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Vacuum solutions of Lovelock gravity in the presence of a recurrent null vector field (a subset of Kundt
spacetimes) are studied. We first discuss the general field equations, which constrain both the base space
and the profile functions. While choosing a “generic” base space puts stronger constraints on the profile, in
special cases there also exist solutions containing arbitrary functions (at least for certain values of the
coupling constants). These and other properties (such as the pp- waves subclass and the overlap with VSI,
CSI and universal spacetimes) are subsequently analyzed in more detail in lower dimensions n ¼ 5, 6 as
well as for particular choices of the base manifold. The obtained solutions describe various classes of
nonexpanding gravitational waves propagating, e.g., in Nariai-like backgrounds M2 × Σn−2. An Appendix
contains some results about general (i.e., not necessarily Kundt) Lovelock vacua of Riemann type III/N and
of Weyl and traceless-Ricci type III/N. For example, it is pointed out that for theories admitting a triply
degenerate maximally symmetric vacuum, all the (reduced) field equations are satisfied identically, giving
rise to large classes of exact solutions.
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I. INTRODUCTION

A. Background

An impressive catalog of exact solutions to Einstein’s
equations has been obtained over the past century [1,2].
One particularly interesting family of spacetimes is given
by the Kundt metrics, defined by the presence of a null
vector field with zero twist, shear and expansion [3]. These
solutions may describe, for example, nonexpanding gravi-
tational and electromagnetic waves propagating in various
backgrounds, such as Minkowski, (anti–)de Sitter and
(anti-)Nariai [1–4]. In any dimension, they contain all
near-horizon geometries [5] and all VSI (vanishing scalar
invariants) spacetimes [6]. They are also important in
connection with CSI (constant scalar invariants) spacetimes
[7], with spacetimes characterized by their curvature
invariants [7], as well as with universal metrics [8–12]
(see, e.g., the review [13] for a summary of some of these
properties in arbitrary dimension).
The Kundt family includes, in particular, all spacetimes

admitting a recurrent null vector field [14] (which in turn
include pp- waves [15].1). This invariantly defined sub-
family of Kundt metrics has attracted considerable interest,

e.g., because it defines metrics with reduced holonomy
contained in Simðn − 2Þ [16–18] (of some interest in loop
quantum gravity, cf., e.g., [19] and references therein) and
because of its role in the context of universal metrics
[11,12]. Moreover, it contains all direct product spacetimes
of the form M2 × Σn−2 (which intersect static near-horizon
geometries [5]). Vacuum solutions to Einstein’s theory
admitting a recurrent null vector field were studied in four
dimensions in [3,20] (Λ ¼ 0) and in [19,21] (Λ ≠ 0).
In view of the increasing interest in higher-dimensional
gravity, more recently this class of Einstein spacetimes has
been discussed in n dimensions [18] (where other appli-
cations are also mentioned).
However, in more than four dimensions, Einstein gravity

can be considered a special case of Lovelock gravity. The
latter defines the most general class of theories whose field
equations are expressed as the vanishing of a symmetric,
divergence-free, rank-2 tensor constructed from the metric
and its first two derivatives [22] (cf., e.g., [23–25] for recent
reviews). The Lovelock action consists of a finite sum of
terms of various order in the curvature tensor with arbitrary
coupling constants. In particular, truncating the sum at the
linear order gives rise to the Einstein-Hilbert action with a
cosmological constant, while the quadratic term corre-
sponds to the Gauss-Bonnet invariant. Such type of
interactions is thus also interesting in the low-energy limit
of string theory [26].
It is therefore natural to investigate how known exact

solutions of Einstein’s theory are modified in the presence

*ortaggio@math.cas.cz
1By pp- waves we mean spacetimes admitting a covariantly

constant null vector field. These originally appeared in the
context of Einstein spacetimes that are conformal to Einstein
spacetimes [15] and since then have been studied thoroughly in
four [1] and higher dimensions [13].
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of higher order curvature terms in the field equations.
Various results have already been obtained, especially with
regard to black hole spacetimes (a number of references can
be found in [23–25]). The purpose of the present paper is to
investigate n-dimensional vacuum solutions of Lovelock
gravity which possess a recurrent null vector field, which
appears to be a less explored area. Differences with respect
to (and a few similarities with) Einstein’s theory will be
pointed out, and a few examples presented.
In the rest of this section, we recall the general form of

Lovelock’s vacuum equations and fix the notation. In
Sec. II, we summarize the main properties of spacetimes
admitting a recurrent null vector field and write down the
corresponding curvature components, which will be
employed in the following. The field equations for the
general line-element are worked out and discussed in
Sec. III. Subsequent sections analyze those in more detail,
and present some examples, in special cases such as lower
dimensions n ¼ 5, 6 (where only the Gauss-Bonnet term
survives; see Sec. IV), pp- waves (Sec. V), for metrics with
a base space of constant curvature (either zero or nonzero;
see Sec. VI) or with a base space given by the direct product
of two spaces of constant curvature (Sec. VII). In the
Appendix, a few results about general Lovelock vacua of
Riemann type III/N or of Weyl and traceless-Ricci
type III/N are obtained (without assuming the presence
of a recurrent null vector field).

B. Field equations

The Lovelock Lagrangian density

L ¼ ffiffiffiffiffiffi
−g

p X½ðn−1Þ/2�

k¼0

ckLðkÞ;

LðkÞ ¼ 1

2k
δc1d1…ckdk
a1b1…akbk

Ra1b1
c1d1

…Rakbk
ckdk

; ð1Þ

gives rise, in vacuum, to the field equations [22]

Ga
c ≡

X½ðn−1Þ/2�

k¼0

ckG
aðkÞ
c ¼ 0;

GaðkÞ
c ¼ −

1

2kþ1
δaa1b1…akbk
cc1d1…ckdk

Rc1d1
a1b1

…Rckdk
akbk

; ð2Þ

where δ
a1…ap
c1…cp ¼ p!δa1½c1…δ

ap
cp� and ck are coupling constants.

Special choices of the latter correspond, e.g., to Einstein’s
(ck ¼ 0 for k > 1) or Gauss-Bonnet’s theory (ck ¼ 0 for
k > 2), including a possible cosmological constant. Indeed,
Lð0Þ ¼ 1 corresponds to a cosmological term, while Lð1Þ ¼
R is the standard Einstein-Hilbert term (correspondingly,

Gað0Þ
c ¼ − 1

2
δac , while Gað1Þ

c ¼ Ra
c − 1

2
Rgac is the Einstein

tensor). The tensors GaðkÞ
c satisfy the Bianchi-like identities

GaðkÞ
c;a ¼ 0 and their traces give ð2k − nÞLðkÞ ¼ 2GaðkÞ

a . The

upper bound in the above summations is due to the fact that
LðkÞ does not contribute to the field equations when 2k ¼ n,

and LðkÞ ¼ 0 for 2k > n (i.e., GaðkÞ
c ¼ 0 for 2k ≥ n). In

particular, the case n ¼ 4 reduces to standard General
Relativity, which needs not be discussed again here—hence
we will assume n ≥ 5 from now on.
Let us finally recall the useful identity

δa1…ascsþ1…ck
b1…bscsþ1…ck

¼ ðn − sÞ!
ðn − kÞ! δ

a1…as
b1…bs

ð0 ≤ s ≤ k ≤ nÞ; ð3Þ

to be employed throughout the paper.

Notation

In n dimensions, we employ a frame of n real vectors
mðaÞ which consists of two null vectors l≡mð0Þ, n≡mð1Þ
and n − 2 orthonormal spacelike vectors mðiÞ, with
a; b… ¼ 0;…; n − 1 while i; j… ¼ 2;…; n − 1, such that
gab ¼ lanb þ nalb þmðiÞamðiÞb (cf., e.g., [13] and refer-
ences therein). For indices i; j;…, there is no need to
distinguish between subscripts and superscripts. Covariant
derivatives in the directions of the frame vectors are
denoted as

D≡ la∇a; △≡ na∇a; δi ≡mðiÞa∇a: ð4Þ

II. SPACETIMES WITH A RECURRENT
NULL VECTOR FIELD

In n dimensions, spacetimes that admit a recurrent null
vector field l [14], i.e.,

la;b ¼ lapb; lala ¼ 0; ð5Þ

coincide with the subclass τi ¼ 0 (⇔ l½cla�;b ¼ 0) of the
Kundt metrics [3]. Up to a rescaling, l can always be
chosen such that [3,17,20]2

la;b ¼ Llalb; ð6Þ

which we will assume hereafter. The special case L ¼ 0
defines pp- waves [15], for which l is covariantly constant.
With (6), the Ricci identity readily implies

(cf. [18,27,28])

R0i0j ¼ 0; ð7Þ

R0i01 ¼ 0; R0ijk ¼ 0; ð8Þ

R0i1j ¼ 0; R01ij ¼ 0; ð9Þ

2The results of [3,17,20] were derived in four dimensions, but
extend readily to any n, cf., e.g., [13,18].
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along with

R0101 ¼ −DL; R101i ¼ −δiL: ð10Þ

The Riemann tensor is thus of type II or more special
[13,29], aligned with l. Note also that, by the first of (9),
the (A)dS spacetime does not belong to this class (more
generally, spacetimes which differ from (A)dS only by their
negative boost-weight (b.w.) Riemann components cannot
occur here—cf. also Appendix A. 3).
In adapted coordinates such that la∂a ¼ ∂r and

ladxa ¼ du, the line-element takes the form [14]

ds2 ¼ 2du½drþHðu; r; xÞduþWαðu; xÞdxα�
þ gαβðu; xÞdxαdxβ; ð11Þ

where α; β ¼ 2;…; n − 1. Note that the r-dependence can
only appear in H. In these coordinates, one has in (6)

L ¼ H;r: ð12Þ

so that (10) becomes

R0101 ¼ −H;rr; R101i ¼ −δiH;r; ð13Þ

in any frame adapted to l. If we choose a natural frame by
taking

nadxa ¼ drþHduþWαdxα; ð14Þ

with the remaining mðiÞadxa ¼ mðiÞαdxα defining an o.n.
frame for the base space metric gαβ,

3 one further finds (see
[30] or use (11p, [27])4)

Rijkl ¼ R̂ijkl; ð15Þ

where, from now on, a hat denotes quantities intrinsic to the
geometry of gαβ. From (13) and (15), it follows that the
Riemann type is III (or more special) iffH;rr ¼ 0 and gαβ is
flat. It becomes III(a) when, additionally, δiH;r ¼ 0, in
which case the spacetime is necessarily a pp- wave.5

For the frame Riemann components of negative b.w., let
us introduce the compact notation

Ri ≡ R101i; Rijk ≡ R1ijk; Rij ≡ R1i1j: ð16Þ

One then has

Ri ¼ mα
ðiÞð−H;rα þWαH;rrÞ; ð17Þ

Rijk ¼ mα
ðiÞm

β
ðjÞm

γ
ðkÞRuαβγ; ð18Þ

Rij ¼ mα
ðiÞm

β
ðjÞðRuαuβ þWαH;rβ þWβH;rα −WαWβH;rrÞ;

ð19Þ

where (cf. [32], up to a minor reshuffling)

Ruαβγ ¼ −W½βkγ�α þ
1

2
ðgαβ;ukγ − gαγ;ukβÞ; ð20Þ

Ruαuβ ¼ −Hkαβ þH;r

�
WðαkβÞ −

1

2
gαβ;u

�

þ 1

2
ðWα;ukβ þWβ;ukαÞ −

1

2
gαβ;uu

þ gγδ
�
W½αkγ� −

1

2
gαγ;u

��
W½βkδ� −

1

2
gβδ;u

�
: ð21Þ

In the above expressions, Wα ≡ gαβWβ, and k is the
covariant derivative in the base space. Equation (17) is
equivalent to the second of (13). For later purposes, let us
note that, thanks to (20), Rijk does not contain H and thus
does not depend on r. In addition, in (17), (19) and (21), H
appears always differentiated (once or twice) with respect
to r, except for the term Hkαβ in Ruαuβ.
It follows that the nonzero components of the Ricci

tensor are given by (cf. also [18])

R01 ¼ −R0101 ¼ H;rr; Rij ¼ R̂ij; ð22Þ

R1i ¼ −Ri þRjij

¼ mα
ðiÞ

�
−H;rrWα þH;rα −W½αkβ�β

þ 1

2
gαβ;ukβ − ðln

ffiffiffî
g

p
Þ;uα

�
; ð23Þ

R11 ¼ Rii ¼ −ΔH −H;rrWαWα þ 2H;rαWα

þH;r½Wαkα − ðln
ffiffiffî
g

p
Þ;u� þW½αkβ�W½αkβ�

þWα;u
kα − ðln

ffiffiffî
g

p
Þ;uu þ

1

4
gαβ ;ugαβ;u; ð24Þ

where Δ is the Laplace operator in the geometry of the base
metric gαβ, while

R ¼ 2H;rr þ R̂: ð25Þ

The Ricci type is III when H;rr ¼ 0 and the base space is
Ricci-flat. The Ricci type N occurs if, additionally, R1i ¼ 0.

3Equivalently, in terms of the contravariant components,
one has n ¼ ∂u −H∂r and mðiÞ ¼ mα

ðiÞð∂α −Wα∂rÞ, with
mα

ðiÞmðjÞα ¼ δij.
4A missing term in (11p, [27]) has been pointed out in

footnote 7 of [13].
5The conditions H;rr ¼ 0 ¼ δiH;r mean that DL ¼ 0 ¼ δiL,

which enables one to set L ¼ H;r ¼ 0 by an r- and x-independent
boost (this argument was used in Sec. VI of [31] in the case of
Ricci-flat spacetimes).
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To conclude this section, some comments on the coor-
dinate freedom preserving (11) will be useful for later
purposes. First, an argument of [15] can be easily extended
to the present context to show that, by a suitable coordinate
transformation, one can always set

Wα ¼ 0: ð26Þ
However, this will in general affect the form of gαβ. When
L ¼ H;r ¼ 0 (i.e., for pp- waves) one can further set
H ¼ 0 [15]. On the other hand, when Wα is a gradient
(or, in particular, a constant), it can be simply removed by a
suitable shift r → rþ r0ðu; xÞ, which leaves gαβ unchanged
(while H → H þ r0;u,). Similarly, when H ¼ HðuÞ, a shift
r → rþ r0ðuÞ (leaving gαβ andWα unchanged) can be used
to setH ¼ 0. Finally, a termH ¼ rhðuÞ can be removed by
a rescaling u → fðuÞ, r → r/f0ðuÞ. These and other coor-
dinate transformations were discussed in [3,15,17,21] (see
also, e.g., [33]).

III. LOVELOCK EQUATIONS

Since the Riemann type of metric (11) is II, the only
possible nonzero (mixed) components of Ga

c are (ordered
by b.w.) G0

0, G
i
j, G

0
i and G0

1. Imposing G0
0 ¼ 0 and Gi

j ¼ 0

gives, respectively,6

X½ðn−2Þ/2�

k¼0

ckL̂
ðkÞ ¼ 0; ð27Þ

X½ðn−3Þ/2�

k¼0

½ck þ 2ckþ1ðkþ 1ÞH;rr�ĜiðkÞ
j ¼ 0: ð28Þ

Requiring G0
i ¼ 0 gives

X½ðn−3Þ/2�

k¼0

ckþ1ðkþ 1Þ
�
ð2Rj −Rjs

s ÞĜiðkÞ
j −Rij

s Ĝ
sðkÞ
j

−
k
2k

Rjs
p δ

pij1i2j2…ikjk
sl1s1l2s2…lksk

R̂l1s1
jj1

R̂l2s2
i2j2

…R̂lksk
ikjk

�
¼ 0: ð29Þ

Finally, from G0
1 ¼ 0 one obtains

X½ðn−3Þ/2�

k¼0

ckþ1ðkþ 1Þ

×

�
Rj

l Ĝ
lðkÞ
j −

k
2kþ1

δijni1j1…ik−1jk−1
lspl1s1…lk−1sk−1

Rls
i R

p
jnR̂

l1s1
i1j1

…R̂lk−1sk−1
ik−1jk−1

�

¼ 0: ð30Þ
In the above equations, it is understood that expressions

(17)–(19) hold.

Equations (27) and (28) represent restrictions on the
metric gαβ of the base manifold (which must be an Einstein
space in Einstein’s theory, but this is not the case in
general). Further discussion requires to consider separately
the two possible cases H;rrr ¼ 0 and H;rrr ≠ 0 [as can be
seen by taking the r derivative of (28)].
Before proceeding, let us observe that in the special case

of product spaces M2 × Σn−2 [i.e., H ¼ Hðu; rÞ, Wα ¼ 0,
gαβ;u ¼ 0 in (11)], the quantities (17)–(19) are zero, so that
the field equations (29) and (30) are satisfied identically.
The functionH thus enters only in Eq. (28) (viaH;rr, which
gives the Gaussian curvature of M2).

A. Case H;rrr = 0

Equation (28) implies that H;rrr ¼ 0 (unless further
restrictions on the base space or on the ck hold, see
Sec. III B and the examples referred to there), i.e.,

Hðu;r;xÞ¼ r2Hð2Þðu;xÞþrHð1Þðu;xÞþHð0Þðu;xÞ: ð31Þ

Hence, Eq. (28) can be written as

X½ðn−3Þ/2�

k¼0

½ck þ 4ckþ1ðkþ 1ÞHð2Þ�ĜiðkÞ
j ¼ 0: ð32Þ

Once Hð2Þ has been specified, one has to determine a base
manifold that solves (27) and (32) simultaneously.7

Subsequently, the final step consists in solving (29) and
(30), where the remaining functionsHð1Þ,Hð0Þ andWα also
enter (using (31) and (17)–(21), Eqs. (29) and (30) split into
various equations of different orders in r—however, some
of these are identically satisfied by virtue of the others, cf.
footnote 8 of [34] for a related discussion in Einstein’s
theory). Examples of solutions in various particular cases
will be given in the following Secs. IVA, V, VI A 1, VI B 1,
and VII.
It is worth noticing that, in the present case, the space-

times belong to the degenerate Kundt class [7,35]. Recall
also that all Einstein spacetimes in the Kundt class are
necessarily degenerate, so that possible metrics that solve
simultaneously both theories (Einstein and Lovelock) must
fall within the present branch of solutions.

6The following summations contain quantities living in the
(n − 2)-dimensional base manifold, which explains the new
upper bounds on k.

7In the special case Hð2Þ ¼ const, Eq. (32) means that the base
space must be itself a solution of a (n − 2)-dimensional Lovelock
theory (with rescaled coefficients c̃k ≡ ck þ 4ckþ1ðkþ 1ÞHð2Þ).
This happens, for example, in the case of pp- waves, for
which Hð2Þ ¼ 0 ¼ Hð1Þ (cf. Sec. V). In general, taking the
divergence (in the base space) of (32) shows that Hð2Þ

;α must
be an eigenvector with eigenvalue zero of the tensor
Bα
β ≡

P½ðn−3Þ/2�
k¼0 ckþ1ðkþ 1ÞĜαðkÞ

β . In particular, if Bα
β has full

rank (as happens, e.g., in Einstein’s theory, or when the base
space has nonzero constant curvature and the theory is generic,
cf. Sec. VI B 1) then necessarily Hð2Þ

;α ¼ 0.
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This branch also contains product spaces M2 × Σn−2
with an M2 of constant Gaussian curvature K, which
requires H ¼ K

2
r2 (up to a removable term rHð1ÞðuÞþ

Hð0ÞðuÞ, cf. Sec. II). The metric gαβ of Σn−2 must solve a
(n − 2)-dimensional Lovelock theory (cf. footnote 7) and
additionally obey (27).

B. Case H;rrr ≠ 0

By considering its r-derivative, here (28) splits into

X½ðn−3Þ/2�

k¼0

ckĜ
iðkÞ
j ¼ 0;

X½ðn−3Þ/2�

k¼0

ckþ1ðkþ 1ÞĜiðkÞ
j ¼ 0:

ð33Þ

This means that the base space must simultaneously
solve two different Lovelock’s theories in (n − 2) dimen-
sions [and additionally obey (27)]—one defined by the
coefficients ck, and another one by the coefficients c̃k ≡
ðkþ 1Þckþ1 (however, Eqs. (33) reduce to a single equation
in a special theory with akþ1ðkþ 1Þ!ckþ1 ¼ c0, where
a ≠ 0 is a constant—a simple example will be given in
Sec. IV B).
Assuming a suitable base space is found, one has then to

solve (29) and (30), which [using (33)] reduce to

Rjs
p

X½ðn−3Þ/2�

k¼0

ckþ1ðkþ1Þ k
2k
δpij1i2j2…ikjk
sl1s1l2s2…lksk

R̂l1s1
jj1

R̂l2s2
i2j2

…R̂lksk
ikjk

¼0;

ð34Þ

Rls
i R

p
jn

X½ðn−3Þ/2�

k¼0

ckþ1ðkþ 1Þ k
2kþ1

× δijni1j1…ik−1jk−1
lspl1s1…lk−1sk−1

R̂l1s1
i1j1

…R̂lk−1sk−1
ik−1jk−1

¼ 0: ð35Þ

The function H does not appear in any of the field
equations and thus remains arbitrary.8 In the special case
Rjs

p ¼ 0 (arising, e.g., when gαβ;u ¼ 0 ¼ Wα), Eqs. (34)
and (35) are satisfied identically. Recall that spacetimes
withH;rrr ≠ 0 cannot be Einstein and cannot be pp- waves.
Some examples are mentioned in Secs. IV B 2, VI A 2, VI
B 2, and VII; however, all of these occur in nongeneric
Lovelock theories.

IV. LOWER DIMENSIONS: n= 5, 6
(GAUSS-BONNET)

The b.w. 0 Eqs. (27) and (28) contain the Lovelock
scalars and tensors of the (n − 2)-dimensional base space.
When the latter has dimension smaller than five (i.e., when
n ¼ 5, 6), only the terms L̂ð0Þ, L̂ð1Þ (and, for n ¼ 6, L̂ð2Þ),
Ĝið0Þ

j and Ĝið1Þ
j are nonzero, so that (27) and (28) become

considerably simpler. Recall also that, for n ¼ 5, 6,
Lovelock’s theory reduces to Gauss-Bonnet’s theory.9 It
is worth discussing this case in some detail. We can assume
c2 ≠ 0, since one is left with Einstein’s theory otherwise.
Equations (27) and (28) become

c0 þ c1R̂þ c2L̂
ð2Þ ¼ 0; ð36Þ

−
1

2
ðc0 þ 2c1H;rrÞδij þ ðc1 þ 4c2H;rrÞĜið1Þ

j ¼ 0; ð37Þ

with L̂ð2Þ ¼ 0 identically when n ¼ 5. Equation (37) shows
that gαβ must be an Einstein metric, unless c1þ
4c2H;rr ¼ 0, the latter case being possible only when
c21 − 2c0c2 ¼ 0. Therefore, the consequences of (36),
(37) and of the negative b.w. equations need to be studied
separately in the following two cases. (We note that, for
n ¼ 6, the simplifying assumptions H ¼ Hðu; rÞ and
Wα ¼ 0 ¼ gαβ;u give rise to class-III of [41].)

A. Generic Gauss-Bonnet theory (c21 − 2c0c2 ≠ 0)

For generic values of the ck (in particular,
c21 − 2c0c2 ≠ 0), Eq. (37) implies that H takes the form
(31), with

2Hð2Þ ¼ −
1

2

ðn − 2Þc0 þ ðn − 4Þc1R̂
ðn − 2Þc1 þ 2ðn − 4Þc2R̂

: ð38Þ

(We observe that the denominator in (38) cannot vanish
here—by (37) this would require c21 − 2c0c2 ¼ 0, which is
the case studied in Sec. IV B below.) Equation (37) also
implies that gαβ is an Einsteinmetric [so that R̂ ¼ R̂ðuÞ; one
has, in addition, the condition (36), which implies L̂ð2Þ ¼
L̂ð2ÞðuÞ].
Thanks to this, Eqs. (29) and (30) take the form

c1R1i þ 2c2

�
n − 4

n − 2
R̂R1i −

2R̂
n − 2

Rj
ij þ R̂jl

imR
m
jl

�
¼ 0;

ð39Þ8The existence of solutions containing arbitrary functions is a
known feature of (certain) Lovelock gravities. To the author’s
knowledge, this was first noted in [36] (for a class of metrics that
overlaps only marginally with those considered in the present
paper—cf. Sec. VI B 2). The appearance of these “geometrically
free” solutions [36] characterizes, in particular, theories that
admit a single (A)dS vacuum [37]. Interestingly, the latter include
Chern-Simons (n odd) [38,39] and Born-Infeld (n even) [39]
gravity.

9However, the field equations of Gauss-Bonnet’s theory for
n ≥ 7 would be more complicated, with the Gauss-Bonnet tensor
of the base space Ĝið2Þ

j entering (28)—in contrast to (37) below.
Solutions of Gauss-Bonnet gravity of the form (11) in the special
case Wα ¼ 0 have been studied in arbitrary dimensions in [40].
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c1R11 þ 2c2

�
n − 4

n − 2
R̂R11 − 2Rij

i R
l
lj þRjl

i R
i
jl

�
¼ 0:

ð40Þ

Amore explicit but lengthier form of these equations can be
obtained using (18) [with (20)], (23), (24) and (31), (38), if
desired. These can be integrated to determine Hð1Þ

and Hð0Þ.
For n ¼ 5, further simplifications occur. First, one can

use c0 þ c1R̂ ¼ 0 [from (36)] to simplify (38). This shows
that for c0 ≠ 0 these spacetimes cannot be Einstein [which
would require 2Hð2Þ ¼ R̂/ðn − 2Þ], and are thus genuine
Lovelock solutions (an obvious exception to this would be
the case c2 ¼ 0, which we excluded). Moreover, Eq. (39)
becomes simpler since the base space is three dimensional
(and Einstein), hence of constant curvature, i.e., R̂jl

im ¼
1
3
R̂δj½iδ

l
m�—this case is thus also contained in the more

detailed discussion of Sec. VI B 1.

1. An example

Explicit examples can be easily obtained by making
some simplifying assumptions on the metric. For instance,
whenRij

i ¼ 0, Eqs. (39) and (40) reduce to R1i ¼ 0 ¼ R11.
The simplest possible case when all these conditions are
satisfied occurs for gαβ;u ¼ 0 (giving R̂ ¼ const) and
Wα ¼ 0, so that the final line-element reduces to [after
transforming away a possible term rHð1ÞðuÞ in (32)]

ds2 ¼ 2dudrþ 2½Hð2Þr2 þHð0Þðu; xÞ�du2 þ gαβðxÞdxαdxβ;
ð41Þ

with (38) (so that Hð2Þ is a constant here) and

ΔHð0Þ ¼ 0; ð42Þ

and where gαβ can be any Einstein metric obeying (36).10

Spacetime (41), (42) is generically of Ricci type D and
Weyl type II. For Hð0Þ ¼ 0, it reduces to a direct product
spacetime M2 × Σn−2 (of Weyl type D), where M2 pos-
sesses constant Gaussian curvature 2Hð2Þ. For Hð0Þ ≠ 0, it
describes nonexpanding gravitational waves propagating in
such M2 × Σn−2 background (related solutions in arbitrary
dimension will be discussed in Sec. VI B 1).

These metrics are not pp- waves, except in the special
case Hð2Þ ¼ 0. For n ¼ 5, this implies c0 ¼ 0 and thus
R̂ ¼ 0 [cf. (36)], which means these are Ricci-flat pp-
waves of Weyl type N (and therefore universal spacetime
[31], cf. also Sec. VI A 1). For n ¼ 6 pp- waves, the
Einstein base space must satisfy simultaneously (36) (so
that L̂ð2Þ is a constant) and 2c0 þ c1R̂ ¼ 0 (an example is
mentioned in footnote 15).

B. Special case c21 − 2c0c2 = 0
This special case contains, in particular, pure Gauss-

Bonnet gravity (when c0 ¼ 0 ¼ c1). It gives rise to two
possibilities.

1. c1 + 4c2H;rr = 0

This means that H takes the form (31), with

2Hð2Þ ¼ −
c1
4c2

; ð43Þ

and (37) is identically satisfied, so that gαβ has to obey (36)
but need not be Einstein (therefore the full spacetime is also
generically non-Einstein). Equations (29) and (30) take
the form

c1R1i þ 2c2ð−2Gjð1Þ
i R1j − 2R̂j

lR
l
ij þ R̂jl

imR
m
jlÞ ¼ 0; ð44Þ

c1R11 þ 2c2ð−2Gjð1Þ
i Ri

j − 2Rij
i R

l
lj þRjl

i R
i
jlÞ ¼ 0: ð45Þ

(For n ¼ 5, in (44) one can use the identity

R̂ij
lm ¼ 4δ½i½lR̂

j�
m� − R̂δi½lδ

j
m�.) Metric (41), (42) with (43) is a

solution also here, but gαβ can now be any metric (not
necessarily Einstein) subject to (36).
For pure Gauss-Bonnet gravity, the above results

specialize to

Hð2Þ ¼ 0; L̂ð2Þ ¼ 0; ð46Þ

−2Gjð1Þ
i R1j − 2R̂j

lR
l
ij þ R̂jl

imR
m
jl ¼ 0; ð47Þ

−2Gjð1Þ
i Ri

j − 2Rij
i R

l
lj þRjl

i R
i
jl ¼ 0: ð48Þ

Here (41) is a solution for any Hð0Þ, and for any gαβ for

which L̂ð2Þ ¼ 0 (hence, gαβ is completely arbitrary for
n ¼ 5).

2. c1 + 4c2H;rr ≠ 0

In this case (37) implies that gαβ must be Einstein [in
addition to obeying (36)], with

R̂ ¼ −
n − 2

n − 4

c1
2c2

: ð49Þ

10For n ¼ 5, gαβ must be of constant curvature, and (36) is
simply a “normalization” condition, which can always be
satisfied by a constant rescaling of gαβ. For n ¼ 6, (36) addi-
tionally requires that L̂ð2Þ be a constant—this is compatible, for
example, with gαβ being a 4-space of constant curvature (as in
Sec. VI B 1) or a product of two identical 2-spaces of constant
Gaussian curvature λ (with c0 þ 4c1λþ 8c2λ2 ¼ 0; cf. also
Sec. VII), the latter choice giving rise to an Einstein spacetime.
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Thanks to this, Eqs. (29) and (30) take the simpler form

c1R
j
ij þ ðn − 4Þc2R̂jl

imR
m
jl ¼ 0; ð50Þ

−2Rij
i R

l
lj þRjl

i R
i
jl ¼ 0: ð51Þ

For both n ¼ 5, 6, the function Hðu; r; xÞ is arbitrary (this
is thus a special instance of the case of Sec. III B), therefore
these spacetimes are generically non-Einstein. For n ¼ 5,
Eqs. (49), (36) imply that c0 ¼ 0 ¼ c1 and R̂ ¼ 0, so that
only pure Gauss-Bonnet theory is possible in this branch
(see below). For n ¼ 6, a simple example is given by metric
(11) with Wα ¼ 0 and with gαβ being the direct product of
two 2-spheres of Gaussian curvature λ ¼ −c1/4c2 > 0
(which satisfies (49) and (36) simultaneously, cf. also
footnote 10; here, gαβ cannot be of constant curvature,
cf. Sec. VI B 2).
For pure Gauss-Bonnet gravity the above results spe-

cialize to

R̂ ¼ 0; L̂ð2Þ ¼ 0; ð52Þ

R̂jl
imR

m
jl ¼ 0; ð53Þ

−2Rij
i R

l
lj þRjl

i R
i
jl ¼ 0: ð54Þ

Equations (52) imply that the base space is flat11 and (53) is
thus identically satisfied—these solutions are included in
those of Sec. VI A 2. For example, any metric (11) with
gαβ ¼ δαβ and Wα ¼ 0 is a solution of pure Gauss-Bonnet
gravity (but is not Ricci flat, in general).

V. pp- WAVES

A special subclass of the spacetimes with a recurrent null
vector field l consists of pp- waves [15], for which l is
covariantly constant and holonomy reduces to (a subgroup
of) Eðn − 2Þ [18]. These metrics are defined by (11) with
H;r ¼ 0, i.e.,

H ¼ Hð0Þðu; xÞ; ð55Þ

so that [cf. (13), (17), (19)] R0101 ¼ 0 and

Ri ¼ 0; Rij ¼ mα
ðiÞm

β
ðjÞRuαuβ: ð56Þ

The Riemann type is thus II iff gαβ is not flat, otherwise it
becomes III(a). The latter case (which, by (27), requires
c0 ¼ 0) describes a subset of the VSI metrics, discussed in
VI A below. Here we can thus focus on the generic

(Riemann type II) case, for which the base manifold is
restricted by [cf. (27), (28)]

X½ðn−2Þ/2�

k¼0

ckL̂
ðkÞ ¼ 0;

X½ðn−3Þ/2�

k¼0

ckĜ
iðkÞ
j ¼ 0: ð57Þ

This implies that the spatial metric gαβ must itself be a
solutions of the Lovelock equations in (n − 2) dimensions.
Recall that in the special case of Einstein’s theory, Eqs. (57)
mean that gαβ must be Ricci-flat [15], but this is not
generically the case in Lovelock’s theory.
For example, one may consider as a base space an

isotropy-irreducible homogeneous space, for which nec-

essarily ĜiðkÞ
j ¼ αkδ

i
j (with α0 ¼ − 1

2
) [42]. In this case,

Eqs. (57) reduce to two algebraic constraints, i.e.,

X½ðn−2Þ/2�

k¼0

ck
αk

2k − nþ 2
¼ 0;

X½ðn−3Þ/2�

k¼0

ckαk ¼ 0; ð58Þ

while (29), (30) become

X½ðn−3Þ/2�

k¼0

ckþ1ðkþ 1Þ

×

�
2αkR1i þ

k
2k

Rjs
p δ

pij1i2j2…ikjk
sl1s1l2s2…lksk

R̂l1s1
jj1

R̂l2s2
i2j2

…R̂lksk
ikjk

�
¼ 0;

ð59Þ

X½ðn−3Þ/2�

k¼0

ckþ1ðkþ 1Þ

×

�
αkR11 −

k
2kþ1

δijni1j1…ik−1jk−1
lspl1s1…lk−1sk−1

Rls
i R

p
jnR̂

l1s1
i1j1

…R̂lk−1sk−1
ik−1jk−1

�

¼ 0; ð60Þ

with (23), (24).
In general, the explicit integration of the remaining field

equations (29), (30) [with (56)], which constrain Wα and
Hð0Þðu; xÞ, will depend on the chosen base space. Let us
only observe here that these simplify considerably if one
chooses coordinates such that Wα ¼ 0 ¼ H (which is
always locally permitted [15], cf. Sec. II), since (20) and
(21) then reduce to

Ruαβγ ¼
1

2
ðgαβ;ukγ − gαγ;ukβÞ;

Ruαuβ ¼ −
1

2
gαβ;uu þ

1

4
gγδgαγ;ugβδ;u

ðWα ¼ 0 ¼ HÞ: ð61Þ

If one further assumes that (in the same coordinate system)
also gαβ;u ¼ 0, then Ruαβγ ¼ 0 ¼ Ruαuβ, the Riemann type
is D, and (29), (30) are identically satisfied. Examples of

11For n ¼ 5, this is obvious, since gαβ is of constant curvature
and has zero Ricci scalar. For n ¼ 6, gαβ is in principle only
Ricci-flat, but the condition L̂ð2Þ ¼ 0 then implies that the
Riemann tensor must vanish (since the signature of gαβ is
Euclidean).
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pp- waves (also allowing for Wα ≠ 0 or H ≠ 0) are
mentioned in Secs. IVA 1, VI A 1, VI B 1 (footnote 15).

VI. BASE SPACE OF CONSTANT CURVATURE

Another interesting and tractable case occurs when the
base space is of constant curvature, either zero (Sec. VI A)
or nonzero (Sec. VI B). This corresponds, respectively, to
having a Minkowski or a Nariai-like “background.”

A. Flat base space and VSI solutions

The case when gαβ is a flat metric is of considerable inte-
rest, since it includes all solutions of the form (11) which are
of Riemann type III (cf. Sec. II) and therefore, in particular,
which possess the VSI property [6].12 It also includes the
case when l is a (recurrent) Kerr-Schild vector field.
If gαβ is flat, then R̂ijkl ¼ 0, so that ĜðkÞi

j ¼ 0 ¼ L̂ðkÞ for
k ≥ 1. This means that the field equations (27)–(30)
reduce to

c0 ¼ 0; ð62Þ

c1H;rr ¼ 0; ð63Þ

c1R1i ¼ 0; ð64Þ

c1R11 þ 2c2ð−2Rij
i R

l
lj þRjl

i R
i
jlÞ ¼ 0: ð65Þ

We observe that here Eqs. (62)–(64) take the same form
as in Einstein’s theory (with the cosmological constant
necessarily vanishing due to c0 ¼ 0), while (65) contains
also the Gauss-Bonnet term, but not terms of higher order.

1. Generic Lovelock theory (c1 ≠ 0)

When c1 ≠ 0, (63) implies

Hðu; r; xÞ ¼ rHð1Þðu; xÞ þHð0Þðu; xÞ; ð66Þ

while (64) gives R1i ¼ 0. Without loss of generality, we can
choose coordinates such that

gαβ ¼ δαβ: ð67Þ

Then, Eq. (64) with (23), (66) determines Hð1Þ (as in
[33]) via

Hð1Þ
;α ¼ W½αkβ�β; ð68Þ

such that ΔHð1Þ ¼ 0, while (65) with (24) and (20) gives
Hð0Þ as a solution of (in this case, covariant derivatives in
the base space reduce to ordinary derivatives)

c1ðΔHð0Þ −Hð1ÞWαkα − 2WαHð1Þ
;α −W½αkβ�W½αkβ� −Wα;u

kαÞ
¼ 2c2ð−2W½αkβ�αW½γkβ�

γ þW½αkβ�γW½αkβ�γÞ: ð69Þ

Generically, the Weyl type is III and the Ricci type is N,
and it can become more special for particular choices
of the metric functions [33] (however, nonflat, conformally
flat solutions are not possible, since (64) and (65) imply
that the full Riemann tensor vanishes if the Weyl tensor
does). This implies that the metric belongs to the VSI class.
The spacetime is a pp- wave when Hð1Þ ¼ 0 (so that
Ri ¼ 0). As an example, one can take (11) with (66), (67)
and

Wα ¼ ðax23 þ bx24Þδα;2; Hð1Þ ¼ ðaþ bÞx2; ð70Þ

Hð0Þ ¼ a
6
ð2aþ bÞx43 þ

b
6
ðaþ 2bÞx44 þ 2

�
c − ab

c2
c1

�
x23

− 2

�
cþ ab

c2
c1

�
x24; ð71Þ

where a, b, c are arbitrary functions of u (giving rise to a
pp- wave iff aþ b ¼ 0).
In the special case of Ricci-flat metrics of Weyl type III,

Eq. (65) reduces to c2ð−2Rij
i R

l
lj þRjl

i R
i
jlÞ ¼ 0 (cf. also

Proposition A.2). By theorem 1.4 of [31], this implies
(except for special theories with c2 ¼ 0) that these Ricci-
flat, Weyl type III Lovelock solutions not only solve
Einstein and Lovelock gravity, but are in fact universal
spacetimes (these cannot be pp- waves, unless the Weyl
type degenerates to N [31,43]). An example is given by
(70), (71), with ab ¼ 0 (see Sec. VI B 2 of [31] for different
examples).
When the Weyl type is N, necessarily Rij

l ¼ 0, so that,
by (65), the metric must be Ricci-flat (cf. also
Proposition A.1). Furthermore, it must be a pp- wave
(see Sec. II). One can thus set Hð1Þ ¼ 0, Wα must take the
form given in [33] (Wα ¼ 0 being a special case thereof),
and the rhs of (69) is identically zero. An example is given
by (70), (71), with a ¼ 0 ¼ b. Let us observe that Ricci-flat
type N pp- waves are another instance of universal
spacetimes [31] (see also the earlier results [8–10] in the
special case Wα ¼ 0).

2. Lovelock theories with c0 = 0 = c1
This is clearly a very special case (including, in par-

ticular, pure Gauss-Bonnet gravity—cf. Sec. IV B 2 in the
case n ¼ 5, 6) since the field equations reduce to the single
equation

c2ð−2Rij
i R

lm
l þRjl

i R
i
jlÞ ¼ 0: ð72Þ12Recall, however, that not all VSI spacetimes admit a

recurrent null vector field [6,33].
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The function H does not enter Rij
l and is thus arbitrary.

The Riemann type is II (or D) as long as H;rr ≠ 0. Without
loss of generality, we can choose coordinates such that
gαβ ¼ δαβ. Equation (72), thus, takes the form (69) with
c1 ¼ 0. Any metric (11) with gαβ ¼ δαβ and Wα as in (70)
with ab ¼ 0 is clearly a solution. More generally, one can
take any metric (11) (with gαβ ¼ δαβ) of Riemann type N
(a subset of the metrics of [33]), or of Riemann type III and
satisfying (72) (some examples are mentioned in [43]), and
modify the function H arbitrarily, thus obtaining a new (in
general nonisometric) solution. Such metrics are VSI
iff H;rr ¼ 0.
For the subset of theories for which also c2 ¼ 0 (non-

trivial for n ≥ 7), any metric (11) with a flat gαβ obviously
satisfies the field equations.

B. Base space of nonzero constant curvature

Here we consider the case when

R̂ij
lp ¼ λδijlp; ð73Þ

where λ is a constant,13 which implies [using (1), (2)]

L̂ðkÞ ¼ ðn − 2Þ!
ðn − 2k − 2Þ! λ

k;

ĜiðkÞ
j ¼ −

λk

2

ðn − 3Þ!
ðn − 2k − 3Þ! δ

i
j; ð74Þ

where it is understood that k ≤ ½ðn − 2Þ/2� in the first
equation and k ≤ ½ðn − 3Þ/2� in the second one (the above
quantities being zero otherwise). Using these and defining

PðλÞ≡ X½ðn−1Þ/2�

k¼0

ck
λk

ðn − 2k − 1Þ! ;

QðλÞ≡ ðn − 1ÞPðλÞ − 2λP0ðλÞ; ð75Þ

where P0 is the derivative of P with respect to λ, the field
equations (27)–(30) reduce to

QðλÞ ¼ 0; ð76Þ

ðn − 2ÞQðλÞ − 2λQ0ðλÞ þ 2H;rrP0ðλÞ ¼ 0; ð77Þ

ðn − 3ÞP0ðλÞR1i − 2λP00ðλÞRj
ij ¼ 0; ð78Þ

ðn−3Þðn−4ÞP0ðλÞR11þP00ðλÞð−2Rij
i R

l
ljþRjl

i R
i
jlÞ¼0:

ð79Þ

The polynomial Eq. (76) generically possesses
½ðn − 2Þ/2� solutions, determining λ in terms of the ck.
We assume that at least one of such solutions, say λ̄, is real
(otherwise the Lovelock equations do not admit solutions
in the present subclass of spacetimes) and nonzero. Then
one has to solve (77)–(79) for this particular value λ̄ ≠ 0.

1. Generic Lovelock theory (P0ðλ̄Þ ≠ 0)

Generically, P0ðλ̄Þ ≠ 0 (cf. Sec. VI B 2). With (76),
Eq. (77) means that

H;rr ¼ λ̄
Q0ðλ̄Þ
P0ðλ̄Þ ≡

2Λ0

n − 2
ð80Þ

is a (generically nonzero) constant, which gives14

Hðu; r; xÞ ¼ Λ0

n − 2
r2 þ rHð1Þðu; xÞ þHð0Þðu; xÞ: ð81Þ

Since gαβ is a metric of constant curvature, with no loss
of generality we can choose coordinates such that (cf., e.g.,
Sec. IV of [30])

gαβ;u ¼ 0: ð82Þ
With this, from (78) with (18), (20), (23) and (81) one
obtains

Hð1Þ
;α ¼ Q0ðλ̄Þ

P0ðλ̄Þ
�
λ̄Wα þ

1

n − 3
W½αkβ�β

�
; ð83Þ

such that ΔHð1Þ ¼ λ̄ Q0ðλ̄Þ
P0ðλ̄ÞW

αkα, while (79) with (24) gives

Hð0Þ as a solution of

ΔHð0Þ−Hð1ÞWαkα−2WαHð1Þ
;α −W½αkβ�W½αkβ�

−Wα;u
kαþ 2Λ0

n−2
WαWα

¼ P00ðλ̄Þ
ðn−3Þðn−4ÞP0ðλ̄Þð−2W½αkβ�αW½γkβ�

γþW½αkβ�γW½αkβ�γÞ:

ð84Þ

The simplest possible solution is obtained for Hð1Þ ¼
Hð0Þ ¼ Wα ¼ 0, giving rise to a direct product spacetime
M2 × Σn−2 of two spaces of constant curvature (the signs of
the two curvatures being those of Λ0 and λ̄, respectively).
This is a Nariai-type geometry already considered in [44]
(and earlier in [45] in the Gauss-Bonnet case), of (aligned)

13We note that λ cannot depend on the x thanks to the Bianchi
identity in the base space, while λ;u ≠ 0 is ruled out by (76)
below.

14We have defined the constant Λ0 such that it reduces to the
usual cosmological constant in the limit of Einstein’s gravity,
with the normalization R ¼ 2nΛ0/ðn − 2Þ.
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Ricci and Weyl type D (it becomes conformally flat iff
2Λ0 ¼ −ðn − 2Þλ̄ ⇔ Q0ðλ̄Þ ¼ −P0ðλ̄Þ, which is not pos-
sible in Einstein’s theory—cf. [46] and the review [13]).
More general solutions with nonzero functions Hð1Þ,

Hð0Þ or Wα generically possess also Ricci and Weyl
components of negative b.w. and represent gravitational
waves propagating in the Nariai-type background. All the
curvature scalar invariants, however, are independent of
Hð1Þ,Hð0Þ andWα [47], so that all such spacetimes are CSI.
These metrics cannot generically be pp- waves—this
occurs iff Λ0 ¼ 0 (⇔ Q0ðλ̄Þ ¼ 0), which singles out a class
of degenerate theories for which λ̄ is (at least) a double
nonzero root of QðλÞ, corresponding to a doubly degen-
erate vacuum (not permitted in Einstein’s theory).15

The above Lovelock solutions do not solve Einstein’s
theory, generically. However, it can be seen from (76)–(79)
[with (73), (80), (22)] that such spacetimes are Einstein
precisely when P00ðλ̄Þ ¼ 0 (⇔ 2Λ0 ¼ ðn − 2Þðn − 3Þλ̄).
This condition thus defines a special class of Lovelock
theories for which (when restricted to spacetimes admitting
a recurrent null vector field with a base space of constant
curvature) any solution is necessarily an Einstein space-
time. Note that this is not possible in Gauss-Bonnet gravity
(and thus requires n > 6), since in that case c2 ≠ 0 implies
P00 ≠ 0, independently of λ.16

In the limit λ̄ ¼ 0, one recovers the results of Sec. VI A 1.

2. Degenerate Lovelock theories (P0ðλ̄Þ= 0)
If P0ðλ̄Þ ¼ 0 [which gives Q0ðλ̄Þ ¼ −2λ̄P00ðλ̄Þ], Eqs. (76)

and (77) imply that also Pðλ̄Þ ¼ 0 ¼ P00ðλ̄Þ, i.e., λ̄ is a (at
least) triple root of PðλÞ. This can occur only for degenerate
Lovelock theories (with n ≥ 7). In this case, the field
equations (76)–(79) are identically satisfied, and any metric
(11) with (73) is a solution (including the case λ̄ ¼ 0,
cf. Sec. VI A 2). For the special case of direct productsM2 ×
Σn−2 (withM2 arbitrary and Σn−2 of constant curvature) this
was noticed already in [36] (see also [44]). Since H is
arbitrary, these metrics are not CSI, in general.

VII. BASE SPACE AS A DIRECT PRODUCT OF
TWO SPACES OF CONSTANT CURVATURE

Here we consider the case when the base space is the
direct product of two spaces of constant curvature and
respective dimensions n1 and n2 (with n1 þ n2 ¼ n − 2).

Let us define indices A; B;C;… and I; J; K;… in these two
spaces. Well-known properties of direct product spaces [46]
imply that the Riemann tensor of the base space has only
nonmixed components, namely

R̂AB
CD ¼ λ1δ

AB
CD; R̂IJ

KL ¼ λ2δ
IJ
KL; ð85Þ

where λ1 and λ2 are constants (not both vanishing).
Defining

P1ðλ1; λ2Þ≡
X½n2/2�
q¼0

Xqþ½ðn1þ1Þ/2�

k¼q

ck

�
k

q

�

×
λp1λ

q
2

ðn1 − 2pþ 1Þ!ðn2 − 2qÞ! ;

p≡ k − q; ð86Þ

P2ðλ1; λ2Þ≡
X½n1/2�
q¼0

Xqþ½ðn2þ1Þ/2�

k¼q

ck

�
k

q

�

×
λq1λ

p
1

ðn1 − 2qÞ!ðn2 − 2pþ 1Þ! ; ð87Þ

Qðλ1; λ2Þ≡ ðn1 þ 1ÞP1ðλ1; λ2Þ − 2λ1P1;λ1ðλ1; λ2Þ
¼ ðn2 þ 1ÞP2ðλ1; λ2Þ − 2λ2P2;λ2ðλ1; λ2Þ; ð88Þ

thanks to (85) the field equations (27) and (28) take the
form (the latter splitting into A- and I-components)

Qðλ1; λ2Þ ¼ 0; ð89Þ

n1Qðλ1; λ2Þ − 2λ1Q;λ1ðλ1; λ2Þ þ 2H;rrP1;λ1ðλ1; λ2Þ ¼ 0;

ð90Þ

n2Qðλ1; λ2Þ − 2λ2Q;λ2ðλ1; λ2Þ þ 2H;rrP2;λ2ðλ1; λ2Þ ¼ 0:

ð91Þ

From now on, in the line-element (11) we make the
simplifying assumption

gαβ;u ¼ 0; Wα ¼ 0; ð92Þ

so that Rijk ¼ 0. The remaining field equations (29) and
(30) can now be written as

P1;λ1RA ¼ 0; P2;λ2RI ¼ 0; ð93Þ

n2P1;λ1R
A
A þ n1P2;λ2R

I
I ¼ 0: ð94Þ

The discussion now parallels that of Sec. VI B.
Generically, Eq. (90) [or (91)] implies that H is of the
form (81) and fixes the constant Λ0. Equations (93) and
(94) then read

15An example is given by a quadratic theory with ðn − 2Þ×
ðn − 3Þc21 ¼ 4ðn − 4Þðn − 5Þc0c2, for which 2ðn − 4Þðn − 5Þλ̄ ¼
−c1/c2 (the case n ¼ 5 gives rise to pure Gauss-Bonnet theory and
is special in the sense that QðλÞ ¼ 0 ¼ Q0ðλÞ identically, so that λ̄
remains arbitrary—cf. also [48]). For n¼6, this defines the critical
point found in [49].

16An example is given by a cubic theory (n > 6) with
27ðn− 5Þ2ðn− 6Þ2c0c23þ 2ðn− 2Þðn− 3Þðn− 4Þ2c22 ¼ 9ðn− 2Þ×
ðn− 3Þðn− 5Þðn− 6Þc1c2c3, for which 3ðn−5Þðn−6Þλ̄¼−c2/c3.
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P1;λ1H
ð1Þ
;A ¼ 0; P2;λ2H

ð1Þ
;I ¼ 0; ð95Þ

n2P1;λ1Δ1Hð0Þ þ n1P2;λ2Δ2Hð0Þ ¼ 0; ð96Þ

where Δ1 and Δ2 are the Laplace operators in the
geometries of the two factor-subspaces of the base metric.
We observe that if both P1;λ1 ≠ 0 ≠ P2;λ2 , then (93) implies
that Hð1Þ ¼ Hð1ÞðuÞ, which is thus removable. An explicit
example in six dimensions (with n1 ¼ 2 ¼ n2) was men-
tioned in footnote 10.
For special theories such that P1;λ1 ¼ 0 ¼ P2;λ2 ,

Eqs. (88)–(91) further require P1ðλ1; λ2Þ ¼ 0 ¼ P2ðλ1; λ2Þ
and λ1Q;λ1 ¼ 0 ¼ λ2Q;λ2 , but do not determine H;rr.
Furthermore, Eqs. (93) and (94) are identically satisfied
and the function Hðu; r; xÞ is arbitrary—this is a special
instance of the case discussed in Sec. III B.
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APPENDIX: A FEW GENERAL RESULTS
ON LOVELOCK VACUA

In the following, we discuss a few results on exact
vacuum solution of Lovelock gravity (2). These are not
restricted to spacetimes admitting a recurrent null vector
field and thus apply in a more general context.

1. Riemann type N

An observation of [50] can be slightly rephrased as (see
also [51] for the special case of Gauss-Bonnet gravity)
Proposition A.1 ([50]). A spacetime of Riemann type N

is a vacuum solution of Lovelock gravity iff c0 ¼ 0 ¼
c1R11.
Proof.—A Riemann tensor of type N possesses only

components of b.w. −2 (in particular, R ¼ 0, and R11 is the
only nonzero Ricci component). This means that only the
cosmological and the Einstein terms survive in the vacuum
Lovelock equations (i.e., terms quadratic and of higher
order in the curvature tensor vanish identically), from
which the result follows immediately. □

The cosmological constant is thus necessarily zero and,
generically (i.e., c1 ≠ 0), such solutions are Ricci-flat and
of Weyl type N (see, e.g., [13] and references therein for
some examples); conversely, any Ricci-flat spacetime of
Weyl type N solves Lovelock gravity with c0 ¼ 0 (this was
noticed in [52–54] in special cases). For special Lovelock

theories with c0 ¼ 0 ¼ c1 (such as pure Gauss-Bonnet
gravity), any metric of Riemann type N is a solution.

2. Riemann type III

Similar considerations lead to the following generaliza-
tion for type III (for which we omit a similar, straightfor-
ward proof, based on (2) with the observation that Ga

c can
now contain at most quadratic terms)—the notation (16) for
Riemann components of b.w. −1 is used.
Proposition A.2. A spacetime of Riemann type III is a

vacuum solution of Lovelock gravity iff c0 ¼ 0 and

c1R1i ¼ 0; ðA1Þ
c1R11 þ 2c2ð−2Rij

i R
l
lj þRjl

i R
i
jlÞ ¼ 0: ðA2Þ

Again, the cosmological constant is necessarily zero.
Generically, the Ricci type must be N [which means that
Rijk ¼ C1ijk in (A2)]. For Ricci-flat metrics, Eq. (A2)
reduces to a condition found in [43] for Einstein spacetimes
in quadratic gravity. For special theories with c0 ¼ 0 ¼ c1,
the only surviving equation takes the form c2ð−2Rij

i R
l
ljþ

Rjl
i R

i
jlÞ ¼ 0, while R1i is unrestricted. For even more

special theories with c0 ¼ c1 ¼ c2 ¼ 0 (n ≥ 7), any metric
of Riemann type III is a solution.
From [55] with Propositions A.1 and A.2 it follows, for

example, that Robinson-Trautman vacua of Riemann type
III/N do not exist in theories with c1 ≠ 0.
Recall that metrics of Riemann type III/N include all the

(nonflat) VSI spacetimes [6].

3. Weyl and traceless-Ricci type III (aligned)

A further generalization enables one to include a
cosmological constant as follows (as noticed in Sec. II,
spacetimes admitting a recurrent null vector field do not fall
in this class, except when λ ¼ 0).
Proposition A.3. A spacetime of (aligned) Weyl and

traceless-Ricci type III [i.e., Rab
cd ¼ λδabcd þ ðb:w: < 0Þ] is a

vacuum solution of Lovelock gravity iff

PðλÞ ¼ 0; ðA3Þ

P0ðλÞR1i ¼ 0; ðA4Þ

ðn−3Þðn−4ÞP0ðλÞR11þP00ðλÞð−2Rij
i R

l
ljþRjl

i R
i
jlÞ¼0;

ðA5Þ

where

PðλÞ≡ X½ðn−1Þ/2�

k¼0

ck
λk

ðn − 2k − 1Þ! ; ðA6Þ

and P0, P00 are the derivatives of P with respect to λ.
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Proof.—The above result follows by plugging Rab
cd ¼

λδabcd þ ðb:w: < 0Þ into (2) [with the notation (16)], after
simple combinatorics and recalling (3). (In passing, we note
that (A3) implies that λ is a constant, so that this need not be
assumed.) □

The polynomial Eq. (A3) generically possesses ½ðn−1Þ/2�
solutions, thus fixing λ in terms of the ck (we assume that at
least one, say λ̄, is real and nonzero), exactly as in the well-
known case of constant curvature spacetimes [36,52]. For a
nondegenerate Lovelock theory, Eq. (A4) implies R1i ¼ 0,
i.e., the traceless-Ricci type must be N. If the Weyl type is
assumed to be also N, then (A5) implies R11 ¼ 0, i.e., the
spacetime must be Einstein (in agreement with results
obtained in [53,54] in special cases). Assuming, instead,
the spacetime to be Einstein (without restricting the Weyl
type), Eq. (A5) reduces to

P00ðλ̄Þð−2Rij
i R

l
lj þRjl

i R
i
jlÞ ¼ 0

ðfor Einstein spacetimesÞ: ðA7Þ

As mentioned above, the same condition was found in [43]
for solutions to quadratic gravity. Einstein spacetimes of
genuine Weyl type III satisfying (A7) (and thus Lovelock’s
theory) are known, cf., e.g., [43,56].
On the other hand, if the theory is degenerate and λ̄ is

taken to be (at least) a double root of PðλÞ, Eq. (A4)
becomes an identity and (A5) reduces again to (A7)—this
may give rise to solutions containing arbitrary functions, cf.
one such example in [54]. If λ̄ is (at least) a triple root
(n ≥ 7), then both (A4) and (A5) are identically satisfied,
and any spacetime of (aligned) Weyl and traceless-Ricci
type III is a solution.
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Acad. Roy. Belg. Cl. Sci. 47, 491 (1961).

[18] G.W. Gibbons and C. N. Pope, Time-dependent
multi-centre solutions from new metrics with holonomy
Sim(n-2), Classical Quantum Gravity 25, 125015 (2008).

[19] J. Lewandowski, Reduced holonomy group and Einstein
equations with a cosmological constant, Classical Quantum
Gravity 9, L147 (1992).

[20] R. P. Kerr and J. N. Goldberg, Einstein spaces with four-
parameter holonomy groups, J. Math. Phys. (N.Y.) 2, 332
(1961).

[21] J. Leroy and R. G. McLenaghan, Sur les espace-temps
contenant un champ de vecteurs isotropes récurrents, Bull.
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Zegers, Einstein-Gauss-Bonnet metrics: Black holes, black

strings and a staticity theorem, J. High Energy Phys. 10
(2009) 037.

[42] D. D. Bleecker, Critical Riemannian manifolds, J. Diff.
Geom. 14, 599 (1979).

[43] T. Málek and V. Pravda, Type III and N solutions to
quadratic gravity, Phys. Rev. D 84, 024047 (2011).

[44] H. Maeda, S. Willison, and S. Ray, Lovelock black holes
with maximally symmetric horizons, Classical Quantum
Gravity 28, 165005 (2011).

[45] D. Lorenz-Petzold, String-generated generalizations of the
Nariai solution, Prog. Theor. Phys. 78, 969 (1987).

[46] F. A. Ficken, The Riemannian and affine differential
geometry of product-spaces, Ann. Math. 40, 892
(1939).

[47] A. Coley, S. Hervik, and N. Pelavas, Lorentzian manifolds
and scalar curvature invariants, Classical Quantum Gravity
27, 102001 (2010).

[48] N. Dadhich and J. M. Pons, Probing pure Lovelock gravity
by Nariai and Bertotti-Robinson solutions, J. Math. Phys.
(N.Y.) 54, 102501 (2013).

[49] D. Kastor and Ç. Şentürk, Symmetry breaking vacua in
Lovelock gravity, Classical Quantum Gravity 32, 185004
(2015).

[50] H. S. Reall, N. Tanahashi, and B. Way, Causality and
hyperbolicity of Lovelock theories, Classical Quantum
Gravity 31, 205005 (2014).

[51] A. Pravdová and V. Pravda, The Newman-Penrose formal-
ism in higher dimensions: vacuum spacetimes with a non-
twisting geodetic multiple Weyl aligned null direction,
Classical Quantum Gravity 25, 235008 (2008).

[52] D. G. Boulware and S. Deser, String Generated Gravity
Models, Phys. Rev. Lett. 55, 2656 (1985).

[53] G.W. Gibbons and P. J. Ruback, Classical gravitons and
their stability in higher dimensions, Phys. Lett. B 171, 390
(1986).

[54] R. J. Gleiser and G. Dotti, Plane fronted gravitational waves
in Lovelock-Yang-Mills theory, Phys. Rev. D 71, 124029
(2005).

[55] J. Podolský and M. Ortaggio, Robinson-Trautman space-
times in higher dimensions, Classical Quantum Gravity 23,
5785 (2006).

[56] M. Ortaggio, V. Pravda, and A. Pravdová, Type III and
N Einstein spacetimes in higher dimensions: General
properties, Phys. Rev. D 82, 064043 (2010).

LOVELOCK VACUA WITH A RECURRENT NULL VECTOR FIELD PHYS. REV. D 97, 044051 (2018)

044051-13

https://doi.org/10.1016/0370-2693(85)91616-8
https://doi.org/10.1088/0264-9381/24/6/018
https://doi.org/10.1088/0264-9381/24/6/018
https://doi.org/10.1088/0264-9381/26/19/195015
https://doi.org/10.1088/0264-9381/26/19/195015
https://doi.org/10.1142/S0219887805000491
https://doi.org/10.1088/0264-9381/23/9/018
https://doi.org/10.1088/0264-9381/23/9/018
https://doi.org/10.1088/0264-9381/31/21/215005
https://doi.org/10.1088/0264-9381/31/21/215005
https://doi.org/10.1088/0264-9381/30/12/125007
https://doi.org/10.1088/0264-9381/30/12/125007
https://doi.org/10.1088/0264-9381/23/24/014
https://doi.org/10.1088/0264-9381/23/24/014
https://doi.org/10.1088/0264-9381/33/11/115010
https://doi.org/10.1088/0264-9381/33/11/115010
https://doi.org/10.1088/0264-9381/26/10/105016
https://doi.org/10.1088/0264-9381/26/10/105016
https://doi.org/10.1016/0550-3213(86)90388-3
https://doi.org/10.1016/0550-3213(86)90388-3
https://doi.org/10.1103/PhysRevD.62.084013
https://doi.org/10.1016/0370-2693(89)91312-9
https://doi.org/10.1103/PhysRevD.49.975
http://arXiv.org/abs/1801.00307
https://doi.org/10.1088/1126-6708/2009/10/037
https://doi.org/10.1088/1126-6708/2009/10/037
https://doi.org/10.4310/jdg/1214435240
https://doi.org/10.4310/jdg/1214435240
https://doi.org/10.1103/PhysRevD.84.024047
https://doi.org/10.1088/0264-9381/28/16/165005
https://doi.org/10.1088/0264-9381/28/16/165005
https://doi.org/10.1143/PTP.78.969
https://doi.org/10.2307/1968900
https://doi.org/10.2307/1968900
https://doi.org/10.1088/0264-9381/27/10/102001
https://doi.org/10.1088/0264-9381/27/10/102001
https://doi.org/10.1063/1.4825115
https://doi.org/10.1063/1.4825115
https://doi.org/10.1088/0264-9381/32/18/185004
https://doi.org/10.1088/0264-9381/32/18/185004
https://doi.org/10.1088/0264-9381/31/20/205005
https://doi.org/10.1088/0264-9381/31/20/205005
https://doi.org/10.1088/0264-9381/25/23/235008
https://doi.org/10.1103/PhysRevLett.55.2656
https://doi.org/10.1016/0370-2693(86)91426-7
https://doi.org/10.1016/0370-2693(86)91426-7
https://doi.org/10.1103/PhysRevD.71.124029
https://doi.org/10.1103/PhysRevD.71.124029
https://doi.org/10.1088/0264-9381/23/20/002
https://doi.org/10.1088/0264-9381/23/20/002
https://doi.org/10.1103/PhysRevD.82.064043

