
 

Hidden superconformal symmetry: Where does it come from?
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It is known that a single quantum harmonic oscillator is characterized by a hidden spectrum generating
superconformal symmetry, but its origin has remained rather obscure. We show how this hidden
superconformal symmetry can be derived by applying a nonlocal Foldy-Wouthuysen transformation to
three extended systems with fermion degrees of freedom. The associated systems have essentially different
nature from the point of view of conventional supersymmetric quantum mechanics, and generate the
desired hidden symmetry in three different ways. We also trace out how the hidden superconformal
symmetry of the quantum free particle system is produced in the limit of zero frequency.
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I. INTRODUCTION

Supersymmetry relates bosons and fermions on the basis
of Z2-graded superalgebras. Supersymmetry in quantum
mechanics is implemented by separating symmetry gen-
erators into “even” (“bosonic”) and “odd” (“fermionic”)
subsets. Coherently with this, the Hamiltonian’s eigenstates
are separated into “bosonic” and “fermionic” states.
A standard implementation of supersymmetry in quantum
mechanics is realized by introducing a set of fermion
degrees of freedom in addition to the bosonic degrees of
freedom described by usual coordinate and momentum
operators. The fermionic set is realized by matrices of
finite dimension, or in terms of Grassmann variables in
superspace formulation of supersymmetric quantum
mechanics [1,2].
There exist, however, quantum mechanical systems in

which supersymmetry is realized without introducing addi-
tional degrees of freedom. In such nonextended systems,
space reflection can play a role of the Z2-grading operator
[3–5]. The most known example of such a system corre-
sponds, probably, to a one-dimensional quantum harmonic
oscillator, in which there appears a spectrum generating
hidden superconformal ospð1j2Þ symmetry [6–9]. This
hidden superconformal symmetry has a further peculiarity
in comparison with Witten’s supersymmetric quantum
mechanics: all its odd generators have a dynamical

character being explicitly depending on time integrals of
motion of the system.
Thus, a hidden superconformal symmetry of the quan-

tum harmonic oscillator has a rather obscure origin and
nature from a perspective of conventional realization of
supersymmetric quantum mechanics.
In the present paper we derive the hidden super-

conformal ospð1j2Þ symmetry of the quantum harmonic
oscillator and its nonlocal ospð2j2Þ extension by applying a
peculiar nonlocal Foldy-Wouthuysen transformation to
three different associated systems with conventional quan-
tum mechanical matrix fermion degrees of freedom. We
also investigate a rather nontrivial transformation of the
hidden superconformal symmetry of the harmonic oscil-
lator into the corresponding superconformal symmetry of
the quantum free particle system.
The paper is organized as follows. In Sec. II we describe

the hidden superconformal ospð1j2Þ symmetry of the
quantum harmonic oscillator and its nonlocal ospð2j2Þ
extension. In Sec. III we consider an extended system with
fermionic degrees of freedom that represents a doubled
quantum harmonic oscillator. Such a system cannot be
generated within a framework of a usual construction of
supersymmetric quantum mechanics with supercharges
anticommuting for the Hamiltonian. The extended system
possesses the super-extended Schrödinger symmetry which
under appropriate nonlocal Foldy-Wouthuysen transforma-
tion reduces and reproduces the hidden superconformal
symmetry of the quantum harmonic oscillator. In Sec. IV
we show how the hidden superconformal symmetry of the
quantum oscillator can also be produced via the dual
Darboux transformations. In Sec. V we consider the
extended system obtained via a one-parametric two-step
Darboux transformation of the quantum harmonic oscil-
lator. Such a quantum system corresponds to the anomaly-
free scheme of quantization of a classical system with the
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second-order supersymmetry and is described by a non-
linear super-extended Schrödinger symmetry. In the appro-
priate limit it reproduces the system from Sec. III in which
time-independent supercharges anti-commute for the cen-
tral charge of its Lie type super-extended Schrödinger
symmetry. In Sec. VI we consider a rather peculiar zero
frequency limit applied to the system from Sec. III and
show how the hidden superconformal symmetry of the free
quantum particle is generated. Section VII is devoted to the
discussion and outlook.

II. HIDDEN SUPERCONFORMAL SYMMETRY
OF THE QUANTUM HARMONIC OSCILLATOR

In a system of units with Plank constant ℏ ¼ 1, fre-
quency ω ¼ 1 and mass m ¼ 1

2
, Hamiltonian of the quan-

tum harmonic oscillator is

L ¼ −
d2

dx2
þ x2; ð2:1Þ

and its spectrum is given by a discrete set En ¼ 2nþ 1,
n ¼ 0; 1;…. We take ladder operators in a form

a� ¼∓ d
dx

þ x; ½aþ; a−� ¼ 2: ð2:2Þ

They anticommute with reflection operator R defined by
R2 ¼ 1, Rx ¼ −xR, and their anticommutator generates
the Hamiltonian, faþ; a−g ¼ 2L. Taking R as a Z2-
grading operator, we identify the a� as odd, fermionic
operators, fR; a�g ¼ 0. Hamiltonian L and quadratic
operators ða�Þ2 ¼ d2

dx2 þ x2 þ 1 ∓ 2x d
dx are identified then

as even, bosonic operators, ½R; L� ¼ 0, ½R; ða�Þ2� ¼ 0.
This set of operators generates a Lie superalgebra in which
commutators of even and odd generators with Hamiltonian
are nontrivial: ½L; a�� ¼ �2a�, ½L; ða�Þ2� ¼ �4ða�Þ2.
Consequently, operators a� and ða�Þ2 are not integrals
of motion in the sense of Heisenberg equations of motion
d
dt A ¼ ∂

∂t A − i½A;L�. The operators “dressed” by a unitary
evolution operatorUðtÞ ¼ expðiLtÞ give the corresponding
even and odd explicitly depending on time integrals of
motionU−1ðtÞa�UðtÞ andU−1ðtÞða�Þ2UðtÞ. We shall refer
to integrals of such a nature as to dynamical integrals.
Introducing the rescaled operators

J0 ¼
1

4
L; J� ¼ 1

4
e∓4itða�Þ2; α� ¼ 1

4
e∓i2ta�;

ð2:3Þ

we obtain the superalgebra with nontrivial (anti)commu-
tation relations

½J0; J�� ¼ �J�; ½J−; Jþ� ¼ 2J0; ð2:4Þ

fαþ; α−g ¼ 1

2
J0; fα�;α�g ¼ 1

2
J�; ð2:5Þ

½J0; α�� ¼ � 1

2
α�; ½J�; α∓� ¼∓ α�: ð2:6Þ

The superalgebra (2.4), (2.5), (2.6) describes the hidden
superconformal ospð1j2Þ symmetry of the quantum har-
monic oscillator [6,7]. The set of even integrals J0, J�
generates the slð2;RÞ subalgebra (2.4), and relations (2.6)
mean that fermionic generators α� form a spin-1=2
representation of this Lie sub-algebra. All the generators
of the ospð1j2Þ superconformal algebra are local in x
operators. The grading operator R, being even time-
independent integral of motion, can be presented in a form
R ¼ sinðπ

2
LÞ which explicitly reveals its non-local nature.

Expanding the set of local integrals (2.3) by nonlocal time-
independent even integral R and by dynamical odd
integrals

β� ¼ iRα�; ð2:7Þ

we extend the ospð1j2Þ for ospð2j2Þ superconformal
algebra in which we have additionally the following non-
trivial (anti)commutation relations which involve the non-
local integrals R and β�:

½J0; β�� ¼ � 1

2
β�; ½J�; β∓� ¼∓ β�; ð2:8Þ

fβ�;β�g ¼
1

2
J�; fβþ;β−g ¼

1

2
J0; fα�;β∓g ¼∓ i

2
Z;

ð2:9Þ

½Z; α�� ¼
i
2
β�; ½Z; β�� ¼ −

i
2
α�; ð2:10Þ

where we introduced a notation

Z ¼ −
1

4
R: ð2:11Þ

In terms of linear combinations

γ� ¼ α� þ iβ�; δ� ¼ γ†∓ ¼ α� − iβ�; ð2:12Þ

a part of superalgebra involving odd generators can be
presented in an alternative form

½J0; γ�� ¼ � 1

2
γ�; ½J0; δ�� ¼ � 1

2
δ�;

½J�; γ∓� ¼∓ γ�; ½J�; δ∓� ¼∓ δ�; ð2:13Þ
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½Z; γ�� ¼
1

2
γ�; ½Z; δ�� ¼ −

1

2
δ�;

fγ�; δ�g ¼ J�; fγ�; δ∓g ¼ J0 ∓ Z: ð2:14Þ

III. EXTENDED SYSTEM WITH SUPER-
SCHRÖDINGER SYMMETRY AND NONLOCAL
FOLDY-WOUTHUYSEN TRANSFORMATION

Now let us show how the described hidden super-
conformal ospð1j2Þ and ospð2j2Þ symmetries of a single
oscillator can be ‘extracted’ from the super-Schrödinger
symmetry of the extended quantum harmonic oscillator
system described by the Hamiltonian

H ¼
�
L 0

0 L

�
: ð3:1Þ

This system represents two copies of the quantum har-
monic oscillator (2.1), and has three obvious matrix
integrals of motion given by the Pauli matrices σ1, σ2
and σ3. It is natural to identify the diagonal matrix Γ ¼ σ3
as a Z2-grading operator. Then Hamiltonian (3.1) is
identified as even generator and the antidiagonal integrals
σa, a ¼ 1, 2, can be considered as odd supercharges. The
peculiarity of the system (3.1) is that the supercharges σa
anticommute not for Hamiltonian but for central element,
fσa; σbg ¼ 2δabI, I ¼ diagð1; 1Þ. All the energy levels of
the extended system (2.1) including the lowest nonzero
energy level E0 ¼ 1 > 0 are doubly degenerate, and the
Witten index of this extended system equals zero. The
doublet of states corresponding to the lowest energy level is
not annihilated by supercharges σa, and (2.1) is identified
as a quantummechanical supersymmetric system in a phase
of spontaneously broken supersymmetry. The time-inde-
pendent even, H and σ3, and odd, σ1 and σ2, integrals of
motion together with even central charge I are local
operators. Besides them, the system (3.1) also has local
dynamical integrals of motion

J � ¼ 1

4
e∓i4t

� ða�Þ2 0

0 ða�Þ2
�

¼
�
J� 0

0 J�

�
; ð3:2Þ

C� ¼ 1

4
e∓i2t

�
a� 0

0 a�

�
¼

�
α� 0

0 α�

�
; ð3:3Þ

Q� ¼ 1

4
e∓i2t

�
0 a�

a� 0

�
¼

�
0 α�
α� 0

�
;

S� ¼ iσ3Q�: ð3:4Þ

Diagonal operators J � and C� are identified here as
even generators, and antidiagonal dynamical integrals
Q� and S� are odd generators. All these integrals generate
the superalgebra with the following (anti)commutation
relations:

½J 0;J �� ¼ �J �; ½J −;J þ� ¼ 2J 0; ð3:5Þ

½J 0;C�� ¼�1

2
C�; ½J �;C∓� ¼∓ C�; ½C−;Cþ� ¼

1

2
I ;

ð3:6Þ

½J 0;Q�� ¼ � 1

2
Q�; ½J 0;S�� ¼ � 1

2
S�;

½J �;Q∓� ¼∓ Q�; ½J �;S∓� ¼∓ S�; ð3:7Þ

fΣa;Σbg ¼ 2δabI ; fΣ1;Q�g ¼ C�;

fΣ2;S�g ¼ C�; ð3:8Þ

fQ�;Q�g ¼ 1

2
J �; fQþ;Q−g ¼ 1

2
J 0;

fS�;S�g ¼ 1

2
J �; fSþ;S−g ¼ 1

2
J 0; ð3:9Þ

fQþ;S−g ¼ −
i
2
Z; fQ−;Sþg ¼ i

2
Z; ð3:10Þ

½Z;Σa� ¼
i
2
ϵabΣb; ½Z;Q��¼

i
2
S�; ½Z;S��¼−

i
2
Q�;

ð3:11Þ

½C�;Q∓� ¼∓ 1

4
Σ1; ½C�;S∓� ¼∓ 1

4
Σ2; ð3:12Þ

where J 0 is a rescaled Hamiltonian (3.1),

J 0 ¼
1

4
H ¼

�
J0 0

0 J0

�
; ð3:13Þ

and we introduced the notation

Σ1 ¼
1

2
σ1; Σ2 ¼ −

1

2
σ2; Z ¼ −

1

4
σ3; I ¼ 1

4
I:

ð3:14Þ

The not shown (anti)commutators between generators are
equal to zero. By comparing this superalgebra and the
structure of its generators with superalgebra and generators
of the hidden superconformal ospð1j2Þ and ospð2j2Þ
symmetries of the quantumharmonic oscillator, it is obvious
that the matrix integralsJ 0,J �,Z,Q�, S� of the extended
system (3.1) are analogous to the corresponding integrals J0,
J�, Z, α�, β� of the quantum harmonic oscillator. Because
of the extension, the nonlocal integrals Z and β� of the
system (2.1) are changed here for the corresponding local
matrix integrals Z and S�. The anticommutator of addi-
tional fermionic integrals Σa with Σb generates a central
charge I , and via the anticommutators with odd dynamical
integrals Q� and S� they produce additional bosonic
integrals C�, see Eq. (3.8). The superalgebra (3.5)–(3.12)
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represents a super-extended Schrödinger symmetry of the
matrix system (3.1) with relations (3.5), (3.7), (3.9) and
(3.10) corresponding to ospð2j2Þ sub-superalgebra.
The comparison of the symmetries and generators of the

systems (3.1) and (2.1) indicates that the local ospð1j2Þ and
nonlocal ospð2j2Þ hidden superconformal symmetries of
the quantum harmonic oscillator can be obtained by a
certain projection (reduction) of the local symmetries of the
matrix system (3.1). To find the exact relation between
these two systems and their symmetries, we apply to the
extended system a unitary transformation O ↦ ~O ¼
UOU† generated by the nonlocal matrix operator

U ¼ U† ¼ U−1 ¼ 1

2

�
1þR 1 −R

1 −R 1þR

�
: ð3:15Þ

This transformation acts in the following way on the basic
operators of the matrix system (3.1): ~x ¼ xσ1, ~p ¼ pσ1,eσ1 ¼ σ1, eσ2 ¼ σ2R and eσ3 ¼ σ3R, and we also have
~R ¼ R. As a consequence, the central element I and
generators of the slð2;RÞ subalgebra, J 0 and J �, do not
change under this transformation, while other generators
take the following form:

~Z ¼ 1

4

�−R 0

0 R

�
; ð3:16Þ

fQ� ¼
�
α� 0

0 α�

�
;

fS� ¼
�
iRα� 0

0 −iRα�

�
¼

�
β� 0

0 −β�

�
; ð3:17Þ

fΣ1 ¼
1

2
σ1; fΣ2 ¼ −

1

2
σ2R; fC� ¼ σ1α�: ð3:18Þ

The unitary transformation generated by nonlocal operator
(3.15) diagonalizes the dynamical odd integralsQ� and S�
which initially have had the antidiagonal form. The trans-
formation therefore is of a nature of Foldy-Wouthuysen
transformation for Dirac particle in external electric and
magnetic fields [10]. It is interestingly to note that the

transformed odd and even integrals fQ� and fC� take the
form of the original even and odd integrals C� and Q�,
respectively. The transformed even, ~Z, and odd, fS�,
generators of the superconformal ospð2; 2Þ sub-superalge-
bra of the super-extended Schrödinger symmetry of the
system (3.1) take a nonlocal form. We can reduce (or, in
other words, project) the transformed system and its
symmetries to the proper subspace of eigenvalue þ1 of
the matrix σ3 ¼ gRσ3 which corresponds, according to
Eq. (3.13), to the single (non-extended) quantum harmonic
oscillator system. This can be done by multiplying all the
transformed generators fX i of the super-extended

Schrödinger symmetry from both sides by the projector
Πþ ¼ 1

2
ð1þ σ3Þ: fX i ↦ ΠþfX iΠþ. Since the transformed

generators fΣa and fC� are anti-diagonal and anticommute
with σ3, we loose them in the reduction procedure by
mapping them into zero. Since the central element I is
generated in superalgebra of the super-extended
Schrödinger symmetry of the system (3.1) via the anti-

commutators of fΣa with fΣb and commutator of fCþ and fC−,
we also loose it as a generator of the surviving part of the
superalgebra. The rest of the generators in the proper
subspace of eigenvalue þ1 of σ3 will take exactly the
form of the corresponding generators of the hidden super-
conformal ospð2; 2Þ symmetry of the quantum harmonic
oscillator system (2.1).

IV. SUPERCONFORMAL SYMMETRY VIA
DUAL DARBOUX TRANSFORMATIONS

Though the extended system (3.1) has allowed us to
derive the hidden superconformal symmetry of the quan-
tum harmonic oscillator, it cannot be generated directly
within the framework of supersymmetric quantum mechan-
ics with its underlying structure of Darboux transforma-
tions. Nevertheless, we shall show in this section how the
super-extended Schrödinger symmetry can be generated
via a usual supersymmetric extension of the quantum
harmonic oscillator, and trace out a difference in the
associated reduction procedure leading to the hidden
superconformal symmetry.1

The harmonic oscillator corresponds to the simplest case
of the duality induced by Darboux transformations [13].
This means that the same, modulo an additive shift, super-
partner can be produced for a given system by choosing
different states as seed states to generate a Darboux trans-
formation. The presence of a nontrivial relative shift will
play, as we shall see, a crucial role in generating the structure
of superextended Schrödinger symmetry.
Let us construct the Darboux intertwining operators for

the quantum harmonic oscillator by taking its ground state
ψ0 ¼ Ce−x

2=2 as a seed state, where a concrete value of a
normalization constant C is of no importance. They are
nothing else as the ladder operators,

A−
0 ¼ ψ0

d
dx

1

ψ0

¼ a−; Aþ
0 ¼ ðA−

0 Þ† ¼ aþ; ð4:1Þ

which generate two mutually shifted copies of the quantum
harmonic oscillator: Aþ

0 A
−
0 ¼ aþa− ¼ L − 1 ¼ H− and

A−
0A

þ
0 ¼ a−aþ ¼ Lþ 1 ¼ Hþ. The superpartner system

for H− is therefore the same but shifted harmonic oscillator

1See also Refs. [11,12] for the discussion of superconformal
symmetry of the superextended quantum harmonic oscillator
obtained within the framework of conventional supersymmetric
quantum mechanics construction.

LUIS INZUNZA and MIKHAIL S. PLYUSHCHAY PHYS. REV. D 97, 045002 (2018)

045002-4



Hþ ¼ H− þ 2. The operators A�
0 ¼ a� intertwine the

super-partner systems H− and Hþ,

A−
0H− ¼ HþA−

0 ; Aþ
0 Hþ ¼ H−A

þ
0 : ð4:2Þ

Together H− and Hþ constitute the extended Hamiltonian
which can be presented in terms of a superpotential
W ¼ −ðlnψ0Þ0 ¼ x,

Ĥ ¼ −
d2

dx2
þW2 þ σ3W0 ¼

�
Hþ 0

0 H−

�
: ð4:3Þ

The intertwining operators constitute the building blocks
for time-independent supercharges for the system (4.3),

Q̂1 ¼
�

0 a−

aþ 0

�
; Q̂2 ¼ iσ3Q̂1; ð4:4Þ

½Ĥ; Q̂a� ¼ 0, fQ̂a; Q̂bg ¼ 2δabĤ, with integral Γ ¼ σ3
identified as a Z2-grading operator. Since a singlet ground
state Ψ0 ¼ ð0;ψ0ÞT of Ĥ is annihilated by both super-
charges Q̂a, the system (4.3), unlike (3.1), corresponds to
the case of exact, unbroken supersymmetry.
Instead of the ground state ψ0, we can take a non-

normalizable (nonphysical) eigenstate ψ−
0 ¼ 1=ψ0 ¼

C−1ex
2=2 of eigenvalue E−0 ¼ −1 of the quantum harmonic

oscillator L to generate the Darboux transformation. The
corresponding operators in this case are

A−
−0¼ψ−

0

d
dx

1

ψ−
0

¼−aþ; Aþ
−0¼ðA−

−0Þ†¼−a−: ð4:5Þ

They satisfy relations Aþ
−0A

−
−0 ¼ Lþ 1 ¼ Hþ, A−

−0A
þ
−0 ¼

L − 1 ¼ H−, A−
−0Hþ ¼ H−A−

−0, Aþ
−0H− ¼ HþAþ

−0, and
generate a supersymmetric system described by the
Hamiltonian operator

H̆ ¼ −
d2

dx2
þW2 − σ3W0 ¼

�
H− 0

0 Hþ

�
; ð4:6Þ

which has two conserved supercharges

S̆1 ¼
�

0 aþ

a− 0

�
; S̆2 ¼ iσ3S̆1; ð4:7Þ

½H̆; S̆a� ¼ 0, fS̆a; S̆bg ¼ 2δabH̆. Hamiltonian (4.6) and its
supercharges (4.7) are related to Hamiltonian (4.3) and its
supercharges (4.4) by a unitary transformation generated
by σ1:

H̆¼σ1Ĥσ1; S̆1¼σ1Q̂1σ1; −S̆2¼σ1Q̂2σ1: ð4:8Þ

The commutator of Ĥwith σ1 is ½Ĥ; σ1� ¼ 2σ3σ1. Denoting
by τ the parameter associated with evolution generated by

Ĥ, we find the dynamical integrals corresponding to σ1
and σ2 ¼ iσ3σ1: Σ̂aðτÞ ¼ expð−iĤτÞΣ̂að0Þ expðiĤτÞ ¼
e−i2σ3τΣ̂að0Þ, a ¼ 1, 2, where Σ̂að0Þ ¼ Σa, and Σa are
defined in (3.14). From here we also find that ŜaðτÞ ¼
e−4iσ3τS̆a are dynamical integrals for Ĥ.
Proceeding from the supercharges Q̂a and dynamical

odd integrals Σ̂a and Ŝa, we find the symmetry of the
system Ĥ. Besides the Hamiltonian Ĥ and the listed
fermionic integrals, its set of generators also includes
bosonic time-independent integrals Z ¼ − 1

4
σ3 and

I ¼ 1
4
I, and the even dynamical integrals of motion

Ĵ �ðτÞ and Ĉ�ðτÞ, which have the same form as J � and
C� in (3.2) and (3.3) but with evolution parameter t
changed here for τ. The Hamiltonian of the extended
system (3.1) is related to supersymmetric Hamiltonian
operators (4.3) and (4.6) by an equality

H ¼ 1

2
ðĤþ H̆Þ ¼ Ĥ − σ3: ð4:9Þ

In correspondence with this relation, we introduce a
notation for a linear combination of Hamiltonian Ĥ and
bosonic integral Z,

J 0 ¼
1

4
Ĥþ Z: ð4:10Þ

As a result we find that the system given by the
Hamiltonian operator (4.3) is described by the same
super-extended Schrödinger symmetry (3.5)–(3.12) as
the system (3.1) with the already identified relation
between the even generators, while the correspondence
between odd generators of both systems is given by
Σa ¼ Σ̂að0Þ, and

Q�ð0Þ ¼
1

8
½Q̂1 þ Ŝ1 � iðQ̂2 − Ŝ2Þ�jτ¼0;

S�ð0Þ ¼
1

8
½Q̂2 þ Ŝ2 ∓ iðQ̂1 − Ŝ1Þ�jτ¼0: ð4:11Þ

Note that both systems (4.3) and (3.1) are characterized by
the same number of time-independent and dynamical
integrals. The key difference is that coherently with differ-
ent structure of Hamiltonian operators related by Eq. (4.9),
the system (3.1) has two time-independent integrals Σa
anticommuting for the central charge I , while time-
independent integrals Q̂a of the system (4.3) anticommute
for the Hamiltonian operator Ĥ. Another essential differ-
ence is that the even dynamical integrals J þ and J − of the
system (3.1) commute for the third generator J 0 of
slð2;RÞ subalgebra being the rescaled Hamiltonian H,
while the corresponding dynamical integrals Ĵ þ and Ĵ − of
the system (4.9) anticommute for a linear combination of its
Hamiltonian Ĥ and bosonic integral Z.

HIDDEN SUPERCONFORMAL SYMMETRY: WHERE DOES IT … PHYS. REV. D 97, 045002 (2018)

045002-5



We can apply to the symmetry generators of the system
described by the Hamiltonian Ĥ the same unitary trans-
formation generated by nonlocal operator (3.15) and then
realize the reduction of the transformed operators by means
of projection fX i ↦ ΠþfX iΠþ to the proper eigenspace of
eigenvalue þ1 of σ3 ¼ gσ3R. In this way we, again, repro-
duce the hidden superconformal symmetry of the single
quantum harmonic oscillator system. The peculiarity in this
case is, however, that according to relation (4.9), the
application of unitary transformation and projection to the
Hamiltonian Ĥ results not in Hamiltonian of the harmonic
oscillator operatorL but in a nonlocal operator: Ĥ ↦ L −R.
In conclusion of this section it is worth noting that like

the Darboux generators (4.1) obtained from the ground
state ψ0, the operators (4.5) constructed on the base of non-
physical eigenstate ψ−0 ¼ 1=ψ0 intertwine H− and Hþ but
with an additional shift:

Aþ
−0H− ¼ ðHþ − 4ÞAþ

−0; A−
−0ðHþ − 4Þ ¼ H−A−

−0:

ð4:12Þ

It is because of such an additional shift matrix operators S̆a,
unlike Q̂a, correspond to dynamical integrals of motion of
the system Ĥ. In the case of reflectionless and finite-gap
systems, there exist two pairs of operators that intertwine
the corresponding partner systems exactly in the same way,
without additional shift. As a consequence, instead of two
time-independent supercharges, the Darboux-extended sys-
tems are characterized there by four time-independent
supercharges, which generate the corresponding nontrivial
Lax-Novikov integrals. For details see Ref. [14].

V. TWO-STEP ISOSPECTRAL DARBOUX CHAIN

The extended system (3.1) cannot be produced by a usual
quantum mechanical supersymmetric construction of the
form (4.3) based on some superpotential WðxÞ that is
equivalent to application of a one-step Darboux trans-
formation. Let us show that it can be generated via a two-
step isospectral Darboux chain, that uses a certain Jordan
state of the quantum harmonic oscillator, with subsequent
application of a simple limit procedure. The corresponding
extended system obtained via the two-step isospectral
Darboux chain possesses a set of time-independent and
dynamical integrals of motion. After application of the limit
procedure these integrals give us the generators of the
superextended Schrödinger symmetry of the system (3.1).
Consider a Darboux-Crum transformation based on the

seed states ψ0ðxÞ and χ0ðxÞ, where ψ0ðxÞ is a normalized
ground state of the quantum harmonic oscillator (2.1) and
χ0ðx; μÞ is its Jordan state of order two corresponding to the
same energy E ¼ 1 [8],

χ0ðx; μÞ ¼ μ gψ0ðxÞ þ ψ0ðxÞ
Z

x

0

1

ðψ0ðtÞÞ2
I0ðtÞdt: ð5:1Þ

Here μ is a real constant,

gψ0ðxÞ ¼ ψ0ðxÞ
Z

x

0

ðψ0ðtÞÞ−2dt ð5:2Þ

is a linear independent from ψ0ðxÞ nonphysical eigenstate
of L of the same energy E ¼ 1, and

I0ðxÞ ¼
Z

x

−∞
ðψ0ðtÞÞ2dt ð5:3Þ

is a monotonic function that varies between 0 and 1 as soon
as the ground state wave function ψ0ðxÞ is normalized for
one. Note that the potential of the system shifted for
corresponding eigenvalue E ¼ 1 is “extracted” from I0ðxÞ
by the Schwarzian: − 1

2
SðI0Þ ¼ x2 − 1, where SðfÞ ¼

ðf000=f0Þ − 3
2
ðf00=f0Þ2. The application of the operator a−

to the state χ0ðx; μÞ produces the function

a−χ0ðx; μÞ ¼
μþ I0ðxÞ
ψ0ðxÞ

¼ φ−0ðx; μÞ; ð5:4Þ

that satisfies a relation aþφ−0ðx; μÞ ¼ −ψ0ðxÞ. The state
φ−0ðx; μÞ is a linear combination of the nonphysical eigen-
state ψ−0ðxÞ ¼ 1=ψ0ðxÞ ofL of eigenvalue−1, that we used
before to generate the system (4.6), and of a linear

independent nonphysical eigenstate gψ−0ðxÞ of L of the
same eigenvalue −1 constructed according to relation
analogous to (5.2):

φ−0ðx; μÞ ¼ μψ−0ðxÞ þ gψ−0ðxÞ: ð5:5Þ

We choose the value of parameter μ in one of the infinite
intervals ð−∞;−1Þ or ð0;∞Þ for which φ−0ðx; μÞ is a
nodeless on a real line function being a non-
physical eigenstate of Hþ ¼ a−aþ of zero eigenvalue,
Hþφ−0ðx; μÞ ¼ 0. For the wave function χ0ðx; μÞ we find
equivalently that it satisfies a relation a−aþa−χ0ðx; μÞ ¼ 0,
and therefore ðL − 1Þ2χ0 ¼ 0. This means that χ0ðx; μÞ is
indeed the Jordan state of order two of L ¼ H− þ 1
corresponding to eigenvalue E ¼ 1.
We can use the eigenstate φ−0ðx; μÞ ofHþ as a seed state

for a new Darboux transformation which produces the first
order differential operators

A−
μ ¼φ−0ðx;μÞ

d
dx

1

φ−0ðx;μÞ
¼ d
dx

þWðx;μÞ; Aþ
μ ¼ðA−

μ Þ†;

ð5:6Þ

where
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Wðx; μÞ ¼ −ðlnφ−0ðx; μÞÞ0 ¼ −x −
ψ0ðxÞ

φ−0ðx; μÞ
: ð5:7Þ

These operators factorize the Hamiltonian operators Hþ ¼
H− þ 2 and

Hμ ¼ Hþ þ 2W0 ¼ H− − 2ðlnðI0ðxÞ þ μÞÞ00; ð5:8Þ

Aþ
μ A−

μ ¼ Hþ, A−
μAþ

μ ¼ Hμ, and intertwine them, A−
μHþ ¼

HμA−
μ , Aþ

μ Hμ ¼ HþAþ
μ . In (5.8), the argument of logarithm

is Wronskian of the states ψ0ðxÞ and χ0ðx; μÞ: Wrðψ0ðxÞ;
χ0ðx; μÞÞ ¼ I0ðxÞ þ μ. Considering the second order differ-
ential operators given by a composition of the first order
Darboux generators,

A−
μ ¼ A−

μa−; Aþ
μ ¼ aþAþ

μ ; ð5:9Þ

we find that they intertwine the Hamiltonian operators
H− ¼ L − 1 and Hμ,

A−
μH− ¼ HμA−

μ ; Aþ
μ Hμ ¼ H−Aþ

μ ; ð5:10Þ

and also satisfy relations Aþ
μ A−

μ ¼ ðH−Þ2, A−
μAþ

μ ¼ ðHμÞ2.
By construction, kerðA−

μ Þ ¼ spanfψ0ðxÞ; χ0ðx; μÞg. The
Darboux-deformed oscillator system described by
the Hamiltonian operator Hμ is completely isospectral to
the system H−. Its eigenstates with eigenvalues E ¼ 2n,
n ¼ 1; 2…, are obtained by mapping the eigenstates ψnðxÞ
of the harmonic oscillator by the operator A−

μ :
ψnðxÞ ↦ ψnðx; μÞ ¼ A−

μ ψnðxÞ, Hμψnðx; μÞ ¼ 2nψnðx; μÞ.
The (not normalized) ground state of zero energy of the
systemHμ is described bywave functionψ0ðx; μÞ ¼ 1

φ−0ðx;μÞ,
where φ−0ðx; μÞ is a wave function (5.4). It is obtained by
application of the operatorA−

μ to the nonphysical eigenstate

(5.2) ofH− ¼ L − 1 of zero energy,A−
μ
gψ0ðxÞ ¼ −ψ0ðx; μÞ.

Thus, we obtained the completely isospectral pair of the
Hamiltonian operators H− and Hμ, from which we com-
pose the extended system described by the matrix
Hamiltonian operator

Hμ ¼
�
Hμ 0

0 H−

�
: ð5:11Þ

Its completely isospectral subsystems H− and Hμ, as we
have seen, are intertwined by the second order operators
(5.9) according to (5.10). On the other hand, the first order
operators A−

μ and Aþ
μ intertwine Hþ ¼ H− þ 2 and Hμ.

Therefore, these first order operators intertwine the sub-
systems H− and Hμ of the extended system (5.11) but with
a relative shift in comparison with (5.10),

A−
μH− ¼ ðHμ − 2ÞA−

μ ; Aþ
μ ðHμ − 2Þ ¼ H−Aþ

μ : ð5:12Þ

From this construction we have two Darboux schemes: the
scheme based on the ground eigenstate and Jordan state of
the harmonic oscillator which produces the second order
intertwining operators A�

μ . We denote such a scheme
ðψ0ðxÞ; χ0ðx; μÞÞ. Another scheme is based on the non-
physical eigenstate φ−0ðx; μÞ of L of eigenvalue −1, which
we denote as ðφ−0ðx; μÞÞ. We can construct one more
Darboux scheme ðψ0ðxÞ;ψ1ðxÞ; aþχ0ðx; μÞÞ based on the
physical eigenstates ψ0ðxÞ and ψ1ðxÞ and the state
aþχ0ðx; μÞ. This scheme gives rise to the third order
intertwining operators A−

μ ¼ A−
μ ða−Þ2 ¼ A−

μa− and
Aþ

μ ¼ ðA−
μ Þ†. These operators also intertwine H− and

Hμ but with opposite relative shift in comparison with
(5.12): A−

μH− ¼ ðHμ þ 2ÞA−
μ , Aþ

μ ðHμ þ 2Þ ¼ H−Aþ
μ .

Using the intertwining operators of these three Darboux
schemes, we construct three pairs of antidiagonal (odd with
respect to Γ ¼ σ3) operators

Qμ1 ¼
�

0 A−
μ

Aþ
μ 0

�
; Qμ2 ¼ iσ3Qμ1;

Sμ1 ¼
�

0 A−
μ

Aþ
μ 0

�
; Sμ2 ¼ iσ3Sμ1; ð5:13Þ

Lμ1 ¼
�

0 A−
μ

Aþ
μ 0

�
; Lμ2 ¼ iσ3Lμ1: ð5:14Þ

Using the relations between the intertwining operators
A−

μAþ
μ ¼ A−

μa−Aþ
μ , Aþ

μ A−
μ ¼ ðH− þ 2Þa−, A−

μAþ
μ ¼

A−
μ ða−ÞAþ

μ , Aþ
μ A−

μ ¼ ðH− þ 2Þða−Þ2, we also construct
diagonal (even) operators

Cμ− ¼
�
A−a−Aþ 0

0 ðH− þ 2Þa−
�
;

J μ− ¼
�
A−ða−Þ2Aþ 0

0 ðH− þ 2Þða−Þ2
�
; ð5:15Þ

and Hermitian conjugate operators Cμþ and J μþ. With
respect to the Hamiltonian Hμ, the only pair of time-
independent integrals are the supercharges Qμa, a ¼ 1, 2.
Other operators have to be dressedwith the unitary evolution
operator UðtÞ ¼ exp ðiHμtÞ: Sμa ↦ U−1ðtÞSμaUðtÞ, etc.,
that gives us the corresponding dynamical integrals of
motion. The obtained in such a way time-independent
and dynamical integrals together with Hamiltonian operator
Hμ generate a kind of nonlinear superalgebra corresponding
to a nonlinear deformation of the super-Schrödinger
symmetry.
We are not interested here in explicit form of such a

nonlinear superalgebra, but just note that when μ → �∞,
we have ðlnðIðxÞ þ μÞÞ0 → 0. As a result, in any of the two
limits the Hamiltonian Hμ transforms into H−, and the
matrix Hamiltonian transforms into extended Hamiltonian
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(3.1) shifted for the minus unit matrix:Hμ → H − I. In this
limit we also have A�

μ → −a∓, and find that the constructed
operators transform as follows:

Qμ1 → −ðH − 1Þσ1; Qμ2 → ðH − 1Þσ2; ð5:16Þ

Sμa → −S̆a; Lμa → −ðH − 2þ σ3ÞQ̂a; ð5:17Þ

Cμ− → ðH − σ3ÞC−; Cμþ → CþðH − σ3Þ; ð5:18Þ

J μ− → ðH − σ3ÞJ −; J μþ → J þðH − σ3Þ: ð5:19Þ

In such a way we reproduce all the corresponding integrals
of the system (3.1) that generate the super-extended
Schrödinger symmetry lying behind the hidden super-
conformal symmetries ospð1j2Þ and ospð2j2Þ of a single
quantum harmonic oscillator.
The isospectral deformation VμðxÞ of the harmonic

oscillator potential is illustrated by Figure 1, while
Figure 2 illustrates the action of the intertwining operators
A�

μ and A�
μ .

In conclusion of this section we note that the
Hamiltonian (5.11) and the second order intertwining
operators A�

μ can be presented in alternative form which
corresponds to the anomaly-free scheme of quantization of
classical systems with second-order supersymmetry [15].
For this we introduce the quasiamplitude [16]

ΞðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ψ−0ðxÞφ−0ðx; μÞ

p
: ð5:20Þ

It is a square root of the product of two nonphysical
eigenstates of eigenvalue −1 of the quantum harmonic
oscillator L. The rescaled function ΞðxÞ= ffiffiffi

μ
p

transforms in
the limit μ → �∞ into the non-physical eigenstate ψ−0.
This function satisfies Ermakov-Pinney equation

−Ξ00 þ ðx2 þ 1ÞΞ ¼ 1

4Ξ3
: ð5:21Þ

In terms of quasiamplitude, the first order differential
operators

A−
Ξ ¼ ΞðxÞ d

dx
1

ΞðxÞ ¼
d
dx

− x −WðxÞ; Aþ
Ξ ¼ ðAΞÞ†

ð5:22Þ

can be defined, where

WðxÞ ¼ 1

2Ξ2ðxÞ ¼
1

2
ðlnðI0ðxÞ þ μÞÞ0: ð5:23Þ

Then the Hamiltonian Hμ and the intertwining operator A−
μ

can be presented in the form

FIG. 1. On the left: Isospectrally deformed potential Vμ at μ ¼ 1 and μ ¼ −3 is shown by continuous red and dashed black lines,
respectively. On the right: The difference VμðxÞ − x2 given by the last term in Eq. (5.8) is shown for the same values μ ¼ 1 and μ ¼ −3.
With increasing value of modulus of the deformation parameter μ the amplitudes of minimum and maximum of the difference
VμðxÞ − x2 decrease, and in both limits μ → �∞ the deformed potential VμðxÞ transforms into harmonic potential V ¼ x2 shown on the
left by continuous blue line.

FIG. 2. Mapping of eigenstates of the systems H− and Hμ by
intertwining operators A�

μ andA�
μ via eigenstates of intermediate

systemHþ. The ground stateA−
μfψ0 ofHμ is obtained by applying

A−
μ to nonphysical eigenstate fψ0 of H−. It also can be generated

by a not shown here action ofA−
μ on nonphysical eigenstate fψ1 of

H− via nonphysical eigenstate ψ−0 of Hþ.
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Hμ ¼ A−
ΞA

þ
Ξ þW2 − 2W 0σ3;

A−
μ ¼ −ðA−

Ξ −WÞðAþ
Ξ þWÞ: ð5:24Þ

FunctionWðxÞ in the anomaly-free scheme of quantization
plays a role of superpotential for corresponding classical
system with second order supersymmetry [15,17,18].

VI. FREE PARTICLE LIMIT

It is interesting to apply a limit of zero frequency to the
constructions which have allowed us to clarify the nature of
the hidden superconformal symmetry of the single quantum
harmonic oscillator. In this way we identify a hidden
superconformal symmetry of the free particle. A nontrivial
point in this procedure is that it is necessary to make the
appropriate different rescalings for different generators of
super-Schrödinger symmetry of the extended quantum
harmonic oscillator systems in order to obtain correctly
their analogs for the corresponding (doubled) free particle
system.
To start, let us restore the frequency parameter ω in the

Hamiltonian of harmonic oscillator L and in its ladder
operators a� but maintaining the Planck constant ℏ ¼ 1

and mass parameter m ¼ 1
2
as before. We have

L → Lω ¼ ω

�
−
1

ω

d2

dx2
þ ωx2

�
¼ 1

2
ωfaþω ; a−ωg;

a� → a�ω ¼∓ 1ffiffiffiffi
ω

p d
dx

þ ffiffiffiffi
ω

p
x; ð6:1Þ

and ½Lω; a�ω � ¼ �2ωa�ω , ½Lω; ða�ωÞ2� ¼ �2ωða�ωÞ2. We
consider the application of the zero frequency limit for
the extended system (3.1) and then make a comment for the
case of the system (4.3). Applying the zero frequency limit
to the matrix Hamiltonian operator (3.1) with restored
according to (6.1) frequency,Hω, it is convenient to rescale
it, and we obtain

H0¼2Hωjω→0¼
�
H0 0

0 H0

�
; H0¼−

1

2

d2

dx2
: ð6:2Þ

The nontrivial bosonic integrals for the system (6.2) are
given by

P ¼ i
ffiffiffiffiffiffi
2ω

p
ðCþ − C−Þjω→0 ¼

1ffiffiffi
2

p
�
p 0

0 p

�
; p¼ −i

d
dx

;

ð6:3Þ

G ¼
ffiffiffiffi
2

ω

r
ðCþ þ C−Þjω→0 ¼

1ffiffiffi
2

p
�
x − 2tp 0

0 x − 2tp

�
;

ð6:4Þ

D ¼ i
2
ðJ þ − J −Þjω→0

¼ 1

4

� fx; pg − 4tH0 0

0 fx; pg − 4tH0

�
; ð6:5Þ

K¼ 1

2ω
½J þþJ −þ

2

ω
Hω�jω→0

¼1

2

�
x2−2tfx;pgþ4t2H0 0

0 x2−2tfx;pgþ4t2H0

�
:

ð6:6Þ

These are generators of spatial translations (P), of the
Galilean boosts (G), of dilatations (D), and special con-
formal transformations (K) of the doubled free particle
system (6.2). The linear combinations Qþ −Q− and Sþ −
S− of the dynamical odd integrals of the system (3.1)
produce time-independent supercharges for the system
(6.2),

π1 ¼ i
ffiffiffiffiffiffi
2ω

p
ðQþ −Q−Þjω→0 ¼

1ffiffiffi
2

p
�
0 p

p 0

�
; ð6:7Þ

π2 ¼ iσ3π1 ¼ i
ffiffiffiffiffiffi
2ω

p
ðSþ − S−Þjω→0 ¼

1ffiffiffi
2

p
�

0 ip

−ip 0

�
;

ð6:8Þ

while the linear combinations Qþ þQ− and Sþ þ S− give
us the dynamical odd integrals,

ξ1 ¼
ffiffiffiffi
2

ω

r
ðQþ þQ−Þjω→0 ¼

1ffiffiffi
2

p
�

0 x − 2tp

x − 2tp 0

�
;

ð6:9Þ

ξ2 ¼ iσ3ξ1 ¼
ffiffiffiffi
2

ω

r
ðSþ þ S−Þjω→0

¼ iffiffiffi
2

p
�

0 x − 2tp

−xþ 2tp 0

�
: ð6:10Þ

Notice the difference in frequency factors before the
corresponding linear combinations in (6.7), (6.8) and
(6.9), (6.10). The time-independent even integrals I and
Z and odd integrals Σa, a ¼ 1, 2, of the system (3.1) are
also the integrals for the system (6.2). All these operators
generate the N ¼ 2 super-Schrödinger algebra for the
doubled free particle system (6.2) with the following
nontrivial (anti)commutation relations:

½D;H0� ¼ iH0; ½D;K� ¼ −iK;

½K;H0� ¼ 2iD; ½G;P� ¼ 2iI ; ð6:11Þ
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½H0;G� ¼ −iP; ½K;P� ¼ iG;

½D;P� ¼ i
2
P; ½D;G� ¼ −

i
2
G; ð6:12Þ

½D; πa� ¼
i
2
πa; ½D; ξa� ¼ −

i
2
ξa;

½Z; πa� ¼ −
i
2
ϵabπb; ½Z; ξa� ¼ −

i
2
ϵabξb; ð6:13Þ

½H0; ξa� ¼ −iπa; ½K; πa� ¼ iξa; ð6:14Þ

½Z;Σa� ¼
i
2
ϵabΣb; ½P; πa� ¼ −iΣa; ½G; ξa� ¼ iΣa;

ð6:15Þ

fΣa; πbg ¼ δabP; fΣa; ξbg ¼ δabG;

fΣa;Σbg ¼ 2δabI ; ð6:16Þ

fπa; πbg ¼ 2δabH0; fξa; ξbg ¼ 2δabK;

fπa; ξbg ¼ 2δabDþ 2ϵabZ: ð6:17Þ

Note that the superalgebra of the extended (doubled)
quantum harmonic system (3.1) can be presented in the
form (6.11)–(6.17) with the following correspondence
between the generators:

H0 ↔ J 0 −
1

2
ðJ þ þJ −Þ; K↔ J 0 þ

1

2
ðJ þ þ J −Þ;

D ↔
i
2
ðJ þ −J −Þ ð6:18Þ

P ↔
ffiffiffi
2

p
iðCþ − C−Þ; G ↔

ffiffiffi
2

p
ðCþ þ C−Þ; ð6:19Þ

π1 ↔
ffiffiffi
2

p
iðQþ −Q−Þ; π2 ↔

ffiffiffi
2

p
iðSþ − S−Þ; ð6:20Þ

ξ1 ↔
ffiffiffi
2

p
ðQþ þQ−Þ; ξ2 ↔

ffiffiffi
2

p
ðSþ þ S−Þ; ð6:21Þ

and with the same generatorsZ, I and Σa for both systems.
In the case of the supersymmetric system (4.3) after

reconstruction of the frequency parameter we have

Ĥω ¼ 1

4

�
Lω þ ω 0

0 Lω − ω

�
: ð6:22Þ

The zero frequency limit applied to this system produces
the same doubled free particle system (6.2). This can also
be understood by noting that after reconstruction of
frequency, the superpotential in (4.3) takes a form Wω ¼
ωx. In the zero frequency limit Wω → 0 and Ĥω ¼
− d2

dx2 þW2
ω þW0

ωσ3 → − d2

dx2 I.
The application of the unitary nonlocal operator (3.15) to

the odd generators πa and ξa transforms them into operators
of the diagonal form, and, particularly, π1 and ξ1 take the
form of the operators P and G. The transformed P and G

take the anti-diagonal form, ~P ¼ π1, ~G ¼ ξ1. After pro-
jection to the proper subspace of eigenvalue þ1 of σ3,fX i ↦ ΠþfX iΠþ, we left with a single free particle system
H0, whose hidden superconformal ospð1j2Þ symmetry is
generated by local even integrals H0, D ¼ 1

4
ðfx; pg−

4tH0Þ, K ¼ 1
2
x2 − tfx; pg þ 2t2H0, and by odd integrals

P ¼ p, G ¼ x − pt, with reflection operator R playing the
role of the Z2-grading operator. The inclusion of nonlocal
even integral Z ¼ − 1

4
R and nonlocal odd integrals iRP,

iRG extends the hidden superconformal ospð1j2Þ sym-
metry for the hidden superconformal ospð2j2Þ symmetry of
the free particle. Explicit form the (anti)commutation
relations can easily be identified from the corresponding
relations from (6.11)–(6.17).

VII. DISCUSSION AND OUTLOOK

The extended doubled quantum harmonic oscillator
system (3.1) is not described by a usual construction of
supersymmetric quantum mechanics. Nevertheless it is
possible to obtain it in the following way by starting from
the level of classical mechanics. Consider a classical
system described by a Hamiltonian

H ¼ p2 þW2 þW0½θþ; θ−� ð7:1Þ

with superpotential WðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2

p
, where c > 0 is a

constant and θþ and θ− ¼ ðθþÞ� are Grassmann variables
being classical analogs of the fermion creation-annihilation
operators with a nonzero Poisson bracket fθþ; θ−gPB ¼ −i.
After quantization the odd variables θ� transform into
fermionic creation-annihilation operators which can be
realized in terms of σ-matrices: θ� → σ� ¼ 1

2
ðσ1 � iσ2Þ.

A direct quantum analog of this system is a supersymmetric
completely isospecral pair in the phase of spontaneously
broken supersymmetry, with nonsingular superpartner
potentials V� ¼ x2 þ c2 � x=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ c2

p
. The spectrum of

subsystems is different from that of the quantum harmonic
oscillator. On the other hand, if before the quantization
we realize a canonical transformation x → X ¼ xþ
N∂Gðx; pÞ=∂p, p → P ¼ p − N∂Gðx; pÞ=∂x, θ�→Θ�¼
e�iGðx;pÞθ�, where N ¼ θþθ− and G ¼ 1

2
arcsinððp2−

x2 − c2Þ=ðp2 þ x2 þ c2ÞÞ, we obtain the canonically equiv-
alent form of the Hamiltonian H ¼ P2 þ X2 þ c2. In the
canonically transformed system, the new classical
Grassmann variables Θ� completely decouple and are
the odd integrals of motion with Poisson bracket
fΘþ;Θ−gPB ¼ −i. The quantization of the canonically
transformed system gives us exactly the extended quantum
system (3.1) shifted just for the additive constant c2.
The classical system given by the Hamiltonian H ¼

p2 þW2 þ 2W0½θþ; θ−� with a simply changed in com-
parison with (7.1) boson-fermion coupling constant in the
last term is characterized at the classical level by the
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second-order supersymmetry [17,18]. The application of
the anomaly-free scheme of quantization [15] to such a
system with superpotential (5.23) produces the extended
quantum system (5.11).
In Sec. IV, we generated superconformal symmetry via

dual Darboux transformations. The analogous construction
can be applied for investigation of superconformal sym-
metry in supersymmetric rationally extended quantum
harmonic and isotonic oscillator systems [13]. The results
of such investigation will be presented by us elsewhere.
We derived the hidden superconformal symmetry of the

one-dimensional quantum harmonic oscillator and clarified
its nature. It would be interesting to analyze from the same
perspective the case of d-dimensional quantum harmonic
oscillator systems which also are characterized by the
corresponding generalizations of the hidden superconfor-
mal symmetry considered here [6,7,9,19,20].

It is interesting to note that our construction of the
one-parametric completely isospectral deformation of the
quantum harmonic oscillator from Sec. V can be general-
ized by taking instead of the pair (ψ0, χ0ðμÞ) of the seed
states in the Darboux-Crum transformation the pair (ψn,
χnðμÞ), where χnðμÞ ¼ χnðx; μÞ is the Jordan state corre-
sponding to eigenvalue En [8]. In this case we shall obtain
completely isospectral deformations of the harmonic oscil-
lator potential of a more complicated form. The properties
of the quantum systems obtained in such a way deserve a
further investigation.
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