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By generalizing the formalism proposed by Dalibard, Dupont-Roc and Cohen Tannoudji, we study the
resonance interatomic energy of two identical atoms coupled to quantum massless scalar fields in a
symmetric/antisymmetric entangled state in the Minkowski and cosmic string spacetimes. We find that in
both spacetimes, the resonance interatomic energy has nothing to do with the field fluctuations but is
attributed to the radiation reaction of the atoms only. We then concretely calculate the resonance
interatomic energy of two static atoms near a perfectly reflecting boundary in the Minkowski spacetime and
near an infinite and straight cosmic string, respectively. We show that the resonance interatomic energy in
both cases can be enhanced or suppressed and even nullified as compared with that in an unbounded
Minkowski spacetime, because of the presence of the boundary in the Minkowski spacetime or the
nontrivial spacetime topological structure of the cosmic string. Besides, we also discover that the resonance
interatomic energy in the cosmic string spacetime exhibits some peculiar properties, making it in principle
possible to sense different cosmic string spacetimes via the resonance interatomic energy.
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I. INTRODUCTION

Radiative properties of atoms are not inherent as they are
crucially dependent on the quantum fields to which they are
coupled. For example, for atoms in cavities or near a
perfectly reflecting boundary, the atomic transition rates
[1–4], energy shifts [2,5–12], interatomic interaction
energy [1,13,14] and so on differ from those in a free
space. The differences originate from the fact that the
modes of quantum fields are modified due to the presence
of boundaries. The aforementioned examples are concerned
with the atomic radiative properties in a Minkowski
spacetime. In recent years, investigations concerning the
atomic radiative properties in curved spacetimes have been
carried out [15–25], and it is found that in certain curved
spacetimes, behaviors of the atomic radiative properties
similar to those in a bounded Minkowski spacetime occur,
even when boundaries are absent.
The cosmic string spacetime is one such spacetime.

The appearance of cosmic strings is one of the predictions
of various models of grand unification theories (GUTs).

They are extended, one-dimensional, closed and infinite
linear objects with a linear mass density and a linear tension
that arise as topological defects during the symmetry
breaking phase transitions in the early universe [26,27].
The existence of them presumably can induce various
astrophysical effects. For example, they are thought to be
probable sources of gravitational waves [28–30], gamma-
ray bursts [31] and high-energy cosmic rays [32]. Though
observational data of the cosmic microwave background
has ruled out the cosmic strings as a candidate for the
formation of galaxies, the interest in this topic reappeared
in the context of the “brane-world” scenarios of the
superstring theory [33–38]. Due to its important role in
cosmology, there is growing interest in the studies on
cosmic strings in recent years.
The simplest cosmic string spacetime is that of a static

and straight-line cosmic string. It looks like a direct product
of the two-dimensional Minkowski space and a cone.
Outside the string, the spacetime is locally flat but
topologically nontrivial. Fields propagating in such a
spacetime are influenced by its nontrivial topology, and
the energy densities of various fields are found to exhibit
boundary-induced effects [39–45]. For particles interacting
with quantum fields in such a spacetime, though there is no
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local gravitational force exerting on them, the particles are
“interacting” with the global conical structure. Such an
interaction causes modifications in the radiative properties
of particles. It has been shown that the transition rates of
atoms in interaction with quantum scalar or electromag-
netic fields are affected by the presence of a cosmic string
[15,22,44,46,47], and a polarizable microparticle around an
infinite straight cosmic string senses a Casimir-Polder force
[48]. In this paper, we study another atomic radiative
property, i.e., the resonance interatomic energy of two
correlated atoms, in the cosmic string spacetime.
Resonance interaction occurs when two atoms/mole-

cules prepared in different eigenstates are coupled to
quantum fields, two atoms with one in the ground state
and the other in an excited state, for example. As the
exchange of real photons can be involved in such inter-
actions, the interaction energy generally manifests peculiar
properties in contrast to the dispersion energy between two
atoms in their ground states. For two neutral atoms in their
ground states and in interaction with the quantum electro-
magnetic field, Casimir and Polder showed in their pioneer-
ing work that the interaction energy decays with the power
law R−7 (with R being the interatomic separation) in the
long distance region (distances much larger than the typical
transition wavelength of atoms) [49]. The interaction
energy between one atom in the ground state and the other
in the excited state, however, scales as R−2 [50–61] [62].
Treatments on these two types of interaction energy entail a
fourth-order perturbation theory. But when two identical
atoms are prepared in a correlated state, a symmetrical/
antisymmetrical entangled state for example, the resonance
interaction energy turns out to be a second-order effect.
It oscillates with the interatomic separation with the
amplitude at large interatomic separation decaying with
the power law R−1.
The aforementioned properties are of the resonance

interaction energy for two atoms in interaction with the
quantum electromagnetic field in a free Minkowski space-
time. The resonance interaction energy may be significantly
modified if the situations differ. A presence of boundaries is
one of such circumstances. It has been shown that the
presence of a conducting plate induces modifications in
the interatomic potential of two atoms in their ground states
[13,14,63], the near-surface effect sufficiently changes the
resonance interaction between an excited atom and a
ground-state atom [64], and suitably arranged structured
environments can significantly affect the resonance energy
transfer process [65–67]. These works refer to two uncor-
related atoms or molecules. Recently, it is also found that
the resonance interaction of two correlated atoms exhibits
peculiar properties in different environments. For example,
the resonant interatomic force between two identical
atoms in a symmetric/antisymmetrical entangled state
can be greatly enhanced or suppressed in a photonic crystal
[68,69], and the transition rate of such two atoms near

perfect mirrors may undergo a reduction or an enhancement
[70]. Very recently, we studied the resonance interaction
energy between two static atoms interacting with quantum
electromagnetic fields near a perfectly reflecting boundary
and correlated by an entangled state. We discovered that for
some specific geometric configurations of the two-atom
system with respect to the mirror, the resonance interaction
energy exhibits new behaviors as compared with those
of two static ones in an unbounded Minkowski space-
time [71,72].
The cosmic string spacetime is characterized by its

nontrivial topological structure, and many quantum effects
such as the vacuum fluctuations [39–45], atomic transition
rates [15,22,44,46,47] and energy shifts [48] in this
spacetime exhibit behaviors similar to those in a bounded
flat spacetime. Here, we are interested in how the resonance
interatomic energy is affected by the presence of a cosmic
string and whether some boundarylike effects show up in
the resonance interatomic energy. With this in mind, we
study the resonance interaction energy between two atoms
in a symmetric/antisymmetric entangled state and in
interaction with a quantum massless scalar field near a
perfectly reflecting boundary in the Minkowski spacetime
and near an infinite and straight cosmic string, respectively.
By comparing the results in these two different back-
grounds, we also explore the possibility of sensing the
cosmic string via the resonance interatomic energy.
The paper is organized as follows. In Sec. II, we

introduce the formalism proposed by Dalibard, Dupont-
Roc and Cohen-Tannandji (DDC formalism) [73,74], and
by which the resonance interatomic energy will be calcu-
lated. In Secs. III and IV, we use the DDC formalism to
evaluate the resonance interatomic energy of two identical
two-level atoms prepared in the symmetric/antisymmetric
entangled state and in interaction with quantum massless
scalar fields in two different backgrounds, i.e., near a
perfectly reflecting boundary in the Minkowski spacetime
and in the cosmic string spacetime. Finally, we give
conclusions in Sec. V.

II. THE DDC FORMALISM

We assume that two two-level identical atoms labeled by
A and B are in interaction with quantum massless scalar
fields in a Minkowski/cosmic string spacetime. The field
operators in these two spacetimes can be expressed in the
following general form:

ϕðt; x⃗Þ ¼
X
k⃗

½ak⃗ðtÞuk⃗ðx⃗Þ þ H:c:�; ð1Þ

in which a†
k⃗
is the creation operator of the field, and “H.c.”

denotes the Hermitian conjugate. The specific expressions
of the basic modes, uk⃗ðx⃗Þ, will be given in Sec. III for the
scalar field in a bounded Minkowski spacetime and in
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Sec. IV for the scalar field in a cosmic string spacetime, as
they are closely dependent on the concrete configurations
of the spacetimes.
The atoms possess two stationary eigenstates jþi and

j−i with energies � ω0

2
, and are assumed to be static. Then

the Hamiltonian of the system composed by the two atoms
and the scalar field is given by

H ¼ ω0σ
A
3 ðτÞ þ ω0σ

B
3 ðτÞ þ λðσA2 ðτÞϕðxAðτÞÞ

þ σB2 ðτÞϕðxBðτÞÞÞ þ
X
k⃗

ωk⃗a
†
k⃗
ak⃗

dt
dτ

; ð2Þ

where τ is the atomic proper time [75], λ is the coupling
constant, and

σξ2ðτÞ ¼
i
2
ðσξ−ðτÞ − σξþðτÞÞ; ð3Þ

σ3ðτÞ ¼
1

2
ðjþihþj − j−ih−jÞ ð4Þ

with ξ ¼ A, B, σ−ðτÞ ¼ j−ihþj and σþðτÞ ¼ jþih−j.
For atoms interacting with quantum fields, the atomic

radiative properties may be attributed to vacuum fluctua-
tions [76,77] and radiation reaction [78], or a combination
of them [79,80]. The ambiguity arises from the ordering of
operators of fields and atoms. Dalibard, Dupont-Roc and
Cohen Tannoudji(DDC) proposed that a symmetric order-
ing should be exploited, so that the contributions of field
fluctuations and radiation reaction can be distinctively
separated [73,74]. This formalism has been widely used
to study the spontaneous transition rates and energy shifts
of a single atom interacting with quantum fields in various
environments [2,6–12,15–19,22–24], and very recently, it
was generalized to study the resonance interaction between
two atoms prepared in an entangled state in the Minkowski
spacetime [4,72,81–84] and in the Schwarzschild spacetime
[25,84]. Here we introduce the DDC formalism with which
we will investigate the resonance interaction energy of two
atoms in the Minkowski and cosmic string spacetimes.
To evaluate the resonance interatomic energy of the two

atoms, we choose to work in the Heisenberg picture. We
firstly write out the Heisenberg equations of motion for the
dynamical variables of the field and the atoms, respectively,
and then we solve these equations and divide each solution
into a free part and a source part which are denoted by the
superscript “f” and “s” respectively. For the dynamical
variable of the field, we have ak⃗ðtðτÞÞ¼ af

k⃗
ðtðτÞÞþas

k⃗
ðtðτÞÞ

with

af
k⃗
ðtðτÞÞ ¼ ak⃗ðtðτ0ÞÞe−iωk⃗ðtðτÞ−tðτ0ÞÞ ð5Þ

and

as
k⃗
ðtðτÞÞ ¼ iλ

Z
τ

τ0

dτ0σAf2 ðτ0Þ½ϕfðxAðτ0ÞÞ; afk⃗ðtðτÞÞ�

þ iλ
Z

τ

τ0

dτ0σBf2 ðτ0Þ½ϕfðxBðτ0ÞÞ; afk⃗ðtðτÞÞ�: ð6Þ

Then the field operator can be accordingly expressed as
ϕðtðτÞ; x⃗ðτÞÞ ¼ ϕfðtðτÞ; x⃗ðτÞÞ þ ϕsðtðτÞ; x⃗ðτÞÞ with

ϕfðtðτÞ; x⃗ðτÞÞ ¼
X
k⃗

½af
k⃗
ðtÞuk⃗ðx⃗Þ þ H:c:� ð7Þ

and

ϕsðtðτÞ; x⃗ðτÞÞ ¼ iλ
Z

τ

τ0

dτ0σAf2 ðτ0Þ½ϕfðxAðτ0ÞÞ;ϕfðxðτÞÞ�

þ iλ
Z

τ

τ0

dτ0σBf2 ðτ0Þ½ϕfðxBðτ0ÞÞ;ϕfðxðτÞÞ�:

ð8Þ

Similar treatments on the dynamical variables of the atoms
give rise to the following free part and source part for the
operators σξ2ðτÞ:

σξf2 ðτÞ ¼ i
2
½σξ−ðτ0Þe−iω0ðτ−τ0Þ − σξþðτ0Þeiω0ðτ−τ0Þ�; ð9Þ

σξs2 ðτÞ ¼ iλ
Z

τ

τ0

dτ0½σξf2 ðτ0Þ; σξf2 ðτÞ�ϕfðxξðτ0ÞÞ; ð10Þ

and those for the operators σξ3ðτÞ:

σξf3 ðτÞ ¼ σξ3ðτ0Þ; ð11Þ

σξs3 ðτÞ ¼ iλ
Z

τ

τ0

dτ0½σξf2 ðτ0Þ; σξf3 ðτÞ�ϕfðxξðτ0ÞÞ: ð12Þ

Notice that all the above source parts are accurate to the first
order of the coupling constant.
Using the above free parts and source parts of the

atomic and field’s operators in the Heisenberg equations
of motion, and choosing a symmetric ordering between
the operators of the atoms and the field, we can distinguish
the contributions of field fluctuations and radiation reac-
tion to the variation rate of the atomic energy. For atom A,
the expectation value of the contribution of field fluctua-
tions over the vacuum state of the field is given by

�
dHAðτÞ

dτ

�
vf

¼ −λ2ω0

Z
τ

τ0

dτ0½σAf2 ðτ0Þ; ½σAf2 ðτÞ; σAf3 ðτÞ��

× CFðxAðτÞ; xAðτ0ÞÞ ð13Þ

with CFðxAðτÞ; xAðτ0ÞÞ being the symmetric correlation
function of the field defined as
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CFðxAðτÞ; xAðτ0ÞÞ ¼
1

2
h0jfϕfðxAðτÞÞ;ϕfðxAðτ0ÞÞgj0i;

ð14Þ

and that of the radiation reaction is

�
dHAðτÞ

dτ

�
rr
¼ λ2ω0

Z
τ

τ0

dτ0f½σAf2 ðτÞ; σAf3 ðτÞ�; σAf2 ðτ0Þ�g

× χFðxAðτÞ; xAðτ0ÞÞ

þ λ2ω0

Z
τ

τ0

dτ0f½σAf2 ðτÞ; σAf3 ðτÞ�; σBf2 ðτ0Þg

× χFðxAðτÞ; xBðτ0ÞÞ ð15Þ

with χFðxAðτÞ; xBðτ0ÞÞ being the linear susceptibility
function of the field defined as

χFðxAðτÞ; xBðτ0ÞÞ ¼
1

2
h0j½ϕfðxAðτÞÞ;ϕfðxBðτ0ÞÞ�j0i: ð16Þ

From the above expressions of ðdHAðτÞ
dτ Þvf;rr, we can

identify the effective Hamiltonians of the contributions
of vacuum fluctuations to atom A:

Heff
A;vfðτÞ ¼

1

2
iλ2

Z
τ

τ0

dτ0½σAf2 ðτ0Þ; σAf2 ðτÞ�

× CFðxAðτÞ; xAðτ0ÞÞ; ð17Þ

and that of the radiation reaction to atom A:

Heff
A;rrðτÞ ¼ −

1

2
iλ2

Z
τ

τ0

dτ0fσAf2 ðτÞ; σBf2 ðτ0Þg

× χFðxAðτÞ; xBðτ0ÞÞ

−
1

2
iλ2

Z
τ

τ0

dτ0fσAf2 ðτÞ; σAf2 ðτ0Þg

× χFðxAðτÞ; xAðτ0ÞÞ: ð18Þ

Equation (17) shows that the effective Hamiltonian for the
contribution of vacuum fluctuations to atom A is inde-
pendent of atom B, and thus it has no contribution to the
interatomic energy. However, in Eq. (18), which is the
effective Hamiltonian of the radiation reaction, though
the second term only depends on atom A, the first term
depends on both atoms, and thus it contributes to the
interatomic energy. Taking similar steps for atom B, we
can get Heff

B;vfðτÞ and Heff
B;rrðτÞ.

As mentioned previously, the two atoms are prepared in
the symmetric/antisymmetric entangled state:

jψ�i ¼
1ffiffiffi
2

p ðjgAeBi � jeAgBiÞ; ð19Þ

in which “g” and “e” represent the ground and excited
states of the atoms.
Then the summation of the average values of the two-

atom dependent parts in bothHeff
A;rrðτÞ andHeff

B;rrðτÞ over the
above states gives rise to the following formula for the
resonance interatomic energy:

δE ¼ −iλ2
Z

τ

τ0

dτ0CABðτ; τ0ÞχFðxAðτÞ; xBðτ0ÞÞ

þ A⇌B term ð20Þ

with

CABðτ; τ0Þ ¼ 1

2
hψ�jfσAf2 ðτÞ; σBf2 ðτ0Þgjψ�i; ð21Þ

which is the symmetric statistical function of the atoms. For
two two-level identical atoms, this function can be further
simplified to be

CABðτ; τ0Þ ¼ � 1

8
ðeiω0ðτ−τ0Þ þ e−iω0ðτ−τ0ÞÞ ð22Þ

with “�” corresponding to atoms in states j�i, respec-
tively. From the above derivation, we see that the resonance
interatomic energy between two atoms in a symmetric/
antisymmetric entangled state is independent of the vacuum
fluctuations of fields, and results only from the radiation
reaction of atoms.
In the following two sections, we use this formalism to

calculate the resonance interatomic energy of two identical
static atoms in the symmetric/antisymmetric entangled state
in theMinkowski and cosmic string spacetimes, respectively.

III. RESONANCE INTERATOMIC ENERGY OF
TWO STATIC ATOMS NEAR A PERFECTLY

REFLECTING BOUNDARY IN THE
MINKOWSKI SPACETIME

As shown in Fig. 1, we suppose that two identical two-
level atoms with a separation R and prepared in the
symmetric/antisymmetric entangled state are located near
a perfectly reflecting boundary in the Minkowski vacuum,
and they are in interaction with a quantum massless scalar
field. For this case, we choose the rectangular coordinate
system to study the resonance interatomic energy, and
assume that the boundary coincides with the “xoy” plane.
The field operator near the boundary can be described by

ϕðt; x⃗Þ ¼
Z
kz>0

d3k⃗½ak⃗uk⃗ðt; x⃗Þ þ H:c:� ð23Þ

with

uk⃗ðt; x⃗Þ ¼
1

2π
ffiffiffiffiffiffi
πω

p e−iωteik⃗∥·x⃗∥ sinðkzzÞ; ð24Þ
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k⃗∥ ¼ ðkx; kyÞ, and x⃗∥ ¼ ðx; yÞ. It is easy to check that as kz,
k0z > 0, the above modes satisfy the following relation:

ðuk⃗ðt; x⃗Þ; uk⃗0 ðt; x⃗ÞÞ

¼ −i
Z

d3xðuk⃗ðt; x⃗Þ∂tu�k⃗0 ðt; x⃗Þ − ∂tuk⃗ðt; x⃗Þu�k⃗0 ðt; x⃗ÞÞ

¼ δ
k⃗ k⃗0 : ð25Þ

Then the two-point correlation function of the field follows:

h0jϕðtA; x⃗AÞϕðtB; x⃗BÞj0i ¼ −
1

4π2
1

ðtA − tB − iϵÞ2 − R2

þ 1

4π2
1

ðtA − tB − iϵÞ2 − R̄2

ð26Þ

with

R2 ¼ ðxA − xBÞ2 þ ðyA − yBÞ2 þ ðzA − zBÞ2; ð27Þ

R̄2 ¼ðxA − xBÞ2 þ ðyA − yBÞ2 þ ðzA þ zBÞ2: ð28Þ

Notice that the second term in the two-point correlation
function, Eq. (26), reflects the effect of image atoms A0 and
B0, and it can be derived by using the method of images.
Combining Eq. (26) with Eq. (16), we obtain the

following linear susceptibility function of the field:

χFðxAðτÞ; xBðτ0ÞÞ

¼ −
1

8π2

�
1

ðΔτ − iϵÞ2 − R2
−

1

ðΔτ þ iϵÞ2 − R2

�

þ 1

8π2

�
1

ðΔτ − iϵÞ2 − R̄2
−

1

ðΔτ þ iϵÞ2 − R̄2

�
: ð29Þ

Using the above function together with (22) in Eq. (20), and
doing some calculations with the technique of contour
integration and the residuum theory, we get the following

resonance interatomic energy for the two atoms near the
boundary:

δE ¼∓ λ2

16π

�
cosðω0RÞ

R
−
cosðω0R̄Þ

R̄

�
: ð30Þ

This result shows that the resonance interatomic energy of
the two atoms near the boundary is composed by two parts:
the first part is only dependent on the relative positions
of the two atoms and it is completely the same as the
resonance interatomic energy of two static atoms in an
unbounded Minkowski spacetime [see the result obtained
by taking a → 0 in Eq. (14) of Ref. [81]]; the second part
however depends on locations of the two atoms with
respect to the boundary, and thus it results from the
presence of the boundary. In general, the interaction can
either be strengthened or weakened depending on the
positions of the atoms. In particular, for some special
locations of the two atoms with respect to the boundary,
which satisfies the relation, R̄ cosðω0RÞ ≤ R cosðω0R̄Þ, the
second term equals or even overwhelms the first term. As a
result, the resonance interatomic energy of the two atoms
can be dramatically manipulated by the presence of the
boundary as compared with that in an unbounded space
[denoted by δE0], being nullified or even causing a sign
change of the interaction. This means that the effect of the
atomic radiation reaction on the resonance interatomic
energy can be completely shielded by the presence of
the boundary for atoms at some particular locations while at
some other locations the presence of the boundary alters the
sign of the interaction. For a graphic example, see Fig. 2.
To show more clearly the effect of the presence of a

perfectly reflecting boundary on the resonance interatomic
energy of the two atoms in the symmetric/antisymmetric
entangled state, we compare the resonance interatomic
energy of two atoms near the boundary in two different

FIG. 1. Two static atoms with a separation R are located near a
perfectly reflecting boundary in the Minkowski vacuum. A0 and
B0 are the images of atoms A and B, respectively.

FIG. 2. The location [with respect to the boundary]-dependence
of the resonance interatomic energy of two atoms with a fixed
interatomic separation near the boundary. The atomic transition
frequency and the interatomic separation are, respectively, ω0 ¼
1.549 × 1016 s−1 and R ¼ 9.674 × 10−8 m. The ordinate is of

unit ∓ λ2ω0

16π .
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orientations with respect to it [denoted by δE∥ and δE⊥]
with that in an unbounded space [δE0]. Figures 3(a)
and 3(b) show that the relative resonance interatomic
energy of the two atoms with constant separation R near
the boundary oscillates with the atom-plate separation z
around unity, where z is the distance between the boundary
and the atom which is closer. It means that the resonance
interatomic energy near the boundary can be larger or
smaller than that in an unbounded space, depending on the
relative positions of the two atoms with respect to the plate.

As the effect of the boundary becomes weaker with increas-
ing atom-plate separation, the oscillation amplitude
decreases with increasing atom-plate separation. As a result,
the resonance interatomic energy approaches, at infinity, the
corresponding value in an unboundedMinkowski spacetime.

IV. RESONANCE INTERATOMIC ENERGY OF
TWO STATIC ATOMS IN A COSMIC STRING

SPACETIME

In this section, we study the resonance interatomic energy
of two identical two-level atoms prepared in the symmetric/
antisymmetric entangled state near a static, straight, and
infinitely long and thin cosmic string [see Fig. 4].
Suppose that the string lies along the z axis, then we can

describe its spacetime metric in the cylindrical coordinates
ðt; r; θ; zÞ as

ds2 ¼ dt2 − dr2 − r2dθ2 − dz2; ð31Þ

where 0 ≤ θ < 2π=ν, ν ¼ ð1 − 4GμÞ−1 with G and μ being
the Newton constant and the mass per unit length of the
string. This metric corresponds to a very simple exact
solution of the Einstein equations. The value of ν is
determined by the value of the mass density of the string
which is in turn determined by the spontaneous symmetry
breaking scale when the cosmic string was formed. For
typical GUTmodels,Gμ ∼ 10−6, which gives rise to a value
of ν slightly larger than unity. The existence of the cosmic
string does not produce any local gravitational field, but it
does induce a nontrivial global topology, in the sense that a
length of a unit circle around the string is less than 2π with a
deficit angle 8πGμ [as shown in Fig. 4], and a surface of
constant ðt; zÞ exhibits the geometry of a cone rather than
that of a plane.

FIG. 3. The relative resonance interatomic energy of two static
atoms near a perfectly reflecting boundary. (a) Two specific
configurations are considered, i.e., two atoms aligned with their
separation parallel or perpendicular to the boundary. For the
former case, zA ¼ zB ¼ z, and the resonance interaction energy is
represented by δE∥; while for the latter case, z represents the
distance between the boundary and the atom closer to the
boundary, and the resonance interaction energy is represented
by δE⊥. Parameters are chosen such that ω0R ¼ 1. (b) The
relative resonance interatomic energy of two atoms aligned with
the interatomic separation parallel to the boundary and with
various values of interatomic separation and atom-boundary
separation. For two atoms located with their separation
perpendicular to the plate, δE⊥

δE0 exhibits similar behaviors as δE∥

δE0

shown in this figure.

FIG. 4. Two atoms with separation R are located near an infinite
and straight cosmic string.
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In this spacetime, the Klein-Gordon equation of the
massless scalar field takes the form

∂2
t −

1

r
∂rðr∂rÞ −

1

r2
∂2
θ − ∂2

zϕðt; x⃗Þ ¼ 0: ð32Þ

Solving this equation by a separation of variables, we can
get a complete set of normalized field modes [15]:

um;κ;k⊥ðt; x⃗Þ ¼
1

2π

ffiffiffiffiffiffi
ν

2ω

r
e−iωteiκzeiνmθJνjmjðk⊥rÞ; ð33Þ

with κ ∈ ð−∞;∞Þ, m ∈ Z, k⊥ ∈ ½0;∞Þ, ω2 ¼ κ2 þ k2⊥
and Jνjmjðk⊥rÞ being the first kind Bessel function. The
product [defined in the second line of Eq. (25)] of these
modes follows as

ðum;κ;k⊥ðt; x⃗Þ; um0;κ0;k0⊥ðt; x⃗ÞÞ ¼ δðκ − κ0Þδmm0
δðk⊥ − k0⊥Þffiffiffiffiffiffiffiffiffiffiffi

k⊥k0⊥
p :

ð34Þ

Then we can expand the massless scalar field in terms of the
above modes as

ϕðt; x⃗Þ ¼
Z

dμj½ajujðt; x⃗Þ þ H:c:� ð35Þ

with j≡ fm; κ; k⊥g and

Z
dμj ¼

X∞
m¼−∞

Z
∞

−∞
dκ

Z
∞

0

dk⊥k⊥: ð36Þ

From the mode function, Eq. (33), we can easily deduce
that the field operator in the cosmic string spacetime is
periodic [with respect to the coordinate θ] with a periodicity
2π
ν rather than 2π.
With the field operator (35), we can easily obtain the

linear susceptibility function of the field,

χFðxAðτÞ; xBðτ0ÞÞ ¼
ν

16π2
X∞

m¼−∞

Z
∞

−∞
dκ

Z
∞

0

dk⊥
k⊥
ω

eiκz

× eiνmΔθJνjmjðk⊥rAÞJνjmjðk⊥rBÞ
× ðe−iωΔτ − eiωΔτÞ ð37Þ

with Δτ ¼ τ − τ0, z ¼ zA − zB and Δθ ¼ θA − θB.
Substituting this function and the symmetric statistical

function of the atoms, Eq. (22), into Eq. (20), and doing
some simplifications, we arrive at

δE ¼∓ λ2ν

32π2
X∞

m¼−∞

Z
∞

−∞
dκ

Z
∞

0

dk⊥
k⊥
ω

eiκzeiνmΔθ

× Jνjmjðk⊥rAÞJνjmjðk⊥rBÞ
�

1

ωþ ω0

þ 1

ω − ω0

�
;

ð38Þ

which is the general expression of the resonance inter-
atomic energy of two identical static atoms in a symmetric/
antisymmetric entangled state and in interaction with the
quantum massless scalar field in the cosmic string space-
time. As κ2 þ k2⊥ ¼ ω2, by making transformations k⊥ ¼
ω sinφ and κ ¼ ω cosφ, the above formula is accordingly
transformed into

δE ¼ ∓ λ2ν

16π2
X∞

m¼−∞
eiνmΔθ

Z π
2

0

dφ
Z

∞

0

dωω sinφ

× cosðωz cosφÞJνjmjðωrA sinφÞJνjmjðωrB sinφÞ

×

�
1

ωþ ω0

þ 1

ω − ω0

�
: ð39Þ

For general positions of the two atoms with respect to the
string in a cosmic string spacetime with noninteger param-
eter ν, further simplifications of the above expression is
very difficult. However, for some special cases, we can still
derive some analytical results.
(1) ν ¼ 1.
Using the property of the first kind Bessel function that

X∞
m¼−∞

eimΔθJjmjðk⊥rAÞJjmjðk⊥rBÞ ¼ J0ðk⊥RÞ ð40Þ

with R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2A þ r2B − 2rArB cosΔθ

p
, the resonance inter-

atomic energy, Eq. (39), reduces to

δE ¼ ∓ λ2

16π2

Z π
2

0

dφ
Z

∞

0

dωω sinφ cosðωz cosφÞ

× J0ðωR sinφÞ
�

1

ωþ ω0

þ 1

ω − ω0

�
: ð41Þ

Further simplifications of the above integration gives rise to

δE ¼∓ λ2

16π

cosðω0RÞ
R

; ð42Þ

with R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ z2

p
, which is exactly the interatomic

separation. The above resonance interatomic energy is the
same as the first term in Eq. (30), which is the resonance
interatomic energy of two atoms in an unbounded
Minkowski spacetime. The consistency comes out naturally,
as when ν ¼ 1, the deficit angle disappears and the cosmic
string spacetime reduces to the Minkowski spacetime.
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(2) ν > 1.
(2.1) One or both atoms are located on the string.
We firstly consider the simplest case in which at least one

of the two atoms is located on the string, i.e., rA ¼ 0 or
rB ¼ 0. Notice that

Jαð0Þ ¼
�
0; α > 0;

1; α ¼ 0;
ð43Þ

then if both atoms are located on the string, the resonance
interatomic energy, Eq. (39), can be simplified to be:

δE ¼∓ λ2ν

16π2

Z π
2

0

dφ
Z

∞

0

dωω sinφ cosðωz cosφÞ

×

�
1

ωþ ω0

þ 1

ω − ω0

�

¼∓ λ2ν

16π

cosðω0zÞ
jzj ; ð44Þ

for the case in which only one atom is located on the string
(atom A for example), the use of relation (43) in Eq. (39)
leads to:

δE ¼∓ λ2ν

16π2

Z π
2

0

dφ
Z

∞

0

dωω sinφ cosðωz cosφÞ

× J0ðωrB sinφÞ
�

1

ωþ ω0

þ 1

ω − ω0

�

¼∓ λ2ν

16π

cosðω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2B þ z2

p
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2B þ z2
p : ð45Þ

Notice that if both atoms are located on the string, jzj is
equal to the interatomic separation, and for the case in
which only atom A is located on the string,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2B þ z2

p
also

represents the interatomic separation. Thus when one or
both atoms are located on the string, we have

δE ¼∓ λ2ν

16π

cosðω0RÞ
R

: ð46Þ

Compare it with its counterpart in an unbounded
Minkowski spacetime [see Eq. (42)], we find that they
are quite similar, except for the presence of the parameter ν
in the above result. As ν > 1, it reveals that for the case
where one or both atoms are located on the string, the
resonance interatomic energy of two identical atoms in a
symmetrical/antisymmetrical entangled state is amplified
to be ν times that in an unbounded Minkowski spacetime.
(2.2) Two atoms fixed in a cosmic string spacetime with

integer ν.
Though the parameter ν for a real cosmic string

spacetime is only slightly larger than unity, the investiga-
tions on cosmic string spacetimes with integer ν also caught
much attention [22,44,46–48,85], as for this case analytical

results are usually obtainable, and they are very helpful
for us to understand the properties of the cosmic string
spacetimes.
For integer ν, using the following property of the first

kind Bessel function [44],

1

ν

Xν−1
n¼0

J0ðkLn;νÞ ¼ 2
X∞
m¼1

JνmðkrAÞJνmðkrBÞ cosðνmΔθÞ

þ J0ðkrAÞJ0ðkrBÞ ð47Þ

with Ln;ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2A þ r2B − 2rArB cosðΔθ þ 2πn=νÞ

p
, in the

general expression of the resonance interaction energy
[Eq. (39)], we get

δE ¼∓ λ2

16π2
Xν−1
n¼0

Z
∞

0

dωω

�
1

ωþ ω0

þ 1

ω − ω0

�

×
Z π

2

0

dφ sinφ cosðωz cosφÞJ0ðωLn;ν sinφÞ;

¼∓ λ2

16π

Xν−1
n¼0

cosðω0Rn;νÞ
Rn;ν

ð48Þ

with Rn;ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ L2

n;ν

q
. Notice that when rA ∼ 0 or

rB ∼ 0, or both rA;B ∼ 0, this result approaches Eq. (46).
For ν ¼ 1, the above result reduces to

δE ¼∓ λ2

16π

cosðω0R0;1Þ
R0;1

ð49Þ

with R0;1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2A þ r2B − 2rArB cosΔθ

p
¼ R, which is

exactly the resonance interatomic energy of two atoms in an
unbounded Minkowski spacetime. So by taking ν ¼ 1, we
recover the resonance interatomic energy of two atoms in a
free Minkowski space.
For ν ¼ 2, Eq. (48) can be reexpressed to be a sum of

two terms:

δE ¼∓ λ2

16π

�
cosðω0R0;2Þ

R0;2
þ cosðω0R1;2Þ

R1;2

�
ð50Þ

with

R0;2 ¼ R0;1 ¼ R; ð51Þ

R1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ r2A þ r2B þ 2rArB cosΔθ

q
: ð52Þ

Notice that the first term is only determined by the
interatomic separation between the two atoms, and it is
completely the same as the resonance interatomic energy of
two atoms in a free Minkowski vacuum; while the second
term is closely dependent on the locations of the two atoms
with respect to the string. Comparing it with the resonance
interatomic energy of two static atoms located near a
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perfectly reflecting boundary in the Minkowski vacuum
[see Eq. (30)], we find that they are quite similar. However,
for the resonance interatomic energy of two atoms near the
perfectly reflecting boundary, the second term in Eq. (30) is
induced by the presence of the boundary; while the second
term in the above result appears in a cosmic string
spacetime. For cosmic string spacetimes with integer
ν ≥ 3, more such terms show up.
The following figures graphically show the effect of the

presence of a straight cosmic string on the resonance
interatomic energy of two static atoms in an entangled
state. We take the case of two atoms aligned with their
separation parallel to the string for an example. As shown in
Figs. 5(a) and 5(b), the resonance interatomic energy of the
two atoms shows behaviors very much like those of two
atoms located near a perfectly reflecting boundary in the
Minkowski spacetime. It oscillates with the atom-string
separation, with the oscillation amplitude decreasing with
increasing atom-string distance. Thus when r → ∞, the

resonance interatomic energy approaches the correspond-
ing value in an unboundedMinkowski spacetime. The solid
red, dashed yellow and dotted green lines in Fig. 5(a) depict
the atom-string-separation dependence of the resonance
interatomic energy of the two atoms with the same
interatomic separation R ¼ ω−1

0 in the cosmic string
spacetimes with various values of ν. Notice that for atoms
in the cosmic string spacetimes with proper values of ν, the
dashed yellow and dotted green lines corresponding to
the cosmic string spacetimes with ν ¼ 3, 4 for example, the
resonance interatomic energy can vanish or change sign at
certain positions near the string, revealing that the effect of
the atomic radiation reaction on the resonance interatomic
energy can be drastically changed by the presence of a
cosmic string. This is very similar to the case of two atoms
near a perfectly reflecting boundary in the Minkowski
spacetime, in which the effect of atomic radiation reaction
on the resonance interatomic energy can, for example, also
be completely screened at certain locations by the presence
of a perfectly reflecting boundary. These similarities can be
ascribed to the peculiar properties of the cosmic string
spacetime; i.e., it is characterized by a deficit angle, and the
spacetime topology is nontrivial. As such a spacetime is
only locally but not globally flat, field modes propagating
in the spacetime are “restricted” by the special structure,
thus atoms interacting with the quantum fields in the
spacetime exhibit behaviors similar to those in a bounded
Minkowski spacetime. Despite the similarities, the reso-
nance interatomic energy in a cosmic string spacetime also
distinguishes itself with peculiar properties. We discover
from Fig. 5(a) that when the atoms-string separation is
much shorter than the interatomic separation, i.e. rR ≪ 1, the
value of the resonance interatomic energy is almost ν times
that in an unbounded Minkowski spacetime. This con-
clusion is in consistence with the analytical result, Eq. (46).
For different values of the parameter ν, the behaviors of the
resonance interatomic energy are distinctive. Particularly,
the oscillation of the resonance interatomic energy with the
atom-string separation is more severe in a cosmic string
spacetime with larger parameter ν. Thus principally speak-
ing, it is probable to identify different cosmic string
spacetimes via the resonance interatomic energy.

V. CONCLUSIONS

We generalized the DDC formalism for studying the
resonance interatomic energy of two identical static
atoms in a symmetric/antisymmetric entangled state and
in interacting with quantum scalar fields in the Minkowski
spacetime and the cosmic string spacetime. We found
that in both spacetimes, the resonance interatomic energy
between the two atoms is caused only by the radiation
reaction of the two atoms. By exploiting this formalism,
we studied the resonance interatomic energy of such
two atoms near a perfectly reflecting boundary in the
Minkowski spacetime and near an infinite and straight

(a)

=

=

=

(b)

FIG. 5. The resonance interatomic energy of two atoms fixed
with constant separation R parallel to an infinite and straight
cosmic string. We denote the atom-string separation for both
atoms by r, i.e., rA ¼ rB ¼ r. (a) The resonance interatomic
energy of two atoms in cosmic string spacetimes with different
values of the parameter ν. Parameters are chosen such that

ω0R ¼ 2. The ordinate is of unit ∓ λ2ω0

16π . (b) The interatomic-
separation and atom-string-separation dependence of the relative
resonance interatomic energy of two atoms in a cosmic string
spacetime with ν ¼ 2.
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comic string, respectively. As compared with that in an
unbounded Minkowski spacetime, δE0, the resonance
interatomic energy in the former case is revised by the
presence of the boundary. It can be enhanced or sup-
pressed and even nullified depending on the relative
locations of the two atoms with respect to the boundary.
For the two atoms in a cosmic string spacetime, if one or
both atoms are located on the string, the resonance
interatomic energy is ν times that in an unbounded
Minkowski spacetime [δE0]. For the case where both
atoms are located outside the string, as compared with
δE0, the resonance interatomic energy is revised by the
presence of the string in a manner very similar to that by a
perfectly reflecting boundary in a Minkowski spacetime.
It can also be enhanced or suppressed, depending on
the relative positions of the two atoms with respect to
the string. Despite the similarities, we discover that the
resonance interatomic energy in the cosmic string space-
time also shows some peculiar properties, making it
in principle possible to discern different cosmic string
spacetimes via the resonance interatomic energy.
In summary, for two identical static atoms in

interaction with quantum massless scalar fields near a

perfectly reflecting boundary in the Minkowski space-
time or near an infinite and straight cosmic string,
the resonance interatomic energy can be enhanced or
suppressed, as compared with that in an unbounded
Minkowski spacetime, depending on the relative posi-
tions of the two atoms with respect to the boundary or
the string. The cause of the similarities is the peculiar
characters of the cosmic string spacetime, i.e., it is locally
flat but not globally. As field modes propagating in such
a spacetime are “restricted” by the nontrivial topological
structure, atoms interacting with the fields exhibit similar
properties as those of atoms near a boundary in the
Minkowski spacetime.
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