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We show that null surfaces defined by the outgoing and infalling wave fronts emanating from and
arriving at a sphere in Minkowski spacetime have thermodynamical properties that are in strict formal
correspondence with those of black hole horizons in curved spacetimes. Such null surfaces, made of pieces
of light cones, are bifurcate conformal Killing horizons for suitable conformally stationary observers. They
can be extremal and nonextremal depending on the radius of the shining sphere. Such conformal Killing
horizons have a constant light cone (conformal) temperature, given by the standard expression in terms of
the generalization of surface gravity for conformal Killing horizons. Exchanges of conformally invariant
energy across the horizon are described by a first law where entropy changes are given by 1/ð4l2

pÞ of the
changes of a geometric quantity with the meaning of horizon area in a suitable conformal frame. These
conformal horizons satisfy the zeroth to the third laws of thermodynamics in an appropriate way. In the
extremal case they become light cones associated with a single event; these have vanishing temperature as
well as vanishing entropy.
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I. INTRODUCTION: THE RESULTS IN A
NUTSHELL

Classical black holes behave in analogy with thermo-
dynamical systems [1]. According to general relativity they
satisfy the four laws of black hole mechanics. The surface
gravity κSG of a stationary black hole is constant on the
horizon: the zeroth law. Under small perturbations, sta-
tionary black holes—which are characterized by a massM,
an angular momentum J, and a charge Q—satisfy the
first law

δM ¼ κSG
8π

δAþ ΩδJ þΦδQ; ð1Þ

where Ω, Φ, and A are the angular velocity, electrostatic
potential, and area of the stationary (Killing) horizon. The
Hawking area theorem [2]

ΔA ≥ 0 ð2Þ

is regarded as the second law. The third law—expected to
be valid from the cosmic censorship conjecture [3]—
corresponds to the statement that extremal black holes,
for which κSG ¼ 0, cannot be obtained from a non extremal
one by a finite sequence of physical processes. When
quantum effects are considered these analogies become

facts of semiclassical gravity. Stationary black holes radiate
particles in a thermal spectrum with temperature T ¼
κSG/ð2πÞ [4,5] so that the first term in (1) can be interpreted
as a heat term expressed in terms of changes in the black
hole entropy S ¼ A/4 in Planck units. The area law (2) is
promoted to the generalized second law [6]. In the quantum
realm another statement that could be associated to the third
law is that extremal black holes should have vanishing
entropy, an argument for which can be found in [7].
All this is naturally interpreted as providing valuable

information about the quantum theory of gravity of which
the semiclassical treatment should be a suitable limit of. In
this respect it is useful to have examples of a similar
behaviour in simplified situations. The Fulling-Davies-
Unruh thermal properties associated to quantum field
theory in flat spacetimes [8–10] is often used as an example
illustrating, in a simplified arena, some of the aspects
behind the physics of black holes. In this respect, the
Rindler (Killing) horizon associated with a family of
constantly accelerated observers in Minkowski spacetime
is taken as an analogue of the black hole horizon. This
analogy is supported further by the statement that the near
horizon geometry of a nonextremal black hole can be
described, in suitable coordinates, by the metric

ds2 ¼ −κSGR2dt2 þ dR2 þ ðr2H þ a2ÞdS2 þOðR3Þ ð3Þ

where dS2 ¼ dϑ2 þ sin2ϑdφ2 is the metric of the unit two-
sphere, a≡ J/M. At least in the ðR; tÞ “plane,” the above
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equation matches the 2d Rindler metric where R ¼ 0 is the
location of the black hole horizon. The thermodynamical
properties of Rindler horizons have been extensively
discussed in the literature [11–15]. However, strictly
speaking, the near horizon geometry is not Rindler due
to the presence of the term r2HdS

2 in the previous equation
that makes the topology of the horizon S2 ×R instead of
R3, which implies the area of the black hole horizon to be
finite A ¼ 4πðr2H þ a2Þ instead of infinite. Another obvious
difference is that, in contrast with Rindler, the Riemann
curvature is nonzero at the black hole horizon. Only in the
infinite area limit the local geometry becomes exactly that
of a Rindler horizon. Furthermore, in contrast with black
hole horizons, the Rindler horizon has a domain of
dependence that includes the whole of what one would
regard as the outside region. In fact the Rindler horizon
defines a good initial value characteristic surface. More
precisely, any regular initial data for an hyperbolic equation
such as a Klein-Gordon or Maxwell field with support on
the corresponding wedge—what would be the outside—
can be encoded in data on the Rindler horizon [16]. An
implication of this is that no energy flow can actually
escape to infinity without crossing the Rindler horizon. No
notion analogous to the asymptotic observers outside of the
black hole exists when considering the Rindler wedge and
its Killing horizon boundary. A geometric way to stating
this is that the Rindler horizon is given by the union of the
past light cone of a point at Iþ with the future light cone of
a point at I–. In this sense the Rindler wedge is better
described as a limiting case of the interior of finite
diamonds—see next paragraph—rather than representing
faithfully the outside region of a black hole spacetime. In
this work we show that there exists a more complete
analogue of black holes in Minskowski spacetime.
There is a natural interest in double cone regions in

Minkowski spacetime, also called diamonds, in algebraic
quantum field theory [17] or in the link between entangle-
ment entropy and Einstein equations [18]. The conformal
relationship with the Rindler wedge has been used in order
to define the corresponding modular Hamiltonian and study
thermodynamical properties in [19,20]. Here we concen-
trate on the causal complement of the diamond, and show
that it shares several analogies with the exterior region of a
stationary spherically symmetric black hole.
Such flat spacetime regions as the diamond and its

complement are directly related to the geometry of radial
Minkowski Conformal Killing vector Fields (MCKFs).
What we shall show is that radial MCKFs can be classified
in a natural correspondence with black holes spacetimes of
the Reissner-Nordstrom (RN) family (i.e. J ¼ 0). They can
be timelike everywhere in correspondence with the naked
singularity case M2 < Q2 where the stationarity Killing
field is timelike everywhere. But more interestingly, radial
MCKFs can become null, and being surface forming,
generate conformal Killing horizons. As we will show in

Sec. II these are conformal bifurcate Killing horizons
analogue, in a suitable sense, to the black hole horizons
in the RN family. The results of this paper can be
summarized as follows:
(1) Radial MCKFs define conformal Killing horizons:

Radial MCKFs become null on the light cones of
two events on Minkowski spacetime that are sepa-
rated by a timelike interval. By means of a Lorentz
transformation these two events can be located on
the time axis of an inertial frame. A further time
translation can place the two events in a time
reflection symmetric configuration so that the sym-
metry t → −t of Reissner-Nordstrom spacetimes is
reproduced.

(2) They have the same topology as black hole Killing
horizons: The topology of the conformal Killing
horizon in Minkowski spacetime is S2 ×R as for the
Killing horizons of the RN spacetime.

(3) These horizons are of the bifurcate type: Radial
MCKFs vanish on a 2-dimensional sphere of radius
rH and finite area A ¼ 4πr2H that is the analogue of
the minimal surface where the Killing horizon of the
RN black hole vanishes. The bifurcate surface is the
intersection of the two light cones described above.

(4) They separate events in spacetime as in the BH case:
The global structure of the radial MCKF is closely
analogous to the one of the Killing horizon of the
RN spacetime. More precisely, there are basically
the same worth of regions where the radial MCKF
and the RN time translational Killing vector field is
timelike and spacelike respectively. In the nonex-
tremal case there are outer and inner horizons in
correspondence to the nonextremal RN solution.
One of the two asymptotically flat regions of the
maximally extended RN spacetime corresponds to
the points in the domain of dependence of the
portion of the t ¼ 0 hypersurface in Minkowski
spacetime inside the bifurcate sphere, namely the
diamond; the other asymptotically flat region cor-
responds to the domain of dependence of its causal
complement, namely the black hole exterior in our
analogy. There are regions where the radial MCKF
becomes spacelike. These too are in correspondence
with regions in the nonextremal RN black hole,
namely the regions between the inner and the outer
horizons. In the extremal limit the regions where the
radial MCKF is spacelike, as well as one of the
asymptotic region, disappear and the correspon-
dence with the extremal RN solution is maintained.
All this will be shown in detail in the following
section; the correspondence is illustrated in Fig. 1.

(5) They satisfy the zeroth law: The suitably generalized
notion of surface gravity κSG is constant on the
conformal Killing horizon: the zeroth law. Extremal
Killing horizons have κSG ¼ 0.
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(6) They satisfy the first law: Considering the effects of
matter perturbations described by a conformally
invariant matter model, one can show that radial
conformal Killing horizons satisfy the balance law
δM ¼ κSGδA/ð8πÞ þ δM∞: the first law. Here δM is
the conformally invariant mass of the perturbation,
δM∞ is the amount of conformal energy flowing out
to future null infinity Iþ, and δA is what we call
conformal area change. The name stems from the
fact that it corresponds to the change of a geometric
notion with the meaning of horizon area in the
appropriate conformal frame.

(7) They satisfy the second law: In the type of processes
considered above and assuming the usual energy
conditions, δA ≥ 0: the second law.

(8) They have constant (conformal) temperature:When
quantum fields are considered, a constant Hawking-
like temperature T ¼ κSG/ð2πÞ can be assigned to
radial MCKFs. In view of this, δS ¼ δA/4 in Planck

units acquires the meaning of entropy variation of
the conformal horizon.

(9) They satisfy a version of the third law: Extremal
radial MCKFs have vanishing temperature as well as
vanishing entropy: the third law.

(10) Minkowski vacuum is the associated Hartle-
Hawking state: The Minkowski vacuum of any
conformally invariant quantum field can be seen
as the state of thermal equilibrium—usually called
Hartle-Hawking state—in the Fock space defined
with respect to the MCKF.

(11) The near MCKF horizon limit matches the expres-
sion (3) with a ¼ 0. The Rindler horizon limit could
be obtained by sending the events mentioned in
Item 1 suitably to future iþ and past i− timelike
infinity respectively. In that limit rH → ∞, the near
horizon metric becomes the Rindler metric, and the
corresponding radial MCKF becomes the familiar
boost Killing field.

The properties listed above will be discussed in more
detail in the sections that follow. In Sec. II we construct
general radial MCKFs from the generators of the conformal
group SOð5; 1Þ, and explain their geometry. The causal
domains they define and the analogy with black holes
shown in Fig. 1 will be clarified there. The analogue of
classical laws of black hole thermodynamics are shown to
hold in a suitable sense for radial MCKFs in Sec. III.
Finally we show, in Sec. IV, that a semiclassical temper-
ature can be assigned to radial MCKFs and we discuss the
physical meaning of that temperature.

II. CONFORMAL KILLING FIELDS IN
MINKOWSKI SPACETIME

The conformal group in four dimensional Minkowski
spacetime M4 is isomorphic to the group SOð5; 1Þ with its
15 generators given explicitly by [21]

Pμ ¼ ∂μ Translations

Lμν ¼ ðxν∂μ − xμ∂νÞ Lorentz transformations

D ¼ xμ∂μ Dilations

Kμ ¼ ð2xμxν∂ν − x · x∂μÞ
Special conformal transformations; ð4Þ

where f · g≡ fμgμ. Any generator defines a conformal
Killing field in Minkowski spacetime (MCKF), namely a
vector field ξ along which the metric ηab changes only by a
conformal factor:

Lξηab ¼ ∇aξb þ∇bξa ¼
ψ

2
ηab ð5Þ

with

FIG. 1. The Penrose diagram of the Reissner-Nordstrom black
hole on the left compared with the causal structure of the radial
CKF in Minkowski spacetime on the right, in both the non-
extremal Δ > 0 and extremal Δ ¼ 0 case. The letters S and T
designate the regions where the Killing or conformal Killing
fields are spacelike or timelike respectively. The light cone
emanating from the points O� (and O in the extremal case)
are the hypersurface where the MCKF is null.
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ψ ¼ ∇aξ
a: ð6Þ

Consider now the Minkowski metric in spherical
coordinates

ds2 ¼ −dt2 þ dr2 þ r2dS2: ð7Þ

Then dilations can be written as

D ¼ r∂r þ t∂t ð8Þ

and K0 as

K0 ¼ −2tD − ðr2 − t2ÞP0: ð9Þ

Together with P0 ¼ ∂t, those are the only generators that
do not contain angular components. Hence the most
general radial MCKF has the form

ξ ¼ −aK0 þ bDþ cP0

¼ ð2atþ bÞDþ ½aðr2 − t2Þ þ c�P0; ð10Þ

with a, b, c arbitrary constants. Explicitly

ξμ∂μ ¼ ½aðt2 þ r2Þ þ btþ c�∂t þ rð2atþ bÞ∂r

¼ ðav2 þ bvþ cÞ∂v þ ðau2 þ buþ cÞ∂u; ð11Þ

where v ¼ tþ r, u ¼ t − r are the standard null coordi-
nates. The norm of ξ is easily computed to be

ξ · ξ ¼ −ðav2 þ bvþ cÞðau2 þ buþ cÞ: ð12Þ

Its causal behavior, therefore, can be studied introducing
the quantity

Δ≡ b2 − 4ac: ð13Þ

The complete classification of such MCKFs is given in
[22]. Here we are interested in the case a ≠ 0, where we
have three different types of behavior depending on the sign
of the parameter Δ. When Δ < 0, the MCKF is timelike
everywhere, like the stationarity Killing field in the
Reissner-Nordstrom solutions with a naked singularity
M2 < Q2. When Δ > 0, on the other hand, the MCKF
is null along two constant u and two constant v null
hypersurfaces respectively given by

u� ¼ −b� ffiffiffiffi
Δ

p

2a
or v� ¼ −b� ffiffiffiffi

Δ
p

2a
: ð14Þ

In other words, the MCKF is null on the past and future
light cones of two points O�, with coordinates given
respectively byO�∶ðt ¼ u�; r ¼ 0Þ. These two light cones
divide Minkowski spacetime into six regions. In those

regions the norm of the MCKF changes going from
timelike to spacelike as depicted on the top right panel
of Fig. 1. The boundary of these regions are null sur-
faces generated by the MCKF; they define conformal
Killing horizons. The vector field ξ vanishes at the
bifurcate 2-dimensional surface defined by the intersection
of the previous null surfaces, namely at the sphere

t ¼ tH ¼ −
b
2a

; r ¼ rH ¼
ffiffiffiffi
Δ

p

2a
: ð15Þ

The “extremal” case Δ ¼ 0 is a limiting case between the
other two: the MCKF is null on the light cones u0 ¼ v0 ¼
−b/ð2aÞ emanating from a single point O, and timelike
everywhere else. This is depicted in the bottom right panel
of Fig. 1.
It is interesting to notice that the four regions around the

bifurcate sphere in the nonextremal case are in one-to-one
correspondence with the corresponding four regions around
the bifurcate sphere in the case of stationary black holes of
the Reissner-Nordstrom family. The correspondence is
maintained in the extremal limit where the bifurcate sphere
degenerates to a point and the four regions collapse to a
single one. In the black hole case the bifurcate sphere is
pushed to infinity and one of the asymptotically flat regions
disappears. In our case the bifurcate sphere is shrunk to a
point at the origin and the region in the interior of the light
cones, the diamond, disappears. The analogy is emphasized
in Fig. 1.
The flow of ξ describes uniformly accelerated observers,

with integral curves being a one parameter family of
rectangular hyperbolas given by [22]

t2 −
�
rþ ζ

2a

�
2

¼ Δ − ζ2

4a2
; ð16Þ

where ζ is the parameter labeling members of the family.
The complete situation is depicted in Fig. 2. From the
picture it is clear that, seen from the point of view of the
observers that follow the MCKF in Region II, the boundary
of the region is a bifurcate conformal Killing horizon with
topology S2 ×R. This is the same topology as the one of
bifurcate Killing horizons of stationary black holes in the
asymptotically flat spacetime context. To summarize: radial
conformal Killing fields in Minkowski spacetime generate
bifurcate conformal Killing horizons that reproduce the
main topological features of stationary spherically sym-
metric Killing horizons. This is the first obvious indication
that makes MCKFs interesting for drawing analogies with
black holes. The aim of what follows is to show that this
analogy is more profound and extends very nicely to the
thermodynamical properties of black hole Killing horizons.
In Sec. III, indeed, we will be able to define, in a suitable
sense that will become clear, the four laws of thermody-
namics for bifurcate MCKF horizons.
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A. Introducing two geometric scales defining
the radial MCKF

Here we associate the parameters a, b, and c in (10) with
geometric notions. First we set b ¼ 0 by means of a time
translation t → t − b/ð2aÞ. In this way the points O� are
placed on the time axis in the future and the past of the
origin at equal timelike distance, and the distributions of
regions become t-reflection symmetric. We make this
choice from now on. Notice in addition that the parameter
a has dimension ½length�−2, while c is dimensionless. We
can therefore rewrite those constants in terms of two
physical length scales. The first one is the radius of the
bifurcate sphere r ¼ rH, Eq. (15):

r2H ¼ Δ
4a2

¼ −
c
a
: ð17Þ

There is also another natural geometric scale associated to
the radius of the sphere rO at t ¼ 0 where we demand ξ to
be normalized. Such sphere represents the ensemble of
events where the MCKF can be associated with the orbits of
observers. We call this sphere the observers sphere. The
normalization condition at rO is the analogue of the
normalization condition for the stationarity Killing vector
field at infinity in asymptotically flat stationary spacetimes,
e.g. stationary black holes, or the selection of a special
observer trajectory when normalizing the boost Killing
field in the Rindler wedge. Therefore, we demand the
condition ξ · ξjt¼0;r¼rO ¼ −1 which, together with Eq. (17),

allows to determine both a and c as a function of rH and rO.
Explicitly one finds

a ¼ 1

r2O − r2H
; c ¼ −

r2H
r2O − r2H

: ð18Þ

The radial conformal Killing field takes then the form

ξμ∂μ ¼
1

r2O − r2H
½ðt2 þ r2 − r2HÞ∂t þ 2tr∂r�

¼ v2 − r2H
r2O − r2H

∂v þ
u2 − r2H
r2O − r2H

∂u; ð19Þ

its norm becomes

ξ · ξ ¼ −
ðv2 − r2HÞðu2 − r2HÞ

ðr2O − r2HÞ2
; ð20Þ

the parameter Δ

Δ ¼ 4r2H
ðr2O − r2HÞ2

; ð21Þ

which implies

u� ¼ v� ¼ �rH: ð22Þ
From Eq. (19) we clearly see that ξ vanishes at the bifurcate
sphere r ¼ rH and that ξ ¼ ∂t at the observers sphere
r ¼ rO; both spheres are defined to be on the t ¼ 0 surface.
The vector field vanishes also at O�. These two length
scales completely determine the radial MCKF forming
conformal Killing horizons.

III. LIGHT CONE THERMODYNAMICS

In this central section of the paper, we will formulate the
laws of thermodynamics for the bifurcate conformal
Killing horizon generated by the radial MCKF. The
horizon is defined by the two pieces of light cones
meeting at the bifurcate sphere of radius rH. It is the
boundary of the causal complement of the diamond,
Region II: the analogue of the exterior region of a
stationary black hole spacetime. In Fig. 3, the S2 × R
topology of the horizon, together with the structure of
Region II, is emphasized.
As already mentioned, see Eq. (5), a MCKF ξ satisfies

Lξηab ¼ ∇aξb þ∇bξa ¼
ψ

2
ηab ð23Þ

with

ψ ¼ ∇aξ
a: ð24Þ

A conformal Killing horizon H is defined as the surface
where the MCKF is null, ξ · ξ ¼ 0. Therefore, the gradient

(a) (b)

FIG. 2. The flow of the radial MCKF, depending on the value of
the parameter Δ, Eq. (13). When Δ < 0: the MCKF is timelike
everywhere. a) Δ > 0: the Minkowski spacetime is divided into 6
different regions, where the norm of the MCKF changes from
being timelike to being spacelike, through being null along the
four light rays u�, v�. b) Δ ¼ 0: the MCKF is everywhere
timelike except for the two null rays u0 ¼ v0 where it is null.
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of ξ · ξ must be proportional to the normal to the horizon ξ.
The proportionality factor defines the surface gravity κSG.

1

via the equation

∇aðξ · ξÞ ¼̂ − 2κSGηabξ
b: ð26Þ

The symbol ¼̂ stands for relations valid only at the
horizon; we will use this notation whenever stressing such
property is necessary. The CKF is also geodesic at the
horizon [25,26], so that one can define the function κ as

ξa∇aξ
b¼̂ κξb: ð27Þ

Thus κ is the function measuring the failure of ξ to be an
affine geodesic on the horizon. While for Killing horizons
κ ¼ κSG, for conformal Killing horizons the following
relation is valid:

κSG ¼ κ −
ψ

2
: ð28Þ

We will now use these relations in the special case of the
MCKF defined in the previous sections.

A. The zeroth law

It is immediate to show that, for a general CKF, the
quantity κSG is Lie dragged along the field itself [25,26];
namely

LξκSG ¼ 0: ð29Þ

In our case, by spherical symmetry, this implies that κSG is
actually constant on the horizon H.2 This proves the zeroth
law of light cone thermodynamics.

B. The first law

Let us now define the energy-momentum current

Ja ¼ Tabξb: ð30Þ

Conformally invariant field theories satisfy Ta
a ¼ 0 on

shell [21]. For these theories, the current Ja is conserved.
Indeed

∇aJa ¼
ψ

4
Ta

a ¼ 0: ð31Þ

In such cases the current defines a conserved charge

M ¼
Z
Σ
Tabξ

adΣb ð32Þ

with dΣa being the volume element of a general Cauchy
hypersuface Σ.
We want now to study the analogue of what is called the

“physical process version” [27,28] of the first law of black
hole thermodynamics, which is also valid for more general
bifurcate Killing horizons [29].3 This will define the first
law of light cone thermodynamics. Let us therefore

FIG. 3. A (2þ 1) dimensional diagram depicting the regions of
interest in Minkowski spacetime. The two cones truncated at the
sphere of radius r ¼ rH represent the bifurcate conformal Killing
horizon. They meet future and past null infinity on spherical cross-
sections, represented by the two bigger rings. The central ring is the
bifurcate sphere r ¼ rH, where ξ ¼ 0. The horizon is therefore a
sphere with radius growing at the speed of light. In the center, one
can also see the Cauchy development of the bifurcate sphere, the
diamond, Region I. Shaded in yellow is Region II, the region
representing the outside of the horizon. Geometrically, it is the
Cauchy development of the complement of Region I. The remain-
ing part of Minkowski spacetime is occupied by Regions III to VI,
which, to simplify the picture, are not clearly depicted here.

1It is easy to check that κSG is invariant under conformal
transformations ηab → gab ¼ Ω2ηab [23]. Under such transfor-
mations we have

∇aðgbcξbξcÞ ¼̂ ∇aðΩ2ηbcξ
bξcÞ

¼̂ Ω2∇aðηbcξbξcÞ ¼̂ κSGΩ2ηabξ
b ¼̂ κSGgabξb; ð25Þ

where we used that ξ · ξ ¼ 0 on the horizon. The surface gravity
κSG can be seen as the value of the acceleration of the conformal
observers at the horizon when seen from the point of view of an
observer placed at the observer sphere r ¼ rO [24].

2It can however be shown for a general CKF under some
assumptions [25].

3There are works in the literature where the mechanical laws
for conformal Killing horizons are investigated from the purely
Hamiltonian perspective [30,31]. The strategy used in our
specific and simple flat spacetime example seems more trans-
parent for a deeper geometric insight.
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consider the process in which a small amount δM of such
“energy”4 passes through what plays the role of the future
horizon Hþ, namely the future light cone u ¼ u−. The
passage of the matter will perturb the horizon. We will
show that, at first order in linearized gravity, there is a
balance law relating δM with the conformal area change of
the horizon Hþ (see below). The crucial difference in
proving this relation with respect to the black hole case is
that here the cross-sectional area of the horizon is changing
along the affine geodesic generators of the light cone, even
when no perturbation is considered. More technically, if we
take the advanced time v ¼ tþ r as an affine parameter
along the null generators l ¼ ∂v of Hþ in the flat back-
ground geometry, then one can show that the expansion θ is

θ ¼ 1

r
¼ 2

v − u
: ð33Þ

By definition, the expansion is the rate of change of the
cross-sectional area with respect to the parameter [32],
namely,

θ ¼ 1

dS
∂dS
∂v : ð34Þ

In our case dS ¼ 1/4ðv − uÞ2 sinϑdϑdφ ¼ and the two
above equations are indeed in agreement. The nonvanish-
ing of those quantities, therefore, implies that the area of the
horizon is constantly increasing even if no flux of energy is
considered. Consequently, we need to distinguish the two
different changes in area: the background one that we call
dS0, and the one induced by the passage of the perturbation
that we call dS1. When a generic flux of energy is
considered, we can write the expansion as

θ ¼ 1

dS0 þ dS1

∂
∂v ðdS0 þ dS1Þ: ð35Þ

In the approximation in which dS1/dS0 ≪ 1, we can
expand it up to first order and find

θ¼ 1

dS0

∂dS0
∂v þ 1

dS0

�∂dS1
∂v −

1

dS0

∂dS0
∂v dS1

�
þO

�
dS1
dS0

�
2

≡ θ0þ θ1þO

�
dS1
dS0

�
2

; ð36Þ

where θ0 is the unperturbed expansion given by
Eqs. (33)–(34) and where we defined the perturbation

θ1 ≡ 1

dS0

�∂dS1
∂v − θ0dS1

�
¼ ∂

∂v
�
dS1
dS0

�
: ð37Þ

Moreover, by the Raychauduri equation one has that the
variation of the expansion is connected with the flux of
energy as [16]

lðθÞ ¼ −
1

2
θ2 − σabσ

ab þ ωabω
ab − 8πTablalb; ð38Þ

where σab and ωab are the shear and twist tensors
respectively, and lðfÞ ¼ ∂vf for any function f. Using
Eq. (36) and the fact that, in this case ω0

ab ¼ σ0ab ¼ 0,
we get

lðθ0Þ þ lðθ1Þ ¼ −
1

2
θ0

2 − θ0θ1 − 8πδTablalb þOðθ1Þ2;
ð39Þ

where δTab represents a small energy perturbation justify-
ing the use of the perturbed equation (36).5 Since θ0 is, by
definition, the solution of the unperturbed Raychauduri
equation—Eq. (38) with Tab ¼ 0—the above equation
reduces at first order to

lðθ1Þ þ θ0θ1 ¼ −8πδTablalb: ð40Þ

The last elements we need before starting the proof of the
first law are the following: first notice from Eq. (19) that, on
the horizon, our MCKF ξ is parallel to l, namely

ξ ¼̂ αl; ð41Þ

with α ¼ ðv2 − r2HÞ/ðr2O − r2HÞ. Substituting the above
equation into definition (27), one can show that

κ ¼̂ lðαÞ ¼ ∂vα: ð42Þ

Now we are ready to prove the first law of light cone
thermodynamics. We consider a generic perturbation δM of
conformally invariant energy defined by (32). Since this
quantity is conserved, we can choose the Cauchy surface to
integrate over in the more convenient way. For our
purposes, we choose the union of the future horizon Hþ

with the piece of Iþ contained in Region II, the latter being
Σ∞ ≡ II ∩ Iþ. Equation (32) therefore becomes

4See Subsection IV B for a discussion on the meaning of such
a conserved quantity.

5One may wonder whether l is still an affinely parametrized
generator of the horizon in the perturbed spacetime. This would
be the case if the l ¼ du continues to be a null one-form for the
metric gab ¼ ηab þ δgab. Using the gauge symmetry of linearized
gravity δg0ab ¼ δgab þ 2∇ð0Þ

ða vbÞ (for a vector field va), the
condition gabduadub ¼ 0 is equivalent to δguu þ lðl · vÞ ¼ 0,
which can be solved for the gauge parameter v.
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δM ¼
Z
Hþ

δTabξ
adΣb

0 þ
Z
Σ∞

δTabξ
adΣa

∞

¼
Z
Hþ

αδTablalbdS0dvþ δM∞

¼ −
1

8π

Z
Hþ

αð∂vðθ1Þ þ θ0θ1ÞdS0dvþ δM∞

¼ −
1

8π

Z
Hþ

αð∂vðθ1ÞdS0 þ ∂vðdS0Þθ1Þdvþ δM∞

¼ −
1

8π

�I
HþðvÞ

αθ1dS0
���∞
vþ

−
Z
Hþ

κθ1dS0dv

�
þ δM∞

¼ κSG
8π

Z
Hþ

κ

κSG
θ1dS0dvþ δM∞ ð43Þ

To go from the first to the second line, we have used the
fact that the unperturbed surface element of the horizon is
given by dΣa

0 ¼ ladS0dv, the fact that we defined the
energy flux at infinity as

δM∞ ≡
Z
Σ∞

δTabξ
adΣb

∞; ð44Þ

and the proportionality between ξ and l, Eq. (41). The
third line follows from the perturbed Raychauduri equa-
tion (40). Using the definition of θ0 (34) we obtain the
fourth line. Integrating by parts and using (42) leads to
line five. The boundary term vanishes from the fact that
αðrHÞ ¼ 0, i.e. ξa ¼ 0 at the bifurcate surface, and that
we choose initial condition at infinity in the usual
teleological manner [28], namely θ1ð∞Þ ¼ 0.
We define the conformal area change δA of the

horizon as

δA≡
Z
Hþ

κ

κSG
θ1dS0dv ¼ 8π

κSG

Z
Hþ

δTabξ
adΣb; ð45Þ

in terms of which the first law follows

δM ¼ κSG
8π

δAþ δM∞: ð46Þ

Some remarks are in order concerning the interpretation
of Eqs. (45) and (46):
First notice that the definition of δA reduces to the

standard expression when ξ is a Killing field. Indeed, in that
case κ ¼ κSG and the unperturbed area of the horizon is
constant, i.e. θ0 ¼ 0. From the definition (37), (45) is
therefore the change in area of the Killing horizon.
Now we argue that, in a suitable sense, (45) retains the

usual interpretation in the case of the expanding (θ0 ≠ 0)
conformal Killing horizon associated to a MKCF when
perturbed with conformal invariant matter. Under such
circumstances, it can be verified that all the quantities
appearing in the first law (46) are conformal invariant; this
follows directly from the conformal invariance of κSG (see
footnote 1), and that of the flux density δTabξ

adΣb when

conformal matter is considered.6 Therefore, δA is confor-
mally invariant and this is the key for its geometric
interpretation. To see this one can conformally map
Minkowski spacetime to a new spacetime gab ¼ Ω2ηab
where ξ becomes a bonafide Killing vector field. Under
such conformal transformation κ → κSG and θ0 → 0, and
thus the conformal invariant quantity δA acquires the
standard meaning of horizon area change, thus justifying
its name. We show an explicit realization of such conformal
map in Appendix C.
Finally, as ξ diverges at Iþ one might be worried that

δM∞ might be divergent. However, for massless fields the
peeling properties of Tab are just the right ones for δM∞ to
be convergent. Indeed this follows from the fact that

Tuu ¼
T0
uu

v2
þOðv−3Þ Tuv ¼

T0
uv

v4
þOðv−5Þ;

and the form of ξ given in (19). For a massless scalar field
this is shown in [16]; for Maxwell fields this can be seen in
[33]. All this is expected from the fact that the current (30)
is conserved.

C. The second law

The quantity δA is strictly positive in the context of
first order perturbations of Minkowski spacetimes. This
follows directly from the first law and the assumption
that the conformal matter satisfies the energy condition
Tablalb ≥ 0. It is the standard manifestation of the
attractive nature of gravity in its linearized form.
Needless is to say that this version of the second law is
somewhat trivial in comparison with the very general area
theorem for black hole [2], as well as generic Killing [34],
horizons.

D. The third law

In our context the third law is valid in a very concrete and
strict fashion. In the limit of extremality, rH → 0, the
surface gravity κSG → 0 and, the analogue of the entropy,
the area A, goes to zero as well. This version of the third
law is the analogue of the statement that at zero temperature
the entropy vanishes, which is only true for systems
with nondegenerate ground states. No dynamical process
version of the third law appears to make sense in our
context. This might resonate at first sight with the statement
[7] that extremal BHs must have vanishing entropy, but the
similarity is only in appearance as the area of the bifurcate
sphere remains nonvanishing in the BH case.

6This a consequence of the fact that under a transformation
g0ab ¼ Ω2gab the energy momentum tensor of conformally
invariant matter δTab transforms as δT 0

ab ¼ Ω−2δTab [16], and
the volume element transforms as dΣ0a ¼ Ω2dΣa, see Eq. (63).
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IV. QUANTUM EFFECTS: “HAWKING
RADIATION” AND CONFORMAL

TEMPERATURE

When the laws of black hole mechanics where discov-
ered, they were thought as a mere analogy with the one of
thermodynamics. It is only after Hawking’s discovery of
semiclassical radiation [4,5] that they assumed a proper
status of laws of black hole thermodynamics. In the
previous Section, we established the equivalent of the
early analogy for the case of light cones in Minkowski
spacetime and their gravitational perturbation. In what
follows, we show that, also in this case, a semiclassical
computation can be performed to give a thermodynamical
meaning to those laws. In a suitable sense, radial MCKFs
can be assigned a temperature

T ¼ κSG
2π

: ð47Þ

Thus the first law (46) becomes

δM ¼ TδSþ δM∞: ð48Þ
with

T ¼ κSG
2π

and δS ¼ δA
4
; ð49Þ

exactly as for stationary black holes.
To do so, let us start by noticing that for each region

Minkowski spacetime is divided into by our radial MCKF
ξ, there exists a coordinate transformation ðt; r; ϑ;φÞ →
ðτ; ρ; ϑ;φÞ adapted to the MCKF in the sense that
ξðτÞ ¼ −1. The explicit maps are written in
Appendix A. Here we report the one for the region of
interest, namely Region II. It reads [35]

t ¼
ffiffiffiffi
Δ

p

2a
sinhðτ ffiffiffiffi

Δ
p Þ

coshðρ ffiffiffiffi
Δ

p Þ − coshðτ ffiffiffiffi
Δ

p Þ

r ¼
ffiffiffiffi
Δ

p

2a
sinhðρ ffiffiffiffi

Δ
p Þ

coshðρ ffiffiffiffi
Δ

p Þ − coshðτ ffiffiffiffi
Δ

p Þ ; ð50Þ

with 0 ≤ ρ < þ∞ and jτj < ρ. Defining the null coordi-
nates v̄ ¼ τ þ ρ and ū ¼ τ − ρ, the following relation with
Minkowskian u and v is valid [36]:

v ¼ tþ r ¼ −
ffiffiffiffi
Δ

p

2a
coth

ū
ffiffiffiffi
Δ

p

2

u ¼ t − r ¼ −
ffiffiffiffi
Δ

p

2a
coth

v̄
ffiffiffiffi
Δ

p

2
; ð51Þ

where, given the above mentioned restrictions on the
coordinate, we have ū ∈ ð−∞; 0Þ and v̄ ∈ ð0;þ∞Þ. The
Minkowski metric (7) becomes

ds2 ¼ Ω2ð−dτ2 þ dρ2 þ Δ−1sinh2ðρ
ffiffiffiffi
Δ

p
ÞdS2Þ ð52Þ

where the conformal factor takes the value

Ω ¼ Δ/2a
coshðρ ffiffiffiffi

Δ
p Þ − coshðτ ffiffiffiffi

Δ
p Þ : ð53Þ

As anticipated, the metric depends on the coordinate τ only
through the conformal factor. The vector ∂τ, therefore, is a
conformal Killing field for the Minkowski spacetime which
can be shown to coincide with Eq. (19). Explicitly

ξa∂a ¼ ∂τ ¼
�
av2 −

Δ
4a

�
∂v þ

�
au2 −

Δ
4a

�
∂u

¼ ðav2 þ cÞ∂v þ ðau2 þ cÞ∂u

¼ ðaðt2 þ r2Þ þ cÞ∂t þ 2art∂r: ð54Þ

A. Bogoliubov transformations

Consider now a scalar field ϕ evolving in Minkowski
space. We will define a vacuum state j0i and its corre-
sponding Fock space F using the notion of positive
frequency compatible with the notion of energy entering
the first law Eq. (46). Making more precise what we
anticipated in the first lines of this section, the remarkable
result is that the standard Minkowski vacuum state is seen,
in the Fock space F , as a thermal state at the constant
conformal temperature

T ¼ κSG
2π

: ð55Þ

The term conformal temperature is used because the
state of the radiation looks thermal in terms of time
translation notion associated to the conformal Killing
time. See Sec. IV B for a detailed discussion, where the
relationship between this notion of temperature and the
physical temperature measured by a thermometer is also
addressed.
Let us start by defining a meaningful notion of Fock

space related to our conformally static observers. As for the
discussion in the previous sections, Eq. (46) holds only for
conformally invariant matter models. For concreteness,
here we consider a conformally invariant scalar field ϕ
satisfying the conformally coupled Klein-Gordon (KG)
equation �

□2 −
1

6
R

�
ϕ ¼ 0; ð56Þ

where□ ¼ gab∇a∇b, with∇a the covariant derivative with
respect to a general metric gab, and R the Ricci curvature
scalar. The previous equation is conformally invariant in the
sense that under a conformal transformation gab → g0ab ¼
C2gab solutions of (56) defined in terms of gab are mapped
into solutions of the same equation in terms of g0ab by the
rule ϕ → ϕ0 ¼ C−1ϕ [16,37].
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As Eq. (52) shows, the complement of the diamond in
Minkowski space is conformally related to a region of a
static Friedmann-Robertson-Walker (FRW) spacetime with
negative spatial curvature k ¼ −jΔj; see Appendix B for
further details. The FRWKilling field ∂τ corresponds to the
Minkowski conformal Killing field in Eq. (54). The
strategy is therefore to find a complete set of solutions
UiðxÞ of the KG equation in the static FRW spacetime, to
deduce the one in our region using conformal invariance;
here i is a generic index labeling the modes. The Klein-
Gordon equation (56) in the FRW spacetime under con-
sideration reads

0 ¼
�
□

2 −
1

6
R

�
UiðxÞ

¼
�

1ffiffiffiffiffiffi−gp ∂μð
ffiffiffiffiffiffi
−g

p ∂μÞ − 1

6
R

�
UiðxÞ

¼
�
−∂2

τ þ
1

sinh2ðρ ffiffiffiffi
Δ

p Þ

�
∂ρsinh2ðρ

ffiffiffiffi
Δ

p
Þ∂ρ

þ Δ
sinϑ

∂ϑ sin ϑ∂ϑ þ
Δ

sin2ϑ
∂2
φ

�
þ Δ

�
UiðxÞ; ð57Þ

where g ¼ det gab and we have used the fact that R ¼ −6Δ.
One can solve the previous equation by the ansatz

Ulm
ω ðxÞ ¼ expð−iωτÞ Rl

↔ωðρÞ
sinhðρ ffiffiffiffi

Δ
p ÞY

lmðϑ;φÞ; ð58Þ

which after substitution in (57) gives

�
∂2
ρ þ ω2 −

lðlþ 1ÞΔ
sinh2ðρ ffiffiffiffi

Δ
p Þ

�
Rl
↔ωðρÞ ¼ 0; ð59Þ

where ↔ denotes the two possible solutions: out-going
modes will be denoted by a right arrow (→) while in-going
modes by a left arrow (←). Notice that we have substituted
the generic index i with the more specific ω, l, and m. A
complete set of solutions to this equation is given in [37].
These modes are positive frequency modes with respect to
the notion of time translation defined by the Killing time τ,
and they are orthonormal with respect to the Klein-Gordon
scalar product, namely

ðUl0m0
↔ω0 ; Ulm

↔ωÞ ¼ −i
Z
Σ
ðUlm

↔ω∂aŪl0m0
↔ω0 − Ūl0m0

↔ω0∂aUlm
↔ωÞdΣa

¼ δ↔δll
0
δmm0

δðω;ω0Þ; ð60Þ

where δ↔ means that outgoing modes are orthogonal to
ingoing ones. As said at the beginning of the subsection,
due to conformal invariance the set of modes7 defined by

ulm↔ωðxÞ ¼ Ω−1ðxÞUlm
↔ωðxÞ

¼ Ω−1ðxÞe−iωτ Rl
↔ωðρÞ

sinhðρ ffiffiffiffi
Δ

p ÞY
lmðϑ;φÞ ð61Þ

withΩðxÞ given by Eq. (53), are a complete set of solutions
of the Klein-Gordon equation in our region of interest,
the complement of the diamond in Minkowski space.
Moreover, they satisfy

ðul0m0
↔ω0 ; ulm↔ωÞ ¼ ðΩ−1Ulm

↔ω;Ω−1Ul0m0
↔ω0 Þ

¼ −i
Z
Σ
½Ω−1Ulm

↔ω∂aðΩ−1Ūl0m0
↔ω0 Þ

−Ω−1Ūl0m0
↔ω0∂aðΩ−1Ulm

↔ωÞ�dΣa
II

¼ −i
Z
Σ
½Ω−2ðUlm

↔ω∂aŪl0m0
↔ω0 − Ūl0m0

↔ω0∂aUlm
↔ωÞ

þΩ−1Ūl0m0
↔ω0Ulm

↔ωð∂aΩ−1 − ∂aΩ−1Þ�dΣa
II

¼ −i
Z
Σ
ðUlm

↔ω∂aŪl0m0
↔ω0 − Ūl0m0

↔ω0∂aUlm
↔ωÞdΣa

¼ ðUl0m0
↔ω0 ; Ulm

↔ωÞ: ð62Þ

Here Σ is a Cauchy surface shared by the two conformally
related spacetimes; dΣa and dΣa

II are the volume elements
of Σ in the static FRW spacetime and in the complement of
the diamond respectively. The above result is given by the
fact that the two volume elements are related by8

dΣa
II ¼ naII

ffiffiffiffiffiffiffiffiffi
−hII

p
d3y ¼ Ω2na

ffiffiffi
h

p
d3y ¼ Ω2dΣa; ð63Þ

where na is the normal to Σ, h is the determinant of the
intrinsic metric defining Σ it self, and yi are the coordinate
describing the latter. The subscript II indicates objects
defined in Region II of Minkowski spacetime; the same
objects without any subscript are in FRW. Equation (62)
shows that the modes ulmω provide a complete set of
solutions inducing a positive definite scalar product,
namely everything one needs to perform the standard
quantization procedure. Hence, one can write the field
operator in Region II of Minkowski spacetime as

7Such modes are the “sphere modes” considered in [35].

8This is generically true for any hypersurface Σ shared between
two conformally related spacetimes g0ab ¼ C2gab. Indeed, if na is
the unit normal to Σ with respect to gab, then n0a ¼ C−1na is the
unit normal to Σ with respect to g0ab. The 3-dimensional volume
elements, at the same time, are related by

ffiffiffiffi
h0

p
¼ C3

ffiffiffi
h

p
. It follows

that dΣ0a ¼ C2dΣa.
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ϕðxÞ¼
Z þ∞

0

dω
X
lm

ðalm←ωulm←ωðxÞþalm†
←ω ūlm←ωðxÞÞ

þðalm→ωulm→ωðxÞþalm†
→ω ūlm→ωðxÞÞ

¼
Z þ∞

0

dωΩ−1ðxÞ
�X

lm

ðalm←ωUlm
←ωðxÞþalm†

←ω Ulm
←ωðxÞ�Þ

þðalm→ωUlm
→ωðxÞþalm†

→ω Ūlm
→ωðxÞÞ

�
; ð64Þ

where alm†
↔ω and alm↔ω denote the creation and annihilation

operators in the corresponding modes. The vacuum state
j0i defined by alm↔ωj0i ¼ 0 is usually called the conformal
vacuum [37]. This state is highly pathological from the
perspective of inertial observers. Indeed, it has vanishing
entanglement with the interior of the diamond and would
lead to a divergent energy momentum tensor at Hþ. More
precisely, this is not a Hadamard state. The same thing
happens when one considers the Rindler vacuum defined
by the boost Killing field.
Let us notice now that Eq. (59) is simplified in the limit

ρ → þ∞. This limit corresponds, in Region II and for
τ > 0, to the limit v̄ → þ∞ or more clearly u → u− with v
free to span the whole range ½vþ;þ∞Þ. That is to say a
“near horizon limit”.9 In this limit the last term of Eq. (59),
the one dependent on l, can be neglected. Solutions RðρÞ,
therefore, do not depend on l in such near horizon
approximation and are simply given by expð�iωρÞ. The
modes (61), consequently, behave as

ulm←ωðxÞ þ ulm→ωðxÞ ≈
1ffiffiffiffi
ω

p e−iωū þ e−iωv̄

Ω sinhðρ ffiffiffiffi
Δ

p ÞY
lmðϑ;φÞ

¼
ffiffiffiffi
Δ

pffiffiffiffi
ω

p e−iωū þ e−iωv̄

r
Ylmðϑ;φÞ; ð65Þ

where r is the Minkowskian radial coordinate and we have
used definition (50).
Clearly, the solution of the Klein-Gordon equation and

the consequent quantization of the field can be carried out
also in the whole Minkowski spacetime by considering
inertial r ¼ const observers. This defines positive fre-
quency modes uMω with respect to the Killing field ∂t, as
well as a decomposition of the field as

ϕðxÞ ¼
Z þ∞

0

dωðblm←ωulmM
←ω ðxÞ þ blm†

←ω ūlmM
←ω ðxÞÞ

þ ðblm→ωulmM
→ω ðxÞ þ blm†

→ω ūlmM
→ω ðxÞÞ: ð66Þ

In the limit r → þ∞ the Minkowskian solutions can be
approximated by

ulmM
←ω ðxÞ þ ulmM

→ω ðxÞ ≈ 1ffiffiffiffi
ω

p e−iωu þ eiωv

r
Ylmðϑ;φÞ: ð67Þ

The standard Minkowski vacuum state j0iM of the Fock
space is defined by blm↔ωj0iM ¼ 0. The Minkowski modes
are also orthonormal with respect to the Klein-Gordon
scalar product, namely

ðulmM
↔ω ; ul

0m0M
↔ω0 Þ ¼ δ↔δll0δmm0δðω;ω0Þ; ð68Þ

which is immediately verified for outgoing and infalling
modes by integrating on Iþ and I– solutions in the form
(67). The two different vacua are in general nonequivalent
and one vacuum state can be a highly exited state in the
Fock space defined by the other, and viceversa. This idea
is formalized by introducing the so-called Bogoliubov
transformations between the two complete sets of modes
ulm↔ω and ulmM

↔ω . Briefly—for more details see for example
[16]—since the two sets are complete, one can expand one
set in terms of the other. From now on we concentrate on
the outgoing modes (→). We get

ulm→ω ¼
Z

dω0ðαlmω
l0m0ω0ul

0m0M
→ω0 þ βlmω

l0m0ω0 ūl
0m0M

→ω0 Þ; ð69Þ

where the αlmω
l0m0ω0 and βlmω

l0m0ω0 are called Bogoliubov coef-
ficients. Taking into account the orthonormality conditions
(62)–(68) we get

αlmω
l0m0ω0 ¼ ðul0m0M

→ω0 ; ulm→ωÞ; βlmω
l0m0ω0 ¼ −ðūl0m0M

→ω0 ; ulm→ωÞ;
ð70Þ

and

X
l0∈N

Xl0

m0¼−l0

Z
dω0ðαlmω

l0m0ω0αl
0m0ω0

l00m00ω00 −βlmω
l0m0ω0 β̄l

0m0ω0
l00m00ω00 Þ¼δðω;ω00Þ:

ð71Þ

Moreover, defining the particle number operator for the
mode ðl; m;ωÞ in the ulm→ω-expansion in the usual form
Nlm

→ω ¼ alm†
→ω alm→ω, its expectation value on the Minkowski

vacuum can generically be written as

h0jNlm
→ωj0i ¼

X
l0∈N

Xl0
m0¼−l0

Z
dω0jβlmω

l0m0ω0 j2 ð72Þ

This object is what we are mainly interested in. It tells us
the expectation value of the number of excitations defined
with respect to the conformal vacuum j0i that are present in
the Minkowski quantum vacuum j0iM. The remarkable fact
is that the computation of such object mimics exactly the
one for the Hawking’s particle production by a collapsing
black hole.

9In the bottom part of our region, τ < 0, this limit corresponds
to v → vþ, while u free to vary. That is to say a near past horizon
limit.
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Let us choose J þ as the hypersurface over which we
perform the integral for the computation of scalar products
at least for the outgoing modes. J − would be the choice for
the ingoing ones. In order to be able to use the near horizon
approximate solutions (65), we introduce a complete set of
outgoing wave packets on J þ localized in retarded time ū
and near the horizon ū → þ∞ [5]; see also [38].
Concretely,

ulm;jn ¼ 1ffiffiffi
ϵ

p
Z ðjþ1Þϵ

jϵ
dωe2πiωn/ϵulm→ω ð73Þ

with integers j ≥ 0, n, and where

ulm→ω ¼
ffiffiffiffi
Δ

pffiffiffiffi
ω

p e−iωū

r
Ylmðϑ;φÞ: ð74Þ

The wave packets ulm;jn are peaked around ū ≃ 2πn/ϵ with
width 2π/ϵ. When ϵ is small, the wave packet is narrowly
peaked about ω ≃ ωj ¼ jϵ and localized near the horizon.
The facts that, due to spherical symmetry, the modes (65)
and (67) have exactly the same angular dependence,
together with the fact that, in the region where the wave
packets are picked, the behavior in ū and u is independent
of l, tells us that particle creation will be the same in all
angular modes.
The surface element of J þ is given by dΣa ¼

r2dudS2δau. The Bogoliubov coefficients of interest can
therefore we written as

βlm;jn
l0m0ω0 ¼ −ðūl0m0M

→ω0 ; ulm;jnÞ

¼ i
Z
J þ

dudS2r2ðulm;jn∂uul
0m0M

→ω0 − ul
0m0M

→ω0 ∂uulm;jnÞ:

ð75Þ

Since the wave packets vanish for u → −∞ and for u > u−,
we can integrate by part finding

βl;m;jn
l0m0ω0 ¼ 2i

Z
u−

−∞
dudS2r2ulm;jn∂uul

0m0M
→ω0 : ð76Þ

We now need to insert in the equation the explicit form of
the modes (73)–(74) and the outgoing part of the
Minkowskian ones (67). However, before doing that, let
us recall that we are working and are mainly interested in
the near horizon limit ū → þ∞. In this limit, the inverse of
the relation (51) between the conformal retarded time ū and
the Minkowski u simplifies into

ū ¼ 2ffiffiffiffi
Δ

p arcoth

�
−

u
u−

�
≃

1ffiffiffiffi
Δ

p log

�
u − u−
2u−

�
: ð77Þ

So we can write

βl;m;jn
l0m0ω0 ¼

ffiffiffiffi
Δ

p
δl;l0δm;m0

2π
ffiffiffi
ϵ

p
Z

u−

−∞
du

Z
ϵ

jϵ
dωe2πiωn/ϵ

×

ffiffiffiffiffi
ω0

ω

r
e−iω

1ffiffi
Δ

p logðu−u−
2u−

Þ−iω0u: ð78Þ

Defining now x ¼ u− − u we get

βl;m;jn
l0m0ω0 ¼

ffiffiffiffi
Δ

p
δl;l0δm;m0

2π
ffiffiffi
ϵ

p e−iω
0u−

Z þ∞

0

dx
Z

ϵ

jϵ
dωe2πiωn/ϵ

×

ffiffiffiffiffi
ω0

ω

r
e−iω

1ffiffi
Δ

p logð x
2u−

Þþiω0x: ð79Þ

The integral over the frequency can be performed consid-
ering that ω varies in a small interval around ωj

βl;m;jn
l0m0ω0 ¼

ffiffiffiffi
Δ

p
δl;l0δm;m0

π
ffiffiffi
ϵ

p e−iω
0u−

×

ffiffiffiffiffi
ω0

ωj

s Z þ∞

0

dxeþiω0x sinðϵL/2Þ
L

eiLωj

¼
ffiffiffiffi
Δ

p
δl;l0δm;m0

π
ffiffiffi
ϵ

p e−iω
0u−

ffiffiffiffiffi
ω0

ωj

s
Iðω0Þ; ð80Þ

where we have defined

LðxÞ ¼ 2πn
ϵ

−
1ffiffiffiffi
Δ

p log

�
x

2u−

�
ð81Þ

and Iðω0Þ as the integral over x. The computation of αjn;ω0

gives a similar result

αl;m;jn
l0m0ω0 ¼

ffiffiffiffi
Δ

p
δl;l0δm;m0

π
ffiffiffi
ϵ

p eiω
0u−

×

ffiffiffiffiffi
ω0

ωj

s Z þ∞

0

dxe−iω
0x sinðϵL/2Þ

L
eiLωj

¼
ffiffiffiffi
Δ

p
δl;l0δm;m0

π
ffiffiffi
ϵ

p eiω
0u−

ffiffiffiffiffi
ω0

ωj

s
Ið−ω0Þ: ð82Þ

Apart from different constants, these objects coincide with
the ones defined in [38], and therefore can be solved using
exactly the same techniques and procedure. We refer to the
book for details and we give here only the final result.
The important result is that the relation between αl;m;jn

l0m0ω0

and βl;m;jn
l0m0ω0 comes out to be

jβl;m;jn
l0m0ω0 j ¼ e−

πωjffiffi
Δ

p jαl;m;jn
l0m0ω0 j: ð83Þ

Inserting this into Eq. (71), one can write
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−
�
1 − exp

�
2πωjffiffiffiffi

Δ
p

��X
l0∈N

Xl0
m0¼−l0

Z þ∞

0

dω0jβl;m;jn
l0m0ω0 j2 ¼ 1

ð84Þ

and therefore

j0iNlm
ωj
j0i ¼ 1

expð2πωjffiffiffi
Δ

p Þ − 1
: ð85Þ

The above expression coincides with the Planck distribu-
tion of thermal radiation at the temperature

T ¼
ffiffiffiffi
Δ

p

2π
: ð86Þ

To relate this result to the first law, Eq. (46), it is enough to
notice that the explicit value of the conserved quantity κSG
in our case is

κSG ¼
ffiffiffiffi
Δ

p
: ð87Þ

We have shown what we anticipated at the very beginning
of this section: the light cone u ¼ u− is seen as a
(conformal) horizon with an associated temperature T
given by expression (47).
The first law can therefore be rewritten as

δM ¼ TδSþ δM∞: ð88Þ

with

T ¼ κSG
2π

and δS ¼ δA
4
: ð89Þ

The laws of light cone thermodynamics are now not simply
a mere analogy, but they acquire a precise semiclassical
thermodynamical sense, which is better discussed in the
following subsection. This is, to our knowledge, the first
precise implementation of the idea [25,26] that the quantity
κSG should play the role of temperature for conformal
Killing horizons.

B. On the meaning of conformal energy
and temperature

In asymptotically flat stationary spacetimes, the time
translational Killing field can be normalized at infinity in
order to give the analogue of (32) the physical interpre-
tation of energy as seen from infinity. On the other hand in
our case the vector field ξ is normalized only on the
observer sphere r ¼ rO and t ¼ 0. Thus M has not the
usual physical meaning for any observer in Minkowski
spacetime. Nevertheless, for conformally invariant matter
the mass M as defined in (32) is conformally invariant (see
footnote 6). Using (52), and the fact that ξ is actually a

normalized Killing field of the static FRW metric, one can
interpret M as energy in the usual physical manner in that
spacetime. This interpretation is compatible with the notion
of frequency we used to compute the Planckian distribution
(85). Indeed, the frequency ω is the one that would be
measured by an observer moving along the Killing field ∂τ

in the static FRW space. For such notion of frequencyω, the
energy quanta ε ¼ ℏω correspond to the same physical
notion of energy that defines M.
Such interpretation carries over to its thermodynamical

conjugate: the temperature. That is the reason why we call
conformal temperature the temperature appearing in the
first law. It carries the physical notion of temperature,
namely the one measured by thermometers, only for
observers in the FRW spacetime where ξ is an actual time
translational Killing field. In this way both energy and
temperature have their usual interpretation in a spacetime
that is conformally related to Minkowski.

C. The Hartle-Hawking-like state

Let us now define a new radial coordinate

R ¼
ffiffiffiffi
Δ

p

a
expð−ρ

ffiffiffiffi
Δ

p
Þ: ð90Þ

The near horizon limit ρ → þ∞ corresponds now to
R → 0. In these new coordinates, the metric (52) can be
expanded around R ¼ 0 finding

ds2E ¼ −R2dð
ffiffiffiffi
Δ

p
τÞ2 þ dR2 þ r2HdS

2

þOðRr−1H dR2; RrHdS2Þ; ð91Þ

where OðRr−1H dR2; RrHdS2Þ denotes subleading terms of
each component of the metric that do not change the nature
of the apparent singularity present at R ¼ 0. Notice that the
leading order of the local metric and the topological
structure at the point r ¼ rH are exactly the same as the
one in the Reissner-Nordstrom metric, Eq. (3).
Moreover, the metric (52) can be continued analytically

to imaginary conformal Killing time by sending τ → −iτE.
As for the case of static black holes [16], the result is a real
Euclidean metric, explicitly given by

ds2E ¼ Ω2
Eðdτ2E þ dρ2 þ Δ−1sinh2ðρ

ffiffiffiffi
Δ

p
ÞdS2Þ ð92Þ

with

ΩE ¼ Δ/2a
coshðρ ffiffiffiffi

Δ
p Þ − cosðτE

ffiffiffiffi
Δ

p Þ : ð93Þ

Defining again the new coordinate R and carrying out the
limit to R ¼ 0, which corresponds to the Euclidean
analogue of the horizon, we find the Euclidean version
of (91)
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ds2E ¼ R2dð
ffiffiffiffi
Δ

p
τEÞ2 þ dR2 þ r2HdS

2

þOðRr−1H dR2; RrHdS2Þ: ð94Þ

The coordinate singularity at R ¼ 0 can be resolved by
defining new coordinates X ¼ R cosð ffiffiffiffi

Δ
p

τEÞ and Y ¼
R sinð ffiffiffiffi

Δ
p

τEÞ. In order to avoid conical singularities one
must identify τE with a periodic coordinate such that

0 ≤ τE
ffiffiffiffi
Δ

p
≤ 2π: ð95Þ

This removes the apparent singularity by replacing the
first two terms in the previous metric by the regular
dX2 þ dY2 transversal metric. This periodicity in time is
what is used in the black hole case to suggest the existence
of a state—known as the Hartle-Hawking state—of
thermal equilibrium of any quantum field at a temperature
given by

T ¼ ℏ

ffiffiffiffi
Δ

p

2π
; ð96Þ

which coincides with the one found in the previous
section, Eq. (86). This tells us that the Minkowski vacuum
can be regarded as the Hartle-Hawking type of vacuum of
Region II for conformally invariant theories.
Indeed, instead of using the near horizon approximation

(and wave packets peaked there) in the previous section,
one could in principle compute the Bogoliubov coeffi-
cients exactly between the Minkowski and conformal Fock
spaces. This should lead to the conclusion that Minkowski
vacuum is everywhere a thermal state with temperature
(96), as suggested by the previous analysis. As such
computation might be rather involved and in view of
keeping the presentation as simple as possible, one can
find additional evidence for this by computing the expect-
ation value of the normal ordered stress energy “tensor”
∶Tab∶. The quotation marks on the word tensor are because
the object ∶Tab∶ does not transform as a tensor under a
coordinate transformation and cannot be interpreted physi-
cally as real. In fact the physical and covariant energy
momentum tensor has vanishing expectation value in the
Minkowski vacuum [39].
However, ∶Tab∶ can be interpreted as encoding the

particle content of the Minkowski vacuum as seen from the
perspective of the MCKF that are of interest in our analysis.
For conformal fields it can be analytically computed in the
s-wave approximation l ¼ 0 which reduces the calculation
to an effective 2-dimensional system. The 2-dimensional

∶Tð2Þ
ab ∶ can be explicitly evaluated via the Virasoro anomaly

[37,38]. Given two sets of double null coordinates, like the

two we have ðu; vÞ and ðū; v̄Þ, ∶Tð2Þ
ab ∶ transforms as

∶Tð2Þ
ū ū∶ ¼

�
du
dū

�
2

∶Tð2Þ
uu ∶ −

ℏ
24π

fu; ūg

∶Tð2Þ
v̄ v̄∶ ¼

�
dv
dv̄

�
2

∶Tð2Þ
uu ∶ −

ℏ
24π

fv; v̄g ð97Þ

where

fx; yg ¼ x
…

̇x
−
3

2

�
ẍ
̇x

�
2

ð98Þ

is the Schwarzian derivative with dot representing d/dy.
It is therefore simple to evaluate the expectation value of
this object on the Minkowski vacuum j0iM in our case.
Since Mh0j∶Tab∶j0iM ¼ 0, we simply have

Mh0j∶Tð2Þ
ū ū∶j0iM ¼ −

ℏ
24π

fu; ūg ¼ ℏΔ
48π

Mh0j∶Tð2Þ
v̄ v̄∶j0iM ¼ −

ℏ
24π

fv; v̄g ¼ ℏΔ
48π

: ð99Þ
The result indicates that the Minkowski state produce a
constant ingoing and outgoing thermal bath at the temper-
ature (86) everywhere in Region II, which is what we
expected from a thermal equilibrium state. The near
horizon approximation in the computation of the previous
section simplifies the relation between the two sets of
double null coordinates making the computation analyti-
cally simpler, but as discussed above, it should give the
same result everywhere in Region II. As mentioned above,
the expectation value of the covariant stress energy tensor
does not coincide with the normal ordered one. The former
is simply vanishing in this case Mh0jTabj0iM ¼ 0.

FIG. 4. Three dimensional representation of the flow of the
conformal Killing field in the Euclidean spacetime R4. The orbits
in this one-dimension-less representation are nonconcentric tori
around the bifurcate sphere r ¼ rH—here represented as a circle.
They degenerate into the tE axis for R ¼ 2rH.
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As a final remark, let us get more insight into the
geometry of the Euclidean continuation (92) by writing the
coordinate transformation to the flat Euclidean coordinates
ðtE; r; ϑ;φÞ covering R4. Defining the angular coordinate
αE ≡ τE

ffiffiffiffi
Δ

p
one finds

tE ¼ R sinðαEÞ
1 − R

2rH
cosðαEÞ þ R2

4r2H

r ¼ rH
1 − R2

4r2H

1 − R
2rH

cosðαEÞ þ R2

4r2H

: ð100Þ

The bifurcate sphere in the Euclidean continuation corre-
sponds to the sphere r ¼ rH at tE ¼ 0. The orbits of theWick
rotated radial conformal Killing field are orbits of the radial
conformal Killing field of R4 with fixed points given by the
Euclidean shining sphere. These orbits correspond, on the
ðtE; rÞ plane, to close loops around the bifurcate sphere,
which degenerate into the r ¼ 0 line (the Euclidean tE-axis)
for R ¼ 2rH; see Fig. 4. The coordinates ðτE; R;ϑ;φÞ
become singular there. The qualitative features of the
Euclidean geometry of the MCKF is just analogous to that
of the stationarityKilling field in the EuclideanRNsolutions.

V. DISCUSSION

We have studied in detail the properties of radial
conformal Killing fields in Minkowski spacetime and
showed that they present in many respects a natural
analogue of black holes in curved spacetimes. The global
properties of radial MCKFs mimic exactly the causal
separation of events in the spacetime of static black holes,
i.e. those in the Reissner-Nordstrom family; see Fig. 1.
Event Killing horizons in the latter are replaced by
conformal Killing horizons in the former. The extremal
limit maintains the correspondence.
Linear perturbations of flatMinkowski spacetime in terms

of conformally invariant matter models, allow us to consider
and prove suitable analogues of the laws of black hole
mechanics. When quantum effects are considered, thermal
properties make the classical mechanical laws amenable to
a suitable thermodynamical interpretation, where entropy
variations are equal to 1/4 of the conformal area changes of
the horizon in Planck units. The near horizon and near
bifurcate surface features of the geometry of the radial
MCKF have the same structure of the stationarity Killing
field for static black holes. The Minkowski vacuum state is
the analogue of the Hartle-Hawking thermal state from the
particle interpretation that is natural to the MCKF.
This work represents another simple setting where the

relationship between thermality, gravity, and geometry is
manifest in the semiclassical framework. It gives a simple
and complete example in which thermal properties analo-
gous to those of black holes are manifest in flat spacetime.
It improves the standard analogy given by the study of

gravity perturbations and quantum field theory of the
Rindler wedge. On a more speculative perspective, we
think that even when the interpretation of temperature,
energy, and area entering the thermodynamical relations is
subtle, this simple example could shed some light into a
more fundamental description of the link between black
hole entropy and (quantum) geometry. But this is some-
thing we will investigate in the future.
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APPENDIX A: COORDINATE
TRANSFORMATIONS

The radial conformal Killing field in Minkowski space-
time ξ naturally divides the space in six regions. For each of
these regions, there exists a coordinate transformation
ðt; r;ϑ;φÞ → ðτ; ρ; ϑ;φÞ adapted to the MCKF in the sense
that ξðτÞ ¼ −1. In this Appendix, we write down such
transformations explicitly.

1. The nonextremal case Δ ≠ 0

Region I (the diamond). The coordinate transformation is
given by [35]

t ¼
ffiffiffiffi
Δ

p

2a
sinhðτ ffiffiffiffi

Δ
p Þ

coshðρ ffiffiffiffi
Δ

p Þ þ coshðτ ffiffiffiffi
Δ

p Þ

r ¼
ffiffiffiffi
Δ

p

2a
sinhðρ ffiffiffiffi

Δ
p Þ

coshðρ ffiffiffiffi
Δ

p Þ þ coshðτ ffiffiffiffi
Δ

p Þ ðA1Þ

with −∞ < τ < þ∞ and 0 < ρ < þ∞.

v ¼ tþ r ¼
ffiffiffiffi
Δ

p

2a
tanh

v̄
ffiffiffiffi
Δ

p

2

u ¼ t − r ¼
ffiffiffiffi
Δ

p

2a
tanh

ū
ffiffiffiffi
Δ

p

2
: ðA2Þ

where we have defined the null coordinates v̄ ¼ τ þ ρ and
ū ¼ τ − ρ. The Minkowski metric (7) in the new coordi-
nates reads

ds2 ¼ Ω2
I ð−dτ2 þ dρ2 þ Δ−1sinh2ðρ

ffiffiffiffi
Δ

p
ÞdS2Þ ðA3Þ

with

ΩI ¼
Δ/2a

coshðρ ffiffiffiffi
Δ

p Þ þ coshðτ ffiffiffiffi
Δ

p Þ : ðA4Þ
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Regions II (the causal complement of the diamond), III and
IV. Region II, III, and IV can be described by the same
coordinate transformation given by [35]

t ¼
ffiffiffiffi
Δ

p

2a
sinhðτ ffiffiffiffi

Δ
p Þ

coshðρ ffiffiffiffi
Δ

p Þ − coshðτ ffiffiffiffi
Δ

p Þ

r ¼
ffiffiffiffi
Δ

p

2a
sinhðρ ffiffiffiffi

Δ
p Þ

coshðρ ffiffiffiffi
Δ

p Þ − coshðτ ffiffiffiffi
Δ

p Þ ; ðA5Þ

with −∞ < τ < þ∞ and 0 ≤ ρ < þ∞. Region II is now
given by the restriction jτj < ρ, Region III by τ > 0 and
τ > ρ, while Region IV by τ < 0 and jτj > ρ. In this case
we have

v ¼ tþ r ¼ −
ffiffiffiffi
Δ

p

2a
coth

ū
ffiffiffiffi
Δ

p

2

u ¼ t − r ¼ −
ffiffiffiffi
Δ

p

2a
coth

v̄
ffiffiffiffi
Δ

p

2
: ðA6Þ

The metric (7) is now

ds2 ¼ Ω2
IIð−dτ2 þ dρ2 þ Δ−1sinh2ðρ

ffiffiffiffi
Δ

p
ÞdS2Þ ðA7Þ

with

ΩII ¼
Δ/2a

coshðρ ffiffiffiffi
Δ

p Þ − coshðτ ffiffiffiffi
Δ

p Þ : ðA8Þ

For Region II, given the above mentioned restrictions on
the coordinate, we have ū ∈ ð−∞; 0Þ and v̄ ∈ ð0;þ∞Þ.
This is the transformation used in Sec. IV.
Region V. In the upper of the two regions where

ξ is spacelike, the coordinate transformation can be found
to be

t ¼
ffiffiffiffi
Δ

p

2a
coshðτ ffiffiffiffi

Δ
p Þ

sinhðρ ffiffiffiffi
Δ

p Þ þ sinhðτ ffiffiffiffi
Δ

p Þ

r ¼
ffiffiffiffi
Δ

p

2a
coshðρ ffiffiffiffi

Δ
p Þ

sinhðρ ffiffiffiffi
Δ

p Þ þ sinhðτ ffiffiffiffi
Δ

p Þ ðA9Þ

with 0 < τ < þ∞ and 0 < ρ < þ∞. The double null
coordinates are here given by

v ¼ tþ r ¼
ffiffiffiffi
Δ

p

2a
coth

v̄
ffiffiffiffi
Δ

p

2

u ¼ t − r ¼
ffiffiffiffi
Δ

p

2a
tanh

ū
ffiffiffiffi
Δ

p

2
: ðA10Þ

Region VI. Finally, for Region VI we have

t ¼
ffiffiffiffi
Δ

p

2a
coshðτ ffiffiffiffi

Δ
p Þ

sinhðρ ffiffiffiffi
Δ

p Þ − sinhðτ ffiffiffiffi
Δ

p Þ

r ¼
ffiffiffiffi
Δ

p

2a
coshðρ ffiffiffiffi

Δ
p Þ

sinhðρ ffiffiffiffi
Δ

p Þ − sinhðτ ffiffiffiffi
Δ

p Þ ðA11Þ

with −∞ < τ < 0 and 0 < ρ < þ∞. This gives

v ¼ tþ r ¼ −
ffiffiffiffi
Δ

p

2a
tanh

ū
ffiffiffiffi
Δ

p

2

u ¼ t − r ¼ −
ffiffiffiffi
Δ

p

2a
coth

v̄
ffiffiffiffi
Δ

p

2
: ðA12Þ

In both last two cases, the metric (7) becomes

ds2 ¼ Ω2
V/VIð−dτ2 þ dρ2 þ Δ−1cosh2ðρ

ffiffiffiffi
Δ

p
ÞdS2Þ ðA13Þ

where, for Region V

ΩV ¼ Δ/2a
sinhðρ ffiffiffiffi

Δ
p Þ þ sinhðτ ffiffiffiffi

Δ
p Þ ; ðA14Þ

and for Region VI

ΩVI ¼
Δ/2a

sinhðρ ffiffiffiffi
Δ

p Þ − sinhðτ ffiffiffiffi
Δ

p Þ : ðA15Þ

2. The extremal case Δ= 0

In the Δ ¼ 0 case, we have only Region II, III, and IV
and ξ is everywhere timelike. The coordinate transforma-
tion in this extremal case can be obtained from the
previous one by taking the limit Δ → 0 in all expressions.
The result is

t ¼ τ

aðτ2 − ρ2Þ
r ¼ ρ

aðρ2 − τ2Þ ðA16Þ

with −∞ < τ < þ∞ and 0 ≤ ρ < þ∞. Region II is now
given by the restriction jτj < ρ, Region III by τ > 0 and
τ > ρ, while Region IV by τ < 0 and jτj > ρ. In this case
we have

v ¼ tþ r ¼ 1

av̄

u ¼ t − r ¼ 1

aū
; ðA17Þ
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where, given the above mentioned restrictions on the
coordinate, we have ū ∈ ð−∞; 0Þ and v̄ ∈ ð0;þ∞Þ. The
Minkowski metric in the new coordinates reads

ds2 ¼ Ω2
extð−dτ2 þ dρ2 þ ρ2dS2Þ ðA18Þ

with

Ωext ¼
ρ

aðρ2 − τ2Þ : ðA19Þ

This coincides with Eq. (12) in [22].

3. Near bifurcate sphere approximation

In the nonextremal case, the bifurcate sphere is located
at ρ → þ∞ and τ ¼ 0. Equation (50) can therefore be
expanded in the approximation ρ ≫ 1/

ffiffiffiffi
Δ

p
. This gives a

Rindler-like coordinate transformation

t ∼ −
ffiffiffi
c
a

r
e−ρ

ffiffiffi
Δ

p
coshðτ

ffiffiffiffi
Δ

p
Þ

r ∼
ffiffiffi
c
a

r
e−ρ

ffiffiffi
Δ

p
sinhðτ

ffiffiffiffi
Δ

p
Þ ðA20Þ

with the would-be proper distance given by D ¼ffiffiffiffiffiffiffi
c/a

p
e−ρ

ffiffiffi
Δ

p
. The above approximation is inconsistent in

the case Δ ¼ 0.

APPENDIX B: STATIC FRW SPACETIME
AND REGION II

The coordinate transformations above show that the
Regions I to IV in Minkowski spacetime are conformally
related to pieces of a static FRW spacetime with negative
spatial curvature k ¼ −jΔj. This fact was used in the
computation of Bogoliubov coefficients in Sec. IV. In this
Appendix we give some more details on the geometry
of static FRW spacetime and its relation with Region II.
The static FRW spacetime is a solution to the Einstein
equation with zero cosmological constant and the
energy stress tensor of a perfect fluid satisfying the state
equation [2]

μ ¼ −3p: ðB1Þ

Here μ and p are the energy density and pressure of the
fluid respectively. The metric takes the form

ds2 ¼ −dτ2 þ dρ2 þ Δ−1sinh2ðρ
ffiffiffiffi
Δ

p
ÞdS2; ðB2Þ

with −∞ < τ < þ∞ and 0 ≤ ρ < þ∞. As shown for
example in [2,40], there exists a coordinate transformation
that conformally maps this space into the Einstein static
universe. This transformation allows to draw the Penrose
diagram for the static FRW spacetime, which results in a

diamond shaped diagram depicted in Fig. 5.10 The structure
is very similar to the one of Minkowski, with past and
future null infinities. There is however one main difference:
here spacial infinity i0 is a sphere and not a point as in the
Minkowski case.
Region II is (conformally) given by the restriction

jτj < ρ. This corresponds to the region outside the light
cone shining from the origin; this is the shaded region in
Fig. 5. From Eq. (A6), Minkowski future null infinity v →
þ∞ is mapped into the future light cone ū ¼ 0.
Analogously, Minkowski past null infinity u → −∞ is
given by the past light cone v̄ ¼ 0. In the same way, the
future horizon Hþ located at u ¼ u− is given by v̄ → þ∞,
namely the piece of FRW J þ given by ū < 0. The past
horizon v ¼ vþ is, in a similar way, mapped into the piece
of FRW J − given by v̄ > 0. Finally, Minkowskian spacial
infinite i0M is mapped into the point given by the origin,
while the bifurcate sphere r ¼ rH at t ¼ 0 is given by the
FRW spacial infinity i0. In Fig. 5, the flow lines of the
Killing field ∂τ, namely ρ ¼ const. surfaces are also
plotted. From there, the behavior in Region II of the

FIG. 5. The Penrose diagram for the static FRW spacetime of
Eq. (B2). The shaded region is the one conformally related to
Region II in Minkowski spacetime. Its boundaries are in
correspondence with pieces of Minkowskian future and past null
infinities J �

M, as well as with the bifurcate conformal Killing
horizonHþ ∪ H−. The light grey hyperbolas are radial flow lines
of the field ∂τ, or in another words ρ ¼ const lines.

10In the cited Ref. [2,40], however, they consider the nonstatic
FRW spacetime with zero cosmological constant Λ ¼ 0 and zero
pressure p ¼ 0. The resulting Penrose diagram is therefore
slightly different, being only the upper triangle of the whole
diamond of Fig. 5, with a “big bang singularity” for τ ¼ 0.
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conformal Killing field ξ depicted in Fig. 2 becomes clear.
The flow lines of ξ start their life on J − to end on J þ.
The above discussion shows also that the complete set of

solutions (65) to the Klein-Gordon equation (56) is a good
complete set of solutions also in our region of interest.
The set considered, indeed, is regular everywhere, at the
origin too, where otherwise there could have been a
problem in our setting.

APPENDIX C: ANOTHER CONFORMAL
MAPPING OF MINKOWSKI

The previous map to a suitable FRW spacetime is useful
for the calculations in Sec. IV. However, it is not the best
suited for the geometrical interpretation due to the fact that
the horizon H is mapped to infinity in the FRW spacetime.
Here we construct a new conformal mapping of flat
spacetime where ξ becomes a Killing field, and the horizon
is mapped to a genuine Killing horizon embedded in the
bulk of the host spacetime. In Minkowski spacetime we
have

Lξηab ¼
ψ

2
ηab ðC1Þ

where explicit calculation yields

ψ ¼ ∇aξ
a ¼ 8at ¼ 4ðuþ vÞ

r2O − r2H
: ðC2Þ

Under a conformal transformation gab ¼ Ω2ηab one has

Lξgab ¼ LξðΩ2ηabÞ ¼
�
ψ

2
þ 2ξðlogðΩÞÞ

�
gab: ðC3Þ

Therefore, in the new spacetime gab, ξ will be a Killing
field iff

ψ þ 4ξðlogðΩÞÞ ¼ 0: ðC4Þ
This equation does not completely fix Ω: if Ω is a solution,
then Ω0 ¼ ωΩ is also a solution as long as ξðωÞ ¼ 0.
Writing explicitly the previous equation using (19) we get:

uþ vþ ðu2 − r2HÞ∂uðlogðΩÞÞ þ ðv2 − r2HÞ∂vðlogðΩÞÞ ¼ 0:

ðC5Þ
It is easy to find solutions of the previous equation by
separation of variables. Assuming that we want to pre-
serve spherical symmetry then we can write Ωðu; vÞ ¼
VðvÞUðuÞ and the previous system becomes

uþ ðu2 − r2HÞ∂uðlogðUÞÞ ¼ −λ;

vþ ðv2 − r2HÞ∂vðlogðVÞÞ ¼ λ; ðC6Þ
where λ is an arbitrary constant. If we choose λ ¼ 0 then the
solution is

Ω ¼ Ω0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu2 − r2HÞðv2 − r2HÞ

p : ðC7Þ

By fixing the integration constant Ω0 ¼ r2O − r2H, the
previous solution corresponds to the one that maps to
the FRW spacetime studied in the previous section. This
can be checked by recalling from (B2) that the conformal
factor mapping to the FRW spacetime is 1/

ffiffiffiffiffiffiffiffiffiffiffi
−ξ · ξ

p
and

using (20). The Killing vector ξ in the FRW metric is
normalized everywhere.
An alternative solution, which does not send the horizon

to infinity, is obtained by choosing λ ¼ rH which yields

ΩBH ¼ 4r2H
ðu − rHÞðvþ rHÞ

; ðC8Þ

where we have chosen the integration constant so that
ΩBH ¼ 1 at the bifurcate surface u ¼ −rH and v ¼ rH.
In the new metric

gab ¼
16r4H

ðu − rHÞ2ðvþ rHÞ2
ηab; ðC9Þ

the null surfaces u ¼ −rH and v ¼ rH are Killing horizons
with constant cross-sectional area A ¼ 4πr2H. These surfa-
ces have the same geometric properties as black hole
horizons which justifies the subindex BH in (C8). At the
inner horizons u ¼ rH and v ¼ −rH the conformal factor
diverges. Therefore, in contrast with the FRW mapping,
only these horizons are pushed to infinity. If rO ≤

ffiffiffi
5

p
rH,

then the Killing field ξ is normalized on a timelike surface
outside the horizon where stationary observers measure
time and energy in agreement with those in the FRW
mapping11 More details on these geometries can be found
in [24]. The previous conformal map plays a central role
for the interpretation of the first law (46) as discussed at the
end of Sec. III B.

11If one fixes Ω ¼ 1 at the horizon and denotes rS the radius of
the sphere defined by the intersection of the stationarity surface
ξ · ξ ¼ −1 and the t ¼ 0 hyperplane, then rH ≤ rS ≤ ∞ when rO
moves in the interval rH ≤ rO ≤

ffiffiffi
5

p
rH .
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