyl2 − aEuler

þ χijðλÞ
�
D2λiD2λj − 2Gμν∂μλi∂νλj −

R
3
∂μλi∂νλ

j

�

þ χijklðλÞ∂μλ
i∂μλj∂νλ

k∂νλl
�

þ ∂μδσGμνwiðλÞ∂νλ
j: ð18Þ

For finite but constant Weyl transformation, we only have
to cancel the first two lines in (18), which is essentially
equivalent to what we have done above. On the other hand,
for infinitesimal but generic Weyl transformation, we have
to cancel the third line as well, which requires either ∂iwj −∂jwi ¼ 0 or Gμν ¼ 0 in the background.
To conclude the analysis, we would like to mention the

other obstructions to the Weyl transformation if the
dimension-2 operator OðxÞ exists in the theory. If this is
the case, there is a further operator Weyl anomaly such as

Z
d4x

ffiffiffi
g

p
δσðxÞðηðλÞROðxÞ þ ϵðλÞ∂μλ∂μλOþ τðλÞD2O

þ δðλÞD2λOÞ þ ∂μδσðxÞθðλÞ∂μλO: ð19Þ

It has been shown that such a Weyl anomaly can be
removed when λðxÞ ¼ λ [17] (see also Refs. [15,24] for
similar analysis), but with the space-time dependent cou-
pling, we need the extra cancellation to get the consistent
picture. Schematically, the Wess-Zumino consistency con-
dition demands η ¼ 0, and one can always remove θ and τ
by local counterterms. Then, we need to cancel the ϵ term
against the δ term. Since the existence of the dimension-2
operator is nongeneric, we will not pursue the cancellation
in further detail.

V. HOLOGRAPHIC MODELS

We revisit the cancellation mechanism we have studied
in previous sections from the holographic perspective. For
definiteness, we consider the case of four-dimensional
conformal field theories with the five-dimensional bulk.
Let us study the Einstein gravity coupled with a scalar field
ϕ given by the minimal action

S ¼
Z

d5x
ffiffiffi
g

p �
Rþ Λþ 1

2
∂Mϕ∂Mϕ

�
: ð20Þ

In the AdS/CFT correspondence, we compute the on-
shell action for a given boundary condition at ρ ¼ ϵ [i.e.,
ϕð0ÞðxÞ and gð0ÞμνðxÞ below] with the expansion

ϕ ¼ ϕð0ÞðxÞ þ ρϕð1ÞðxÞ þ ρ2ϕð2ÞðxÞ þ � � �
gμν ¼ gð0ÞμνðxÞ þ ρgð1ÞμνðxÞ þ ρ2gð2ÞμνðxÞ þ � � � ð21Þ

in the Graham-Fefferman gauge

ds2 ¼ GMNdxMdxN ¼ dρ2

ρ2
þ gμνdxμdxν

ρ
: ð22Þ

The resulting on-shell action is generically divergent in
the limit ϵ → 0 from the ρ integration as

R
ϵ dρρ

−1Slog ¼
log ϵSlog, leading to the holographic Weyl anomaly [25].
Explicitly [26], we have

S ¼ log ϵ
Z

d4x

�
1

8
R2
μνð0Þ −

1

24
R2
ð0Þ þ

1

4
ðD2ϕð0ÞÞ2

−
1

2
Rμν
ð0Þ∂μϕ∂νϕþ 1

6
Rð0Þ∂μϕð0Þ∂νϕð0Þ

þ 1

3
ð∂μϕð0Þ∂μϕð0ÞÞ2

�
; ð23Þ

which is exactly what we had in Sec. IV for the constant
Weyl transformation. Thus, canceling the Weyl anomaly
from the position-dependent coupling constant corresponds
to the choice of the boundary values of ϕðxÞ such that the
on-shell gravity action is finite without the logarithmic
divergence. The choice of such boundary conditions makes
the AdS/CFT correlation functions better behaved, so
classifying such a supergravity background may be of
theoretical interest.

VI. DISCUSSIONS

In this paper, we have studied a novel way to cancel the
Weyl anomaly from the position-dependent coupling con-
stant. Here, wewould like to mention further possibilities to
cancel the Weyl anomaly.
First of all, if the theory under consideration possesses

a conserved current Jμ, one may introduce the back-
ground field strength by the coupling

R
d4x

ffiffiffi
g

p
AμJμ.
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This gives another contribution to the Weyl anomaly asR
d4xδσðxÞb0FμνðxÞFμνðxÞ, where b0 is the coefficient of

the one-loop beta function determined from the current
two-point function (which is positive in unitary conformal
field theories) and Fμν ¼ ∂μAν − ∂νAμ. Then, we may try
to cancel the Weyl anomaly from this contribution.
Actually, simultaneous use of the gauge field and the
position-dependent coupling constant may not be a
good idea because of the existence of the vector beta
functions [27]. Again, we have to think about the cancel-
lation of the extra operator Weyl anomaly such asR
d4xδσρðλÞ∂μλJμ. To avoid the appearance of the vector

beta functions, we may only introduce the position-
dependent coupling constant which is neutral under the
symmetry generated by Jμ.
It could have been extremely interesting if we had been

able to find a novel class of Weyl gauging without
demanding c ¼ 0 in two dimensions and c ¼ a ¼ 0 in
four dimensions.6 Currently, the closest way to do this is to
demand all the nontrivial Weyl anomalies vanish, say,
a ¼ 0 in four dimensions, and then try to cancel the cWeyl2

term against the space-time dependent coupling constants.
Here, we should further employ the nonunitariness of the
model (since a ¼ 0 from the beginning suggests it must be
so) to obtain the cancellation in the Weyl anomalies. This is
because unitarity demands the positivity of the both terms
and the cancellation only happens by using the nonunitary

property. Whether this is better than just demanding
c ¼ a ¼ 0 is yet to be seen in the context of quantum
Weyl gravity in which we would like to gauge the Weyl
symmetry exactly.7

In two dimensions, we did not obtain any new possibilities
to gauge the entire Weyl symmetry than demanding c ¼ 0
from the beginning. We are still able to gauge the harmonic
Weyl symmetry, but the physical interest in such gauging
(e.g., whether it defines a newclass of quantumgravity in two
dimensions) should be discussed more in detail.
Finally, we point out that there is an alternative option.

Once we know how to solve λðxÞ to cancel the Weyl
anomaly in a given metric gμνðxÞ, one may introduce the
extra transformation on λðxÞ so that the Weyl anomaly is
always canceled (irrespective of the obstructions we have
discussed above). This possibility requires further inves-
tigation if such a transformation can be defined system-
atically and then whether such a generalized notion of the
Weyl transformation is useful or not.
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