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We study critical behavior in gravitational collapse of a general spherically symmetric Yang-Mills field
coupled to the Einstein equations. Unlike the magnetic ansatz used in previous numerical work, the general
Yang-Mills connection has two degrees of freedom in spherical symmetry. This fact changes the
phenomenology of critical collapse dramatically. The magnetic sector features both type I and type II
critical collapse, with universal critical solutions. In contrast, in the general system type I disappears and the
critical behavior at the threshold between dispersal and black hole formation is always type II. We obtain
values of the mass scaling and echoing exponents close to those observed in the magnetic sector, however
we find some indications that the critical solution differs from the purely magnetic discretely self-similar
attractor and exact self-similarity and universality might be lost. The additional “type III” critical
phenomenon in the magnetic sector, where black holes form on both sides of the threshold but the Yang-
Mills potential is in different vacuum states and there is a mass gap, also disappears in the general system.
We support our dynamical numerical simulations with calculations in linear perturbation theory; for
instance, we compute quasi-normal modes of the unstable attractor (the Bartnik-McKinnon soliton) in
type I collapse in the magnetic sector.
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I. INTRODUCTION

The Einstein-Yang-Mills (EYM) equations form a par-
ticularly rich dynamical system already in spherical sym-
metry. This is due to the existence of nontrivial static and
discretely self-similar solutions, which play the role of
unstable attractors.
The general spherically symmetric Yang-Mills (YM)

connection has two free potentials w and ω (see Sec. II for
details). Most numerical work so far (e.g. [1–6]) has
imposed in addition to spherical symmetry the so-called
magnetic ansatz ω ¼ 0. The term “magnetic” originates
from the fact that for a static spacetime, the YM curvature
only has a magnetic part and no electric part in this case.
This ansatz is self-consistent in the sense that if the initial
data satisfy ω ¼ 0 then this remains so at all times. In
contrast, if the so-called sphaleronic sector is turned on by
allowing ω ≠ 0 in the initial data, then both w and ω will be
nonzero during the evolution. (The term “sphaleron” [7]

appears to refer to similar solutions to the Yang-Mills-
Higgs equations; note there is no Higgs field here though.)
Hence the magnetic sector forms a subsystem of the most
general spherically symmetric EYM equations, which we
sometimes also refer to as the extended system.
As far as we know, so far the only numerical evolutions of

the extended system have been presented in [8], even though
the equations have been worked out before, e.g. in [2]. The
paper [8] was mainly concerned with power-law tails.
The aim of the present paper is to study critical phenomena
in gravitational collapse in the extended system.
In critical collapse one chooses a one-parameter (usually

denoted by p) family of initial data such that (at least in the
standard definition) a black hole forms in the subsequent
evolution for p > p� and the field disperses to flat
spacetime for p < p�. One now asks what happens close
to the critical point p ¼ p�. For surveys of critical collapse
of various matter models coupled to the Einstein equations,
we refer the reader to [9–11].
Let us first review the situation in the magnetic sector of

the EYM system. Depending on the family of initial data,
two different types of critical behavior occur.
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In type I critical collapse [1], black hole formation for
p > p� turns on at a finite (nonzero) value of the black hole
mass, and at the critical threshold the evolution approaches a
static solution. This static solution is identified as the first
memberX1 of a discrete (countably infinite) family of regular
static solutions, the Bartnik-McKinnon solitons [12].
In type II critical collapse [1], the black hole mass M

vanishes as p ↘ p�; more precisely, M ∼ ðp − p�Þγ with
an exponent γ that is universal, i.e. independent of the
particular family of initial data chosen. The critical solution
is discretely self-similar (for a definition see Eq. (23) below
and [11]). The echoing exponent Δ related to the discrete
self-similarity as well as the critical solution itself are
universal.
There is a third type of critical collapse, which unlike the

other two is specific to the YM field used here as a matter
model. This is related to the fact that assuming spherical
symmetry and the magnetic ansatz, there are two values of
the potential w, namely w ¼ �1, that both correspond to
vacuum (i.e. vanishing YM curvature and hence energy-
momentum tensor). In type III collapse one considers a
family of initial data that lead to black hole formation for all
values of the parameter p, but such that the final value of
the YM potential is w ¼ 1 for p > p�, say, and w ¼ −1 for
p < p�. Even though both outcomes correspond to a
vacuum black hole, the dynamical evolutions are different
and the black hole mass is discontinuous across the
threshold [2,6]. The critical solution is static (as in
type I) and is identified with the first member Y1 of a
discrete family of static hairy (i.e. with nonzero YM field)
black hole solutions, the colored black holes [13,14].
For a static or self-similar solution to appear as a critical

solution in a one-parameter bisection search, this solution
must have precisely one unstable mode when considering
linear perturbations [11]. Linear perturbations of the
Bartnik-McKinnon solitons Xn and colored black holes
Yn were studied in [7,15]. In the magnetic sector Xn and Yn
both have n unstable modes. So indeed X1 and Y1 have
precisely one unstable mode in the magnetic sector.
However, in the extended system Xn and Yn have a total
of 2n unstable modes. Thus X1 and Y1 now have two
unstable modes, and hence they cannot be codimension-
one unstable attractors in the extended system. This
indicates that the phenomenology of critical collapse is
likely to be very different. It is important to note here that
subject to suitable falloff conditions, there are no static
solutions with nonzero electric part of the YM curvature
except for the Reissner-Nordström solution [16,17]. Hence
no nontrivial potential static attractors are added when
moving from the magnetic to the general ansatz.
One of our main results is that there is no type I critical

collapse in the extended system, instead the critical
behavior at the threshold between dispersal and black hole
formation is always type II. We compare the critical
solution and scaling exponents with those in the magnetic

sector. For small sphaleronic perturbations the Bartnik-
McKinnon soliton X1 can be observed as an intermediate
attractor before the self-similar type II critical solution is
approached. We study in detail how the type II mass scaling
sets on when perturbing off data that in the magnetic sector
would be type I-critical.
We also refine some results in the magnetic sector,

namely we find wiggles on top of the power-law scaling of
the curvature in subcritical evolutions, which allow for an
independent estimate of the type II echoing exponent. In
type I collapse in the magnetic sector, we show how X1 is
approached via a quasinormal mode (QNM) and a tail, and
we compare with a calculation of the QNM frequency in
linear perturbation theory.
Concerning type III collapse, once a small sphaleronic

perturbation in ω is added, the discontinuous transitions in
the YM potential w and the black hole mass M across the
critical threshold are replaced by continuous ones. Thus
there is no critical behavior any longer. In the magnetic
sector we find tentative evidence of a QNM ringdown to the
colored black hole critical solution.
Our numerical results were obtained with two indepen-

dent codes using different coordinates. The type I and type II
simulations employ standard polar-areal (Schwarzschild-
like) coordinates. For type III collapsewe use hyperboloidal
slices of constant mean curvature, which are conformally
compactified towards future null infinity. The details of and
motivations for these different coordinate choices are
explained in Sec. II.
This paper is organized as follows. In Sec. II we describe

our ansatz for YM connection in spherical symmetry and
our choices of spacetime coordinates. Our numerical results
on type I and type II critical collapse are presented in
Sec. III, and on type III collapse in Sec. IV. We conclude in
Sec. V. Further details are deferred to the appendices:
the equations solved by our two codes are given in
Appendix A, linear perturbations of the static solutions
are analyzed in Appendix B, and a brief summary of our
numerical methods can be found in Appendix C.

II. SETUP AND COORDINATE CHOICES

The most general spherically symmetric YM connection
with gauge group SU(2) can be written in the following
form after exploiting the residual SU(2) gauge freedom
[18,19]:

A ¼ uτ3dtþ ðwτ1 þ ωτ2Þdθ
þ ðcot θτ3 þ wτ2 − ωτ1Þ sin θdϕ; ð1Þ

where u, w and ω are functions of t and r only and τi form a
standard basis of SU(2), ½τi; τj� ¼ εijkτk, where εijk is
totally antisymmetric with ε123 ¼ 1.
An alternative parametrization of the YM connection,

used in [8], is
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AiðaÞ ¼ εaijxjF þ ðxaxi − r2δaiÞH;

AðaÞ
0 ¼ Gxa; ð2Þ

where (a) denotes the SU(2) gauge group index, all indices
run over 1,2,3 and repeated indices are summed over.
The field equations that these two parametrizations give
rise to are equivalent; the correspondence between the
variables is1

F ¼ 1þ w
r2

; H ¼ −
ω

r3
; G ¼ u

r
: ð3Þ

The magnetic ansatz consists in setting ω ¼ u ¼ 0 (or
equivalentlyH ¼ G ¼ 0). It leads to a self-consistent set of
field equations. It should be stressed that the additional YM
potential ω (or equivalently H) in the general ansatz (1)
cannot be transformed away by an SU(2) gauge trans-
formation; it forms a second physical degree of freedom,
the sphaleronic sector. The function u (or equivalently G)
on the other hand can be thought to be determined by w and
ω via the YM constraint equation (cf. Appendix A).
We have implemented two different choices of spacetime

coordinates. For the simulations of type I and type II critical
collapse presented below, we use polar-areal coordinates, in
which the line element takes the form

ds2 ¼ −Ae−2δdt2 þ dr2

A
þ r2dσ2; ð4Þ

where dσ2 denotes the standard round metric on the two-
sphere.
For the simulations of type III critical collapse, we use

constant-mean-curvature (CMC) slices and isotropic spatial
coordinates,

ds2 ¼ Ω−2½−Ñ2dt2 þ ðdrþ rXdtÞ2 þ r2dσ2�: ð5Þ

The reason is that black holes form on both sides of the
critical threshold in type III collapse, and polar slices
cannot penetrate black hole horizons, whereas CMC slices
can. Furthermore, CMC slices extend to future null infinity,
which provides a natural boundary of the computational
domain where no boundary conditions need to be imposed
as all the characteristics leave the domain. Hence very long
evolutions unspoilt by any effects of an artificial timelike
outer boundary are possible.
The EYM field equations in the two different formula-

tions are given in Appendix A.

III. TYPE I AND TYPE II COLLAPSE

In this section we present our numerical results on type I
and type II critical behavior both in the magnetic sector and
the sphaleronic sector. These simulations were carried out
using the code based on polar-areal coordinates.

A. Initial data

In our studies of critical phenomena we experimented
with different choices of initial data but for clarity we
present our results for three particular families:

(i) a localized Gaussian perturbation

wð0; rÞ ¼ 1þ a1 exp

�
−
�
r − x1
s1

�
2q1

�
; ð6Þ

ωð0; rÞ ¼ a2

�
r
x2

�
3

exp

�
−
�
r − x2
s2

�
2q2

�
; ð7Þ

Πð0; rÞ ¼ ∂rwð0; rÞ; ð8Þ

Pð0; rÞ ¼ 0; ð9Þ

(ii) kinklike data

wð0; rÞ ¼ 1 − a1 tanh

�
r
s1

�
q1
; ð10Þ

ωð0; rÞ ¼ −a2 tanh
�
r
s2

�
q2
; ð11Þ

Πð0; rÞ ¼ r
s1

∂rwð0; rÞ; ð12Þ

Pð0; rÞ ¼ r
s2
∂rωð0; rÞ; ð13Þ

(iii) and purely magnetic kinklike data

wð0;rÞ¼ 1þa1

�
−2 tanh

�
r
s1

�
q1 þ2 tanh

�
r
s2

�
q2
�
;

ð14Þ

ωð0; rÞ ¼ 0; ð15Þ

Πð0; rÞ ¼ a2

�
r
s1
∂r

�
−2 tanh

�
r
s1

�
q1
�

ð16Þ

þ r
s2
∂r

�
2 tanh

�
r
s2

�
q2
��

; ð17Þ

Pð0; rÞ ¼ 0: ð18Þ

Here the auxiliary variables Π and P are essentially time
derivatives of w and ω [cf. Eqs. (A1), (A2)] and are set to

1The gauge transformation A → UAU−1 þ UdU−1 with
U ¼ eθτ1eðπ/2−φÞτ3 transforms (2) into (1). We note that changing
the sign of w and ω simultaneously leaves the field equations
invariant.
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make w and ω either approximately ingoing or stationary
initially. We note that this parametrization of the fields has
been chosen to be consistent with the following regularity
conditions at the origin, which follow from a Taylor
expansion of the field equations:

w ¼ 1þOðr2Þ; ω ¼ Oðr3Þ ð19Þ

[from which we also get analogous behavior of Π and P,
see (A1)–(A2)]. Asymptotic flatness requires

w2 þ ω2 → 1 as r → ∞; ð20Þ

which has to be satisfied by the initial data; in particular for
kink-like data (ii) this condition introduces the constraint
a22 ¼ a1ð2 − a1Þ. The choice of parameters will be dis-
cussed below depending on the situation considered.

B. Magnetic sector

We begin by restricting ourselves to the magnetic sector
for family (i), i.e. a2 ¼ 0 in (7). Here we observe both type I
and type II critical behavior as previously analyzed in [1].

1. Type II collapse

First we investigate type II critical collapse. For this we
vary p ≔ a1 in (6) and fix the remaining parameters to
s1 ¼ 1/4, x1 ¼ 3 and q1 ¼ 1. The value of the critical
amplitude is found to be p� ≈ 0.147 83. We observe a
universal scaling of the mass of the apparent horizon in
supercritical evolutions

MAH ∼ ðp − p�Þγ ð21Þ

with γ ¼ 0.20018� 0.00017, and also a polynomial scal-
ing of R2 ≔ RμνRμνjr¼0

in subcritical evolutions

R2 ∼ ðp − p�Þ−4γ ð22Þ

with the exponent −4γ ¼ −0.7886� 0.0029, i.e. γ ¼
0.19714� 0.00074. These values for γ are consistent with
the value γ ≈ 0.20 reported in [1] and with the result γ ¼
0.1964� 0.0007 obtained by directly computing the criti-
cal solution and its perturbations [20]. The discrepancy of
the super- and subcritical scaling exponents γ obtained
from time evolutions of near critical data results mainly
from the inaccurate estimate of the apparent horizon in the
supercritical case. The scaling exponent we find in sub-
critical evolutions is much more accurate and is closer to
the value of [20].
In a graph of logR2 vs log jp� − pj we see periodic

wiggles on top of the straight line, which are shown
in Fig. 1. From the fit to the numerical data we determine
the period of oscillation to be τR ≈ 0.815, which is
roughly comparable to the theoretical prediction in [21],

Δ/ð4γÞ ≈ 0.939 (with the values of Δ and γ taken from
[20]), where Δ is the echoing exponent discussed in the
following.
The solution in the near-critical regime shows the

approximate scaling symmetry2

Zðτ − Δτ; ρ − ΔρÞ ¼ Zðτ; ρÞ ð23Þ

for a scale-free variable Z in terms of logarithmic
coordinates

ρ ¼ ln r; τ ¼ lnðT�
0 − T0Þ; ð24Þ

where T0 denotes proper time at the origin3 and T�
0 is the

accumulation time of the type II critical solution. This is
depicted for the scale-free variable w0 ≔ ∂rw in Fig. 2. The
spatial echoing exponent Δρ determined by rescaling the
spatial profiles at times at which the profiles overlap is
found to be Δρ ≈ 0.736� 0.001. From a discrete set of
such matching times we estimate the temporal period Δτ ≈
0.7364� 0.0007 (we also get an estimate for the collapse
time T�

0, however this depends on the initial data). These
results support the claim that Δρ ¼ Δτ ≕Δ and are con-
sistent with the value Δ ≈ 0.74 reported in [1] as well as the
refined value Δ ¼ 0.73784� 0.00002 in [20].
Universality of the critical solution is demonstrated in

Fig. 3, where we compare spatio-temporal profiles of
solutions obtained through bisection search starting from
the different initial conditions (i) and (iii). We do this by

FIG. 1. An analysis of subcritical data in type II critical
behavior. Data (points) of logR2 are compared with a five-
parameter fit c1qþ c2 þ c3j cosðc4qþ c5Þ − 1/2j, where q ≔
log jp� − pj, after subtraction of the linear part. Our choice of
periodic function for q is rather ad hoc and is justified by its
relatively good agreement with the numerical data.

2That this is only an approximate symmetry follows from the
existence of a scale in the EYM system set by the YM coupling
constant. However close to the critical point this scale becomes
irrelevant and thus (23) holds [20].

3T0 coincides with the coordinate time t used in our code
(see Appendix A).
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plotting a suitably rescaled invariant I1 defined in (A13)
with respect to the coordinates (24).

2. Type I collapse

Nextwe turn to type I critical behavior, still in themagnetic
sector. We consider initial data family (i) and vary p ≔ a1 in
(6), fixing the remaining parameters to s1 ¼ 4, x1 ¼ 10 and
q1 ¼ 2. The critical amplitude at the threshold between
dispersal and black hole formation is p� ≈ −1.352 32. As
discovered in [1], the n ¼ 1 Bartnik-McKinnon soliton X1,
which has one unstable mode in the magnetic sector, plays
the role of the critical solution. Our numerical simulations
reproduce this behavior.
In addition, we investigate more closely how the

dynamical solutions approach the intermediate attractor.
In Appendix B we carry out a linear perturbation analysis
about X1, which confirms the unstable mode with exponent
λ ≈ 2.562 79. In addition, we have found quasinormal

modes (QNM), the least damped of which has λ ¼
−1.402 33� 3.603 51i. Figure 4 shows the different phases
of the evolution: approach to the unstable attractor X1 via
QNM and polynomial tail, and departure along the unstable
mode. The fitted values of the QNM and unstable mode
agree well with the prediction. The tail does not appear
for a sufficiently long time to allow for a conclusive
determination of the decay exponent p; our numerical
fit yields p ¼ −4.801. (For comparison, the tail on a
Schwarzschild or Minkowski background has exponent
p ¼ −4 [22].)
As is characteristic of type I critical behavior, we observe

a saturation of the black hole mass in supercritical
evolutions as a function of the parameter distance from the
critical solution. The mass gap converges to the approxi-
mate value 0.5802, which is close to but slightly less than
the mass of the X1 solution [12], MX1

¼ 0.585942. As the
apparent horizon forms, a fraction of the energy associated
with X1 stays outside of the trapped region, and this excess
of mass escapes to infinity (however with our numerical
code we are unable to follow this part of the evolution).
Moreover, on a plot of M vs log jp� − pj we observe a

damped oscillation, see Fig. 5, whose origin may be
explained as follows. As discussed above, the linear
analysis of X1 predicts the existence of both stable and
unstable modes. Thus close to the critical point p ≈ p� the
dynamical solution wðt; rÞ consist of the attractor wsðrÞ and
its linear perturbation of the form

wðt; rÞ ¼ wsðrÞ þ ϕUNðrÞjp� − pjeλt
þ ϕQNMðrÞ sin ðΩtÞe−Γt þ � � � ; ð25Þ

where λ > 0 is the exponent of the unstable mode, the third
term represents the dominant QNM with Γ > 0, and the

FIG. 2. An illustration of the discrete self-similarity of the
critical solution in type II critical collapse within the magnetic
ansatz. This plot should be compared with Fig. 3 of [1].

FIG. 3. Universality of the type II critical solution in the magnetic ansatz. We plot the spatio-temporal profile of the scale-invariant
quantity Z ≔ r2I1, where the invariant I1 is defined in (A13) (note that the period is Δ/2 because this quantity is quadratic in dynamical
variables). Two critical solutions were generated by a bisection search starting from the different initial conditions (i) and (iii) (for the
latter we take a1 ¼ a2 ¼ 1, s1 ¼ 2, s2 ¼ p, q1 ¼ q2 ¼ 2). Having two solutions Z1, Z2 expressed in terms of the coordinates ðτ; ρÞ
defined in (24), we are allowed to perform any translation of one of them such that both coincide. [In practice we minimize the difference
kZ1ðτ; ρÞ − Z2ðτ þ δ1; ρþ δ2Þk in some suitable norm over the shift parameters ðδ1; δ2Þ.] If the phenomenon is universal then both
solutions should agree asymptotically as ðτ; ρÞ → ð−∞;−∞Þ, which is demonstrated here. The right plot shows the aligned profiles
along the particular line τ − ρ ¼ const passing through the local extrema closest to the origin.
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dots represent faster decaying modes and (possibly) the
power law tail. Performing bisection in one parameter p,
we effectively cancel the unstable mode only but the
magnitude of the QNM is not under control. Therefore
what contributes to the apparent horizon mass is the static
solution X1 itself and its least damped QNM. Because the
latter oscillates (in time), its magnitude will depend on
the time spent close to X1, which in turn depends on λ and

the distance jp� − pj from the critical point. A simple
calculation shows that one should expect M to oscillate
(with respect to jp� − pj) with frequency Ω/λ and damping
Γ/λ. However, from the data we get numbers close to 2Ω/λ
and 2Γ/λ for the frequency and damping respectively. This
suggests that the observed phenomenon is not a linear
effect.

C. Sphaleronic sector

Next we switch on the sphaleronic sector in the general
ansatz (1) for the YM connection. For generic initial data
with ω ≠ 0we observe type II critical behavior only. This is
not surprising because as explained in Sec. I, the type I
critical solution in the magnetic sector, X1, has an addi-
tional unstable mode in the sphaleronic sector [7].
Figure 6 shows the sub- and supercritical scaling of the

black hole mass and Riemann curvature invariant for
different initial data from family (ii). The scaling expo-
nents, shown in Table I, are close to the values in the
magnetic sector (see Sec. III B 1) but deviate well beyond

FIG. 4. Subcritical evolution in type I critical collapse (orange)
and the best-fit (blue; solid in the fitting range) of a linear
combination of QNM, polynomial tail, and unstable mode of X1.
The fitting formula is c1 sinðΩðt − 15Þ þ c2Þ expð−Γðt − 15ÞÞ þ
c3tp expðc4/tþ c5/t2Þ þ c6 expðλðt − 34ÞÞ. The relevant param-
eters for this plot are Ω ¼ 3.639, Γ ¼ 1.426, p ¼ −4.801, and
λ ¼ 2.563.

FIG. 5. Mass of the apparent horizon in type I critical collapse
as a function of the logarithm of the critical separation. For finite
separation the mass oscillates around the asymptotic value Mp� ,
which is slightly smaller than the mass of the critical solution
X1. This “damped oscillation” is suggested to be an imprint
of the least damped QNM of X1 (see the discussion in
the text). The data points are plotted together with the fit
Mp� þ c1 cos ðc2 log jp� − pj þ c3Þ expðc4 log jp� − pjÞ, where
Mp� and the ci are fitting parameters.

FIG. 6. Supercritical (top) and subcritical (bottom) scaling
characterizing type II critical collapse observed within the
extended ansatz. The data are plotted with points together with
best fits (lines). To produce the plot we used the family of
initial data (ii) with bisection parameter p ≔ s2, different
values for a1 ¼ 1; 1/2; 1/4 (color-coded in the plot), and a2 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1ð2 − a1Þ
p

, s1 ¼ 3, q1 ¼ 2, q2 ¼ 3. In each case we find an
exponent γ close to the value in the magnetic sector both from
super- and subcritical evolutions, see Table I. The plot of logR2

vs log jp� − pj shows regular oscillations with period very close
to the value found in the magnetic sector and consistent with the
theoretical prediction (Sec. III B). Similar oscillations, though
expected, are less noticeable and less regular on the lower plot
due to insufficient resolution. (Precise determination of the
location of the apparent horizon requires high resolution at a
finite position.) Note the decimal logarithm is used on both plots.
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the fitting error when the sphaleronic amplitude is
increased.
A close examination of the spatial profiles of the critical

solution shows that the quantities w0 and ω0 are almost, but
not exactly, scale invariant (Fig. 7). In order to avoid
potential gauge effects, we consider the manifestly gauge
invariant quantities I1 (the Lagrangian) and I2 defined in
(A14) and (A15). Figure 7 indicates that while the profiles
of I1 can be made to overlap, those of I2 at the corre-
sponding times do not. Thus our solution is not exactly self-
similar. In any case, from I1 we extract an echoing
exponent Δ ¼ 0.7445� 0.0073 consistent with the value
in the magnetic sector.
In Fig. 8 we compare the invariants of the magnetic

critical solution with those of the sphaleronic one. There is
no exact agreement for the first invariant I1. Moreover,
while the second invariant I2 is identically zero in the
magnetic sector, it is comparable in amplitude to I1 in the
sphaleronic sector. This indicates that the two critical
solutions might not be the same. Figure 8 also indicates
that there is no perfect universality: I1 for the critical
solutions from two different initial data in the extended
system shows reasonably good agreement but I2 does not.
Our preliminary conclusion is that there are indications

that the type II critical solutions in the magnetic sector and
in the sphaleronic sector might not be identical, that the
sphaleronic critical solution might not be exactly discretely
self-similar, and that exact universality might be lost. We
did investigate whether these findings might be the caused
by numerical errors but could not see any signs of
significantly worse convergence of the numerical solution
in the sphaleronic sector as compared with the magnetic
sector.
We shall leave this question aside for the time being and

look more closely at how the type I critical behavior seen in
the magnetic sector is transformed into type II behavior
when the sphaleronic perturbation is turned on. This is
demonstrated in Fig. 9, where we consider the family of
initial data (i). We take the same set of parameters as used to
produce Fig. 4, but in addition we include a small
sphaleronic amplitude a2, while the bisection parameter
is still p ≔ a1. The smaller the sphaleronic perturbation,
the closer one needs to tune to the critical point in order to

see the polynomial scaling of the mass and curvature
invariant characteristic of type II behavior.
Even though X1 is not a critical solution in the extended

ansatz, it nevertheless plays the role of an intermediate
attractor for data close to type I critical data in the magnetic
ansatz with a small sphaleronic perturbation. This is
illustrated in Fig. 10, where w decays to X1 by the dominant
QNM before it departs along the unstable mode, whereas ω
only shows an unstable mode. The fitted exponents agree

TABLE I. Super- and subcritical scaling exponents γ,
see (21)–(22), within the general ansatz for the family of initial
data (ii) with parameters as for the data shown in Fig. 6. (The case
a1 ¼ 0 would correspond to the magnetic solution, since then
also a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ð2 − a1Þ

p ¼ 0.)

a1 γ supercritical γ subcritical

1 0.20612� 0.00037 0.19368� 0.00088
1/2 0.20545� 0.00031 0.19431� 0.00098
1/4 0.20422� 0.00028 0.19558� 0.00092

FIG. 7. In the extended system neither w0 nor ω0 appear to be
exactly scale invariant (compare Fig. 2). However, the rescaled
invariant r2I1 (A13)–(A14) does appear to be discretely self-
similar; all presented functions are plotted at times selected
to make the shifted profiles of r2I1 overlap. We find Δ ¼
0.7445� 0.0073 for a solution constructed from the initial data
(ii) with a1 ¼ a2 ¼ 1, s1 ¼ 2, s2 ¼ p, q1 ¼ 2, q2 ¼ 3. Observe
however that the corresponding profiles of the rescaled second
invariant r2I2 do not overlap.
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well with the predictions from linear perturbation
theory (Appendix B), given in brackets: λ ≈ −1.419 95�
3.602 67ið−1.402 33� 3.603 51iÞ for the QNM, λ ≈
2.573 55ð2.562 80Þ for the unstable mode in w and λ ≈
2.782 96ð2.783 10Þ for the unstable mode in ω.

IV. TYPE III COLLAPSE

In this section we present our numerical results on type
III critical behavior. These simulations were carried out
using the code based on CMC-isotropic coordinates; the
value of the mean extrinsic curvature of the slices is taken
to be K ¼ 1/2.

A. Initial data

We use the same family of initial data as in [6] consisting
of a “kink” and a “bump” in w, and a “bump” in ω:

wð0; rÞ ¼ − tanh

�
r − rk
σk

�
− Ab exp

�
−
ðr − rbÞ2

2σ2b

�
; ð26Þ

FIG. 8. Comparison of type II critical solutions. We plot the
rescaled invariants Zð1Þ ≔ r2I1 and Zð1Þ ≔ r2I2. In the upper plot
we present the first invariant, where Zm refers to the magnetic
critical solution obtained in Sec. III B, i.e. we take initial data
(i) with p ≔ a1 and s1 ¼ 1/4, x1 ¼ 3, q1 ¼ 1, whereas Zs1 was
obtained from sphaleronic initial data (ii) with p ≔ s2 and

a1 ¼ a2 ¼ 1, s1 ¼ 1, q1 ¼ 2, q2 ¼ 3. Note that Zð2Þ
m ≡ 0. The

middle and bottom plots show two sphaleronic solutions with
different initial conditions: family (ii) with p ¼ s2, a1 ¼ a2 ¼ 1,
q1 ¼ 2, q2 ¼ 3 for both solutions, but s1 ¼ 2 for Zs1 and s1 ¼ 1
for Zs2. As in Fig. 3 we show the aligned profiles along the line
τ − ρ ¼ const passing through the local extrema closest to the
origin.

FIG. 9. For initial data (i) the type II critical behavior sets off at
a finite distance from the critical point. The onset of the
polynomial scaling depends on the strength of the sphaleronic
perturbation. The legend shows the amplitude a2 of ω in initial
data class (i). The bisection parameter is p ≔ a1 and the other
parameters are fixed to s2 ¼ 1/4, x2 ¼ 1 and q2 ¼ 1.

FIG. 10. The Bartnik-McKinnon soliton X1 as an intermediate
attractor of a near-critical evolution in the extended ansatz. Here
the sphaleronic perturbation ω in the initial data was held fixed at
a2 ¼ 10−20 and the amplitude p ≔ a1 of the initial data for w was
tuned to criticality (initial data class (ii), the same as used for
Fig. 9). Since this procedure controls only one of the two unstable
modes of X1, this static solution only appears as an intermediate
attractor. Ultimately the evolution drifts away from X1 and echoes
of the discretely self-similar type II solution become visible.
Compare with Fig. 4.
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ωð0; rÞ ¼ Ãb exp

�
−
ðr − r̃bÞ2

2σ̃2b

�
; ð27Þ

ẇð0; rÞ ¼ ω̇ð0; rÞ ¼ 0: ð28Þ

B. Magnetic sector

We begin by restricting ourselves to the magnetic sector,
i.e. we set Ãb ¼ 0 in (27). We fix rk ¼ 0.4, rb ¼ 0.7 and
σb ¼ σk ¼ 0.05 in (26) and vary Ab. The critical amplitude
is found to be A�

b ¼ 1.253 917 481 104 730 1.
The results of our critical search confirm what was

dubbed type III critical collapse in [2]. The final states of
the evolutions are Schwarzschild black holes with either
w ¼ 1 or w ¼ −1 (dashed line in Fig. 11), both of which
correspond to vacuum. At the threshold between the two
outcomes, the n ¼ 1 colored black hole [13,14], Y1, is
approached as a codimension-one unstable attractor. This
solution has one continuous parameter, the horizon (areal)
radius, which has the value 2.11 in our case. The masses of
the final Schwarzschild black holes as the threshold is
approached from either side are different (Fig. 12): in our
case M ¼ 1.235 for w ¼ 1 and M ¼ 1.090 for w ¼ −1.
The dependence of the mass gap on the horizon radius of
Y1 was studied in detail in [6].
Figure 13 shows the different phases of a near-critical

evolution: decay Y1 via QNM, departure along the unstable
mode of Y1, and ringdown to the final Schwarzschild
solution via QNM and tail. Unlike for X1 (Sec. III B), for Y1

the period of oscillation of the QNM is large compared to
the timescale of the unstable mode so that we only see one
or two oscillations; this makes a fit difficult. The fitted
value of the unstable mode of Y1, λ ¼ 0.1007, agrees well
with the value λ ¼ 0.1020 computed from linear perturba-
tion theory in [6]. For the final ringdown to Schwarzschild
spacetime, the fitted value of the QNM frequency λ ¼
−0.0835� 0.2222i matches the prediction λ ¼ −0.0848�
0.2278i from linear perturbation theory ([5], note the QNM
frequency scales with M−1, here M ¼ 1.090). The tail

could not be resolved properly here due to a lower
resolution used in the time-consuming critical bisection
search; however for a higher resolution using the same
code, the expected [22] exponent p ¼ −4 was found in [6],
and we will observe the same exponent below in the
sphaleronic evolutions.

C. Sphaleronic sector

Next, we add a small perturbation in ω to the initial data:
we choose Ãb ¼ 10−2, r̃b ¼ 0.7 and σ̃b ¼ 0.05. The
discontinuous transition in w as we vary Ab is now replaced
by a continuous one, and the final ω also varies contin-
uously (solid lines in Fig. 11). The mass gap also
disappears (solid line in Fig. 12).
These findings are not surprising because the dichotomy

between the vacua w ¼ �1 in the magnetic sector is
replaced by a continuum of vacua

FIG. 11. Final values of w (red) and ω (blue) as functions
of Ab in the magnetic sector (Ãb ¼ 0, dashed lines) and with a
sphaleronic perturbation (Ãb ¼ 10−2, solid lines).

FIG. 12. Mass M of the final Schwarzschild black hole as a
function of Ab in the magnetic sector (Ãb ¼ 0, dashed line) and
with a sphaleronic perturbation (Ãb ¼ 10−2, solid line).

FIG. 13. Time derivative of w at the horizon (after it forms) as a
function of time for Ãb ¼ 0 (magnetic sector) and Ab tuned to
criticality (with final value w ¼ −1 in this evolution). The solid
blue curves are the fits to the unstable mode of Y1 and the QNM
of the final Schwarzschild black hole. The dashed blue curve
indicates the expected decay exponent (p ¼ −4) of the tail, which
is not attained here due to a lower resolution used in the critical
bisection search.
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w2 þ ω2 ¼ 1 ð29Þ

in the general system. Hence it is impossible to perform a
critical search between two different outcomes. Moreover,
as pointed out in Sec. I, Y1 has an additional unstable mode
in the sphaleronic sector [15], hence it cannot appear as a
critical solution in the extended system.
Figures 14 and 15 show the dynamical evolution for the

value of Ab that corresponded to the critical threshold in the
magnetic sector, but now with the sphaleronic perturbation
added. The QNM ringdown to an intermediate attractor
is no longer visible, only the QNM and tail to the final
Schwarzschild black hole. A fit to the QNM yields λ ¼
−0.0819� 0.2188i for w and λ ¼ −0.0801� 0.2204i for
ω. This is to be compared with the predicted QNM
frequency in the magnetic sector [5] for the same mass (here
M ¼ 1.139), λ ¼ −0.0812� 0.2180i. Thus our results sup-
port the claim that the dominant Schwarzschild QNM
frequency in the full EYM system is the same as in the
magnetic sector. The fitted tail exponents are p ¼ −4.05 for

w and p ¼ −3.66 for ω, both consistent with the exponent
p ¼ −4 observed in the magnetic sector.

V. CONCLUSIONS

This paper studies critical collapse in the general spheri-
cally symmetric Einstein-Yang-Mills (EYM) system.
Compared to the magnetic ansatz most often used in
numerical work so far, this has an additional physical
degree of freedom, the “sphaleronic sector.” Our main
results can be summarized as follows.
In the magnetic sector, we confirm the phenomenology

reported in [1]: both type I and type II critical collapse
appear, depending on the family of initial data chosen. In
addition to previous results, we find periodic wiggles in the
type II scaling of the Ricci curvature invariant in subcritical
evolutions that we relate to the echoing exponent. In type I
collapse, our dynamical numerical evolutions show an
approach to the static critical solution, the Bartnik-
McKinnon soliton X1, via a quasinormal mode (QNM)
and a tail. We compare this with a calculation of the QNM
of X1 in linear perturbation theory. This is one of the few
examples where a QNM ringdown to a nontrivial unstable
static solution has been studied (other examples being the
YM evolutions on a fixed Schwarzschild background in [5]
and on the extremal Reissner-Nordström black hole in
[23]). The presence of the QNM also causes damped
oscillations of the apparent horizon mass as a function
of the critical parameter distance in type I collapse (Fig. 5).
When the sphaleronic sector is turned on in the initial

data, the picture of critical collapse changes completely.
The type I behaviour now disappears and the generic
critical behavior is type II. This is not surprising as the
magnetic critical solution X1 has an additional unstable
mode in the sphaleronic sector [7]. The supercritical mass
and subcritical curvature scaling exponents are very close
to but, depending on the initial data, not identical with the
ones found in the magnetic sector. We present a detailed
comparison of the critical solution in the extended system
with the critical solution in the magnetic ansatz. Looking at
gauge invariant quantities I1 and I2 [see (A13) and (A14)
for their definition] indicates that the two critical solutions
are probably not identical. This follows from the observa-
tion that I2 is nonzero (comparable in size to I1) for critical
evolutions of type II in the general ansatz, whereas it
vanishes identically in the purely magnetic sector. We also
find tentative evidence that exact discrete self-similarity as
well as universality of the critical solution (with regard to
different families of initial data) might be lost in the
extended system. It could be that we are not yet sufficiently
close to the critical point to see the true features of the
critical solution. However, to push the bisection search
further, we would have to use higher than the native double
precision and in addition increase the numerical resolution
much further, which did not seem feasible currently.

FIG. 14. Time derivative of w at the horizon (after it forms) as a
function of time for Ãb ¼ 10−2 and the same value for Ab as in the
magnetic sector evolution (Fig. 13). The blue curves indicate the
fits to the QNM and tail.

FIG. 15. Time derivative of ω at the horizon (after it forms) as a
function of time for Ãb ¼ 10−2 and the same value for Ab as in the
magnetic sector evolution (Fig. 13). The blue curves indicate the
fits to the QNM and tail.
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When a sphaleronic perturbation is added to initial data
that would be type I critical in the magnetic sector, the type
II polynomial scaling sets off at a finite distance from the
critical point depending on the strength of the sphaleronic
perturbation (Fig. 9). In such evolutions the magnetic type I
critical solution X1 can be seen as an intermediate attractor
before the type II attractor is approached. We observe a
QNM ringdown to this intermediate attractor, and again we
find good agreement of the QNM frequency with a
calculation in linear perturbation theory.
There is a third type of critical collapse in the magnetic

sector of the EYM system discovered in [2] (and recently
studied in more detail in [6]). Here evolutions on both sides
of the threshold eventually settle down to Schwarzschild
black holes but the YM potential is in different vacuum
states. The critical solution is the colored black hole Y1.
Our simulations give tentative evidence of a QNM ring-
down to the critical solution Y1 but the time range during
which this becomes visible is too short to be able to fit the
QNM frequency. Higher precision would be required to
uncover the QNM ringdown as well as possibly a poly-
nomial tail around this intermediate unstable attractor. An
independent confirmation of the existence of QNMs of
colored black holes and their spectra will require a detailed
analysis (boundary conditions) of the linearized problem.
When a sphaleronic perturbation is included in the initial

data, the discontinuous transition of the YM potential w and
the final black hole mass across the critical threshold is
replaced with continuous ones. Thus we can no longer tune
the initial data between two distinct outcomes, and the type
III critical phenomenon disappears. This can be explained
by the existence of an additional unstable mode of the Y1

critical solution in the sphaleronic sector [15].
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APPENDIX A: FIELD EQUATIONS

In this appendix we present the formulations of the field
equations used in our two independent codes. The code used
to study type I and type II collapse combines polar-areal
coordinates (4) with the parametrization (1) of the YM
connection. The code used to study type III collapse employs
CMC-isotropic coordinates (5) and the parametrization (2) of

the YM connection. The choice of different parametrizations
is insignificant and is only for “historical reasons” in the
development of our codes. The EYM equations for a general
spherically symmetric metric were also derived in the
appendix of [2] and are consistent with our formulations.
We use units in which 4πGg−2 ¼ 1, where G is Newton’s
constant and g is the YM coupling constant. Throughout an
overdot denotes a time derivative and a dash a radial
derivative.

1. Polar-areal coordinates

We introduce auxiliary variables Π, P and Y defined
below by (A1), (A2) and (A5) and write the YM equations
in first-order form (in time):

ẇ ¼ Ae−δΠþ uω; ðA1Þ

ω̇ ¼ Ae−δP − uw; ðA2Þ

Π̇ ¼ ðAe−δw0Þ0 þ uPþ w
1 − w2 − ω2

r2
e−δ; ðA3Þ

Ṗ ¼ ðAe−δω0Þ0 − uΠþ ω
1 − w2 − ω2

r2
e−δ; ðA4Þ

r2

2
u0 ¼ −Ye−δ; ðA5Þ

Y 0 ¼ ωΠ − wP: ðA6Þ

The Einstein equations and polar slicing condition
reduce to

Ȧ ¼ 2re−δA3/2Jr; ðA7Þ

A0 ¼ 1 − A
r

− 2rρ; ðA8Þ

δ0 ¼ −
r
A
ðρþ SrrÞ; ðA9Þ

where the components of the energy-momentum tensor are

ρ ¼ Y2

r4
þ ð1 − w2 − ω2Þ2

4r4

þ A
2r2

ðP2 þ Π2 þ w02 þ ω02Þ; ðA10Þ

Jr ¼ −
ffiffiffiffi
A

p

r2
ðΠw0 þ Pω0Þ; ðA11Þ

ρþ Srr ¼
A
r2

ðP2 þ Π2 þ w02 þ ω02Þ: ðA12Þ

We fix residual gauge freedom taking coordinated t to be
proper time of central observer, i.e. we set δðt; r ¼ 0Þ ¼ 0.

CRITICAL PHENOMENA IN THE GENERAL SPHERICALLY … PHYS. REV. D 97, 044053 (2018)

044053-11



In the analysis of type II critical collapse we plot the two
gauge invariants

I1 ¼ −
1

8
F ðaÞ

μν F ðaÞμν

¼ Y2

r4
−
ð1 − w2 − ω2Þ2

4r4
þ A

Π2 þ P2 − w02 − ω02

2r2
;

ðA13Þ

I2 ¼
1

8
F ðaÞ

μν ð�F ðaÞμνÞ

¼ 2Y
1 − w2 − ω2

r4
þ 2A

Pw0 − Πω0

r2
; ðA14Þ

where the YM field strength tensor is

F ðaÞ
μν ¼ ∇μA

ðaÞ
ν −∇νA

ðaÞ
μ þ εabcAðbÞ

μ AðcÞ
ν ðA15Þ

and its Hodge dual is

�F ðaÞ
μν ¼ ffiffiffiffiffiffi

−g
p

εμναβF ðaÞαβ: ðA16Þ

The invariant I1 is the Lagrangian of the YM field. The
invariant I2 has the interesting property that it vanishes in
the magnetic sector.

2. CMC-isotropic coordinates

Following [8], we introduce auxiliary variables DF, DH
andDL defined below by (A17), (A18) and (A21) and write
the YM equations in first-order form (in time).

Ḟ ¼ rXF0 − ÑDF þ 2XF − r2GH; ðA17Þ

Ḣ ¼ rXH0 − ÑDH þ r−1G0 þ GF þ 3XH; ðA18Þ

ḊF ¼ ðrXDF − ÑF0Þ0 þ 2XDF − 4Ñr−1F0

− 2r−1Ñ0 þ GðDL − r2DHÞ
þ Ñð−3F2 − r2H2 þ r2F3 þ r4FH2Þ; ðA19Þ

ḊH ¼ ðrXDH − ÑH0Þ0 − r−1ðXDLÞ0
− 3r−1Ñ0H þDFðG − 2Xr2HÞ
þ XDHð1þ 2r2FÞ − 2XFDL

þ Ñð−4r−1H0 þ 2HrF0 − 2FrH0Þ
þ Ñð−4FH þ r2F2H þ r4H3Þ; ðA20Þ

0 ¼ −ÑDL þ rG0 þG; ðA21Þ

0 ¼ r−1D0
L þ 2FðDL − r2DHÞ þ 2DH

þ 2r2HDF: ðA22Þ

We solve the following Einstein equations and coordinate
conditions:

0 ¼ −4ΩΩ00 þ 6Ω02 − 8Ωr−1Ω0 þ 3

2
Ω2r4π2

−
2

3
K2 þ 2κΩ4ρ̃; ðA23Þ

0 ¼ Ωðrπ0 þ 5πÞ − 2rΩ0π þ κΩ3r−1J̃r; ðA24Þ

0 ¼ −Ω2Ñ00 þ 3ΩΩ0Ñ0 − 2Ω2r−1Ñ0

−
3

2
Ω02Ñ þ 1

6
ÑK2 þ 15

8
ÑΩ2r4π2

þ 1

2
κÑΩ4ðS̃þ 2ρ̃Þ; ðA25Þ

X0 ¼ −
3

2
rÑπ: ðA26Þ

Here π denotes the only independent component of the
traceless part of the ADM momentum in spherical sym-
metry [8]. The components ρ̃, S̃ and J̃r of the (conformally
rescaled) energy-momentum tensor are given by

ρ̃ ¼ S̃ ¼ 1

2
½3D2

L − 2r2ð2DLDH −D2
F − r2D2

HÞ
þ 3B2

L − 2r2ð2BLBH − B2
F − r2B2

HÞ�; ðA27Þ

r−1J̃r ¼ 2½DLBF −DFBL þ r2ðDFBH −DHBFÞ�; ðA28Þ

where we have defined the magnetic field components

BF ¼ −3H − rH0; ðA29Þ

BH ¼ r−1F0 þ r2H2 þ F2; ðA30Þ

BL ¼ −2F þ r4H2 þ r2F2: ðA31Þ

APPENDIX B: LINEAR PERTURBATIONS
OF STATIC SOLUTIONS

In this section we write down the equations governing
linear perturbations of static EYM solutions explicitly and
describe the procedures used to solve the linearized system
of equations. We focus on static solutions with a regular
center, and as argued in [16,17] we assume that the static
solutions are purely magnetic.
Assuming time independence, i.e. wðt; rÞ ¼ wsðrÞ,

δðt; rÞ ¼ δsðrÞ, Aðt; rÞ ¼ AsðrÞ, and the magnetic ansatz,
i.e. ω ¼ Y ¼ u ¼ 0, Eqs. (A1)–(A4) reduce to
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w00
s ¼

�ðw2
s − 1Þ2
2r3As

þ
1 − 1

As

r

�
w0
s þ

wsðw2
s − 1Þ

r2As
; ðB1Þ

δ0s ¼ −
w0
s
2

r
; ðB2Þ

A0
s ¼

1 − Asðw0
s
2 þ 1Þ

r
−
ðw2

s − 1Þ2
2r3

: ðB3Þ

Regular solutions to (B1)–(B3) are the Bartnik-McKinnon
solitons Xn [12]. For the purpose of the following analysis
it is important to note the asymptotic r → ∞ expansion of
the static solutions, which reads

wsðrÞ ¼ �1þ v1
r
þOðr−2Þ; ðB4Þ

AsðrÞ ¼ 1þ a1
r
þOðr−4Þ; ðB5Þ

δsðrÞ ¼ δ0 þOðr−4Þ; ðB6Þ

where the higher order terms are uniquely determined by
the v1, a1, and δ0.
Next, with a perturbative ansatz of the form (jεj ≪ 1)

wðt; rÞ ¼ wsðrÞ þ εwpðt; rÞ; ðB7Þ

ωðt; rÞ ¼ εωpðt; rÞ; ðB8Þ

uðt; rÞ ¼ εupðt; rÞ; ðB9Þ

Yðt; rÞ ¼ εYpðt; rÞ; ðB10Þ

Aðt; rÞ ¼ AsðrÞð1þ εApðt; rÞÞ; ðB11Þ

δðt; rÞ ¼ δsðrÞ þ εδpðt; rÞ; ðB12Þ

we obtain the following set of linearized equations:

e2δs

As
ẅp¼Asw00

pþ
�
1−As

r
−
ðw2

s −1Þ2
2r3

�
w0
p

þ
�
1−3w2

s

r2
−
2wsðw2

s −1Þw0
s

r3

�
wp

þAp

�ðw2
s −1Þ2w0

s

2r3
þwsðw2

s −1Þ
r2

−
w0
s

r

�
; ðB13Þ

δ0p ¼ −
2

r
w0
sw0

p; ðB14Þ

A0
p ¼ −

2wsðw2
s − 1Þwp

r3As

þ
�ðw2

s − 1Þ2
2r2

− 1

�
Ap

rAs
−
2

r
w0
sw0

p; ðB15Þ

Ȧp ¼ −
2

r
w0
sẇp; ðB16Þ

e2δs

As
ω̈p ¼ Asω

00
p þ

�
1 − As

r
−
ðw2

s − 1Þ2
2r3

�
ω0
p

−
e2δswsu̇p

As
þ ð1 − w2

sÞωp

r2
; ðB17Þ

Ẏp ¼ Ase−δsðw0
sωp − wsω

0
pÞ; ðB18Þ

Y 0
p ¼ −

eδswsðwsup þ ω̇pÞ
As

; ðB19Þ

u0p ¼ −
2

r2
e−δsYp: ðB20Þ

To simplify (B13)–(B20) we used the Eqs. (B1)–(B3)
satisfied by static solutions. This explicitly shows that
the linear perturbation splits into two independent classes:
magnetic sector (B13)–(B16) and sphaleronic sector
(B17)–(B20). We analyze them individually below.

1. Magnetic perturbations

Separation of variables

wpðt;rÞ¼ϕðrÞeiσt; Apðt;rÞ¼αðrÞeiσt; δpðt;rÞ¼βðrÞeiσt
ðB21Þ

reduces (B13)–(B16) to a system of ordinary differential
equations

e2δsσ2

A2
s

ϕ ¼ −ϕ00 þ
�
−ð1 − AsÞ þ

ð1 − w2
sÞ2

2r2

�
1

rAs
ϕ0

þ
�
−
4wsð1 − w2

sÞw0
s

r
þ ð1 − w2

sÞ2w0
s
2

r2

þ ð−1þ 3w2
s − 2w0

s
2Þ
�

1

r2As
ϕ; ðB22Þ

α ¼ −
2

r
ϕw0

s; ðB23Þ

β0 ¼ −
2

r
w0
sϕ

0: ðB24Þ

Note that (B22) does not contain any metric perturbations;
therefore the solution to (B22) fully determines the per-
turbation (B21) through the relations (B23)–(B24).

a. Unstable modes

Using standard methods (either shooting or a pseudo-
spectral method) we look for solutions of (B13)–(B16)
imposing asymptotically flat boundary conditions at spatial
infinity. We find the value of the exponent of the unstable
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mode of X1 to be λ ¼ iσ ¼ 2.562 799 802 146 866. We also
find, in agreement with previous studies [7], n unstable
modes of the solution Xn. (We do not explicitly give the
values for Xn>1 as these have more than one unstable mode
and thus do not play any role in the critical collapse
evolutions we consider here.)

b. Quasinormal modes

To find QNM we use the same shooting method as when
looking for unstable modes. However, we now impose an
outgoing boundary condition at spatial infinity. Taking

ϕðrÞ ¼ e−irc∞ξðrÞ; c∞ ¼ eδ0 ; ðB25Þ

where δ0 is the asymptotic value of δðrÞ [cf. (B6)] and
changing the independent variable to z ¼ 1/r we transform
Eq. (B22) to

ξ00ðzÞ þ PðzÞξ0ðzÞ þQðzÞξðzÞ ¼ 0: ðB26Þ

The coefficients in the above equation (determined by the
static solution and σ) have the following asymptotic form as
z → 0:

PðzÞ ¼ p−2

z2
þOðz−1Þ; QðzÞ ¼ q−3

z3
þOðz−2Þ; ðB27Þ

with the expansion coefficients depending on v1, a1, δ0,
and σ. Thus z ¼ 0 is an irregular singular point of
Eq. (B26). However, assuming

ξðzÞ ¼ zk
X
i≥0

ξizi; ðB28Þ

the indicial equation gives k ¼ −q−3/p−2 ¼ −ieδ0a1σ, and
we uniquely determine the expansion coefficients ξi [which
are given in terms of the asymptotic expansion (B4)–(B6)].
Having two asymptotic solutions, one at the origin and

the other obtained from the above asymptotic analysis, we
integrate the Eq. (B6) starting from the two boundary
points. Gluing the solutions at an intermediate point gives a
quantization condition for σ. With this procedure we find
the least damped QNM of X1, whose frequency is
λ ¼ −1.402 33� 3.603 51i. Interestingly enough with this
method we were also able to obtain higher overtones (with
faster damping rates) but these were not independently
confirmed by time evolution and so we omit their presen-
tation here.

2. Sphaleronic perturbations

Separation of variables

ωpðt;rÞ¼ψðrÞeiσt; Ypðt;rÞ¼yðrÞeiσt; upðt;rÞ¼υðrÞeiσt;
ðB29Þ

reduces (B13)–(B16) to

−
e2δsσ2

As
ψ ¼ Asψ

00 þ
�
1 − As

r
−
ðw2

s − 1Þ2
2r3

�
ψ 0

−
iσυe2δsws

As
þ ψð1 − w2

sÞ
r2

; ðB30Þ

y ¼ iAse−δsðwsψ
0 − ψw0

sÞ
σ

; ðB31Þ

υ0 ¼ 2iAse−2δsðψw0
s − wsψ

0Þ
r2σ

: ðB32Þ

a. Unstable modes

In this sector we also find (as for the magnetic ansatz) n
unstable modes for Xn. For the fundamental solution X1 we
have λ ¼ iσ ¼ 2.7831012067733285.

b. Quasinormal modes

In the nonlinear evolution we see no sign of quasinormal
modes within the sphaleronic sector. Thus we leave open
the question of their existence.

APPENDIX C: NUMERICAL METHODS

In this section we briefly describe the numerical methods
used in our two independent codes.

1. Type I and type II collapse

For the time evolution we use the method of lines with a
second-order finite-difference discretization in space and
the explicit Runge-Kutta time integration scheme DOPRI
(a fifth-order adaptive method) [24]. To refine the central
region of the spatial domain we use a nonequidistant grid.
The spacing between grid points is fixed over time. We
choose a logarithmic distribution which concentrates grid
points close to r ¼ 0 and has physical extent r ∈ ½0; rm�,
explicitly

ri ¼ rm log

�
1 −

�
i
N

�
k
�
/ log

�
1 −

�
N − 1
N

�
k
�
; ðC1Þ

i ¼ 0; 1;…N − 1. The two free parameters k and rm in (C1)
were chosen to reach a compromise between higher
resolution close to the origin (sufficient to represent fine
structures of solutions) and a sufficiently large physical
extent of the grid (so that the numerical solution is not
affected by the presence of a timelike boundary). At the
outer boundary we use one-sided finite-difference stencils.
Most of the simulations were carried out using k ¼ 3/2 and
rm ¼ 200 or rm ¼ 400. We typically take from N¼1þ210

to N ¼ 1þ 212 grid points.
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2. Type III collapse

This code uses the method of lines with a fourth-order
finite-difference discretization in space and the standard
fourth-order Runge-Kutta method for the time evolution.
Ordinary differential equations with respect to radius are
solved using a Newton-Raphson method combined with a
direct band-diagonal solver. In the first phase of the evolu-
tion, the radial grid is uniform and ranges from the origin to
future null infinity, where one-sided finite differences are

used. When a black hole forms, an excision boundary is
placed just inside the apparent horizon, where again one-
sided stencils are used. The YM variable G is fixed to zero at
the excision boundary. In this second phase of the evolution,
the radial grid is nonuniform in order to provide more
resolution close to the horizon, where the fields have large
gradients. Typical resolutions range from 500 (Figs. 11–13)
to 4000 (Figs. 14 and 15) radial grid points. More details on
the numerical implementation can be found in [6,8].
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