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We calculate the divergent part of the one-loop effective action for f(R) gravity on an arbitrary
background manifold. Our result generalizes previous results for quantum corrections in f(R) gravity,
which have been limited to spaces of constant curvature. We discuss a new technical aspect connected to
operators with degenerate principal symbol. Our result has important applications in cosmology and allows
us to study the quantum equivalence between f(R) theories and scalar-tensor theories.
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I. INTRODUCTION

Together with scalar-tensor theories, f(R) theories pro-
vide the most important cosmological models for the early
and late time acceleration of the Universe [1-5].

As any modification of general relativity with higher
curvature invariants, also f(R) gravity involves higher
derivatives [6—8]. While fourth-order gravity, which takes
into account all quadratic curvature invariants, is perturba-
tively renormalizable, it suffers from problems with uni-
tarity due to the appearance of a massive spin-two ghost in
the spectrum [6]. In contrast, f(R) theories only propagate
the additional scalar degree of freedom—the ““scalaron” [9].
Therefore, f(R) theories avoid the classical Ostrogradski
instability and the associated problem with unitarity vio-
lation at the quantum level [10]—at least within a truncated
effective field theory framework.

The calculation of the quantum effective action for
theories of gravity has important applications in cosmo-
logical models. In particular, knowledge of the divergent
part of the effective action allows us to study the renorm-
alization group (RG) improvement of these models. In the
context of general scalar-tensor theories, the one-loop
divergences have been calculated in [11-13]. These results
are important for the RG properties of inflationary models
such as nonminimal Higgs inflation [14-21], whose infla-
tionary predictions for a large nonminimal coupling are
almost indistinguishable from Starobinsky’s quadratic f(R)
model of inflation [9,22,23]. This is a particular manifes-
tation of the fact that f(R) theories admit an equivalent
scalar-tensor theory formulation at the classical level. This
equivalence can be probed at the quantum level, similarly to
the analysis for different parametrizations of scalar-tensor
theories [24].
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Perturbative calculations of ultraviolet (UV) divergences
in theories of gravity have a quite long history, starting with
the one-loop result for Einstein gravity, minimally coupled
to a free scalar field [25]. The result was extended to
Einstein gravity with a cosmological constant in [26] and to
Einstein gravity at the two-loop level in [27,28]. The one-
loop divergences for renormalizable higher-derivative grav-
ity were calculated in [29,30]. The one-loop effective action
for f(R) theories on a de Sitter background has been
calculated in [31]. In this paper we generalize the calcu-
lation for the one-loop divergences in f(R) gravity to an
arbitrary background.

A nonperturbative approach to quantum gravity is the
asymptotic safety program, initiated in [32,33]. The main
tool to test the asymptotic safety conjecture is the effective
averaged action, which satisfies an exact functional reno-
rmalization group equation (ERGE) [34-36]. Practical
calculations, however, are limited to truncations restricting
the set of operators in the effective averaged action. Various
f(R) truncations of increasing complexity, up to closed
flow equations for f(R) gravity, have been obtained
[37-46]. So far, calculations for a general function f(R)
have been limited to spaces of constant curvature. Since
these calculations share many technical aspects of pertur-
bative one-loop calculations, the method for general back-
grounds, introduced in this paper, might also find
applications in the context of the ERGE.

The paper is structured as follows. In Sec. II, we
comment on the special structure of the principal symbol,
outline our strategy of calculation, perform the gauge fixing
and derive the fluctuation operator and ghost operator.
In Sec. III, we show that the calculation of the one-loop
divergences reduces to the evaluation of the three func-
tional traces: a standard tensor trace, a standard vector
trace, and nonstandard scalar trace. In Sec. IV, we present
our main result for the one-loop divergences and its
on-shell reduction. In Sec. V, we check our result by
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independent calculations on a de Sitter background. In
Sec. VI, we compare our result with previous calculations
in f(R) gravity. Finally, in Sec. VII, we summarize our
results and give a brief outlook on possible applications.

Technical details are provided in several appendixes.
In Appendix A we introduce our notations, the general
formalism, calculational tools and a collection of universal
functional traces. Appendix B contains the tensorial coef-
ficients of two differential operators. In Appendix C, we
provide a set of integration by parts identities and present
the final result in different bases. Finally, in Appendix D
we collect results for traces over symmetric transversal-
traceless tensors and transverse vectors.

II. f(R) GRAVITY ON ARBITRARY
BACKGROUNDS

The Euclidean action functional for f(R) gravity in four
dimensions reads

Slgl = / dxg 2 f(R). (1)

The linear metric perturbations £, around a fixed but
arbitrary background g, are defined by

h/u/ =009 = Guv — g;w' (2)

In what follows, we omit the bars over background
quantities. We denote derivatives of the function f with
respect to its argument by a subindex

_0"f(R)
Sn= R neN. (3)

A. Equations of motion

For the first variation of the action (1) we find

3,30 = [ g [flagze L) @

The extremal tensor is defined as

_1n0Slg
EW = g2 9]

0

1
==(f1)a"g" + ()" = fLR" +§f9’“'- (5)

We reserve the “semicolon-postfix” notation to indicate
that covariant derivatives only act on the object they are
attached to. In contrast, the “prefix” notation indicates that
derivatives act on everything to their right. The classical
equations of motion for the background (“‘on-shell” con-
dition) are satisfied, if £/ = 0. The trace of the extremal is
defined as

g::gﬂygﬂv:_:S(fl);aa_Rfl+2f‘ (6)

The invariance of the action (1) under diffeomorphisms
implies &, = 0. It is natural to define the rescaled
extremal tensor E,w and its trace E, which are homo-
geneous functions of degree zero in f and its derivatives f,,
= Ew &

E:= gle/w = (7)

E =—.
Ji

"R

B. Hessian and degeneracy of the principal symbol

The second variation of the action (1) can be written in
the suggestive form

525l = / d4xg1’2{fz(5gR)2
7 [6§R 1 2g712(5,92)(5,R) + Rg~2(8291)

(- Rf1>g-”2<azg“2>}. ®)

From (8), it is obvious that the Hessian in f(R) gravity
leads to a fourth-order operator (for f, # 0), as f(R) is a
function of the undifferentiated Ricci scalar R only. The
special structure of the second variation shows that all
fourth-order derivatives are included in the f,(5,R)* term
in the first line. Up to the overall factor f, the expression in
the second line resembles the second variation of the
Einstein-Hilbert action. The last line reduces to a cosmo-
logical constant in the Einstein-Hilbert case':
2

FR) = =2 (R=2A). ©
It is well known that the introduction of higher time
derivatives leads to additional propagating degrees of
freedom [47]. In addition to the massless graviton, quad-
ratic curvature invariants generically lead to a massive
scalar mode, the scalaron, and a ghostlike massive graviton
[6,8]. The appearance of higher-derivative ghosts in the
quantum theory is related to Ostrogradski’s theorem
[10]. Among the higher-derivative models of gravity,
f(R) gravity is special, as it only propagates the extra
scalar mode and therefore avoids the ghost problem [10].
Note that Ostrogradski’s theorem does not apply to f(R)
gravity as the proposition of nondegeneracy is violated
[10]. Whether a given theory is degenerate or not depends
on its highest derivative structure. This structure is encoded
in the principal part D(V) of the fluctuation operator F(V),
defined in (A10),

F(V) = D(V) + I(V), (10)

'"The overall sign in (9) is consistent with the Euclidean
signature.
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where, as explained in Appendix A 3, we collect all lower-
derivative parts in the operator IL. The degeneracy of D can
have different origins. For gauge theories, the operator,
derived from the Hessian of the action S, is always
degenerate. Therefore, a gauge-fixing procedure is required
to break the gauge degeneracy. But even if the total gauge-
fixed operator is nondegenerate, its principal part can still
be degenerate. This is exactly the case for f(R) gravity,
where the principal part D of the fluctuation operator F
arises from the f,(5,R)* structure in (8),

D, (V) = fa¥u.ap(g A+ VEVP) (g7 A+ VPVE). - (11)

Here, y,, 45 is the inverse of the bundle metric (A8).” The
corresponding principal symbol is obtained by replacing
derivatives V, by a constant vector in,,,

pra(n) — fzy”y’aﬂ(gaﬁnZ _ n(lnﬂ)(g/)o'nZ _ n/’l’l”)’ (12)

where n* = ¢"n,n,. The dyadic structure of the principal
symbol leads to its degeneracy detD,,”’(n) =0 and
reflects the fact that only the conformal mode propagates
with higher derivatives—not the other components of 4,,.
If we had included other curvature invariants, such as
R, R" or R,,,,R*"", in the action (1), the principal symbol
would, in addition to the structures present in (12), contain
structures of the form

v 4
5[)0'” ’

SE”n”)n(,)nz. (13)
In this case, the transversal-traceless components of £,
would propagate also with higher derivatives. In particular,
the “identity” structure &,n*, induced by curvature invar-
iants such as R, R*", necessary for the principal symbol to
be invertible, would lead to the propagation of the addi-
tional massive spin-two ghost [6].

The degeneracy of the principal symbol explains why the
Ostrogradski instability is avoided in f(R) gravity, but it
raises another problem. In order to obtain the Green’s
function G = —1/F, the operator F needs to be inverted.
In general, an exact inversion of F is impossible. However,
the UV dominant contributions to G can be obtained in
perturbations:

1 1 1_1
- e = 14
D+11 D+D D+ (14)

Even if the total operator F is invertible, this perturbative
expansion is not available if D is degenerate. Therefore,
in this respect the situation for f(R) gravity is even more
complicated than in fourth-order gravity, where the

Note that the degeneracy of D "7 (V) is independent of ., 4.

presence of the R, R* structure ensures that the principal
symbol is nondegenerate and standard methods are
applicable [30].

In [48], two methods are proposed to deal with such a
degenerate principal symbol. The first method is based on
the inclusion of lower-derivative structures in the definition
of the principal part, in order to explicitly break its
degeneracy. But even if the extended principal symbol
satisfies the “generalized causality condition” [48], it is not
guaranteed that the generalized Schwinger-DeWitt formal-
ism is efficient.

The second method is the “method of squaring” [48],
which is however difficult to realize if components of a
relativistic field enter the fluctuation operator with a
different number of derivatives.

While the irreducible decomposition of 4, generally
leads to essential simplification in the derivative structure
of the individual components, at the same time the
fluctuation operator F becomes matrix valued. Apart from
this complication, the irreducible components are subjected
to differential constraints. In particular, this means that
functional traces have to be evaluated over constraint fields,
which, in curved spacetime, requires the use of complicated
nonlocal projection operators; see e.g. [49,50]. Therefore
this method has been almost exclusively applied to highly
symmetric backgrounds such as de Sitter space; see
e.g. [31,51].

In this paper, we propose a different strategy, which
exploits the dyadic structure of the principal part (12). In
fact, the problems that arise from the degenerate principal
symbol in the standard methods lead to a simplification in
our approach. It allows us to reduce the calculation to the
evaluation of three functional traces—without the afore-
mentioned complications associated with the decomposi-
tion of the field &,,.

C. Relevant operators

1. Gauge fixing and ghost operator

Gauge transformations of the dynamical field 4, cor-
respond to diffeomorphisms, infinitesimally generated by
the Lie derivative L: along the vector field &,

By = M = (L29), = 2)- (15)

We choose an extension of the de Donder gauge condition
s 1 y

x%g. h] = —{ h™P — Eh’” + TPhg* |, (16)

which includes a term linear in

T/d = (lnfl);ﬂ = %R;ﬂ' (17)
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The gauge breaking action is given by3

1
Seblg. h] = —§/d4xg"2 ()(aflga/i)(ﬁ)- (18)

The compensating ghost action reads

Salg.0.0] = [ E0%0,0(Vl. (19)
where the ghost operator Q derives from (16),

_ o [hf]

Qaﬂ(v) ; 55[;

= 0FA = T,V — 55THV, — RS, (20)

2. Fluctuation operator

The fluctuation operator of f(R) gravity F: F? — F?2,
defined by the Hessian of the gauge-fixed action S, =
S+ Sgp, is a local, nonminimal fourth-order differential
operator with components

58
pra(v)é(xv xl) = g_l/zywu — (21)
/ ! ﬂégaﬂ(x)égpa(x/> 9=7
It can be represented in the form
F=fl"? <AT%A—H> 12, (22)
1

The individual operators, appearing in (22), are explained
below. The operator A: F? — F9 is defined in terms of
the operator A: F? — FO by

A= fIPAFR. 23)

The operator A, in turn, is defined by the first variation of
the Ricci scalar §,R = A*(V)h

12
A(V) = g A + VWY — Riv, (24)

In view of the definition (23), the components of A involve
extra terms compared to the components of A,

AR(V) = g A + VUV 4 guyry, — YUve) 4 i,
(25)

*Despite the higher-derivative character of the theory, we have
chosen a trivial Nielsen-Kallosh operator O := f1gqs [52,53].
With this choice, (18) only affects the lower-derivative part of the
fluctuation operator—not its principal part.

1 1 1
WY s ZYHYV — _T(M;u) — (Y. Y
W= o 5 29 (119
1 .
+ 59" () = R, (26)

As explained in (AS5), the formal adjoint AT: F0 — F?2 of
A is defined by
(AT@.h), = (p.Ah)y,  @eF’,  heF? (27)
The components of AT can be expressed in terms of the
components of A,

Ao (V) = Vpouf T2A" (V) 1. (28)

The formally self-adjoint, minimal second-order operator
H: F? — F? has components

Hop" (V) = Gy + Pog”. (29)
The potential is defined by

P = =2R (. = 25/R) + g, R + R,

(%)
Lo wor oL 57 L osre 4 asoroy
~ 5909 R+ 7% 26,75 + 46,17 Ty

- gpgTy;é - gyérprd - gpa’ry’r&

o —
7 )

1 .
+ Egyég/m(’ra’a + TaTa)

1 o a a
= 19360 + 70, ). (30)

III. CALCULATION OF THE ONE-LOOP
DIVERGENCES

The divergent part of the one-loop effective action is the
sum of the following traces:

. 1 . .
Py = 2 Try InF|™ = Try In Q. (31)

We rearrange the tensor trace in (31) as follows:

) f2 div
Tr, InF|% = Tr, In | f17 AT]TA —H ) fl”?
1

div

1

1
=Tr,1In <ATQA——1>
fi H

=Tr,In (ATQA - H>
f

div )
+ Tr, In H|4Y.

(32)
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TABLE I.  Reduction of the formalism for generalized fields ¢ to rank-two symmetric tensor fields h,,, vector
fields & and scalar fields ¢.

F P YAB r8 & o (Rul* 5 (¢1. d2)

]:'2 h;w J//41/.,06 Y po 5/4/):_ 10 yb(p(aéﬁ; <hl h2 f d4xgll2hl },/41/ pth
‘7:1 éﬂ g;w g’w 5/; 4 R/w “ B <§lv 52 fd4x.ql/2§ g;wfz

F° @ 1 1 1 1 0 <(p1,(/)20—fdxg 192

In the third equality we have used that for two operators L
and L,, we can formally write*
Trin (L|L;) =TrlnL; + TrinL,. (33)

For the Einstein-Hilbert case, f, = 0, the first trace in (32)
vanishes and (31) reduces to

1 .
iy =3 TonH™ — T Q™. (34)

In this case, the fourth-order operator F reduces to a
second-order operator and the additional scalar degree of
freedom is absent. For f, # 0, we convert the first trace in
(32) into a scalar trace,

Trzln( ;ZAE—1>

1

div

= TryInS|4Y,  (35)
where S is the nonlocal scalar operator

= t

S 7 AHA (36)
Formally, the identity (35) is derived by expanding the
logarithm, using the cyclic property of the trace and
resumming the terms again. Note that this manipulation
relies on the dyadic nature of the ATA structure. In this
way, (31), which involves the trace of the nonminimal
fourth-order operator F, reduces to

1 . 1 .
Iy |dv zzTrzlnH\d“’ —Tr; InQ|4 +§TrolnS|d“’. (37)

The tensor and vector traces are easily evaluated by
standard methods; see Appendix A 2. The evaluation of
the scalar trace constitutes the nontrivial part of the
calculation as the operator S involves the inverse of H.
In the following subsections, we separately calculate the
tensor trace, the vector trace and the scalar trace in (37).

“The failure of this property is usually denoted as a “multi-
plicative anomaly”; see e.g. [54].

A. Divergent part of the tensor trace

The tensor trace in (37) is calculated directly by the
Schwinger-DeWitt algorithm (A14), as H is a minimal
second-order operator

H=A+P. (38)

Inserting the potential P, defined in (30) and the bundle
curvature R, provided in Appendix A, into the general
formula (A14), we obtain

Tr, In H|4Y

_ 16228 / dx 1/2{ —g- 6R,WRM 5(}%)2
+13—7£R—;5—‘R2+9]{1(T/”)—%R(TMW)
—%R(T”T”) 125%(3( TH) 4 R, THYY
-2 P ST G (9

The Gauss-Bonnet term is defined as

G = Ry,,oR""" — 4R ,,R* + R2. (40)

B. Divergent part of the vector trace

In contrast to H, the ghost operator Q is not yet of
the form (A13), suitable for a direct application of the
Schwinger-DeWitt algorithm (A14), as it contains terms
linear in derivatives. We write (20) as

Q=A-20V, 1, (41)

where the coefficients of Q* and U are given by

1
[Q4]% =3 <5“T" + g”“T,;) U =—-Rj. (42)
By redefining the covariant derivative V), =V, + Q,, the
operator is brought into standard form,
Q=A"+U, (43)
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at the price of a modified potential and bundle curvature:
U'“y = —R% + [Q]%., + (], [Q 9. (44)

(RL, = (Rl + (915,90, + 91 [ 0,191
(43)

Inserting the minimal second-order operator (43) together
with (45) into the general formula (A14), we obtain the
divergent contribution of the ghost trace:

o 1 7 17
Tr, 1 div _ d4 | - o_ — R RH _ _RZ
ninQ| 167:25/ 9 [1809 30" 760

13 13
—R(Y,*)+—R(YL,T*)+ R, THY
+12 ( H )+24 ( H )+ HY
19

7 7
__ AV iz Y —
g (L2 = (L0 (1) =25

(T, 1)2.

(40)

C. Divergent part of the scalar trace

It remains to calculate the scalar trace in (37). The
operator S involves a nonlocal part due to the inverse of
the operator H. Therefore, the functional trace cannot be
evaluated directly with (A14). Nevertheless, S is a scalar
operator,

S =3A +O(M), (47)

with principal part 3A and lower-derivative terms O(9),
which we treat as perturbations. For the divergent part in
four dimensions, it is sufficient to expand up to O(IM*).
In order to determine the terms O(IMN) in (47) explicitly, we
make use of the following operator identity:

1 1 1 1
B

A—=—A+-B—. 48
H K + K H (48)
The minimal operator K: F° — F9 is defined as
._ f
Ki=A-R+1. (49)
fi

The operator B: F? — F° and its adjoint BT : 72 — F°
are second-order operators, which are O(9t?). This property
is crucial for the efficient use of the operator identity (48).
In components, B and B' read

B*(V) = BY""V V, + B{"V,+ B}, (50)

B;U(V) = yﬂv,aﬂ(vpvanﬂpa - va;lﬁp + Bifﬁ), (51)

where the coefficients B; = O(IM') are local background
tensors and explicitly presented in (B1)-(B3). We use the
identity (48) and its adjoint to write

) 1
Try In S|4 = Try In [E <—AATK —BAT

1 17 |div
ik k-pler)l
fa H K

(52)

Next, we define the sixth-order operator X: F0 — F0,

Xt <—AA*K —BA' + KflK) (53)
3 /2

Using the property (33), we write (52) in the compact form

div

: 1._1_. )
Tro In S| = TryIn (X - gB EBT) — 2Try In K |4V,

(54)
In components, the operator X reads

X(V) = A® + X2V, V,A + X"V, V,V,
+ XMV, Y, + O(I). (55)

The coefficients X; = O(IMM') are totally symmetric local
background tensors. The formal self-adjointness of X leads
to essential simplifications: the term linear in the background
dimension is absent, such that the perturbative expansion
starts with X5” = O(IR?). Moreover, X5” only has two free
indices instead of four, as two derivatives in (55) are
contracted into a Laplacian A. The explicit coefficients X;
can be found in (B4)-(B6).

In order to extract the divergent part of the trace (54), we
first treat the nonlocal term as perturbation and expand the
logarithm up to terms O(IM*),

Tron (X — LB LB o
1o In --B—
0 3 H

div

1 11
=TroIn X|% — ~Try( =B—B" 56
o X =B B7) [T (56)

Since the second trace in (56) is already O(IN*), we freely
commute all operators, use

1 1
E_1K+O(m)’

1 1

Y: P%—(’)(EUZ), (57)
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and reduce (56) to the following functional trace:

1 1 div 1 div
Tro —B—I;T :TI'O BB 7
X H A
- 44
_ / d*xBE Y B UL,
(58)
Here, Z/l pgﬁ denotes a universal functional trace, defined

in Appendix A 3. Next, we extract the divergent part
from the first trace in (56). We insert the representation
(55) for X, expand the logarithm around A* up to
O(IM*) and obtain again a sum of universal functional
traces,

Tro In X|4Y = 3TryIn A|4Y + /d“xX’g”M,(ff)

+ / dxxt U + / dxx Uy

1
-3 / A4 XXM XU, (59)

The trace including K in (54) is evaluated directly with
(A14). Inserting the explicit expressions for B5"?, X4,
X4 and X%", tabulated in (B1), (B4)-(B6), together with

the corresponding universal functional traces Z/{(p ",,p,

tabulated in (A21)—(A24), we find for the divergent part
of the scalar trace (54),

. 1 1133 1/ f£\2 FOY TS LS 18T
Tra 1 de — d4 12| _ _ RHv J L 7 R
ro In§|™ = ¢ 2/ 9 [ 180 ~ 180 PR 13 (1) <f2 6 T3 360
3f 19 13 3f 29
2L, #) = ZR(T,#) + =2 R(T, T L p ey £ PR yuy
53 17 37
N M —_ 14 wy w\2
(L = (LT, — 3 (1,77 (60)

IV. ONE-LOOP DIVERGENCES ON ARBITRARY BACKGROUNDS: FINAL RESULT

According to (37), we add the partial results for the tensor trace (39), the vector trace (46) and the scalar trace (60) to
obtain the final result for the divergent part of the one-loop divergences for f(R) gravity on an arbitrary background.

Note that all invariants must be homogeneous functions of degree zero under simultaneous rescaling of the function f and
its derivatives. Below, we present the final result in terms of curvature and Y-structures:

A 1 71 259 2 1\ 2 f 1f 59
r div _ 44 mi_"- 7R R _Z J 1 77_7R2
| 3277.'28/ 9 [ 607 ~ 180" <f1> ( L) T2 a7, 7360
21 f 33 . 371 27 f 20
— —R(T,*) = —R(Y,T+) + —-~ (T, T#) +—R,, T
5 (0 = ROT#) = RO 4 0 (0,0 £ R,
137 9 769
——(r* T, 1) (Y,") — (T, 61
oy (1,07 = (1,00, = 32 (1,772 (61)
|
This constitutes our main result. The result expressed r dw 1 dhral? 71 6O9R R
in terms of different invariants, which are better suited for Hé=0 = 352, R @ g- 30
the reduction to the on-shell divergences and the reduc-
. . . Lf 1s/f 1
tion to spaces of constant curvature, is presented in +- — (=
Appendix C. As expected on general grounds, the one- 3 f 2 288 1 8 2
loop divergences contain up to four derivatives of the 15 f 3919 R ISRAl 2
Ricci scalar. The presence of the curvature squared T 64 f | 1440 + 64 nfil- (62)

structures proportional to G and R, R* and the derivative
structures in the second and third line just confirm
explicitly that f(R) gravity is perturbatively nonrenor-
malizable. In the form (C9), the on-shell reduction is
trivially performed by setting E,, = 0,

Note that RAlIn f is the only derivative structure that
survives the on-shell reduction.
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V. f(R) GRAVITY ON A DE SITTER
BACKGROUND

The Riemann curvature tensor of a maximally symmetric

space is given in terms of the constant scalar curvature Ry,

R
R/u/pa - 1§ (glgﬂ)gl(m) - gl(w')gl(//)))' (63)

In particular, we have T, = 0. Euclidean de Sitter space in
four dimensions is a sphere S, of constant radius r,

12
R=-=,  Ry>0. (64)
Ry
The volume V/(S,) is given by
- 38472

A. One-loop divergences: Reduction
to de Sitter space
For the off-shell one-loop divergences in the basis (C13),
the reduction to a constant curvature background becomes
trivial:

1 173 2
F|d‘V:— -——=54 f + 54 f
3 20 Rof Rofi

i o
<Rof2> * 4R%fj‘ (66)

The subsequent on-shell reduction is performed by noting
that on spaces of constant curvature, the on-shell relation
(6) reduces to the algebraic equation

&y =—Rof1 +2f. (67)

Inserting (67) into (66) we obtain the on-shell one-loop
divergences on a de Sitter background:

A 1[97 foo8( Y
r div =—|—4+4 P e . 68
HRpg0=0 = 3 {20 + R2f, 3 <R%f2> ] (68)

B. One-loop divergences: Direct calculation

Beside the reduction of the one-loop divergences to de
Sitter space, it is instructive to repeat the calculation
directly in de Sitter space. On a de Sitter background,
the operators (29), (20), (23) and (36) reduce to

H o) = 85A + P () (69)

1
Q)" = A — ZR05G, (70)
A g A VT _lROg(V) (71)
f 1.
-Ay—A,, 2
So="7 ~Aog-Ao (72)

where P(g),4" in (30) reduces to the constant potential

1 v
Py = —§R0< a/fgﬂo ) 5’3/} (73)

In view of the simple minimal second-order operators Hy,
and Q,, the calculation of the divergent parts of the tensor
trace (39) and the vector trace (46) is calculated directly
with (A14),

. 1 371 f f \2
Tr, InHy |49 = - |- Z— 4+ 136 - 120 s
. 0| £ 9 * f1Ro <f1R0> }
(74)
. 1358
Tr; 1 div — 22— 75
I HQ0| e 45 ( )

In particular, the operator identity (48) essentially simpli-
fies, as By = 0 on a space of constant curvature,

11 7
Ag—=—A,, Ko=A-R — 76
0, T Ky 0= 0+f1 (76)

Therefore, by using (76), the evaluation of the scalar trace
becomes very simple:

TroInSy = Try (71 _ L ApA} ) (77)
2

The product AyA", factorizes into two minimal second-
order operators,

AgA) = -3 (A - %RO) <A - %RO) : (78)

Combining (77) with (78), we find
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i 1 1
TryInSp|™ = Try In [3 <A — §R0> (A — ERO)

ﬁ B i div
7 (A R“fﬂ
— TryIn <A—R0+f>

fi

1 [721 7 £ \2
— =28 12

{ 90 f1Ro - (f1R0)

ERTE:
T3 <f2R0> } | (79)

The off-shell divergences of the traces in (79) are extracted
by the generalized Schwinger-DeWitt formalism [48].

On shell, the fourth-order operator in the first trace of
(79) factorizes into two second-order operators, one of
which cancels the contribution from the second trace:

div

. 1 2 div
Tro In So|gt)V=0 = TI'O In <A — 7R0 + f)

3 3f2Rg (50)

Combining (74), (75) and (79), the one-loop divergences
directly calculated on a de Sitter background read

. 1 . . 1 .
Fi[ = 5 Tra InHo | —Try In Qo|* + 2 Trg In S|,
(81)

This agrees with the off-shell one-loop divergences (66),
which were obtained by reducing the result for an arbitrary
background (C13).

C. One-loop divergences: Irreducible decomposition

An independent calculation for the off-shell divergences
is obtained by making use of the decomposition of 4, into
its irreducible components:

G

— L
hy = hy + 4

h+ 29,05 +2 <vﬂvyb + e Ab> .

(82)

Here, hj, is a symmetric transverse-traceless tensor,

h = g"h,, is the trace, v,f is a transversal vector and b
the longitudinal scalar, which are subjected to the differ-
ential constraints
¢ hi, =0, V¥h, =0, Viyr =0. (83)
This decomposition is particularly useful on a de Sitter
background for two reasons. First, the fluctuation operator
acquires a simple, almost diagonal, block form. Second, the
projection operators, required in the functional traces over

the invariant subspaces, are significantly less complicated
than on general backgrounds.

Under an infinitesimal diffeomorphism (15), generated
by the vector &, = §j + V¢ with V"éj = 0, the field &,
transforms as

Ochy,, = 2V(M§f) +2V, V¢ (84)
Therefore, the individual components change as

5§hj‘,j = 0, 5§Ul = fl

“ uo

S5:h = —208,  S:b=¢.

(85)

Clearly, h}j is gauge invariant, while the transverse vector
vj and the trace & as well as the longitudinal scalar b are
not. Note that the decomposition in the scalar sector of (82)
is not unique. Alternatively, we could choose a basis in
which the gauge invariant physical components become
manifest. We can eliminate the trace h in favor of the
conformal mode &, which is defined as the gauge invariant
combination,

oi=h+2Ab,  80=0. (86)

1. Fluctuation operator

The irreducible decomposition (82) suggests the change
of variables

hyy > (o,

vﬂl,h,b)T, (87)

where now each component is considered as an indepen-
dent field. The fluctuation operator on de Sitter space F,
then acquires the block matrix form

F,
F,
Fip Fip

th th

The individual components are given by

_ (At
F, = 2(A 3R0+fl>, (89)
F, = f, (A-%ROJF%) (A—%R()), (90)

a2 (25 2N Ry _2fi, 2f
Hin = [Az <3R° 9f2)A+9 9sz°+9fz]’

o1
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be — % |:A2 - (lRo +g&)A

4 3 3/

2f 2 f 1
+§f_2R0_§B:| |:A—§R0:| A, (92)

9 1 2
Fip =Fp, = % <A - §R0> A. (93)

The change of variables for differentially constrained
fields leads to additional functional determinants from
the Jacobian J,, which is extracted from

(h,h), = (bt '), + <UL, (A - iRo) yl>
— 5 )y +§<b,A(A —%R0>b>0. (94)

1

The Jacobian block operator J,, understood as acting on a
vector (87), reads

1

J, = 4 . (95)

2. Ghost operator

A similar decomposition is carried out for the ghost
sector. The (anti)ghost fields decompose as

o' = o] + VFu, V,0| =0, (96)

_ o _l _
Wy, = @y + Vi,

Vit = 0. (97)

In analogy to the previous subsection, we find for the block
matrices of the ghost operator and ghost Jacobian

_[A=3R . 1
Q= A(A—%RO)}’ ‘”_{ A]'

3. Evaluation of traces
The one-loop divergences for (88) decompose into the
sum of traces over transverse-traceless tensors, transverse
vectors and scalars:
Trln F0|div = Trij_ In Ft|diV + Tru_ In Fv|div
F th]

Fp, Fyp

div

(99

~—

—|—Trln[

The transversal-traceless tensor trace and transversal vector
traces are given by

. 1 div
TI'Z’J_ ln Ft|dw = TrZ,J_ ln <A - gRO + fi‘> N (100)
1
. 3 div
TI‘LJ_ In Fv‘dlv = Tru_ In <A - _RO +i>
4 fi
1 div
—I—Tru_ln <A—ZRO> (101)

On a de Sitter background, all operators in the scalar trace
commute with each other and we evaluate the trace of the
scalar block operator as

th th

Tr ln[ :| = Tro In (thbe — thth). (102)

bh th

Here, F, := F,,F,, — F,,F,, is a scalar operator of order
ten. The scalar trace in (102) decomposes into the following
sum of scalar traces:

. ) 1 div
Tro In F|% = TryIn A|*Y 4 Try In <A — 3R0>

f div
+ Tryln (A—RO +—)
fi

1/5
+ Troln |A2 == —Ro—ﬁ A
32707 7,

112f1 f div
*56%‘B%+Bﬂ

(103)

Note that the last scalar trace is identical to the first trace
in (79). Similarly, the divergent contribution from the
Jacobian (95) is given by

div

. 1 .
TrinJ,|* =Tr} | In (A - ZRO) + Trj In A4V

1
+ TI'(/) ln <A - gRo)

A prime on a trace indicates the subtraction of the modes
associated with the lowest eigenvalue. Apart from these
modes, there is a cancellation of contributions from the
fluctuation operator (101) and (103) with contributions
from (104). The ghost trace decomposes as

div
(104)

div

Trin Q%Y = Trln, | <A - ZR()) + Tro In A|4Y

div

1
+Tr0 In (A _ERO) (105)

044049-10



ONE-LOOP DIVERGENCES FOR f(R) GRAVITY

PHYS. REV. D 97, 044049 (2018)

Again, the contribution of the Jacobian cancels one of the
traces in (105) up to zero modes:

TrinJ,|% = Tr, In A4V, (106)

@

The evaluation of the nontrivial traces in (100), (101)
and (103) can be found in Appendix D. Altogether, the
divergent part of the one-loop effective action on a de Sitter
background, obtained in terms of the irreducible decom-
position, reads

) 1 . 1 )
Fl |de(:, = ETI'IH F0|dlv - ETI‘ anh|d1V
—TrIin Qo[ + TrinJ, |4

17T 313 1 £ \2 7
|22 N, — 54 54
€ [ 20 +2 “ <Rof1> * Rof

20 AN f
_i(Rofz) +“Ieéfz]' (107)

The total number of zero modes and negative modes is
given by

N =N(Ju) —2N(J,) =16 -2 =14, (108)
where the traces in (104) contribute ten zero modes, five
negative modes and one zero mode to N(J,), respectively,
while the trace in (106) contributes one zero mode to
N(J,); see e.g. Table 8 in [51].° Inserting (108) into (107),
the result coincides with (66).

VI. CHECKS AND COMPARISON WITH
PREVIOUS RESULTS

A. Comparison with one-loop calculation for Einstein
gravity with a cosmological constant

General relativity with a cosmological constant corre-
sponds to the special case of (1) with

7R = 28 (R -2,

(109)
where A is the cosmological constant and Mp the Planck
mass. In particular, we have

f,=0, T,=0. (110)
As noted before, in this case the scalar contribution is
absent from the divergent part of the effective action (34),
which allows us to test the tensor and vector contributions

These modes are related to the symmetries of the de Sitter
background; see e.g. [55-61] for more details.

by comparing them to previous calculations performed in
[25,26,48]. Using (39) and (46), the result for the one-loop
divergences reads

. 1 . .
F] dElIYI = ETI'Z lnH|dEIIYI - Tr] In Q|%II§

1 53, 7
— d4 12 _~"~ —— R RW
167% / 9 ( 909~ 20"m

1 1
-—R? +—3AR —%M).

120 6 (111)

For A = 0, we recover the well-known result for Einstein
gravity without a cosmological constant [25,48].

For A #0, we compare with the calculation in [26],
which is performed on an Einstein space. In view of (5) and
(110) this is equivalent to the equation of motion

R, = Agy,. (112)
Therefore, on shell (111) reduces to
. 1[ 53 87 A’V (M)
rydv == |- — L (113
HERE=0 = [ 157 M T3 (113)

where V(M) is the volume of M and y(M) the Euler
characteristic of M,

V(M) := /M d*xg'2, (114)

d*xg'G.

x(M) : (115)

" 322 |

The result (113) is in perfect agreement with [26].°

B. Comparison with zeta function calculation
for f(R) gravity on de Sitter space

Since the spectrum of the Laplacian on a sphere is known
explicitly, the one-loop effective action can be evaluated by
the zeta function technique. In combination with the
irreducible decomposition (82), this zeta function technique
is used in [31] to calculate the one-loop effective action
for f(R) gravity on a de Sitter background. We extract the
one-loop divergences from the result presented in [31],
Eq. (3.33), by focusing on the contributions proportional to
In(#?Ry/12). Here, ¢ is a reference scale with dimension of
length. Since the authors have chosen a different gauge, we
compare the gauge-independent on-shell result. Inserting
the logarithmic contributions from Egs. (B.29), (B.35) and
(B.38) into Eq. (3.33) and using the on-shell relation (67),
we find

®Note that they present the poles in dimension as d — 4 = —2e.
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L1 (143 1 fo_8( f
v — 2 o 2= 4 Z ot 4 - — .

llé,’O:O e |: <20 +2 0 > + R%f2 3 (R%fz) :|
(116)

According to [31], N§j* is the total number of zero modes.’
The f-dependent structures coincide with our on-shell
result (68). However, the f-independent structure seems
to be incompatible with (68), as it would require
Nt — _24

5 .

C. Comparison with the f(R) truncation in the
functional renormalization group

We recover the one-loop result on a de Sitter background
from the functional renormalization group flow of f(R)
gravity similar to the procedure described e.g. in [62-64].
The Wetterich equation describes the functional renorm-
alization group flow of the effective averaged action I';
with respect to the momentum scale k [34,35],

1_ /8T, -1
—T R R,.
2 r(5¢5¢+ ") O

Here ¢ = In(k/u) is the logarithmic scale with the arbitrary
reference scale u and Rj is a scale-dependent regulator
function. In the one-loop approximation the Wetterich
equation reduces to [51],

atl—‘k =

(117)

L1 (&S -l
8I(S+Fk) :ETT W—'—Rk 8tRk (118)

This corresponds to a replacement of the full effective
action I'; by its one-loop approximation S + I'} on the left-
hand side of (117) and a replacement of the effective action
I, by the “bare” action on the right-hand side of (117). In
[51], the functional trace in (117) is calculated for the f(R)
truncation. Equations (113)—(114) in [51] are expressed in
terms of the dimensionless variables
R = Rk2, = f,k20=2), (119)
We extract the one-loop result from Eq. (113) in [51] by
neglecting the explicit scale dependence of f, that is by
setting
Oufn =0. (120)
Restoring the original dimensionful quantities R and f, by
introducing explicit factors of the momentum scale k, we
integrate the flow from the UV scale k = A down to the

reference scale k = u and obtain the one-loop approxima-
tion of the effective action:

"Ten zero modes from the vector sector are already taken into
account in the result (116).

A
rl :—/ dkd,T. (121)
u

The resulting expression for the effective action contains
contributions that diverge as A — oo,

I = Cguare + Dguag + Dlog + UV-finite terms.  (122)

Here, [duars Dgyaar Llog ar€ quartic, quadratic and logarith-
mic divergent contributions respectively. As dimensional
regularization annihilates all power law divergences, only
the logarithmic divergent part is relevant for the comparison
to our result. It is isolated by expanding the integrand 9,
around k = oo, and extracting the terms proportional to
k='. In this way we find

A2\ [147 2
F}Og =1In (—2> [— -30 <L> + 10 f
H 20 Rof1 Rof1
EER .
3 \Rof> 3R3f> 3Rof>
On shell, this reduces to

INZNEL 8/ f \2
e =G ) [ 477 3 (&) - 020

Identifying In (A%/u?) = 1/e, this expression agrees with
our on-shell result on de Sitter space (68).8

(123)

VII. CONCLUSION

Our main result is the calculation of the divergent part
of the one-loop effective action for f(R) gravity on an
arbitrary background. This generalizes previous calcula-
tions of quantum corrections in f(R) gravity, which have
been restricted to constant curvature backgrounds.
Allowing for arbitrary backgrounds increases the complex-
ity of the one-loop calculation considerably, but permits us
to access the individual coefficients of the quadratic
curvature invariants and the structures involving derivatives
of the Ricci scalar.

Our result is relevant for cosmological f(R) theories,
as it allows us to investigate the influence of quantum
corrections on the dynamics of a time-dependent
Friedmann-Robertson-Walker background. Other interest-
ing applications include the study of black hole solutions
in f(R) gravity. Note that on shell the derivative structures
in (61) also contribute to the renormalization of the

The on-shell agreement is obtained only for the “a-gauge,”
corresponding to the second expression for X in Eq. (114) in [51]
[the factor of 384z in Eq. (113) in [51] is presumably a typo and
set to 1 in our comparison].
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f(R) structure. On constant curvature backgrounds these
contributions are absent as they are proportional to alge-
braic on-shell condition &, and vanish.

We have represented our main result in terms of three
different bases in the space of invariants in order to perform
the on-shell reduction and de Sitter reduction. As an
internal consistency check of our method, we have repeated
the calculation directly in de Sitter space—once with the
same method as for the calculation on an arbitrary back-
ground, and once by a decomposition of the fluctuation
field into its irreducible components. All results on de Sitter
space are consistent with the de Sitter reduction of the result
for arbitrary backgrounds. In addition, we have compared
our result with previous calculations in f(R) gravity. We
find perfect agreement with the one-loop calculations
for Einstein gravity [25,48] and Einstein gravity with a
cosmological constant [26]. We also coincide with the exact
renormalization group analysis, obtained for the f(R)
truncation on a de Sitter background [51]. Apart from
the coefficient for the f-independent structure, we also
agree with the one-loop result for f(R) gravity in de Sitter
space of [31].

Besides the main result, our calculation contains an
interesting technical aspect. Standard perturbative heat-
kernel methods for UV divergences are based on an
expansion around the principal part of the fluctuation
operator. These methods fail if the principal symbol is
degenerate, which is the case for f(R) gravity where the
degeneracy is a result of the dyadic structure of the
principal part. The technique developed in this article turns
this drawback into an advantage. In fact, as discussed in
detail in Sec. II B, the dyadic structure is the essential
element of our technique and allows us to complete the
calculation in the first place. Moreover, it naturally organ-
izes the calculation in a transparent way, by subdividing it
into the evaluation of three functional traces (37) and
thereby isolates the contribution of the additional higher-
derivative scalar degree of freedom.

Finally, since our result captures all one-loop structures,
it provides the basis for an investigation of the equivalence
between f(R) gravity and scalar-tensor theories at the one-
loop quantum level, which we address in a separate
publication [65].
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APPENDIX A: FORMALISM AND NOTATIONS

1. Bundle structure

The formalism involves the general structure of a vector
bundle V over a d = 4 dimensional Riemannian manifold
(M, g). Fields ¢ are elements of the space of smooth
sections F = C®(V) of V. In local coordinates we identify

a field ¢ by its components ¢*(x), where A, B, ... are the
bundle indices,

b > ). (A1)
In addition, we assume that V is endowed with a metric
compatible, torsion-free affine connection V. Throughout
the paper, we denote matrix valued operators L : F; — F,
in boldface:

L LA, (A2)

On the space of fields F, we define an inner product

) = [ g a0, (A3
where the bundle metric y,p5 satisfies

detysp # 0, Yacr® = &5, (A4)
For an operator L.: F; — F,, the inner products on F;
and F, allow us to define the (formal) adjoint
LT: .Fz = Fl’

(AS)

(2. Lp1)a=(L7¢hs.001)1. 1 E€F . EF>.

Here, 1 > &y is the identity operator and R, > R,,* , is
the bundle curvature, defined by the commutator

[vw vv]¢A = RﬂvAB¢B- (A6)
The reduction of the general formalism to the case of
symmetric rank-two tensor fields 4, vector fields & and
scalar fields ¢ is summarized in Table I.

The explicit expression for the ultralocal, dedensitized
DeWitt metric y**? and its inverse y,, ,, are

1
pm =X grge - gegr ). (A7)
Yuvpo = GupYvs =+ Yuc9vp — GuvY9po> (AS)
s 1
P 0 = O = 1 80 + 5. (49

2. One-loop divergences

The fundamental fluctuation operator F > F45(V) is
defined as the (formally) self-adjoint operator

& Sot

PA(V)3(r ) = g 2

(A10)

044049-13



MICHAEL S. RUF and CHRISTIAN F. STEINWACHS

PHYS. REV. D 97, 044049 (2018)

Note that the delta function §(x, x’) has density weight zero
in the first argument x and unit weight at x’. The one-loop
effective action is expressed as the sum of three functional
traces for the gauge-fixed fluctuation operator F, the ghost
operator Q and the Nielsen-Kallosh operator O,

1 1
FlziTrlnF—Tran—f—ETran. (A11)

The ghost contribution enters twice with opposite sign, due
to the Grassmannian nature of the ghost field and the
antighost field. The Nielsen-Kallosh operator only gives a
nontrivial contribution to the one-loop divergences in case
it involves derivatives. The functional trace of a two point
tensor T'4(x,y) involves integration over its coincidence
limit and the internal bundle trace tr,

TrTA5(x 4, x5) = /d4xtrTAB(x,x)

= /d4x T4, (x).

For a minimal second-order operator with potential P,

(Al12)

L=A+P, A= -VIV,, (A13)
the divergent part of the functional trace TrilnL can be
calculated by the heat-kernel-based Schwinger-DeWitt
technique [48,66]. In dimensional regularization divergen-
ces are isolated as poles in dimension ¢ =2 — d/2 for
d — 4. The one-loop divergences can be given in closed

form [66],

TrinL|% = —

o2 /d“xg”ztrag. (A14)
e

Here, a, is the coincidence limit x' — x of the second
Schwinger-DeWitt coefficient

- (R
= 750/

1 R _\?2
—|P-—1 t.d.
+2< 6 ) +td.,

where t.d. denotes total derivatives.

1
wpoR*PT — R, RM)1 + ERWR””

(A15)

3. Universal functional traces

Any differential operator L. can be represented as a sum
of terms ordered according to the number of derivatives:
L(V)=D(V)+1(V). (A16)

Here, the principal part D encompasses the highest deriva-
tive part, while all lower-order derivative terms are

collected in the differential operator Il. The components
of the principal part read

D(V) > [DAgi 4V, .V, (A17)

2k *
We call an operator L. minimal if its principal part is given
by [DApl-#2V, ...V, = DApA*; otherwise we call it
nonminimal. For nonminimal or higher-order operators, the
original Schwinger-DeWitt algorithm for minimal second-
order operators (A13) has to be modified. In [48] the
authors propose a generalization of the Schwinger-DeWitt
algorithm, which is based on a perturbative expansion in II.
Essential for this perturbative treatment is the notion of
background dimension 9, which is understood as the
mass dimension of the background tensorial coefficients
of the differential operator. We write L = O(IR*) for an
operator L, which has at least background dimension 90t~.
The generalized Schwinger-DeWitt algorithm allows us to
reduce the calculation of divergences for nonminimal and
higher-order operators to the evaluation of a few tabulated
universal functional traces (UFT) [48] for the second-order
minimal operator A + P,

5A div
B
LV, B

A P (p.n) =V .
[u B( )]leﬂp ””(A—FP)" s

. (A18)

We denote the inverse of an operator L. by 1/L, such that its
bundle structure is indicated by the corresponding identity
matrix 1+ &4. Different traces are characterized by the
pair (p, n) and can be classified according to their degree of
divergence:

Xdiv =P —2n+d. (A19)
In d = 4, divergent contributions arise for 0 < y4, < 4. For
P = 0, the UFT were introduced and tabulated in [48,67].

These traces were extended for P # 0 in [68]. We list all
UFT with P = 0 appearing in our calculation:

- ()
Ug = I‘Zﬁg% (Gup9vo T Guo9up + Gw9po) (A21)
Ui o (A22)
01 — lglggéR, (A23)
U =t (Ru=S0ur). (A24)

Note that since all the scalar UFT listed above have P = 0,
we have suppressed the argument P.
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APPENDIX B: EXPLICIT COEFFICIENTS OF THE OPERATORS B and X

1. Coefficients of the operator B

Below, we list the tensorial background coefficients of the operator B as defined in (50). Without loss of generality, we
have defined the B, as totally symmetric tensors.” Note that all coefficients B; are identically zero on a space of constant
curvature such that By = 0. Therefore, the operator identity (76) essentially simplifies in de Sitter space. In d = 4, the

coefficients read

By = (g g7 — g PP [Pa/jw - <J{ — R> 8t + 2R ] + PR + L) + o (RO 4 T#I) =29/ (R 4 YP%)
1

1
=g G 1T, - R+ %T) + g (—%T“Ta +5R- T) — 7 (RW = YWY — 27

4 Zgﬂ(P(RU)V — TU)TV) 4 zgv(v(Rp)u ) TH)

ngp = g{)ﬁ(T{lP(I/fﬂy - ZP(l/iﬂy;a) - gaﬂ(TpP(l[)’ﬂy - ZP(I/J”D;/)) - g/)<yT”) <fi‘ - R) + g;w |:T/) (% -

4 PE(LROT + R 4 YWY — YWRYP 4 4Ro()

- g””(R”" + ’rp;a)’

(B1)

R) — 2R, = T,

1 1

— 2RO — 2WHp — 3RS, (B2)

B = —(A%P %) + (KW™) + ROV (RY) —TV).,) — RM,Y 5(RY — TPy — T, (R — Reli))

4+ ARW — i’r(ﬂR:V) + Rilu),

(B3)

2. Coefficients of the operator X

The coefficients of the operator X, defined in (55), are listed below explicitly. Since formally X'

= X, the coefficient

X4 can only be built from derivatives of the leading coefficient X5°. Without loss of generality, we have defined the X; as

totally symmetric tensors. The explicit coefficients read

X"”=g“”( —=-3n 11 TT”——T )+2Rﬂ” 3YHYY 4 2 M B4
2 3R T3S (B4)
Xg‘”/’ XZ(IW/’)_Xzo'(ﬂ gvp>’ (BS)
v 2f A . 1 19 2 f (5 _
X} =g“”[———+— ( + Y =3Y Y =R | + Ry =YY —ZR¥ | — = ([ ZY, Y%+ T, *
! 3f2 1 2 2 P\ 6 3 fi\6
5 , 3 2F 13 8
T, Y=, YF +—, 4 -5 (T R T, Y*—ZR+4Y,;
+ e )<16ﬁ +6ﬁ> (“)% <3f1+ 3R )
4 14 19f 5 10 _
RHwB ( ZR -5 LY THYY YT+ R-y
+ (3 ap “ﬁ>+ <3f1 4 37 6 ”)
1 4 1
+TW< 2%—§R+5Y T3 v, >+§R”"‘R;—?ORG(”TWTa—i-t.d., (B6)
1

where we have neglected total derivative terms in X/".

APPENDIX C: REPRESENTATIONS OF THE
FINAL RESULT

1. Representation in terms of £

For the on-shell reduction, it is convenient to express the
final result in terms of the rescaled extremal E,, and its

*We use the Mathematica tensor algebra bundle xAct
[69-71] to check the explicit coefficients (B1)—(B6).

trace E. This representation makes the terms which are
proportional to the equations of motion manifest. The
conversion from the Y-representation (61) is performed
by a systematic procedure which involves several integra-
tion by parts identities listed below. The procedure involves
the following steps. First, we eliminate structures that
contain derivatives of T, in three steps. Structures with
three derivatives VVVT are total divergences and are
neglected. Structures which involve second derivatives
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YTVVTY are partially integrated to structures that only
involve first-order derivatives VY'VY. Finally, structures
that involve first-order derivatives VY are converted into
structures that involve the rescaled extremal curvatures and
TTY structures. In this way, all structures involving deriv-
atives of T are eliminated. Finally, structures that involve
undifferentiated Y terms are eliminated by the integration

by parts identities we list below. The equalities = are to be
understood to hold only under the integral sign modulo
surface terms:

1 1
THY = B — (E +R- —i>gﬂv + RW —YHYY,

3 2fi
(C1)
o1
(T, 14?2 = - 3 (E +R- %) (T, 1)
+ % (E,p + R,,)THYY, (C2)
h (T, T*)=RAInf, (C3)
f2

f -1 PSR WA

E(Tﬂw)_ 6<E+R 2f1>f1+2RAlnf1, (C4)

R(Y,YH) = —% <E+R—2%1>R+RAlnf1, (C5)

E(Y,TH) = —% <E+R—2%1)E+EAlnf1, (C6)

1 | | 1 f
EIMDT”TU :EE”I/E”D + EE/H/RI‘” - 8E<E + R - §E> s

(€7)

: R I
R, YHT = E, R + R, R -~ (E +R- —i>

3 2fi

1
+=RAInf,.

> (C8)

v 1 _2 i 2_i ﬁ ? 2i
rif —3zﬂzg/ d4xg”2{ 2<f1> I8 <f2> ok

9

fi 4 f, 4f, 57

1

Sl PRy g s
T35 "m0 T

2\ 13715 (£2\* 247 (£2\%] .
z) R]R”R;ﬂ * [ﬁﬁ (7) 7 (7) W”R;ﬂ)“

137 [ f2)\? 247 f5 (f2\3 137 (f3\2 403 [f,\* .
() e R () 5 () R @) e}

12 <&>2SWR;MR;” + {@i (&)3 o

Applying these rules we express the final result (61) in
terms of the extremal E,, and its trace E,

. 71 609 1 f
T, |div — d*xd? |- —C—-——"2R Rw 1 _~L_
1 =30 / 9 [ 609 ~ g0 RuR" 37
1 2 2 1
_ISAN L AN IS f 3919
288\ 7 ) T18\fy) Tedf, 1440
15 55 419 f 2933
2 RAl E(X g2 =2
T RAInS A+ <108 4327, " 864
21 403 2987
et _ U ]
+288A1nf1> EW(%E + 20k )]
(C9)

2. Representation in terms of VR

The final result can be expressed in terms of the Ricci
scalar R and its derivatives. Moreover, the quadratic
curvature invariants can be represented in terms of the

Ricei scalar R, the Weyl tensor C,,,, and the trace-

free Ricci tensor S,,. In four dimensions the latter are
defined as

1
C/wpa = R/,wpa - (Rﬂ[pga]v + Rl/[agp]u) + _Rgﬂ[pga]w (CIO)

3

1
= Rﬂy _

S Z g/w

uv

R. (C11)

This representation is best suited for the reduction to
constant curvature backgrounds as the Weyl tensor C,,,
and the trace-free Ricci tensor S, vanish in this case:

c

wps = 0, S

w = 0. (C12)
The result (61), expressed in terms of the Ricci scalar
and the trace-free contributions to Riemann tensor, takes
the form

173 167 71
_—C CcHap
180"+ 60 b

(C13)
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APPENDIX D: FUNCTIONAL TRACES FOR
CONSTRAINED FIELDS

The traces in Sec. V C are taken over fields which satisfy
the constraints (83); that is, we have to evaluate traces over
transversal-traceless tensor fields and transversal vector
fields. The constrained heat traces are given by (see e.g. the
third and sixth column in Table 9 of [51])

1 1 7
Try e™*4 = ()’ 3 +4Ros 1440 R3s* + (’)(s3)},
(D1)
s 1 [, 5 1
TI'27J_€ A = (47[5‘)2 -5 - gR()S - 43—2R%S2 + O(S3):| .
(D2)

With these expressions, we calculate the divergent con-
tributions of the trace over constrained fields for a gener-
alized Laplacian A + P with constant scalar potential P:

. 111 P P\?2
T In(A+ P4 ==-|—=-20—-60(— D3
2.1 In (A + P) € [18 Ry <R0> } (D3)

) 117 P\?
Tru_ln(A—ﬁ—P)|d“’——[60+6——36<R0> :| (D4)

This allows us to extract the divergences in (100) and (101).
Almost all of the remaining scalar traces are of the standard
form for minimal second-order operators, such that we
directly employ (A14) to evaluate them. The only non-
standard trace is that of the fourth-order scalar operator.
Expanding the expression around the principal part A® and
using the universal functional traces (A24), we find

1 5 div
Troln |:A2 +§ <%—§R0>A + <£_%RO + R2>:|
L L Y AT P
-5 ) roml .
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