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A Hamiltonian H that is not Hermitian can still have a real and complete energy eigenspectrum if it
instead is PT symmetric. For such Hamiltonians, three possible inner products have been considered in the
literature, the V norm, the PT norm, and the C norm. Here, V is the operator that implements
VHV−1 ¼ H†, the PT norm is the overlap of a state with its PT conjugate, and C is a discrete linear
operator that always exists for any Hamiltonian that can be diagonalized. Here, we show that it is the V
norm that is the most fundamental as it is always chosen by the theory itself. In addition, we show that the V
norm is always equal to the PT norm if one defines the PT conjugate of a state to contain its intrinsic PT
phase. We discuss the conditions under which the V norm coincides with the C operator norm and show
that, in general, one should not use the linear C operator, but for the purposes that it is used one can instead
use the antilinear PT operator itself.
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I. IMPLICATIONS OF ANTILINEAR SYMMETRY

In an analysis of the eigenspectrum of the non-Hermitian
Hamiltonian H ¼ p2 þ ix3, Bender and collaborators [1,2]
unexpectedly found that the eigenvalues of H ¼ p2 þ ix3

are all real [3]. The reality of the eigenvalues was traced to
the fact that, while not Hermitian, the p2 þ ix3 Hamiltonian
had an antilinear PT symmetry, where P denotes parity and
T denotes time reversal. (Under PT: p → p, x → −x,
i → −i, so that p2 þ ix3 → p2 þ ix3.) While sufficient to
secure the reality of eigenvalues, Hermiticity is, thus, seen
as not being necessary for such a reality. In fact [5,6], it was
antilinearity that emerged as the necessary condition for the
reality of eigenvalues, so that without an antilinear sym-
metry, energy eigenvalues could not all be real. Following
from the work of [1,2], there has been much interest in
the literature (see e.g. the reviews of [7–9] and the studies
of [10,11]) in such antilinear symmetry, as it was realized
that one can actually replace the familiar postulate of
Hermiticity of a Hamiltonian by the more general require-
ment of antilinear symmetry (antilinearity) without needing
to either generalize or modify the basic structure of
quantum mechanics in any way. Moreover, antilinearity
was actually shown [12] to be the most general requirement
that one could impose on a quantum theory for which it
would continue to be viable, since in addition to antilinear
symmetry being necessary for the reality of eigenvalues,
antilinear symmetry is also necessary for the existence of a
sensible Hilbert space description of quantum mechanics
wherein one is able to define an inner product that is time
independent, positive definite, and finite. There is however

no need for the inner product to be composed of a ket and
its Hermitian conjugate bra or for the Hamiltonian to be
Hermitian in order to achieve this, and through study of
various PT-symmetric examples some possible inner
products have been identified in the literature that could
achieve this objective. It is the purpose of this paper to
elucidate the connections between these various inner
products, and identify one of them (the so-called V norm
discussed in [10,11]) to be the most general in that it must
be possessed by any theory with antilinear symmetry
whose Hamiltonian is diagonalizable.
To understand the implications of antilinear symmetry

for a Hamiltonian H, it is instructive to consider the
eigenvector equation obeyed by its eigenvectors:

i
∂
∂t jψðtÞi ¼ HjψðtÞi ¼ EjψðtÞi: ð1Þ

On replacing the parameter t by −t and then multiplying by
some general antilinear operator A, we obtain

i
∂
∂t Ajψð−tÞi ¼ AHA−1Ajψð−tÞi ¼ E�Ajψð−tÞi: ð2Þ

From (2), we see that if H has an antilinear symmetry
so that AHA−1 ¼ H; then, as first noted by Wigner in his
study of time reversal invariance, energies can either
be real and have eigenfunctions that obey Ajψð−tÞi ¼
jψðtÞi or they can appear in complex conjugate pairs that
have conjugate eigenfunctions (jψðtÞi ∼ expð−iEtÞ and
Ajψð−tÞi ∼ expð−iE�tÞ). Antilinearity, thus, admits of
two possibilities: energies all real, or some or all of the
energies appearing in complex conjugate pairs.*philip.mannheim@uconn.edu
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It is also possible to establish a converse theorem. Thus,
suppose we are given that the energy eigenvalues are real or
appear in complex conjugate pairs. In such a case, not only
would E be an eigenvalue but E� would be too. Hence, we
can set HAjψð−tÞi ¼ E�Ajψð−tÞi in (2) and obtain

ðAHA−1 −HÞAjψð−tÞi ¼ 0: ð3Þ

Then if the eigenstates ofH are complete, (3) must hold for
every eigenstate to yield AHA−1 ¼ H as an operator
identity, with H thus having an antilinear symmetry. (We
can use the standard argument based on completeness for
linear operators here since, while A itself might be anti-
linear, the operator AHA−1 is linear.) Antilinearity is, thus,
both necessary and sufficient for energy eigenvalues to be
real or appear in complex conjugate pairs, and thus without
antilinearity it is not possible for all eigenvalues to be real.
Now we note that there is no analog statement for

Hermiticity, since while Hermiticity implies the reality of
eigenvalues, there is no converse requirement that the
reality of eigenvalues implies Hermiticity. It is in this
regard that antilinear symmetry is more general than
Hermiticity while encompassing it as a special case.
To illustrate the basic features of antilinear symmetry, it

is convenient to consider a very simple model, viz. the
matrix,

Mðα; βÞ ¼ ασ1 þ iβσ2 ¼
�

0 αþ β

α − β 0

�
; ð4Þ

where the parameters α and β are real and positive. (We shall
have occasion to return to this model below.) The matrix
Mðα; βÞ does not obey the transposition plus complex
conjugation Hermiticity condition Mij ¼ M�

ji. However,
if we set P ¼ σ1 and T ¼ Kiσ1, where K denotes complex
conjugation, we obtainPTMðα; βÞT−1P−1 ¼ Mðα; βÞ, with
Mðα; βÞ thus being PT symmetric for any values of the real
parameters α and β. With the eigenvalues of Mðα; βÞ being
given by E� ¼ �ðα2 − β2Þ1=2, just as required, we see that
both of these eigenvalues are real if α ≥ β and form a
complex conjugate pair if α < β. And while the energy
eigenvalues would be real and degenerate (both eigenvalues
being equal to zero) at the crossover point where α ¼ β, at
this point the matrix becomes of nondiagonalizable Jordan-
block form (see e.g. the analog discussion in [12,13]).
Neither of the α ¼ β or α < β possibilities are achievable
with Hermitian Hamiltonians, while for α > β, the matrix
Mðα > βÞ is an example of a non-Hermitian matrix that has
real eigenvalues [14].
While our analysis here will focus specifically on PT

symmetry itself, as far as nonrelativistic quantum mechan-
ics is concerned, our analysis could be applied to any
antilinear symmetry. However, once one considers the
implications of relativity, the requirement of the time
independence of inner products coupled with the

imposition of complex Lorentz invariance leads us
uniquely to one specific antilinear symmetry, namely
CCPT [12,15], where CC denotes the discrete charge
conjugation operator that squares to one. (The operator
CC is different from the operator C [7] that will be
discussed in detail below, an operator that both commutes
with H and squares to one, and always exists since, in the
basis in which H is diagonal, one can always find other
diagonal operators with arbitrary eigenvalues that commute
with H.) The work of [12,15], thus, generalizes the CPT
theorem to the non-Hermitian case. If, however, we work
below the threshold for pair creation, charge conjugation
will play no role with CC then commuting withH, and thus
in the following we shall restrict to just PT symmetry itself
[16]. In order to discuss and compare some candidate inner
products for PT-symmetric theories, we shall first discuss
those realizations of PT symmetry in which all energy
eigenvalues are real and turn now to the V norm.

II. THE V NORM

For our discussion of the V norm and in order to be able
to compare and contrast the various inner products that
have been discussed in the PT literature, it suffices to
restrict the discussion to Hamiltonians that have an anti-
linear symmetry, that do not obey H ¼ H†, but have an
energy eigenspectrum that is complete [17]. We, thus,
restrict to Hamiltonians that act on the same kind of Hilbert
spaces with complete and normalizable bases of eigenvec-
tors as Hermitian operators do, with the Hamiltonians of
interest to us here being diagonalizable [18]. We first
discuss the case of diagonalizable Hamiltonians with
eigenvalues that are all real, and below we consider the
other realization of antilinear symmetry, namely eigenval-
ues that come in complex conjugate pairs.
For the real energy case, the Hamiltonian can be

brought to a Hermitian form by a similarity transform
SHS−1¼H0 in whichH0 obeysH0 ¼H0†. The eigenstates of
H and H0 obey

i∂tjRni ¼ HjRni ¼ EnjRni;
−i∂thRnj ¼ hRnjH† ¼ hRnjEn; ð5Þ

i∂tjR0
ni ¼ H0jR0

ni ¼ EnjR0
ni;

−i∂thR0
nj ¼ hR0

njH0† ¼ hR0
njH0 ¼ hR0

njEn; ð6Þ

and are related by

jR0
ni ¼ SjRni; hR0

nj ¼ hRnjS†: ð7Þ
On normalizing the eigenstates of H0 to unity, we obtain

hR0
njR0

mi ¼ hRnjS†SjRmi ¼ δm;n: ð8Þ
The hR0

njR0
ni norm is a conventional time-independent,

positive-definite Hermitian theory norm, and if H can be
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brought to a Hermitian form by a similarity transform then
the hRnjS†SjRmi norm is the norm to use for H, and it is
both time independent and positive definite too.
Since, via the similarity transformation S, we can bring

H to a form SHS−1 ¼ H0 in which H0 obeys H0 ¼ H0†, we
thus obtain

SHS−1 ¼ S†−1H†S†; ð9Þ

and on introducing V ¼ S†S obtain

VHV−1 ¼ H†: ð10Þ

The V ¼ S†S operator thus serves as what is known as an
intertwining operator (it intertwines a Hamiltonian with its
Hermitian conjugate) of the type that had been discussed in
[10,11] (see also [12,13]). And as we see, V does not just
obey V† ¼ V; in addition, V is also a positive operator
(i.e. all of its eigenvalues are positive) of the type discussed
in [10].
The transformation on V in going from the H system to

the H0 system is not a standard similarity transformation,
even though one uses a standard similarity transformation
to transform H to H0. Rather, one has to set

V 0 ¼ S−1†VS−1; ð11Þ

since

V 0H0V 0−1 ¼ S−1†VS−1SHS−1SV−1S†

¼ S−1†H†S† ¼ H0†: ð12Þ
Thus, even after transforming in this specific way, V 0 still
transforms a Hamiltonian into its Hermitian conjugate.
With this transformation, and unlike with a standard
similarity transformation, one can thereby transform V into
a V 0 that can be equal to one, as such a V 0 would generate
V 0H0V 0−1 ¼ H0† ¼ H0, and this is the case when V ¼ S†S.
On normalizing the eigenstates ofH0 to unity, and with V

now taken to be S†S, we obtain

hR0
njR0

mi ¼ hRnjS†SjRmi ¼ hRnjVjRmi ¼ δm;n; ð13Þ

and thus establish that the V norm is not just time
independent (since hR0

njR0
mi is) but also automatically both

positive and (ortho) normalized to one. For the unprimed
system then, the V norm is the one we need, since it is
automatically both time independent and positive definite.
Thus, for any H that is similarity equivalent to a Hermitian
H0 the V inner product will always exist, and it is thus the
most general one that one could use.
Since the V norm is time independent, we obtain

i∂thRnjVjRmi ¼ hRnjðVH −H†VÞjRmi ¼ 0: ð14Þ

Since the jRni states are complete (H0 being assumed to be
Hermitian), we can set

VH −H†V ¼ 0 ð15Þ

as an operator identity, and with V necessarily being
invertible (since we had initially assumed that S was),
we come right back to VHV−1 ¼ H† [21]. With H and H†

thus being isospectrally related (which all on its own entails
that the energy eigenvalues of H are real or in complex
conjugate pairs), it follows from our discussion above
regarding the relation between antilinearity and the struc-
ture of the energy eigenspectrum that H has an antilinear
symmetry. We, thus, establish that for a Hamiltonian whose
energy eigenspectrum is real and complete, there must exist
an intertwining operator for it that effects VHV−1 ¼ H†,
and in consequence the Hamiltonian must possess an
antilinear symmetry. Thus, we can necessarily construct
a positive-definite norm hRnjVjRmi, and more importantly
can do so without needing to specify what the antilinear
symmetry that H has to possess might even be at all. Thus,
even if a Hamiltonian has an antilinear symmetry other than
PT, one must still use the V norm. By the same token, we
note that since the eigenvalues of a Hamiltonian with an
antilinear symmetry are either real or in complex pairs, for
any Hamiltonian with an antilinear symmetry H and H†

must still be isospectrally related by a V that generates
VHV−1 ¼ H†. Thus, even when energies appear in com-
plex conjugate pairs, we can still use the V norm, a point we
shall return to below.

III. THE PT CONJUGATE NORM

We can write the hR0
njR0

ni norm as hR0
njR0

ni¼ðjR0
niÞ†jR0

ni,
where the dagger denotes Hermitian adjoint. Inserting a
complete set of position eigenstates then gives

hR0
njR0

ni ¼ ðjR0
niÞ†jR0

ni ¼
Z

dxðjR0
niÞ†jxihxjR0

ni

¼
Z

dxðψ 0
nðxÞÞ†ψ 0

nðxÞ

¼
Z

dxψ 0�
n ðxÞψ 0

nðxÞ ¼ 1. ð16Þ

So now let us do the exactly the same thing for PT. We had
noted above that, when all energies are real, the eigenstates
of H0 are also eigenstates of P0T 0, where SPS−1 ¼ P0,
STS−1 ¼ T 0. We can, thus, set

P0T 0jR0
ni ¼ ηnjR0

ni; ð17Þ

where ηn is an appropriate phase.
Since ðPTÞ2 ¼ I (or equivalently ðP0T 0Þ2 ¼ I), in

general we can take the PT eigenvalue of a real energy
eigenstate jni to be eiα where α is real, since
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ðPTÞ2jni ¼ PTeiαjni ¼ e−iαPTjni ¼ e−iαeiαjni ¼ jni. If
we now define a new state jn̂i ¼ eiα=2þiβjni where β is
real, then PTjn̂i ¼ e−iα=2−iβPTjni ¼ e−iα=2−iβeiαjni ¼
e−iα=2−iβeiαe−iα=2−iβjn̂i ¼ e−2iβjn̂i. Since β is arbitrary,
we can always choose the phases of the states so that their
PT eigenvalues are real, and since ðPTÞ2 ¼ I, we can take
them to be equal to either plus one (β ¼ 0) or minus one
(β ¼ π=2). Finally, since P0 and T 0 obey the same con-
ditions as P and T (viz. P2 ¼ I, T2 ¼ I, ½P; T� ¼ 0), the ηn
phases can always be set equal to plus or minus one
in either basis and are preserved under a similarity
transformation.
Having now fixed the ηn phases, we next need to identify

hR0
njR0

ni with a PT conjugate-based norm. However, since
hR0

njR0
ni is positive definite, we will need a definition of a

PT conjugate that will lead to a PT conjugate-based norm
that is itself positive definite. As we now show, this will
require including the intrinsic PT phase ηn in the definition
of the PT conjugate. We thus identify ðjR0ÞPT jxi ¼
ðψ 0

nðxÞÞPT not as its parity and complex conjugate
ψ 0�
n ð−xÞ (the −x factor is because of the presence of the

P operator), but as

ðψ 0
nðxÞÞPT ¼ η−1n ψ 0�ð−xÞ; ð18Þ

so that the PT conjugate depends on the intrinsic PT parity
of the state and is different for states with differing intrinsic
PT parity. With this definition of the PT conjugate, we
obtain

hR0
njR0

ni¼ ðjR0
niÞPT jR0

ni

¼
Z

dxðjR0
niÞPT jxihxjR0

ni¼
Z

dxðψ 0
nðxÞÞPTψ 0

nðxÞ

¼ η−1n

Z
dxψ 0�

n ð−xÞψ 0
nðxÞ¼ 1; ð19Þ

and thus obtain

Z
dxψ 0�

n ð−xÞψ 0
nðxÞ ¼ ηn: ð20Þ

Now PT studies (typically in some equivalent basis such
as the unprimed one) have shown that integrals of the
generic form

R
dxψ 0�

n ð−xÞψ 0
nðxÞ (in either the primed or

unprimed bases) are not positive definite. The integralR
dxψ 0�

n ð−xÞψ 0
nðxÞ is, however, real since

�Z
dxψ 0�

n ð−xÞψ 0
nðxÞ

��
¼

Z
dxψ 0�

n ðxÞψ 0
nð−xÞ

¼
Z

dxψ 0�
n ð−xÞψ 0

nðxÞ; ð21Þ

and is automatically normalized to plus or minus one sinceR
dxψ 0�

n ð−xÞψ 0
nðxÞ ¼ ηn. Thus, with ηn ¼ �1, one can

always choose the signs of the ηn so that
η−1n

R
dxψ 0�

n ð−xÞψ 0
nðxÞ is positive definite. Thus, just as

PT acts on a ket to produce an intrinsic PT phase as per

jR0
ni ¼ η−1n P0T 0jR0

ni; ð22Þ

the PT conjugate of the ket should contain the same
intrinsic phase as per

ðjR0
niÞPT ¼ η−1n hR0

njP: ð23Þ

And when one includes this phase, ðjR0
niÞPT jR0

ni is just as
positive definite as the hR0

njR0
nimatrix element to which it is

to be equal to. Finally, we note that, previously in the
literature [7], it was ψ 0�

n ð−xÞ without the η−1n factor that was
taken to be thePT conjugate. With this choice, one then had
to introduce some other discrete operator whose eigenvalues
were plus and minus one, an operator, called C in the PT
literature, that would commute with the Hamiltonian and
generate the needed additional phase in order to yield a
positive definite inner product. We shall return to a dis-
cussion of the C operator below, while noting now that with
the ηn-dependent definition of the PT conjugate, even
though it is useful, the C operator is not in fact needed.

IV. THE PV OPERATOR

Now the discussion given above is far as we can go on
general grounds. However, we can go further if the parity
operator effects P−1HP ¼ H†. This cannot, in general, be
the case of course since it is possible for a Hamiltonian to
be P invariant, with PT symmetry then reducing to T
symmetry, a symmetry that is still antilinear, and that still
can apply to non-Hermitian Hamiltonians. Many examples
of non-Hermitian Hamiltonians that obey P−1HP ¼ H†

have been found in the literature, with an H ¼ p2 þ ix3

with Hermitian and parity odd x and p being perhaps the
prime example. To be more general we note first that in the
canonical commutator ½x; p� ¼ i, if p acts to the right (on a
ket) it can be represented as p ¼ −i∂x, while if p acts to the
left (on a bra) it can be represented as p ¼ þi∂x, i.e. it can
be represented by the discrete parity transform of −i∂x, i.e.
as PpP−1 and, thus, as P−1pP since P2 ¼ I. Now, if there
is just one coordinate, then terms such as x2, xp, and p2

would transform into themselves under parity (x and p
must have the same parity since ½x; p� ¼ i), while terms
such as ix3 and ap, where a is independent of x or p, would
transform into minus themselves. For Hamiltonians that
involve this latter case, the bra evolves with P−1HP, and on
recalling that a bra hRnj evolves with H†, we can set

P−1HP ¼ H†: ð24Þ

Thus, just likeV,P−1 also transformsH intoH†. However,
P and V are different. P acts on individual operators
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independent of how they make up the total Hamiltonian,
while V depends on the particular Hamiltonian. (For
H¼ iλx3, for instance, P is independent of λ but V is
not.) Also,P is to square to onewhileV ¼ S†S does not [22].
Given P−1HP ¼ H†, and thus PH†P−1 ¼ H, we can set

PVHV−1P−1 ¼ PH†P−1 ¼ H; ð25Þ

and thus establish that H commutes with the operator PV.
Thus, when P effects P−1HP ¼ H†, H with its antilinear
symmetry then has a linear symmetry also, and we note that
the operator PV is Hamiltonian dependent since V is
related to the operator S that brings H to a Hermitian form.
We, thus, see that for any PT invariant H that obeys

P−1HP ¼ H†, we can always find a linear operator PV that
commutes with H. However, this PV operator can not in
general be identified with the discrete linear C operator that
also commutes withH since unlike C, PV is not required to
obey ðPVÞ2 ¼ I and have eigenvalues equal to plus or
minus one. (To obtain PVPV ¼ I one would need
PVP ¼ V−1, which would not necessarily hold in general.)
However, since PV commutes with H the eigenstates of H
are also eigenstates of PV, and we can take their eigen-
values to be αn, with these αn not only not needing to be
plus or minus one, they do not (initially at least) even need
to be real, since even if P and V are both Hermitian, they do
not in general commute, and so PV is not necessarily
Hermitian. (In the primed basis

P jR0
niαnhR0

nj commutes
with H0 for any choice of the αn, and this is of course the
reason why C0 ¼ P jR0

nicnhR0
nj with cn ¼ �1 commutes

with H0 in the first place.)
Given the αn eigenvalues of PV, given P2 ¼ I, and

recalling that we have already shown that hRnjVjRmi ¼
δm;n, we can thus set

hRnjPjRmi ¼ α−1m hRnjPPVjRmi
¼ α−1m hRnjVjRmi ¼ α−1m δm;n: ð26Þ

Thus when P effects P−1HP ¼ H†, we establish that
hRnjPjRmi is time independent even though H does not
commute with P. However, even though hRnjVjRni is
positive definite, hRnjPjRni is not required to be positive
definite since the αn are not in general positive definite. On
inserting a complete set of position eigenstates we obtain

hRnjPjRni ¼
Z

dxhRnjPjxihxjRni

¼
Z

dxhRnj − xihxjRni ¼
Z

dxψ�
nð−xÞψnðxÞ:

ð27Þ

Now at this point we are not free to normalize the
hRnjPjRni ¼ 1=αn matrix elements to �1 as the normali-
zation of the states has already been fixed by

hR0
njR0

ni ¼ hRnjVjRni ¼ 1. Nonetheless, we can still make
a positive definite norm out of hRnjPjRni by noting that

αnhRnjPjRni ¼ 1 ¼ αn

Z
dxψ�

nð−xÞψnðxÞ; ð28Þ

and with this relation note that since as shown aboveR
dxψ�

nð−xÞψnðxÞ is real, the αn are in fact real after all.
All that is required for the hRnjPjRni norm is some operator
PV that commutes withH. The operator does not need to be
a discrete operator such asC that squares to one. Thus even if
we were to define

R
dxψ�

nð−xÞψnðxÞ as the PT norm, the
theory would still automatically find the αn for us without
ever needing to introduce C.

V. STATUS OF THE C OPERATOR

Now the utility of the
R
dxψ�

nð−xÞψnðxÞ norm is that
often we cannot construct V in a closed form. Thus, if we
start with the Schrödinger equation for the ψnðxÞ, as
discussed in [7] we would be led to the orthogonal but
not positive definite

R
dxψ�

nð−xÞψmðxÞ norm in the PT
case whenever H obeys P−1HP ¼ H†, with the Dirac-typeR
dxψ�

nðxÞψmðxÞ norm not actually being an orthogonal
norm in such cases. (We show this in an explicit example
below.) However to get a positive norm we would have to
introduce the PV operator rather than the C operator as that
is what the theory leads us to even if we cannot construct
either the operator V or the operator PV in a closed form,
and even while a C operator that commutes with H and
squares to one will always exist (C and H commute for any
choice of their cn and En eigenvalues in the basis in which
they can simultaneously be diagonalized.) But if we did not
know about V at all we would have to introduce C in order
to get a positive definite inner product by replacingR
dxψ�

nð−xÞψnðxÞ by
R
dxψ�

nð−xÞcnψnðxÞ, though actually
at that point we would not specifically know whether the
theory actually supports this particular C based norm. We
would however know that since the eigenspectrum of H is
real and complete, one must be able to bring H to a
Hermitian form by an appropriate (even if not explicitly
known) similarity transform and, thus, the theory would
necessarily support some positive definite norm.
However, in introducing C into the norm we would be

introducing it from the outside, whereas PV would be
generated by the theory itself. Moreover, even if one is
prepared to introduce an operator by hand, one would never
need to use an operator with eigenvalues equal to plus or
minus one at all, as one would only need to use an operator
with positive or negative eigenvalues αn. Thus, even if one
starts with

R
dxψ�

nð−xÞψnðxÞ as the norm, one still does not
need to introduce a C that obeys C2 ¼ I in order to derive a
positive-definite inner product from it.
Finally, it may be the case that P does not generate

PHP ¼ H† at all, or it may even be the case thatH is parity
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invariant, with just T serving as the antilinear symmetry.
Then PV would not commute with H and we could never
get to the αn

R
dxψ�

nð−xÞψnðxÞ norm in the first place. So in
this case both the PV and C norms would be irrelevant
(even though the C operator would still exist), but one
could still use the V norm since it always exists [23].
In the development of the C operator, two key properties

were identified [7], namely that it obeyed

½C;H� ¼ 0; C2 ¼ I: ð29Þ

Now in the case where all energy eigenvalues are real, the
eigenstates of H are also eigenstates of PT. Hence, on
recalling that the eigenvalues of PT are real, in the primed
basis we can set

P0T 0C0 ¼
X

ηnjn0icnhn0j
¼

X
jn0icnhn0jηn ¼ C0T 0P0; ð30Þ

and, thus, infer that C commutes with PT. On the other
hand when energy eigenvalues appear in complex con-
jugate pairs the eigenstates of H and C are not eigenstates
of PT, and so we do not have ½C;PT� ¼ 0. Thus, as noted
in [6], whether or not C commutes with PT is, thus, a
diagnostic for whether eigenvalues of H are real or in
complex pairs.
Now the C operator does have some useful properties,

and unless one has an alternative to C, one would not want
to give them up, or give up its role in serving as a diagnostic
for whether energies are real or in complex pairs. However,
one does have such an alternative, namely PT itself. First it
obeys the same properties as C, namely it obeys

½PT;H� ¼ 0; ðPTÞ2 ¼ I; ð31Þ

and in addition it does serve as a diagnostic for whether
energies are real or in complex pairs, since as we had noted
above, the structure of the eigenspectrum correlates with
whether or not eigenstates of H are eigenstates of PT. We,
thus, see that the antilinear PT operator can not only
achieve everything that the linear C operator is capable of
achieving in those cases where the C operator might be
relevant, one can use PT even in those cases in which the C
operator is not relevant at all, since with our definition of
the PT conjugate as involving the ηn phase, the PT
conjugate norm is always the same as the V norm, and
the V norm always exists.
To understand the ubiquity of the V norm it is

instructive to follow [12]. Thus, suppose we start
from scratch and look for a time-independent norm for
H. Noting that the Dirac inner product hRnðtÞjRmðtÞi ¼
hRnð0Þj expðiH†tÞ expð−iHtÞjRmð0Þi is not equal to
hRnðt ¼ 0ÞjRmðt ¼ 0Þi when the Hamiltonian is not
Hermitian, in the non-Hermitian case the standard Dirac

inner product is not preserved in time. To rectify this we
introduce some as yet undetermined operator V and look at
norms of the form hRnðtÞjVjRmðtÞi. For them we obtain

i
∂
∂t hRnðtÞjVjRmðtÞi ¼ hRnðtÞjðVH −H†VÞjRmðtÞi: ð32Þ

We, thus, see that the V-based inner products will be time
independent if V obeys none other than the relation VH −
H†V ¼ 0 introduced above. Then when V is invertible, the
V operator that gives rise to a time independent norm is,
thus, none other than the intertwining operator that effects
VHV−1 ¼ H† [26].
As regards the converse, suppose we are given that

the V norm is time independent. We would then obtain
hRnðtÞjðVH −H†VÞjRmðtÞi ¼ 0 for all states jRmðtÞi.
Then if these states are complete and V is invertible
we could then set VH −H†V ¼ 0 and VHV−1 ¼ H† as
operator identities. The condition VH −H†V ¼ 0 is, thus,
both necessary and sufficient for the time independence of
the V-based inner product. But the condition VHV−1 ¼ H†

is also necessary and sufficient for the existence of an
antilinear symmetry, since H and H† would then have the
same set of energy eigenvalues, and as we had noted above
that is a necessary and sufficient condition for antilinearity.
Thus, as noted in [12], antilinearity is both necessary and
sufficient for the time independence of inner products, with
the antilinearity of a Hamiltonian being the most general
condition for which one could construct a viable quantum
mechanics, being so whether energy eigenvalues are real or
in complex pairs.
In addition, we also note that in the complex energy case

if jRmðtÞi is an eigenstate of H with energy eigenvalue
Em ¼ ER

m þ iEI
m, in general we can write

hRnðtÞjVjRmðtÞi
¼ hRnð0ÞjVjRmð0Þie−iðER

mþiEI
mÞtþiðER

n−iEI
nÞt: ð33Þ

Since V has been chosen so that the hRnðtÞjVjRmðtÞimatrix
elements are to be time independent, the only allowed
nonzero matrix elements are those that obey

ER
m ¼ ER

n ; EI
m ¼ −EI

n; ð34Þ

with all other V-based matrix elements having to obey
hRnð0ÞjVjRmð0Þi ¼ 0. We recognize (34) as being pre-
cisely none other than the requirement that eigenvalues be
real or appear in complex conjugate pairs, just as required
of antilinear symmetry. Inspection of (33) and (34) also
shows that in the presence of complex energy eigenvalues
the time independence of the V-based inner products is
maintained because the only nonzero overlap of any given
jRmðtÞi with a given complex energy eigenvalue is that
with the appropriate hRnðtÞjwith a complex energy with the
opposite sign for the imaginary part. The only nontrivial
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matrix elements are, thus, those that connect the two states
in a complex pair, with the time independence being
maintained by a transition between a decaying mode and
a growing one. With there being no transitions between a
state and itself, in the complex energy case there are no
diagonal matrix elements, and there is, thus, no need to seek
a positive definite norm since the overall signs of transition
matrix elements are not constrained in quantum theory.
Finally, while the C operator will continue to exist in the
complex energy case (the Hamiltonian still being diago-
nalizable if the set of complex energy eigenstates is complete,
with a C that commutes with it being simultaneously
diagonalizable too), C will play no role in fixing the sign
of inner products. The utility of the C operator is, thus,
restricted to the real energy case only, though even there
one should use the PV operator, and one can even only
use the PV operator provided P implements P−1HP ¼ H†.
However, the V-based inner product can be used no matter
whether energies are real or in complex pairs and regardless
of whether or not P implements P−1HP ¼ H† at all. And,
thus, the V-based norm is uniquely and unambiguously
selected as the inner product that will always be time
independent for any non-Hermitian Hamiltonian with anti-
linear symmetry.
It is also of interest to discuss completeness relations

using the V-based inner product, in order to see how they
differ in the real and complex energy cases, and to this end
it is instructive to introduce left- and right-handed eigen-
vectors of H. We had noted in (5) that −i∂thRnj ¼ hRnjH†.
SinceH†¼VHV−1 we can, thus, set −i∂thRnjV¼hRnjVH.
Thus, if we define hRnjV ¼ hLnj, we can identify hLnj as a
left-eigenvector of H, with jRni itself being a right-
eigenvector ofH. In terms of the left- and right-eigenvectors,
(13) can be rewritten as

hRnjVjRmi ¼ hLnjRmi ¼ δm;n; ð35Þ

when all energies are real. From (35) we immediately obtain

X
jRnihLnj ¼

X
jRnihRnjV¼ I;

H¼
X

jRniEnhLnj ¼
X

jRniEnhRnjV; ð36Þ

with any operator O (including C) of the form

O ¼
X

jRniαnhLnj ¼
X

jRniαnhRnjV ð37Þ

with c-number αn immediately commuting with H.
In the complex energy case, we have

PTjR�i ¼ jR∓i; hL�jTP ¼ hL∓j; ð38Þ

with time dependences

jR�i ∼ expð−iE�tÞ ¼ expð−iERt� EItÞ;
hL�j ¼ hR�jV ∼ expðiE∓tÞ ¼ expðiERt� EItÞ: ð39Þ

Thus, we can set [12]

hL−
n jRþ

mi ¼ hLþ
n jR−

mi ¼ δn;m;

hL−
n jR−

mi ¼ hLþ
n jRþ

mi ¼ 0;X
n

½jRþ
n ihL−

n j þ jR−
n ihLþ

n j� ¼ I;

H ¼
X
n

½jRþ
n iEþ

n hL−
n j þ jR−

n iE−
n hLþ

n j�: ð40Þ

As we see, any operator O (including C) of the form

O ¼
X
n

½jRþ
n iαþn hL−

n j þ jR−
n iα−n hLþ

n j�: ð41Þ

with c-number αþn and α−n immediately commutes with H.
Thus, when energies are in complex pairs one can still
construct a C operator. However, its only nonvanishing
elements would involve transition matrix elements, and
since their overall signs are not constrained in quantum
theory, C would play no role. Moreover, even if P does
effect P−1HP ¼ H†, PV would also play no role. It is only
the V-based inner products that would be of significance.

VI. THE TWO-DIMENSIONAL PUZZLE

Now while we have shown that the C operator is not
always relevant even when all energies are real, in a study
of matrices [6] it was shown that it apparently always is.
We, thus, need to reconcile these two results. On noting that
complex energy eigenvalues always have to come in pairs
in a PT-symmetric theory, to explore the general structure
of PT-symmetric theories first two-dimensional matrices
were studied. And then it was noted that since for any
diagonalizable matrix of any dimension one can always
bring it to a form inwhich thematrix block diagonalizes into
two-dimensional blocks, the results of [6], thus, generalized
to arbitrary dimension.Moreover, since one can diagonalize
a Hamiltonian in a Fock space basis, the results could even
generalize to infinite dimension, with the Harmonic oscil-
lator HamiltonianH ¼ ða†aþ 1=2Þℏω for instance being a
well-defined operator in an infinite-dimensional Fock space.
Now in these two-dimensional studies we did not explic-

itly show that one can always have P−1HP ¼ H† and
ðPVÞ2 ¼ I. However, as we now show, it turns out that
one can. In this two-dimensional study, we defined parity
and time reversal as being associated with operatorsP and T
that obeyed the standard P2 ¼ I, P ¼ P† ¼ P−1, T2 ¼ I,
T ¼ KU,UU† ¼ I and ½P; T� ¼ 0. In the two space, this in
general led to P ¼ σ · p, T ¼ Kσ2σ · t, where p ¼ p�,
p · p ¼ 1, t ¼ t�, t · t ¼ 1, and p · t ¼ 0. With this struc-
ture, we found that the general H ¼ σ0h0 þ σ · h would be
PT symmetric if
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hI0 ¼ 0; ðhI · pÞpþ ðhI · tÞt ¼ 0;

ðhR · pÞpþ ðhR · tÞt − hR ¼ 0: ð42Þ

Satisfying these conditions leads to

hI · p ¼ 0; hI · t ¼ 0; hR · hI ¼ 0: ð43Þ

For our purposes here we can ignore hR0 , and by rotational
invariance can set hR ¼ ðα; 0; 0Þ and hI ¼ ð0; iβ; 0Þ
where α and β are both real and positive. And with these
conditions we precisely obtain none other than the example
given in (4), viz

H ¼ ασ1 þ iβσ2 ¼ σ1ðασ0 − βσ3Þ: ð44Þ

Without loss of generality, we can take p to be parallel to hR
in (42), and set p ¼ ð1; 0; 0Þ, t ¼ ð0; 0; 1Þ. We, thus, obtain
P ¼ σ1, T ¼ Kiσ1 and PT ¼ Ki, so that with ασ1 þ iβσ2
being real, H is indeed PT symmetric.
For this H we introduce

S¼ coshθ−σ3 sinhθ; S−1¼ coshθþσ3 sinhθ; ð45Þ

and find that

SHS−1 ¼ ðα coshð2θÞ − β sinhð2θÞÞσ1
þ ðβ coshð2θÞ − α sinhð2θÞiσ2: ð46Þ

H will have real eigenvalues if α > β, and SHS−1 will then
be Hermitian if

α sinhð2θÞ − β coshð2θÞ ¼ 0; ð47Þ

i.e. if

coshð2θÞ¼ α

ðα2−β2Þ1=2 ; sinhð2θÞ¼ β

ðα2−β2Þ1=2 : ð48Þ

Under these conditions, SHS−1 is then given by

SHS−1 ¼ ðα2 − β2Þ1=2σ1; ð49Þ

just as needed for a Hermitian SHS−1 with eigenval-
ues �ðα2 − β2Þ1=2.
Given S, one can show that with V ¼ S†S one obtains

V ¼ coshð2θÞ − σ3 sinhð2θÞ;
V−1 ¼ coshð2θÞ þ σ3 sinhð2θÞ;

VHV−1 ¼ ασ1 − iβσ2 ¼ H†; ð50Þ

just as required. When α > β the eigenvectors of H are

uþ ¼ 1

N1=2
þ

� ðαþ βÞ1=2
ðα − βÞ1=2

�
;

u− ¼ 1

N1=2
−

� ðαþ βÞ1=2
−ðα − βÞ1=2

�
; ð51Þ

and with Nþ ¼ N− ¼ 2ðα2 − β2Þ1=2, are normalized as

u†þVuþ ¼ 1; u†−Vu− ¼ 1;

u†þVu− ¼ 0; u†−Vuþ ¼ 0; ð52Þ

just as required of the V-based norm.
On evaluating the Dirac-type norm, we obtain

u†−uþ ¼ 1

ðNþN−Þ1=2
ððαþ βÞ1=2 − ðα − βÞ1=2Þ;

×

� ðαþ βÞ1=2
ðα − βÞ1=2

�
¼ β

ðα2 − β2Þ1=2 ≠ 0; ð53Þ

and confirm that the states are not Dirac orthogonal. Now
with P ¼ σ1, we find that, for the two-dimensional model,
P does effect P−1HP ¼ H†. If we were to define a PT
conjugate of the form uPT� ¼ u†�P (i.e. without the intrinsic
PT phase), we would obtain a P norm,

u†þσ1uþ ¼ 1; u†−σ1u− ¼ −1;

u†þσ1u− ¼ 0; u†−σ1uþ ¼ 0; ð54Þ

that is not positive definite. Noting, however, that P
effects P−1HP ¼ H†, the quantity PV commutes with H
and obeys the following relations:

½PV;H� ¼ 0; PVP ¼ V−1; ðPVÞ2 ¼ I: ð55Þ

Thus, now we can set C ¼ PV where C2 ¼ I, and with
V ¼ PC, we see that the PC norm is positive definite, just
as required. This norm is equivalent to defining a PT
conjugate of the form uPT� ¼ u†�Pη� (i.e. with the intrinsic
PT phase), with the eigenvalues ofC acting the sameway as
η�. To conclude, we see that all of the general ideas
regarding norms hold in this simple model, and this then
raises the question of whyP−1HP¼H†, ðPVÞ2¼I,PV¼C
would then not always hold in any case in which PT
symmetry is realized via a real and complete energy
eigenspectrum.

VII. SOLUTION TO THE PUZZLE

To see why the relations P−1HP ¼ H†, ðPVÞ2 ¼ I,
PV ¼ C do not hold in general, we consider an infinite-
dimensional space and introduce a Fock space vector jψi ¼P

cnjni as expanded in a complete set of n-particle Fock
space states. We look for it to be an eigenstate of the
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position operator according to x̂jψi ¼ ðaþ a†Þjψi ¼ xjψi.
And with ajni ¼ n1=2jn − 1i, a†jni ¼ ðnþ 1Þ1=2jnþ 1i,
find the recurrence relation

ðn − 1Þ1=2cn−2 þ n1=2cn ¼ xcn−1: ð56Þ

Thus, we obtain

c1 ¼ xc0; c2 ¼ c0
ðx2 − 1Þ
21=2

; c3 ¼ c0
ðx3 − 3xÞ

61=2
;

c4 ¼ c0
ðx4 − 6x2 þ 3Þ

ð24Þ1=2 ;

c5 ¼ c0
ðx5 − 10x3 þ 15xÞ

ð120Þ1=2 ;

c6 ¼ c0
ðx6 − 15x4 þ 45x2 − 15Þ

ð720Þ1=2 ;…:; ð57Þ

so that

hψ jψi ¼ c20

�
1þ x2 þ ðx2 − 1Þ2

2
þ ðx3 − 3xÞ2

6

þ ðx4 − 6x2 þ 3Þ2
24

þ � � �
�
: ð58Þ

When x ¼ 0 we additionally have

cn ¼ −cn−2
ðn − 1Þ1=2

n1=2
¼ cn−4

ðn − 1Þ1=2ðn − 3Þ1=2
n1=2ðn − 2Þ1=2

¼ −cn−6
ðn − 1Þ1=2ðn − 3Þ1=2ðn − 5Þ1=2

n1=2ðn − 2Þ1=2ðn − 4Þ1=2 ¼ � � � ð59Þ

so that c2n grows faster than 1=n. hψ jψi, thus, diverges
(overwhelmingly so for large x, while diverging at x ¼ 0
since hψ jψiðx¼ 0Þ¼ 1þ1=2þ3=8þ5=16þ35=128þ…
diverges faster than the divergent 1þ1=2þ1=3þ
1=4þ1=5…).
In consequence, the eigenstates of the position operator

are not normalizable, just as is to be expected since position
eigenstates obey hxjx0i ¼ δðx − x0Þ in the coordinate basis.
Thus, our matrix analysis fails in the infinite-dimensional
case for states that are not normalizable (even as it would
apply to a Hamiltonian such as H ¼ ða†aþ 1=2Þℏω since
its eigenstates are normalizable). Unfortunately, the non-
normalizable states include the eigenstates of the position
operator (and likewise the momentum operator), viz.
precisely those operators on which we would like to
implement space reflection. Thus, in our setting P2 ¼ I,
P ¼ P† ¼ P−1 in our two-dimensional example, we were
giving P all of the attributes of a parity operator save one,
namely that it also is to implement space reflection.
It is this last attribute that provides P with a spacetime

connection, and forces us to infinite-dimensional spaces and
non-normalizable states. And in such a situation,Pmay then
not effect P−1HP ¼ H† or ½PV;H� ¼ 0 or ðPVÞ2 ¼ I.
Nonetheless, in such cases, we can still use the V-based
inner product as the appropriate norm for a PT-symmetric
theory since the V norm always exists, even in an infinite-
dimensional space.And for such caseswe should take thePT
conjugate to be that conjugate that includes the intrinsic PT
phase and not the one that does not include it. And when we
do include the PT phase, the inner product associated with
the overlap of a state with its PT conjugate then coincides
with theV-based inner product regardless ofwhether or notP
obeysP−1HP ¼ H† or ½PV;H� ¼ 0 or ðPVÞ2 ¼ I, and leads
to an inner product that is fully acceptable.
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eigenspectrum of HPU was shown to be real and complete.
One introduces α ¼ ð1=γω1ω2Þ log ½ðω1 þ ω2Þ=ðω1 − ω2Þ�,
β ¼ αγ2ω2

1ω
2
2, and Q ¼ αpqþ βxy ¼ Q†. Then, on setting

S ¼ expð−Q=2Þ and V ¼ expð−QÞ, and making use only of
the canonical commutation relations ½x; p� ¼ i, ½y; q� ¼ i,
one obtains SHPUS−1¼ ~HPU¼p2=2γþq2=2γω2

1þγω2
1x

2=2þ
γω2

1ω
2
2y

2=2 and VHPUV−1 ¼ H†
PU. S, thus, brings HPU to a

Hermitian form ~HPU, and V serves as an intertwining
operator. Since this occurs, HPU must have an antilinear
symmetry. Whether it is PT or T depends on the quantum
number assignments, though whatever they might be,
S and V implement SHPUS−1 ¼ ~HPU, VHPUV−1 ¼ H†

PU
regardless. In [24,25], the assignments were made so
that x and p were P odd and y and q were P even, while
y and p were T odd and x and q were T even. With this
choiceHPU was PT symmetric but not P symmetric and one
obtained P−1HPUP ¼ H†

PU, ½PV;HPU� ¼ 0, PQP−1 ¼ −Q,
PVP−1 ¼ V−1, and ðPVÞ2 ¼ I, so that one could set
C ¼ PV. However, since the Pais-Uhlenbeck model can
emerge [25] as the nonrelativistic limit of a relativistic scalar
field theory, one could assign x, p, y, and q to all be P even,
and assign x and y to be T even and p and q to be T odd.
Then HPU would separately be P symmetric and T sym-
metric (though still non-Hermitian), and one would not have
P−1HPUP ¼ H†

PU or ½PV;HPU� ¼ 0 (as one would instead
have P−1HPUP ¼ HPU). Nonetheless, one would still have
the S and V operators and the V-based inner product.
Moreover, as noted in [22], even if HPU is parity symmetric,
the −iqx term in HPU would still act as þx∂=∂y on hLjx; yi
where hLj is a left-eigenstate of HPU even as it acts as
−x∂=∂y on a right-eigenstate jRi, with the −iqx term, thus,
being symmetric under transposition in x but antisymmetric
under transposition in y. Because of this we are led to the
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identification hRnjVjRni¼hLnjRni¼
R
dxdyhLnjxyihxyjRni¼

η−1n
R
dxdyψ�

nðx;−yÞψnðx;yÞ where since HPU would now be
P symmetric, this time ηn would be the intrinsic T parity of
jRni. As shown in [25], while time independent and real the
integral

R
dxdyψ�

nðx;−yÞψnðx; yÞ is not positive definite.
However, η−1n

R
dxdyψ�

nðx;−yÞψnðx; yÞ is positive definite,
just as it must be since hRnjVjRni is. Thus, one does not
need to introduce either a PV or a C operator in order to
obtain a norm that is positive definite, with the intrinsic T
parity ηn being all that is needed.
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[26] Since the discussion here starts from scratch and does not
make any reference to the connection V ¼ S†S between
V and the S that implements SHS−1 ¼ H0 ¼ H0†, the
V-based inner product given in (32) will actually be time
independent if VH ¼ H†V, regardless of whether or not V
is invertible.
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