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A uniformly accelerated (Rindler) observer will detect particles in the Minkowski vacuum, known as the
Unruh effect. The spectrum is thermal and the temperature is given by that of the Killing horizon, which is
proportional to the acceleration. Considering that these particles are kept in a thermal bath with this
temperature, we find that the correlation function of the random force due to radiation acting on the
particles, as measured by the accelerated frame, shows the fluctuation-dissipation relation. It is observed
that the correlations, in both (1þ 1) spacetime and (1þ 3) dimensional spacetimes, are of the Brownian
type. We discuss the implications of this new observation.
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I. INTRODUCTION

Instances of Brownian motion, i.e., the nonequilibrium
random motion of a particle immersed in a bath, have been
known for quite long time. Iconic traditional examples
include the motion of a macroparticle (such as a pollen
grain) immersed in water or the motion of suspended dust
particles in air. The nonequilibrium statistical behavior
of such particles executing Brownian motion is governed
by the Langevin equation and the fluctuation-dissipation
theorem. The Langevin equation shows that the driving
force behind the motion of the immersed particle can be
decomposed into three parts: (a) the external force exerted
by external agents that the particle is subjected to, (b) the
slowly varying averaged force that tends to drive the system
to an equilibriumstate, and (c) the rapidly fluctuating random
force. The fluctuation-dissipation theorem expresses the
dissipative coefficient of the system with the correlation
function of the fluctuating random component of the force
(see Refs. [1,2]).
In Rindler spacetime, i.e., a uniformly accelerated

observer in Minkowski spacetime, it is known that the
observer perceives a thermal bath of uniform temperature
emerging from the Minkowski vacuum [3]. The emitted
spectra from the Killing Rindler horizon is thermal in
nature, and its temperature is proportional to the value of
the acceleration. This observation has a significant impact
in gravitational theories. As the equivalence theorem
implies that an accelerated frame can mimic gravity, the
same can happen in gravitational theories as well. This has
been supported by the discovery of Hawking radiation [4].

On the other hand, locally the metric is given by a null one
which, in general, is not a solution of Einstein’s equations.
Under certain assumptions, this is taken to be the Rindler
metric. Since one can associate temperature and entropy on
the horizon, it has been found that the Einstein’s equation
can be obtained from the first law of thermodynamics [5],
revealing the emergent nature of gravity (see [6] for a
review on this topic). Moreover, the metric in the near
horizon region of a nonextremal black hole can be
represented by the Rindler form. It is, therefore, quite
obvious that such a metric plays an important role in
exploring the nature of gravity. The only thing one has to
remember is that the accelerated observer plays the role of
static observer in the case of true gravity.
In this situation, the emitted particles from the horizon

can be considered as the system of particles immersed in a
thermal bath with temperature determined by the surface
gravity of the horizon. Now the question is, What is the
behavior of these particles? This can be, in principle,
obtained by finding the force on each one and then solving
these force equations. As we have a huge number of
particles in the bath, the statistical calculation will be
fruitful. In this paper we address this issue in detail. The
idea is to calculate the correlation function corresponding
to the random force exerted on particles and see its nature.
Here, we consider the system of Unruh radiating particles,

and a separate analysis is done for the underlying back-
ground, which is (1þ 1) as well as (1þ 3) dimensional.
We treat the radiation bath as a simple massless scalar field.
With this simple construction, the correlation function of
the random force in (1þ 1)- and (1þ 3)-dimensional
Rindler frames (which are the proper frames of the accel-
erated observer) can be determined. An important point to
note is that the scalar fields themselves are in the Minkowski
vacuum. Therefore, while calculating the correlation func-
tions of the quantities defined in the Rindler frame, we shall
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take the expectation value with respect to the Minkowski
vacuum. It will then be observed that the correlation function
of the random force exhibits the fluctuation-dissipation
theorem. In both the (1þ 1)- and (1þ 3)-dimensional cases,
the correlation functions depend only on the difference of
the two time arguments when expressed in terms of the
proper time of the detector. We shall see that this fact plays
an important role in deducing that the motion of the particle
in this case is Brownian, as it satisfies the fluctuation-
dissipation theorem. Finally, we calculate the coefficient
of the mean dissipative force by using the standard relation
in nonequilibrium statistical mechanics. It is found to be
dependent on both the dimension and the direction. In the
case of (1þ 1) dimensions, we obtain that it is proportional
to the fourth power of the temperature. On the other hand, in
the (1þ 3)-dimensional case, we see that the longitudinal
and the transverse component of the coefficient of the mean
dissipative force is proportional to the sixth and the eight
power of the temperature, respectively. This is in contrast to
the situation that was observed for a moving mirror in
Minkowski spacetime when the velocity of the mirror is
small, i.e., in the nonrelativistic limit [7,8]. However, this
does not mimic gravity. Therewas another earlier attempt [9]
to explore the issue, but it was studied in a Rindler-boosted
frame in (1þ 3) dimensions, and the approach is completely
different from the present one (see also [10–12] for different
situations).
The present observation is completely new and will have

a wide range of implications in the theory of gravity. It
shows that the motion of the radiating particles is very
random and is accompanied by the fluctuation-dissipation
theorem. As a result, one would think that the dynamics of
this is governed by nonequilibrium statistics. If this is so,
the nature of emitted particles, as a whole, can be studied
with the tools of existing formalisms. Moreover, as the near
horizon geometry of a nonextremal black hole is Rindler in
nature, the obtained result, in principle, explores Hawking
radiating particles. On top of that, it must be noted that this
whole argument is observer dependent, as only the accel-
erated frame (static observer for the gravity case) feels it.
Therefore, the statistics will have an observer dependence,
which is a clear distinction from the usual existing
formalism. This fact is similar to the observer dependence
of the thermodynamic quantities in the context of gravity
(see [13–15] for more on this).
Let us now proceed to the main analysis. We have

worked with the units c ¼ ℏ ¼ kB ¼ 1. Angular brackets
denote expectation values at finite temperature. The metric
signature is taken to be (−;þ) in two dimensions, and
(−;þ;þ;þ) in four dimensions.

II. CORRELATION OF RANDOM FORCE

Here, we shall find the random force acting on the
radiating particles, as seen by the accelerated frame. Also,
the correlation function of this force will be evaluated,

which will be the main thrust of our claim. Both the (1þ 1)
and (1þ 3) cases will be discussed separately.

A. Case I: (1 + 1) spacetime

To start our analysis, we need a set of coordinates which
is useful for describing an accelerating observer. In general
relativity, a particle with a proper acceleration, moving in
Minkowski spacetime, is described conveniently in terms
of the Rindler coordinates, which are given as follows:

X ¼ 1

a
eax coshðatÞ; T ¼ 1

a
eax sinhðatÞ: ð1Þ

Here, a denotes the acceleration of the moving observer.
Also, ðT; XÞ denotes the Minkowski coordinates, and ðt; xÞ
denotes the Rindler coordinates. For convenience, we shall
introduce the null coordinates U ¼ T − X and V ¼ T þ X,
with u ¼ t − x and v ¼ tþ x. Then, from (1), one obtains
U ¼ − 1

a e
−au and V ¼ 1

a e
av. The metric in the null coor-

dinates is given as

ds2ð1þ1Þ ¼ −dUdV ¼ −eaðv−uÞdudv: ð2Þ

The Rindler horizon is located at T ¼ X.
There is now a momentum associated with the scalar

field radiation that the detector is immersed in. This
momentum, in Rindler spacetime, is given by

p ¼ lx

Z
dxT01δðx − xDÞ ¼ lxT01ðτÞ: ð3Þ

Here, δðx − xDÞ indicates that the detector we are consid-
ering is static with respect to the Rindler observer, with the
position of the detector represented by xD and its proper
time denoted by τ. In other words, the Rindler observer is
the detector itself. Thus, the argument of time in the stress
tensor becomes the same as the detector’s proper time τ.
Here, lx is just an arbitrary length scale, introduced to
maintain the correct dimension. In principle, this can be
taken as any length scale appearing in the present system;
i.e., it may be the size of the detector. Because of this
momentum, the moving observer experiences a force per
unit length ðlxÞ, F, which is given as

F ¼ dT01

dτ
: ð4Þ

Here, the Rindler frame is the proper frame of the moving
observer, implying that there is no spatial displacement
(i.e., x ¼ 0) of the observer with respect to the mentioned
frame. Therefore, this implies that the proper time is given
as τ ¼ u ¼ v. The above force can be interpreted as the
radiation force experienced by the detector, as it will see
creation of particles in the Minskowski vacuum with a
temperature given by T ¼ a=2π.
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Let us now concentrate on the component of the energy-
momentum tensor appearing in Eq. (4). From the rules of
the coordinate transformations, one can straightforwardly
obtain

T01 ≡ Ttx ¼ 1

4
ðTvv − TuuÞ ¼ 1

4
ðTuu − TvvÞ ð5Þ

in the Rindler proper time. Note that the above consists of
two parts: the term Tuu corresponds to the outgoing modes,
which gives the radiation flux (Unruh radiation), whereas
the term Tvv is associated with the ingoing modes. Since
we are interested in Unruh radiation, only the Tuu part is
relevant to our discussion. Hence, we concentrate only
on Ttx

out ¼ 1
4
Tuu.

Note that, with respect to the Rindler frame, the system
consists of Unruh particles and the detector (which is the
Rindler frame itself), immersed in a thermal bath of a
temperature given by the Unruh expression. These particles
are carrying a momentum, defined in (3), as measured
by the moving frame. This momentum, which we shall
consider later, corresponds to the energy-mometum tensor
which leads to Unruh radiation. The corresponding force,
therefore, we call the radiation force. This is motivated by
the concept of radiation pressure exerted on an object by a
beam of particles, which in this case is a thermal beam.
Here, the concept of particles and that of a thermal beam are
not ill defined as the Unruh-Fulling effect arises. In our
analysis we are interested only in the contribution of such a
radiation force. The possible source of this force may be
due to the “hard-sphere”-type interaction between the fields
and the detector. Motivated by this, we are concentrating
only on the energy-momentum tensor of the resulting
radiation, which allows us to quantify the force.
From the above discussion, we can now quantify that the

random fluctuating force, RðτÞ, acting upon the particle is
given by

RðτÞ ¼ FðτÞ − hFðτÞi; ð6Þ

where the last term is the vacuum average of the force.
In our case, the vacuum is the Minkowski one, which
is denoted by j0i. Since hFðτÞi≡ 1

4
d
dτ hTuui, it gives

hFðτÞi ¼ 0, implying that RðτÞ ¼ FðτÞ and, therefore,
that the correlation function of the random force,
h0jRðτÞRðτ0Þj0i, evaluated in the inertial frame is given by

h0jRðτÞRðτ0Þj0i ¼ 1

16

d2

dτdτ0
h0jTuuðτÞTu0u0 ðτ0Þj0i: ð7Þ

In the above equation, j0i represents the Minkowski
vacuum. To evaluate the above correlation function, one
needs to calculate h0jTuuðτÞTu0u0 ðτ0Þj0i explicitly. It can be
obtained explicitly from the Schwinger function, the most
general form of which is given by [16] as

Smnrsðx1; x2Þ ¼ hTmn½x1�Trs½x2�i

¼ A
ð~x2Þ4 ½ð3gmngrs − gmrgns − gmsgnrÞð~x2Þ2

− 4~x2ðgmn ~xr ~xs þ grs ~xm ~xnÞ þ 8~xm ~xn ~xr ~xs�;
ð8Þ

where A is an arbitrary constant, related to the central
charge C of the particular fields by A ¼ C=4π2,
~xa ¼ xa1 − xa2 , and ~x2 ¼ −ðx01 − x02Þ2 þ ðx11 − x12Þ2. Since
for our case we have considered only massless scalar
fields, the central charge’s value is given by A ¼ 1=4π2 as
C ¼ 1. Using Tuu ¼ e2auTUU, one can obtain

h0jTuuðτÞTu0u0 ðτ0Þj0i ¼
a4

256π4
1

sinh4ð1
2
aΔτÞ ; ð9Þ

where Δτ ¼ τ0 − τ. We shall use this later for our main
purpose.

B. Case II: (1 + 3) spacetime

The above analysis in (1þ 3) dimensions is expected
to be a bit different as, in this case, the observer moves
along one direction, and there are two transverse directions.
If we consider the accelerated observer to be moving
along the X direction, then it follows that the transformation
rules mentioned in (1) and the Rindler metric in the null
coordinate can be written as

ds2ð1þ3Þ ¼ −dUdV þ dY2 þ dZ2 ¼ −eaðv−uÞdudv

þ dy2 þ dz2: ð10Þ

Following a similar approach to the 2D spacetime, we can
again define the force per unit volume (experienced by the
moving observer) here in a similar fashion. Since we are
performing the calculation in the detector’s frame of
reference, we must have similar delta functions in this
case to those in Eq. (3), which picks out the detector’s
position. This will naturally introduce three length scales,
along the x, y, and z directions, and thus we consider the
force per unit volume along a particular direction, which
will be given as

Fα ¼ dT0α

dτ
: ð11Þ

Here, α ∈ fx; y; zg denotes all the spatial indices. It is
known that the value of hT0αi is a constant (¼ 0 when
renormalized), which implies hdT0α

dτ i≡ d
dτ hT0αi ¼ 0. Hence,

the random fluctuating force, defined as in Eq. (6), turns out
in four dimensions as RαðτÞ ¼ FαðτÞ. Thus, the correlation
function of the random force h0jRαðτÞRαðτ0Þj0i is given as
follows:
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h0jRαðτÞRαðτ0Þj0i ¼ d2

dτdτ0
h0jT0αðτÞT0αðτ0Þj0i: ð12Þ

Again, we need to calculate h0jT0αðτÞT0αðτ0Þj0i explicitly
for all values of α. Following the arguments of [17], we
obtain hTacðx1ÞTbdðx2Þi≡Gabcdðx1 − x2Þ, where

GabcdðxÞ ¼
�
8W2

s8

�
½AabcdðxÞ þ s4CabcdðxÞ − s2BabcdðxÞ�;

ð13Þ

with W ¼ 1
4π2s2 and s2 ¼ xixi. The values for Ainkm; Binkm

and Cinkm are given below:

Ainkm ¼ 32xixkxmxn

Cinkm ¼ gingkm þ gkngim þ 4gikgnm

Binkm ¼ 4½ginxkxm þ gkmxixn þ gknxixm

þ gimxkxn þ 2gnmxixk þ 2gikxnxm�:

We shall see that the correlation function of the random
fluctuating force depends on the direction of the accel-
eration of the moving observer. First, let us calculate the
correlation of the energy-momentum tensors along the
acceleration (which, in our case, is the X direction).
Thereafter, the same analysis follows along the transverse
(Y and Z) directions.

1. X direction

Along the direction of acceleration of the observer
(longitudinal), the term which appears in the correlation
function of (12) is h0jT01ðxÞT01ðx0Þj0i, which can be
expressed in the Minkowski coordinates as T01 ¼
1
4
ðTvv − TuuÞ. Again, we are interested only in the outgoing

modes, which are given by Tvv. Therefore, we have
T01
out ≡ 1

4
Tvv. Thus,

h0jT01ðxÞT01ðx0Þj0i ¼ e−2aðvþv0Þ

16
hTVVðu; vÞTVVðu0; v0Þi:

ð14Þ

Using the relation (13), we finally obtain

hT01ðτÞT01ðτ0Þi ¼ a8

28π4
1

s8
: ð15Þ

Here, we have used the shorthand notation s ¼
sinh ½a

2
ðτ − τ0Þ�.

2. Y=Z direction

Along the transverse direction, one can follow the exact
same procedure as for the longitudinal direction. The stress
tensor as calculated in the Rindler frame ðTtyÞ, when

expressed in terms of the tensor is Minkowski space, takes
the following form:

Tty ¼ 1

aðT2 − X2Þ ½TT
XY − XTTY �: ð16Þ

Thus, using Eq. (13), we end up with

hTtζðτÞTtζðτ0Þi ¼ −
a8

29π4s8
½3þ 2s2�; ð17Þ

where ζ ∈ ðy; zÞ.

III. FLUCTUATION-DISSIPATION THEOREM

Earlier, we obtained the correlation function of the
random force in (1þ 1) dimensions, as well as (1þ 3)
dimensions. In this section, we shall investigate them more
closely. As will be shown below, we obtain that the
fluctuation-dissipation theorem is satisfied in both the
(1þ 1)-dimensional case and the (1þ 3)-dimensional case.
The (1þ 1)-dimensional case is pretty straightforward.
In the (1þ 3)-dimensional case, one has to break the
calculation into two parts: (1) the longitudinal component,
along the direction of acceleration, and (2) the transverse
component(s), which is perpendicular to the direction of
acceleration. This implies that the particle subjected to such
a random force will execute Brownian motion in both
cases. The entire analysis is given as follows.

A. Case I: (1 + 1) spacetime

Calculation of the correlation function of the random
force is now very straightforward. Using (7) and (9), we
obtain

h0jRðτÞRðτ0Þj0i ¼ −
a6

212π4

�
5

s6
þ 4

s4

�
: ð18Þ

Note that the expression above depends only on the
difference of the proper times (Δτ). Therefore, we can
make a Fourier transformation of the correlation function
in terms of this variable to check to see whether the
fluctuation-dissipation theorem holds.
Let us define the correlation function KðsÞ of any

arbitrary function FðtÞ in the time domain given by KðsÞ ¼
hFðtÞFðtþ sÞi. Note that we are assuming that such a
function is time-translationally invariant, which is consis-
tent with the idea of Poincaré invariance of the Minkowski
vacuum. Using this, we can define the symmetric and
antisymmetric correlation functions as follows:

KþðsÞ ¼ 1

2
½hFðt0ÞFðt0 þ sÞi þ hFðt0 þ sÞFðt0Þi�

¼ 1

2
½KðsÞ þ Kð−sÞ�; ð19Þ
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and

K−ðsÞ ¼ 1

2
½hFðt0ÞFðt0 þ sÞi − hFðt0 þ sÞFðt0Þi�

¼ 1

2
½KðsÞ − Kð−sÞ�: ð20Þ

In the case of Brownian motion, it has been observed
that the Fourier modes, ~KþðωÞ and ~K−ðωÞ, of these in the
frequency domain are related by [7,18]

~KþðωÞ ¼ coth

�
βω

2

�
~K−ðωÞ; ð21Þ

where β ¼ 2π
a is the inverse of the temperature at which the

particles in the thermal bath is immersed in. This is known as
the fluctuation-dissipation theorem. The above celebrated
relation, Eq. (21), is very important in nonequilibrium
statistics and is the signature of the Brownian motion.
Here, we shall investigate belowwhether the earlier obtained
correlation functions satisfy the same theorem.
For our case, defining the Fourier transformed version of

the correlation function in our case as

KðωÞ ¼
Z

dτeiωτhRð0ÞRðτÞi; ð22Þ

we obtain

KðωÞ ¼ fðωÞ
1 − e−βω

; ð23Þ

where fðωÞ ¼ a4

15×28π3 ð3ω
5

a4 − ω3

a2 − 8ωÞ. Defining the sym-

metric and the antisymmetric combinations as ~KþðωÞ and
~K−ðωÞ, as motivated by Eqs. (19) and (20), we find that
their ratio comes to be coth ðβω=2Þ, as in Eq. (21).
Therefore, the particles moving in the thermal bath in
(1þ 1) dimensions show the fluctuation-dissipation rela-
tion, and the corresponding fluctuation is Brownian.
Note that the Fourier transform of a function constructed

out of the summation of terms containing only an even
power of s in the denominator [e.g., Eq. (18)] shall give rise
to an odd function of frequency in Fourier space, along with
the Boltzman factor [e.g., fðωÞ in Eq. (23)]. This feature
will also be observed in (1þ 3) dimensions as well.
Using the value of ~KðωÞ, one can obtain the coefficient of

themean dissipative force acting on the particle. It is given by

α ¼ β lim
ω→0

~KðωÞ
2

: ð24Þ
From Eqs. (23) and (24), it follows that the coefficient of
the mean dissipative force will be α ¼ −4π=ð60β4Þ.

B. Case II: (1 + 3) spacetime

1. X direction

From Eq. (15), we obtain the two-point correlator of the
response function along the X direction as

hRxðτÞRxðτ0Þi ¼ −
a10

27π4

�
9

s10
þ 8

s8

�
: ð25Þ

This expression again is a function of the difference of
the arguments of the two correlators. This enables one to
calculate the Fourier transformation of the same, as a
function of a single frequency,

KxðωÞ ¼
fxðωÞ

1 − e−βω
: ð26Þ

Here, fxðωÞ ¼ 2a8

7!π3
ð36ωa2 þ 49ω3

a4 þ 14ω5

a6
þ ω7

a8Þ, which implies
that the ratio of the symmetric construct of KxðωÞ to that of
the antisymmetric construct will be cothðβω=2Þ. This is
exactly of the form, Eq. (21), thus establishing the fluc-
tuation-dissipation theorem along the longitudinal direction.
The longitudinal coefficient of the mean dissipative force,

as evident from Eqs. (24) and (26), is α ¼ 16π3=ð35β6Þ.

2. Y=Z direction

Proceeding in the exactly same manner as for the X
direction, we can obtain the two-point correlator along the
transverse directions,

hRζðτÞRζðτ0Þi ¼ a10

29π4

�
54

s10
þ 69

s8
þ 18

s6

�
: ð27Þ

Here, ζ ∈ ðy; zÞ. Now, following the calculation in the
previous section, we obtain

KζðωÞ ¼
fζðωÞ

1 − e−βω
: ð28Þ

Here, fζðωÞ¼ a10

5!ð4π3Þð ω9

56a10−
31ω7

28a8 −
ω5

8a6
þ 169ω3

7a4 þ 162ω
7a2 Þ. Thus,

taking the ratio of the symmetric and the antisymmetric
constructs of the same, we obtain the exact same form as in
Eq. (21), thereby establishing the fluctuation-dissipation
theorem along the transverse directions. The transverse
coefficient of the mean dissipative force, as evident from
Eqs. (24) and (28), is proportional to 216π5=ð35β8Þ.
Note that the features in parallel and transverse directions

are different. Therefore, there exists an anisotropy in the
correlation function of the random force. A similar feature
was obtained earlier [9] in a slightly different analysis.

IV. DISCUSSIONS AND OUTLOOK

In this paper, we have studied the statistical behavior
of the particles (perceived from the uniformly accelerated
Rindler frame), immersed in the constant temperature
thermal bath which was emitted from the Killing Rindler
horizon. The temperature is taken to be equal to the
horizon, as the particles are in thermal equilibrium with
this. It has been observed that the correlation function
for the random force acting on the particles exhibits the
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fluctuation-dissipation theorem. In both 2D and 4D, the
correlations are purely of the Brownian type, as they satisfy
the fluctuation-dissipation theorem.
This result implies that the emitted particles can behave

similarly to nonequilibrium statistics. Since the Rindler
form can be taken as the near horizon geometry of a black
hole and also the locally null surface, the observation has
the following implication in gravity. The properties of the
Hawking radiated particles can be studied in this direction.
Moreover, a point to be noted is that the nontriviality occurs
only for Rindler observer, and hence the phenomenon is
observer dependent.
In our analysis, the particles are taken to be scalar, and

a separate analysis has been made for (1þ 1)- and (1þ 3)-
dimensional spacetime. In principle, one can consider any
type of particles. In 2D we can expect that the final
conclusion is the same for all of them, as the form of
the Schwinger function (8) does not change, except that the
value of the constant A varies, which is related to the central
charge of the specific theory by the relation A ¼ C=4π2,
with C being the central charge (see, for example, Sec. 5.4
of [16]). This has to be thoroughly studied, however. There
are some issues that need to be investigated, such as
studying the similar problem for black hole spacetime,
to gain more insight. We can expect similar results in those
cases as well, because it is well known that the near horizon
geometry of a black hole is effectively (1þ 1) dimensions
[19–21] and which, at the lowest order, is in Rindler form.
In addition, it would be interesting to look for other
possible observers which can predict similar situations.
Finally, finding the Langevin equation in this case will be

very crucial. Of course, one can guess the possible structure
by using the coefficient for the mean dissipative force (24),
but it will require deeper investigation to obtain a concrete
form. Roughly speaking, for that purpose, one needs to

incorporate all of the forces arising in the system. There are a
few works that can be mentioned which may help us towrite
the equation. Considering the test particle as a quantum
harmonic oscillator and taking its coupling with the Unruh
particles (since it is exactly solvable), authors have found a
Langevin-type equation (see [22], and also subsequent
papers [23–28]). The same can be done here as well. For
that, one may consider the specific interaction term between
the detector and the scalar fields in the action for the system.
The most popular one is the monopole interaction of the
detector with the scalar field (the interaction Lagrangian is
LI ¼ αμϕ, where the detector with its monopole moment μ
couples to the scalar field ϕ directly, and α is the coupling of
the interaction).Here,we found that the random force exerted
by the radiation on the test particle indicates the fluctuation-
dissipation theorem. Of course, one may include the inter-
action term. Then, depending on the coupling, the system
might feel a force governed by a different field operator,
and it may not be the same aswas derived in (2). Specifically,
it may depend on a coupling constant characterizing the
strength of the interaction (see, e.g., [22]). This would not
affect our result significantly since the vacuum state of a free
field theory is nearly Gaussian, and higher order correlation
functions are related to the two-point function by Wick’s
theorem.Thus, for the examinationof theBrownianproperty,
our method of calculating the two-point correlation function
of the random force is quite admissible. Research in these
directions is ongoing.We hope to soon be able to report more
on this.
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