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Quantum equivalence of f(R) gravity and scalar-tensor theories
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We investigate whether the classical equivalence of f(R) gravity and its formulation as scalar-tensor
theory still holds at the quantum level. We explicitly compare the corresponding one-loop divergences and
find that the equivalence is broken by off-shell quantum corrections, but recovered on shell.
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I. INTRODUCTION

Scalar-tensor theories and f(R) theories have important
applications in cosmological models, which describe the
early and late time acceleration of the Universe [1-5].
Conceptually, scalar-tensor theories and f(R) theories are
different. While scalar-tensor theories introduce scalar
“matter” degrees of freedom to the unmodified Einstein-
Hilbert action, f(R) theories correspond to a modification
of the underlying gravitational theory without adding any
new matter degrees of freedom.

In contrast to Einstein’s theory, which involves at most
second derivatives of the metric field, a generic f(R) theory
is a fourth-order theory. Beside the massless spin-two
graviton, present in the spectrum of FEinstein’s theory,
higher derivatives propagate additional degrees of freedom
[6,7]. Generically, fourth-order theories of gravity lead to
an additional massive spin-zero degree of freedom, the
“scalaron,” and an additional massive spin-two ghost [6—8].
Among higher-derivative theories of gravity, f(R) gravity
is special. Despite being a fourth-order theory, f(R) gravity
does not propagate the ghost and therefore avoids the
classical Ostrogradski instability and the associated prob-
lems with unitarity violation at the quantum level [6,7,9].

Besides the aforementioned differences between the
interpretation of scalar-tensor theories and f(R) theories,
both introduce an additional scalar degree of freedom and
share many similarities. For example, the predictions of two
natural and successful models of inflation, Starobinsky’s
R?-model [8] and nonminimal Higgs inflation [10-17], are
almost indistinguishable for strong nonminimal coupling
[11,18,19]. This is a manifestation of the fact that f(R)
gravity admits a classically equivalent formulation as a
scalar-tensor theory.
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In contrast, not all scalar-tensor theories can be reformulated
as f(R) theory.
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In this paper we investigate whether this classical
equivalence between f(R) gravity and scalar-tensor still

holds at the quantum level. The one-loop divergences F{
for f(R) gravity have been calculated recently on an
arbitrary background [20]. Likewise, the one-loop diver-
gences ﬂiF for a scalar field minimally coupled to gravity
have been calculated in [21,22].2

We use the transformation between the classical action of
a scalar-tensor theory in the Einstein frame parametrization
SEF and its f(R) formulation S to transform I'F to its f(R)
formulation TEF. We then compare TEF to the one-loop

result F{, obtained directly in the f(R) formulation. The
question of quantum equivalence can be summarized
pictorially by the question of whether the diagram in
Fig. 1 commutes or not. The question of the equivalence
between f(R) gravity and its scalar-tensor formulation is
related to the similar question of equivalence between
different field parametrizations in scalar-tensor theories.
In particular, there is a rather old but still ongoing
debate about the equivalence of the so-called Jordan
frame and Einstein frame parametrizations used in cosmo-
logical models [22—-42]. The quantum equivalence between
the Jordan frame and the Einstein frame has been inves-
tigated in [22], by an explicit comparison of the one-loop
divergences—similar to the analysis in this paper. Besides
the similarity to [22] in the method of comparison, the
underlying problem for f(R) gravity is different.

The transition between the Einstein frame and Jordan
frame maps a second-order scalar-tensor theory of the two
fields (§,,.®) to a second-order scalar-tensor theory of the
two fields (g,,.¢). In contrast, the transition between the
Einstein frame scalar-tensor theory and f(R) gravity maps
a second-order theory of the fields (§,,.®) to a purely
gravitational fourth-order theory of one field g, . Therefore,

’A “hat” indicates that the corresponding quantity is expressed
in terms of the Einstein frame fields (g,,, ().
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FIG. 1. Transition between different formulations.
the explicit transformation rules are not only nonlinear but
also involve derivatives.

The paper is structured as follows. In Sec. II, we present
the Jordan frame and the Einstein frame formulation of
scalar-tensor theories and provide the result for the one-
loop divergences of the latter. In Sec. III, we discuss f(R)
gravity and its one-loop divergences. In Sec. IV, we derive
the explicit transformation laws for the transition from the
Einstein frame scalar-tensor formulation to f(R) gravity.
In Sec. V, we transform the one-loop divergences for the
Einstein frame scalar-tensor formulation to its f(R) for-
mulation and compare the result to the one-loop divergen-
ces obtained directly for f(R) gravity. In Sec. VI, we
summarize our main results and discuss their implications.

II. SCALAR-TENSOR THEORY

The Euclidean action of a scalar-tensor theory for a
single scalar field ¢ can be parametrized by three arbitrary
functions U(¢), G(¢) and V(¢),

G
S"g. 9] = / d*xg'/? (—UR + 5 4D + V>. (1)

This representation of scalar-tensor theories is called Jordan
frame (JF) parametrization. Performing a conformal trans-
formation of the metric field g,, and a redefinition of the
scalar field ¢,

. U op\?>  (Uy\ GU +3(U;)? )
gyl/_?ogﬂw % - 7 #’ ( )

where U, = OU(¢p)/Og, the action (1) transforms into

0.0 = [ @ (~vik+ 570,00, + 7). 3

The action (3) resembles the Einstein-Hilbert action for g,
with a minimally coupled scalar field $. Consequently, the
parametrization in terms of the variables (,,,®) is called
Einstein frame (EF). Here, U, is a constant, usually
identified with the Planck mass Uy = M3/2 and V is
the EF potential, defined by

V(@) = U(z);/z(((p(p)) o

(4)

Extremizing the EF action (3) with respect to g, and
¢ gives rise to the Einstein equation for g, and the
Klein-Gordon equation for §,

. | | B A N

R;w _ERg;w :Z—U()Tl(fv» Ap=-V,. (5)
Here, A := —g””V V is the Laplacian and T4 ww 1s the scalar
field energy-momentum tensor

L, g an A N
A 9w (g ﬂaaq)aﬁq) + 2V) (6)

TZ)V = ﬂ@al/éb )

We denote derivatives of the EF potential ¥ with respect to
the EF scalar field ¢ by

v

Vo= (7)

The calculation of the one-loop effective action requires a
proper gauge fixing. In [21,22], the background covariant
de Donder gauge condition is used:

#lon == (Vb =1 )- )

The covariant derivative @ is defined with respect to the
metric gm, The one-loop dlvergences for the EF action (3),
obtained in [21,22], read’

P 1 43A 1 .
FEF div _ /d4 Al2) "o T RMV__RZ
rl 327%e 9 g 60 Ry 40
lana 1 4 13.. 1.
—RV,—=(V,)? 4+ U;' | =RV +=R(0,p0"
+6 2 2( 2)"+ U {3 3 R(0,p0")

+2(V))? + 2‘72(3,4(?3”@)]
. N 5
- Uy? [5V2 +V(9,p0"®) +7 (8”(@8”@)2} } 9)

The Gauss-Bonnet term in the EF parametrization is
defined as
G =R, R — 4R, R™ + R (10)
It is understood that the indices in (9) and (10) are raised
and lowered with the metric g, .

3The same result can be obtained from the one-loop divergences
for the JF action (1), calculated in [43,44], in the limit U = U,
G = 1,bysettingV = V, 9w = G and @ = @. The model (1) with
G =1 has also been considered within the exact functional
renormalization group in [45.46]. Note that the results in
[21,22] are obtained in Lorentzian signature. Their transformation
to the Euclidean version (9) involves a global minus sign.
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IIL f(R) GRAVITY

The Euclidean action functional for f(R) theories is
given by

Sflg) = - / dxg 2 f(R). (11)

We denote derivatives of the function f with respect to its
argument by a subindex

J"f(R)
= . 12
The extremal is defined as
3Sg
Ew = Gualupg P ——
7 nadvp 59(1/)'

1
= _Aflg;w - vyvbfl +f1R;w - ifg;w' (13)

The classical equations of motion are satisfied, if £,, = 0.
The trace of the extremal reads

S:zngﬂzz:_3Afl+Rfl_2f' (14)

We also define the rescaled extremal and its trace:

€, £
= , = ¢VE, — (15
Fu=try BBy W

Both E,, and E are homogeneous functions of degree zero
in f and its derivatives f,. The one-loop divergences for
f(R) gravity have been calculated recently [20] in the
extended de Donder gauge:

1
29, h] = —g™ ¢ (vﬂhﬂv - Evﬂhﬂv + Tﬂhﬂl’>‘ (16)
The additional term is linear in
T, =0 nf =L20R 17
u = Yu nfl _fT prt. ( )

The divergent part of the one-loop effective action for f(R)
gravity on an arbitrary background reads [20]*

*The result (11) in [20] has been obtained for the negative of
the action (11). Note, however, that (18) is invariant under the
change f — —f.

A | 71 . 609 1f
Ff div _ d4 12"~ ———"R Rw —J
™ =30 / 9 [ 607 "0 RuR H 37

1 2 2 1
BN LAV S S e 3919
288 \ f 18\f,) “64f, " 1440
15 55 419 f 2933
" RAL E(X g2 =2
T g RAIS A+ <108 4327, " 84
221 403 2987
S Amf ) —E, (22 R
88 nfl) ””(96 METT )]
(18)
with the Gauss-Bonnet term
G = R, R — 4R ,R™ + RZ. (19)

IV. TRANSITION BETWEEN f(R) THEORIES
AND SCALAR-TENSOR THEORIES
IN THE EINSTEIN FRAME

The action (11) for f(R) gravity admits a scalar-tensor
formulation, where the extra scalar degree of freedom,
included in the higher-derivative structure of f(R)
gravity, becomes manifest. The transformation can be
performed in two steps. First we introduce an auxiliary
scalar field y, perform a Legendre transformation and
represent the action for f(R) gravity as a scalar-tensor
theory (1) in the JF formulation for the JF scalar field ¢.
In a second step, we perform the transformation (2) to
the EF formulation (3). In this way, all information
about the original function f(R) is encoded in the EF
potential (4) and the EF field ¢.

Starting from the action (11), we introduce the
auxiliary scalar field y and perform a Legendre trans-
formation

Sanlg) == [ @911 G0) + iR =) 20
Extremizing (20) with respect to y leads to the equation
f2(R=x) =0. (21)

For f, # 0 this implies
¥ =R. (22)

Therefore, “on shell” the action (20) is equivalent
to the original action (11). We define the scalar function

Ulyp) as
Ulp) = f1(x)- (23)

Given a function f (), this relation has to be inverted and
explicitly solved for y(¢) = y(U(¢)). In terms of (23), the
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action (20) acquires the form of a scalar-tensor theory (1)
with G(¢) = 0,

Sunls-g] = [ dxg -U@R+ V(). (24)
The JF potential is given by

Vip) :=Ulp)x(e) — f(x(p)). (25)

Using (2) with G =0, we obtain the EF scalar-tensor
formulation (3) for f(R) gravity.

In order to compare the different formulations, we
provide the explicit transformations that bring the EF
scalar-tensor theory back to its corresponding f(R) for-
mulation. First, we present the transformations for the
scalar field and its derivatives as well as for the scalar field
potential and its derivatives. The special property G = 0
of f(R) theories allows us to immediately integrate the
differential relation (2). Using (23), we express the EF field
@ in terms of the scalar curvature R,

@(R) = (3Ug)"*In f1(R). (26)
This implies the relation

OR _1/2]1

55 = BUa 22! @)
Combining (26) with (17), we obtain
9,0 = (3Uy)"71,. (28)

Using (4), (22) and (23), the EF potential can be expressed
as a function of scalar curvature R,

, Rfi =1

V(R)=U} I (29)

With (27), we find for the first and second derivatives

71(R) = U3(3U,)1/2 [%} (30)
2 _
\72(R) :% [(fl) +1§£1;;2 4ff2]_ (31)

Second, we collect the conformal transformation rules.
Combing (2) with (22) and (23), we find

Therefore, f(R) gravity corresponds to a subclass of scalar-
tensor theories with nonminimal coupling U(gp) to gravity
without canonical kinetic term, i.e. G = 0.

. /i
Guv = Fogﬂw (32)

. U
g =—g", (33)

fi

2
Al/2 Q 1/2 34
(U0> ’ (34)
1

0 =T + 6,7, - 3 9T, (35)

1 o
+ 5 (5ﬁ/T/)] Tﬂ - g/l{ gﬂ[l/T/)] Ta)
- (5/1 \Y ]Tﬂ - giagﬂ[vvp] Ya)’ (36)

e

A

1
R;n/ = R;w - Egﬂl/g ﬂ(YaYﬂ + vaTﬂ)

1
500 -V, (37)
1

In particular, combining (28) with (33) and (35), the
Laplacian of the EF scalar field transforms as

. U,
Ap= (3Uo)1/2f—§’Af1. (39)
1

V. COMPARISON

Using the explicit transition formulas provided in the last
section, we transform all quantities in the EF formulation to
the corresponding expressions in the f(R) formulation and
compare them at the classical and quantum level. For the
explicit transformations (26)—(39) not to be singular, we
require f; # 0. Moreover, for (23) to be invertible, we
require f, # 0.°

A. Tree-level comparison

By construction, the action of the scalar-tensor theory (3)
in the EF parametrization is equivalent to the action of f(R)
gravity (11), which can be easily verified by applying the
transformation laws (26)—(39) to (3).

Likewise, the Einstein equation is easily seen to be
equivalent to the equation of motion E,, =0 for f(R)
gravity by applying (26)—(39) to (5). In addition, the

®The trivial case f>» = 0 corresponds to the Einstein-Hilbert
action with a cosmological constant.
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Klein-Gordon equation for the scalar field in (5) transforms
into the trace of the on-shell condition E = 0, which
therefore does not encode any new information.” In
particular, the equivalence of the equations of motion for
scalar-tensor theories and f(R) gravity implies that the on-
shell condition can be imposed in either formulation.

B. One-loop comparison

We apply the transformation formulas (26)—(39) to the
divergent part of the off-shell one-loop effective action ['fF,
calculated in the EF (9).% In this way, We express flfF in terms
of its f(R) formulation I'F. Subsequent use of the integra-
tion by parts identities, provided in the Appendix, allows us
to write T}F in terms of the rescaled extremal E,,,,’

o 71 . 609
EF |div _ 4. 12| _" "7 my
™ =5 / @xg [ 607 g0 Rk

Lf 115/F\2 1 [(fi\2
+3fz_288<f1> 18(f>

157 3919 15

LR Wit SRRy YN

61, KT g™ TegRAI
| 47F 1f, 695 117

ol (e N AL A iy WL\ |

+ ( 3P T8 s, Tasst T A
31 331

— T pww | T pu

E,w(%E +5 R ﬂ (40)

Note that there is one additional structure in (40), propor-
tional to Ef,/f,, which is not present in (18). Comparing
(40) to the off-shell one-loop divergences (18), obtained
directly for f(R) gravity, we find that the two off-shell results
do not coincide. The difference is given by

FJI‘ |div _ F]15F|div

1 KIS 91
/d“xg‘/ZEW [—ZE/’ ——RM 4 <—E

~ 3272 36 108
53 41 F 1f 26
Sy S A s Al wl| (41
54k =316 "T85, 9 A9 (41)

Independent of the choice for the scalar function f, the
difference between the off-shell divergences never vanishes
due to terms proportional to R, R* in the first line of (41). It
is clear that the nonequivalence is a pure off-shell effect, as
the difference (41) vanishes on shell £, = 0. Therefore, on-
shell, the one-loop divergences for f(R) gravity and its

A similar result regarding the equivalence of the equations of
motion has been obtained in [47].

It can be shown that the gauge condition (8) is equivalent
to the gauge condition (16) by applying the transformations
(299)—(31) to the background field.

We independently checked (40) with the MATHEMATICA
computer algebra bundle XAcT [48-50].

scalar-tensor formulation in the EF are equivalent at the
quantum level.

VI. CONCLUSION

We have investigated the quantum equivalence of f(R)
theories and scalar-tensor theories by explicitly comparing
the one-loop divergences in both formulations for arbitrary
background fields. We find that the off-shell one-loop
divergences are ambiguous, as they depend on the formu-
lation, while their on-shell reduction is not. Our on-shell
agreement also provides a strong independent check of the
on-shell structures in the result for the one-loop divergences
of f(R) gravity obtained in [20].

On-shell equivalence of f(R) gravity and scalar-tensor
theories has also been found in [51] for certain cosmo-
logical models on a de Sitter background. The equivalence
of f(R) gravity and Brans-Dicke theory has been studied
previously in the context of the exact renormalization group
[52]. Although we do not fully agree with their interpre-
tation of the result, their conclusion also seems to support
the statement that the off-shell divergences depend on the
formulation. A similar result has been obtained in [22],
where the quantum equivalence of scalar-tensor theories in
the JF and EF formulation has been analyzed. There, it has
been found that the off-shell divergences are parametriza-
tion dependent while on shell the equivalence is retained.
This on-shell equivalence is to be expected on the grounds
of formal equivalence theorems [53-57].

The off-shell nonequivalence is not a physical effect but
a defect of the underlying mathematical formalism. The
significance of this problem in cosmology might be best
explained in the context of inflationary models. In general,
off-shell UV divergences lead to running couplings, whose
renormalization group (RG) flow is controlled by the
corresponding beta functions. Any ambiguity in the off-
shell divergences will therefore induce a corresponding
ambiguity in the beta functions and consequently an
ambiguity in the values of the coupling constants. The
ambiguity of the beta functions and the couplings is not yet
a real problem because neither of them are physical
observables. The problem in inflationary cosmology arises
when these running couplings are evaluated at the energy
scale of inflation and simply inserted into the cosmological
parameters. These parameters, which inherit the ambiguity
from the coupling constants, are then compared to obser-
vational data.'® But what meaning does such a procedure
really have?

%Such a procedure has been applied e.g. in the RG improve-
ment of nonminimal Higgs inflation [12—15], which turned out to
be crucial for the numerical predictions. In [22,30] it was
therefore proposed to use Vilkovisky’s unique effective action;
see e.g. [58,59] for the application of this idea in the context of
nonminimal Higgs inflation.
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In order to obtain reliable predictions, it seems to be of
crucial importance to define unambiguous cosmological
quantum observables, which are in particular manifestly
gauge and parametrization independent.
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APPENDIX: INTEGRATION BY
PARTS IDENTITIES

We can express the T,-dependent invariants in terms of
E,, and its trace E by the following set of identities derived
in [20],

o 1/_1 _l_f v L v

Y — pu 3<E+R zfl)g” R ZTHYY, (AT
2 - _1 _I

(1, 1) = 3<E—|—R f1>(T”TM)

2
+ 3 (EW + RW)T/‘T”, (A2)

fi

(T, T") = RAInf,, (A3)
2
I -1 PN
fl(TMT”)_ 6<E+R 2f1>f1+2RAlnf1, (A4)
| f
R(, 1) = =3 <E+R—2f>R+RAlnf1, (A5)
1
| f
E(T, 1) = =3 <E+R—2]T>E+EAlnf], (A6)
1

.1 1 1 1f
E, Y'Y= _E E" +-E,R" ——E(E+R—-*+—
" R ( ’ 2f1)’

(A7)

. R 1
R, T*YT = E, R* + R, R" —~ (E+R~ 17
3 21

1
+5RAIS). (A8)
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