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We calculate the divergent part of the one-loop effective action for fðRÞ gravity on an arbitrary
background manifold. Our result generalizes previous results for quantum corrections in fðRÞ gravity,
which have been limited to spaces of constant curvature. We discuss a new technical aspect connected to
operators with degenerate principal symbol. Our result has important applications in cosmology and allows
us to study the quantum equivalence between fðRÞ theories and scalar-tensor theories.
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I. INTRODUCTION

Together with scalar-tensor theories, fðRÞ theories pro-
vide the most important cosmological models for the early
and late time acceleration of the Universe [1–5].
As any modification of general relativity with higher

curvature invariants, also fðRÞ gravity involves higher
derivatives [6–8]. While fourth-order gravity, which takes
into account all quadratic curvature invariants, is perturba-
tively renormalizable, it suffers from problems with uni-
tarity due to the appearance of a massive spin-two ghost in
the spectrum [6]. In contrast, fðRÞ theories only propagate
the additional scalar degree of freedom—the “scalaron” [9].
Therefore, fðRÞ theories avoid the classical Ostrogradski
instability and the associated problem with unitarity vio-
lation at the quantum level [10]—at least within a truncated
effective field theory framework.
The calculation of the quantum effective action for

theories of gravity has important applications in cosmo-
logical models. In particular, knowledge of the divergent
part of the effective action allows us to study the renorm-
alization group (RG) improvement of these models. In the
context of general scalar-tensor theories, the one-loop
divergences have been calculated in [11–13]. These results
are important for the RG properties of inflationary models
such as nonminimal Higgs inflation [14–21], whose infla-
tionary predictions for a large nonminimal coupling are
almost indistinguishable from Starobinsky’s quadratic fðRÞ
model of inflation [9,22,23]. This is a particular manifes-
tation of the fact that fðRÞ theories admit an equivalent
scalar-tensor theory formulation at the classical level. This
equivalence can be probed at the quantum level, similarly to
the analysis for different parametrizations of scalar-tensor
theories [24].

Perturbative calculations of ultraviolet (UV) divergences
in theories of gravity have a quite long history, starting with
the one-loop result for Einstein gravity, minimally coupled
to a free scalar field [25]. The result was extended to
Einstein gravity with a cosmological constant in [26] and to
Einstein gravity at the two-loop level in [27,28]. The one-
loop divergences for renormalizable higher-derivative grav-
ity were calculated in [29,30]. The one-loop effective action
for fðRÞ theories on a de Sitter background has been
calculated in [31]. In this paper we generalize the calcu-
lation for the one-loop divergences in fðRÞ gravity to an
arbitrary background.
A nonperturbative approach to quantum gravity is the

asymptotic safety program, initiated in [32,33]. The main
tool to test the asymptotic safety conjecture is the effective
averaged action, which satisfies an exact functional reno-
rmalization group equation (ERGE) [34–36]. Practical
calculations, however, are limited to truncations restricting
the set of operators in the effective averaged action. Various
fðRÞ truncations of increasing complexity, up to closed
flow equations for fðRÞ gravity, have been obtained
[37–46]. So far, calculations for a general function fðRÞ
have been limited to spaces of constant curvature. Since
these calculations share many technical aspects of pertur-
bative one-loop calculations, the method for general back-
grounds, introduced in this paper, might also find
applications in the context of the ERGE.
The paper is structured as follows. In Sec. II, we

comment on the special structure of the principal symbol,
outline our strategy of calculation, perform the gauge fixing
and derive the fluctuation operator and ghost operator.
In Sec. III, we show that the calculation of the one-loop
divergences reduces to the evaluation of the three func-
tional traces: a standard tensor trace, a standard vector
trace, and nonstandard scalar trace. In Sec. IV, we present
our main result for the one-loop divergences and its
on-shell reduction. In Sec. V, we check our result by*christian.steinwachs@physik.uni-freiburg.de
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independent calculations on a de Sitter background. In
Sec. VI, we compare our result with previous calculations
in fðRÞ gravity. Finally, in Sec. VII, we summarize our
results and give a brief outlook on possible applications.
Technical details are provided in several appendixes.

In Appendix A we introduce our notations, the general
formalism, calculational tools and a collection of universal
functional traces. Appendix B contains the tensorial coef-
ficients of two differential operators. In Appendix C, we
provide a set of integration by parts identities and present
the final result in different bases. Finally, in Appendix D
we collect results for traces over symmetric transversal-
traceless tensors and transverse vectors.

II. f ðRÞ GRAVITY ON ARBITRARY
BACKGROUNDS

The Euclidean action functional for fðRÞ gravity in four
dimensions reads

S½g� ¼
Z

d4xg1/2fðRÞ: ð1Þ

The linear metric perturbations hμν around a fixed but
arbitrary background ḡμν are defined by

hμν ≔ δggμν ¼ gμν − ḡμν: ð2Þ

In what follows, we omit the bars over background
quantities. We denote derivatives of the function f with
respect to its argument by a subindex

fn ≔
∂nfðRÞ
∂Rn ; n ∈ N: ð3Þ

A. Equations of motion

For the first variation of the action (1) we find

δgS½g� ¼
Z

d4xg1/2
�
f1δgRþ g−1/2fðδgg1/2Þ

�
: ð4Þ

The extremal tensor is defined as

Eμν ≔ g−1/2
δS½g�
δgμν

¼ −ðf1Þ;ααgμν þ ðf1Þ;μν − f1Rμν þ 1

2
fgμν: ð5Þ

We reserve the “semicolon-postfix” notation to indicate
that covariant derivatives only act on the object they are
attached to. In contrast, the “prefix” notation indicates that
derivatives act on everything to their right. The classical
equations of motion for the background (“on-shell” con-
dition) are satisfied, if Eμν ¼ 0. The trace of the extremal is
defined as

E ≔ gμνEμν ¼ −3ðf1Þ;αα − Rf1 þ 2f: ð6Þ

The invariance of the action (1) under diffeomorphisms
implies Eμν

;μ ¼ 0. It is natural to define the rescaled
extremal tensor Eμν and its trace E, which are homo-
geneous functions of degree zero in f and its derivatives fn,

Eμν ≔
Eμν

f1
; E ≔ gμνEμν ¼

E
f1

: ð7Þ

B. Hessian and degeneracy of the principal symbol

The second variation of the action (1) can be written in
the suggestive form

δ2gS½g� ¼
Z

d4xg1/2
�
f2ðδgRÞ2

þ f1

�
δ2gRþ 2g−1/2ðδgg1/2ÞðδgRÞ þ Rg−1/2ðδ2gg1/2Þ

�

þ ðf − Rf1Þg−1/2ðδ2gg1/2Þ
�
: ð8Þ

From (8), it is obvious that the Hessian in fðRÞ gravity
leads to a fourth-order operator (for f2 ≠ 0), as fðRÞ is a
function of the undifferentiated Ricci scalar R only. The
special structure of the second variation shows that all
fourth-order derivatives are included in the f2ðδgRÞ2 term
in the first line. Up to the overall factor f1, the expression in
the second line resembles the second variation of the
Einstein-Hilbert action. The last line reduces to a cosmo-
logical constant in the Einstein-Hilbert case1:

fðRÞ ¼ −
M2

P

2
ðR − 2ΛÞ: ð9Þ

It is well known that the introduction of higher time
derivatives leads to additional propagating degrees of
freedom [47]. In addition to the massless graviton, quad-
ratic curvature invariants generically lead to a massive
scalar mode, the scalaron, and a ghostlike massive graviton
[6,8]. The appearance of higher-derivative ghosts in the
quantum theory is related to Ostrogradski’s theorem
[10]. Among the higher-derivative models of gravity,
fðRÞ gravity is special, as it only propagates the extra
scalar mode and therefore avoids the ghost problem [10].
Note that Ostrogradski’s theorem does not apply to fðRÞ
gravity as the proposition of nondegeneracy is violated
[10]. Whether a given theory is degenerate or not depends
on its highest derivative structure. This structure is encoded
in the principal part Dð∇Þ of the fluctuation operator Fð∇Þ,
defined in (A10),

Fð∇Þ ¼ Dð∇Þ þΠð∇Þ; ð10Þ

1The overall sign in (9) is consistent with the Euclidean
signature.
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where, as explained in Appendix A 3, we collect all lower-
derivative parts in the operator Π. The degeneracy of D can
have different origins. For gauge theories, the operator,
derived from the Hessian of the action S, is always
degenerate. Therefore, a gauge-fixing procedure is required
to break the gauge degeneracy. But even if the total gauge-
fixed operator is nondegenerate, its principal part can still
be degenerate. This is exactly the case for fðRÞ gravity,
where the principal part D of the fluctuation operator F
arises from the f2ðδgRÞ2 structure in (8),

Dμν
ρσð∇Þ¼f2γμν;αβðgαβΔþ∇α∇βÞðgρσΔþ∇ρ∇σÞ: ð11Þ

Here, γμν;αβ is the inverse of the bundle metric (A8).2 The
corresponding principal symbol is obtained by replacing
derivatives ∇μ by a constant vector inμ,

Dμν
ρσðnÞ ¼ f2γμν;αβðgαβn2 − nαnβÞðgρσn2 − nρnσÞ; ð12Þ

where n2 ¼ gμνnμnν. The dyadic structure of the principal
symbol leads to its degeneracy detDμν

ρσðnÞ ¼ 0 and
reflects the fact that only the conformal mode propagates
with higher derivatives—not the other components of hμν.
If we had included other curvature invariants, such as
RμνRμν or RμνρσRμνρσ, in the action (1), the principal symbol
would, in addition to the structures present in (12), contain
structures of the form

δμνρσn4; δðμðρn
νÞnσÞn2: ð13Þ

In this case, the transversal-traceless components of hμν
would propagate also with higher derivatives. In particular,
the “identity” structure δμνρσn4, induced by curvature invar-
iants such as RμνRμν, necessary for the principal symbol to
be invertible, would lead to the propagation of the addi-
tional massive spin-two ghost [6].
The degeneracy of the principal symbol explains why the

Ostrogradski instability is avoided in fðRÞ gravity, but it
raises another problem. In order to obtain the Green’s
function G ¼ −1/F, the operator F needs to be inverted.
In general, an exact inversion of F is impossible. However,
the UV dominant contributions to G can be obtained in
perturbations:

G ¼ −
1

Dþ Π
¼ −

1
D
þ 1
D
Π

1
D
þ � � � ð14Þ

Even if the total operator F is invertible, this perturbative
expansion is not available if D is degenerate. Therefore,
in this respect the situation for fðRÞ gravity is even more
complicated than in fourth-order gravity, where the

presence of the RμνRμν structure ensures that the principal
symbol is nondegenerate and standard methods are
applicable [30].
In [48], two methods are proposed to deal with such a

degenerate principal symbol. The first method is based on
the inclusion of lower-derivative structures in the definition
of the principal part, in order to explicitly break its
degeneracy. But even if the extended principal symbol
satisfies the “generalized causality condition” [48], it is not
guaranteed that the generalized Schwinger-DeWitt formal-
ism is efficient.
The second method is the “method of squaring” [48],

which is however difficult to realize if components of a
relativistic field enter the fluctuation operator with a
different number of derivatives.
While the irreducible decomposition of hμν generally

leads to essential simplification in the derivative structure
of the individual components, at the same time the
fluctuation operator F becomes matrix valued. Apart from
this complication, the irreducible components are subjected
to differential constraints. In particular, this means that
functional traces have to be evaluated over constraint fields,
which, in curved spacetime, requires the use of complicated
nonlocal projection operators; see e.g. [49,50]. Therefore
this method has been almost exclusively applied to highly
symmetric backgrounds such as de Sitter space; see
e.g. [31,51].
In this paper, we propose a different strategy, which

exploits the dyadic structure of the principal part (12). In
fact, the problems that arise from the degenerate principal
symbol in the standard methods lead to a simplification in
our approach. It allows us to reduce the calculation to the
evaluation of three functional traces—without the afore-
mentioned complications associated with the decomposi-
tion of the field hμν.

C. Relevant operators

1. Gauge fixing and ghost operator

Gauge transformations of the dynamical field hμν cor-
respond to diffeomorphisms, infinitesimally generated by
the Lie derivative Lξ along the vector field ξμ,

δξhμν ≔ hξμν ¼ ðLξgÞμν ¼ 2ξðμ;νÞ: ð15Þ

We choose an extension of the de Donder gauge condition

χα½g; h� ≔ −
�
hβα;β −

1

2
h;α þϒβhβα

�
; ð16Þ

which includes a term linear in

ϒμ ≔ ðln f1Þ;μ ¼
f2
f1

R;μ: ð17Þ
2Note that the degeneracy ofDμν

ρσð∇Þ is independent of γμν;αβ.
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The gauge breaking action is given by3

Sgb½g; h� ¼ −
1

2

Z
d4xg1/2

�
χαf1gαβχβ

	
: ð18Þ

The compensating ghost action reads

Sgh½g; ω̄;ω� ¼
Z

d4xg1/2ω̄αQα
βð∇Þωβ; ð19Þ

where the ghost operator Q derives from (16),

Qα
βð∇Þ ≔ δχα½hξ�

δξβ
¼ δαβΔ −ϒβ∇α − δαβϒ

μ∇μ − Rα
β: ð20Þ

2. Fluctuation operator

The fluctuation operator of fðRÞ gravity F∶ F 2 → F 2,
defined by the Hessian of the gauge-fixed action Stot ¼
Sþ Sgb, is a local, nonminimal fourth-order differential
operator with components

Fμν
ρσð∇Þδðx; x0Þ ≔ g−1/2γμν;αβ

δ2Stot
δgαβðxÞδgρσðx0Þ






g¼ḡ

: ð21Þ

It can be represented in the form

F ¼ f1/21

�
A† f2

f1
A −H

�
f1/21 : ð22Þ

The individual operators, appearing in (22), are explained
below. The operator A∶ F 2 → F 0 is defined in terms of
the operator Ā∶ F 2 → F 0 by

A ≔ f1/21 Āf−1/21 : ð23Þ

The operator Ā, in turn, is defined by the first variation of
the Ricci scalar δgR ¼ Āμνð∇Þhμν,

Āμνð∇Þ ≔ gμνΔþ∇ðμ∇νÞ − Rμν: ð24Þ

In view of the definition (23), the components of A involve
extra terms compared to the components of Ā,

Aμνð∇Þ ¼ gμνΔþ∇ðμ∇νÞ þ gμνϒρ∇ρ −ϒðμ∇νÞ þWμν;

ð25Þ

Wμν ≔
1

4
ϒμϒν −

1

2
ϒðμ;νÞ −

1

4
gμνðϒαϒαÞ

þ 1

2
gμνðϒα

;αÞ − Rμν: ð26Þ

As explained in (A5), the formal adjoint A†∶ F 0 → F 2 of
A is defined by

hA†φ; hi2 ¼ hφ;Ahi0; φ ∈ F 0; h ∈ F 2: ð27Þ

The components of A† can be expressed in terms of the
components of Ā,

A†
ρσð∇Þ ¼ γρσ;μνf−1/21 Āμνð∇Þf1/21 : ð28Þ

The formally self-adjoint, minimal second-order operator
H∶ F 2 → F 2 has components

Hαβ
μνð∇Þ ¼ δμναβΔþ Pαβ

μν: ð29Þ

The potential is defined by

Pγδ
ρσ ≔ −2RρðγσδÞ − 2δðρðγR

σÞ
δÞ þ gγδRρσ þ gρσRγδ

−
1

2
gγδgρσRþ f

f1
δρσγδ þ 2δðρðγϒ

σÞ
;δÞ þ 4δðρðγϒ

σÞϒδÞ

− gρσϒγ;δ − gγδϒρϒσ − gρσϒγϒδ

þ 1

2
gγδgρσðϒα

;α þϒαϒαÞ

−
1

4
δρσγδ ð6ϒα

;α þ 7ϒαϒαÞ: ð30Þ

III. CALCULATION OF THE ONE-LOOP
DIVERGENCES

The divergent part of the one-loop effective action is the
sum of the following traces:

Γ1jdiv ¼
1

2
Tr2 lnFjdiv − Tr1 lnQjdiv: ð31Þ

We rearrange the tensor trace in (31) as follows:

Tr2 lnFjdiv ¼ Tr2 ln

�
f1/21

�
A† f2

f1
A −H

�
f1/21

�




div

¼ Tr2 ln

�
A† f2

f1
A −H

�




div

¼ Tr2 ln

�
A† f2

f1
A

1
H

− 1

�




div

þ Tr2 lnHjdiv:

ð32Þ

3Despite the higher-derivative character of the theory, we have
chosen a trivial Nielsen-Kallosh operator Oαβ ≔ f1gαβ [52,53].
With this choice, (18) only affects the lower-derivative part of the
fluctuation operator—not its principal part.
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In the third equality we have used that for two operatorsL1

and L2, we can formally write4

Tr ln ðL1L2Þ ¼ Tr lnL1 þ Tr lnL2: ð33Þ

For the Einstein-Hilbert case, f2 ¼ 0, the first trace in (32)
vanishes and (31) reduces to

Γ1jdivf2¼0 ¼
1

2
Tr2 lnHjdiv − Tr1 lnQjdiv: ð34Þ

In this case, the fourth-order operator F reduces to a
second-order operator and the additional scalar degree of
freedom is absent. For f2 ≠ 0, we convert the first trace in
(32) into a scalar trace,

Tr2 ln

�
A† f2

f1
A

1
H

− 1

�




div

¼ Tr0 lnSjdiv; ð35Þ

where S is the nonlocal scalar operator

S ≔
f1
f2

−A
1
H
A†: ð36Þ

Formally, the identity (35) is derived by expanding the
logarithm, using the cyclic property of the trace and
resumming the terms again. Note that this manipulation
relies on the dyadic nature of the A†A structure. In this
way, (31), which involves the trace of the nonminimal
fourth-order operator F, reduces to

Γ1jdiv¼
1

2
Tr2 lnHjdiv−Tr1 lnQjdivþ1

2
Tr0 lnSjdiv: ð37Þ

The tensor and vector traces are easily evaluated by
standard methods; see Appendix A 2. The evaluation of
the scalar trace constitutes the nontrivial part of the
calculation as the operator S involves the inverse of H.
In the following subsections, we separately calculate the
tensor trace, the vector trace and the scalar trace in (37).

A. Divergent part of the tensor trace

The tensor trace in (37) is calculated directly by the
Schwinger-DeWitt algorithm (A14), as H is a minimal
second-order operator

H ¼ Δþ P: ð38Þ

Inserting the potential P, defined in (30) and the bundle
curvature Rμν, provided in Appendix A, into the general
formula (A14), we obtain

Tr2 lnHjdiv

¼ 1

16π2ε

Z
d4xg1/2

�
−
19

18
G −

7

6
RμνRμν − 5

�
f
f1

�
2

þ 17

3

f
f1

R −
5

4
R2 þ 9

f
f1

ðϒμ
;μÞ − 9

2
Rðϒμ

;μÞ

−
17

4
RðϒμϒμÞ þ 15

2

f
f1

ðϒμϒμÞ þ Rμνϒμϒν

−
21

4
ðϒμ

;μÞ2 − 3

4
ðϒμϒμÞðϒν

;νÞ − 141

16
ðϒμϒμÞ2

�
: ð39Þ

The Gauss-Bonnet term is defined as

G ≔ RμνρσRμνρσ − 4RμνRμν þ R2: ð40Þ

B. Divergent part of the vector trace

In contrast to H, the ghost operator Q is not yet of
the form (A13), suitable for a direct application of the
Schwinger-DeWitt algorithm (A14), as it contains terms
linear in derivatives. We write (20) as

Q ¼ Δ − 2Ωμ∇μ þ U; ð41Þ

where the coefficients of Ωμ and U are given by

½Ωμ�αβ ≔
1

2

�
δαβϒ

μ þ gμαϒβ

�
; Uα

β ≔ −Rα
β: ð42Þ

By redefining the covariant derivative ∇0
μ ¼ ∇μ þΩμ, the

operator is brought into standard form,

Q ¼ Δ0 þ U0; ð43Þ

TABLE I. Reduction of the formalism for generalized fields ϕA to rank-two symmetric tensor fields hμν, vector
fields ξμ and scalar fields φ.

F ϕA γAB γAB δAB trδAB ½Rμν�AB hϕ1;ϕ2i
F 2 hμν γμν;ρσ γμν;ρσ δμνρσ 10 2Rμνðρðαδ

βÞ
σÞ hh1; h2i2 ¼

R
d4xg1/2h1μνγμν;ρσh2ρσ

F 1 ξμ gμν gμν δμν 4 R α
μν β hξ1; ξ2i1 ¼

R
d4xg1/2ξμ1gμνξ

ν
2

F 0 φ 1 1 1 1 0 hφ1;φ2i0 ¼
R
d4xg1/2φ1φ2

4The failure of this property is usually denoted as a “multi-
plicative anomaly”; see e.g. [54].
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at the price of a modified potential and bundle curvature:

U0α
β ¼ −Rα

β þ ½Ωμ�αβ;μ þ ½Ωμ�αγ½Ων�γβgμν; ð44Þ

½R0
μν�αβ ¼ ½Rμν�αβ þ ½Ωρ�αβ;½μgν�ρ þ ½Ωρ�αγ½Ωσ�γβgρ½μgν�σ:

ð45Þ

Inserting the minimal second-order operator (43) together
with (45) into the general formula (A14), we obtain the
divergent contribution of the ghost trace:

Tr1 lnQjdiv ¼ 1

16π2ε

Z
d4xg1/2

�
11

180
G−

7

30
RμνRμν −

17

60
R2

þ 13

12
Rðϒμ

;μÞ þ 13

24
RðϒμϒμÞ þRμνϒμϒν

−
7

8
ðϒμ

;μÞ2 − 7

8
ðϒμϒμÞðϒν

;νÞ− 19

32
ðϒμϒμÞ2

�
:

ð46Þ

C. Divergent part of the scalar trace

It remains to calculate the scalar trace in (37). The
operator S involves a nonlocal part due to the inverse of
the operator H. Therefore, the functional trace cannot be
evaluated directly with (A14). Nevertheless, S is a scalar
operator,

S ¼ 3ΔþOðMÞ; ð47Þ

with principal part 3Δ and lower-derivative terms OðMÞ,
which we treat as perturbations. For the divergent part in
four dimensions, it is sufficient to expand up to OðM4Þ.
In order to determine the termsOðMÞ in (47) explicitly, we
make use of the following operator identity:

A
1
H

¼ 1

K
Aþ 1

K
B

1
H
: ð48Þ

The minimal operator K∶ F 0 → F 0 is defined as

K ≔ Δ − Rþ f
f1

: ð49Þ

The operator B∶ F 2 → F 0 and its adjoint B†∶ F 2 → F 0

are second-order operators, which areOðM2Þ. This property
is crucial for the efficient use of the operator identity (48).
In components, B and B† read

Bμνð∇Þ ¼ Bμνρσ
2 ∇ρ∇σ þ Bμνρ

3 ∇ρ þ Bμν
4 ; ð50Þ

B†
μνð∇Þ ¼ γμν;αβð∇ρ∇σB2

αβρσ −∇ρB
αβρ
3 þ Bαβ

4 Þ; ð51Þ

where the coefficients Bi ¼ OðMiÞ are local background
tensors and explicitly presented in (B1)–(B3). We use the
identity (48) and its adjoint to write

Tr0 lnSjdiv ¼ Tr0 ln

�
1

K

�
−AA†K −BA†

þK
f1
f2

K − B
1
H
B†

�
1

K

�




div
: ð52Þ

Next, we define the sixth-order operator X∶ F 0 → F 0,

X ≔
1

3

�
−AA†K −BA† þK

f1
f2

K

�
: ð53Þ

Using the property (33), we write (52) in the compact form

Tr0 lnSjdiv ¼ Tr0 ln

�
X −

1

3
B

1
H
B†

�




div

− 2Tr0 lnKjdiv:

ð54Þ

In components, the operator X reads

Xð∇Þ ¼ Δ3 þ Xμν
2 ∇μ∇νΔþ Xμνρ

3 ∇μ∇ν∇ρ

þ Xμν
4 ∇μ∇ν þOðM5Þ: ð55Þ

The coefficients Xi ¼ OðMiÞ are totally symmetric local
background tensors. The formal self-adjointness of X leads
to essential simplifications: the term linear in the background
dimension is absent, such that the perturbative expansion
starts with Xμν

2 ¼ OðM2Þ. Moreover, Xμν
2 only has two free

indices instead of four, as two derivatives in (55) are
contracted into a Laplacian Δ. The explicit coefficients Xi
can be found in (B4)–(B6).
In order to extract the divergent part of the trace (54), we

first treat the nonlocal term as perturbation and expand the
logarithm up to terms OðM4Þ,

Tr0 ln

�
X −

1

3
B

1
H
B†

�




div

¼ Tr0 lnXjdiv − 1

3
Tr0

�
1

X
B

1
H
B†

�




div
: ð56Þ

Since the second trace in (56) is already OðM4Þ, we freely
commute all operators, use

1
H

¼ 1
1

Δ
þOðMÞ; 1

X
¼ 1

Δ3
þOðMÞ; ð57Þ
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and reduce (56) to the following functional trace:

Tr0

�
1

X
B

1
H
B†

�




div

¼ Tr0

�
BB† 1

Δ4

�




div

¼
Z

d4xBμνρσ
2 γμν;αβB

αβγδ
2 Uð4;4Þ

ρσγδ :

ð58Þ

Here, Uð4;4Þ
ρσγδ denotes a universal functional trace, defined

in Appendix A 3. Next, we extract the divergent part
from the first trace in (56). We insert the representation
(55) for X, expand the logarithm around Δ3 up to
OðM4Þ and obtain again a sum of universal functional
traces,

Tr0 lnXjdiv ¼ 3Tr0 lnΔjdiv þ
Z

d4xXμν
2 Uð2;2Þ

μν

þ
Z

d4xXμνρ
3 Uð3;3Þ

μνρ þ
Z

d4xXμν
4 Uð2;3Þ

μν

−
1

2

Z
d4xXμν

2 Xρσ
2 Uð4;4Þ

μνρσ : ð59Þ

The trace including K in (54) is evaluated directly with
(A14). Inserting the explicit expressions for Bμνρσ

2 , Xμν
2 ,

Xμνρ
3 and Xμν

4 , tabulated in (B1), (B4)–(B6), together with
the corresponding universal functional traces Uðp;nÞ

μ1���μp ,
tabulated in (A21)–(A24), we find for the divergent part
of the scalar trace (54),

Tr0 lnSjdiv ¼
1

16π2ε

Z
d4xg1/2

�
−

1

180
G −

133

180
RμνRμν þ 1

2

�
f
f1

�
2

−
1

18

�
f1
f2

�
2

−
7

6

f
f1

Rþ 1

3

f
f2

þ 187

360
R2

þ 3

2

f
f1

ðϒμ
;μÞ − 19

12
Rðϒμ

;μÞ þ 13

72
RðϒμϒμÞ − 3

4

f
f1

ðϒμϒμÞ þ 29

9
Rμνϒμϒν

−
53

24
ðϒμ

;μÞ2 − 17

8
ðϒμϒμÞðϒν

;νÞ − 37

96
ðϒμϒμÞ2

�
: ð60Þ

IV. ONE-LOOP DIVERGENCES ON ARBITRARY BACKGROUNDS: FINAL RESULT

According to (37), we add the partial results for the tensor trace (39), the vector trace (46) and the scalar trace (60) to
obtain the final result for the divergent part of the one-loop divergences for fðRÞ gravity on an arbitrary background.
Note that all invariants must be homogeneous functions of degree zero under simultaneous rescaling of the function f and

its derivatives. Below, we present the final result in terms of curvature and ϒ-structures:

Γ1jdiv ¼
1

32π2ε

Z
d4xg1/2

�
−
71

60
G −

259

180
RμνRμν −

9

2

�
f
f1

�
2

−
1

18

�
f1
f2

�
2

þ 9

2

f
f1

Rþ 1

3

f
f2

−
59

360
R2

þ 21

2

f
f1

ðϒμ
;μÞ − 33

4
Rðϒμ

;μÞ − 371

72
RðϒμϒμÞ þ 27

4

f
f1

ðϒμϒμÞ þ 20

9
Rμνϒμϒν

−
137

24
ðϒμ

;μÞ2 − 9

8
ðϒμϒμÞðϒν

;νÞ − 769

96
ðϒμϒμÞ2

�
: ð61Þ

This constitutes our main result. The result expressed
in terms of different invariants, which are better suited for
the reduction to the on-shell divergences and the reduc-
tion to spaces of constant curvature, is presented in
Appendix C. As expected on general grounds, the one-
loop divergences contain up to four derivatives of the
Ricci scalar. The presence of the curvature squared
structures proportional to G and RμνRμν and the derivative
structures in the second and third line just confirm
explicitly that fðRÞ gravity is perturbatively nonrenor-
malizable. In the form (C9), the on-shell reduction is
trivially performed by setting Eμν ¼ 0,

Γ1jdivE¼0 ¼
1

32π2ε

Z
d4xg1/2

�
−
71

60
G −

609

80
RμνRμν

þ 1

3

f
f2

−
115

288

�
f
f1

�
2

−
1

18

�
f1
f2

�
2

−
15

64

f
f1

Rþ 3919

1440
R2 þ 15

64
RΔ ln f1

�
: ð62Þ

Note that RΔ ln f1 is the only derivative structure that
survives the on-shell reduction.
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V. f ðRÞ GRAVITY ON A DE SITTER
BACKGROUND

The Riemann curvature tensor of a maximally symmetric
space is given in terms of the constant scalar curvature R0,

Rμνρσ ¼
R0

12
ðgð0Þμρ g

ð0Þ
νσ − gð0Þμσ g

ð0Þ
νρ Þ: ð63Þ

In particular, we have ϒμ ¼ 0. Euclidean de Sitter space in
four dimensions is a sphere S4 of constant radius r0,

r20 ¼
12

R0

; R0 > 0: ð64Þ

The volume VðS4Þ is given by

VðS4Þ ¼
Z

d4xg1/2ð0Þ ¼
384π2

R2
0

: ð65Þ

A. One-loop divergences: Reduction
to de Sitter space

For the off-shell one-loop divergences in the basis (C13),
the reduction to a constant curvature background becomes
trivial:

Γ1jdivR0
¼ 1

ε

�
−
173

20
− 54

�
f

R0f1

�
2

þ 54
f

R0f1

−
2

3

�
f1

R0f2

�
2

þ 4
f

R2
0f2

�
: ð66Þ

The subsequent on-shell reduction is performed by noting
that on spaces of constant curvature, the on-shell relation
(6) reduces to the algebraic equation

E0 ≔ −R0f1 þ 2f: ð67Þ

Inserting (67) into (66) we obtain the on-shell one-loop
divergences on a de Sitter background:

Γ1jdivR0;E0¼0 ¼
1

ε

�
97

20
þ 4

f
R2
0f2

−
8

3

�
f

R2
0f2

�
2
�
: ð68Þ

B. One-loop divergences: Direct calculation

Beside the reduction of the one-loop divergences to de
Sitter space, it is instructive to repeat the calculation
directly in de Sitter space. On a de Sitter background,
the operators (29), (20), (23) and (36) reduce to

Hð0Þαβμν ¼ δμναβΔþ Pð0Þαβμν; ð69Þ

Qð0Þβα ¼ δαβΔ −
1

4
R0δ

α
β; ð70Þ

Aμν
ð0Þ ¼ gμνð0ÞΔþ∇ðμ∇νÞ −

1

4
R0g

μν
ð0Þ; ð71Þ

S0 ¼
f1
f2

−A0

1
H0

A†
0; ð72Þ

where Pð0Þαβμν in (30) reduces to the constant potential

Pð0Þαβμν ¼ −
1

3
R0

�
δμναβ þ

1

2
gð0Þαβ g

μν
ð0Þ

�
þ f
f1

δμναβ: ð73Þ

In view of the simple minimal second-order operators H0

and Q0, the calculation of the divergent parts of the tensor
trace (39) and the vector trace (46) is calculated directly
with (A14),

Tr2 lnH0jdiv ¼
1

ε

�
−
371

9
þ 136

f
f1R0

− 120

�
f

f1R0

�
2
�
;

ð74Þ

Tr1 lnQ0jdiv ¼ −
1

ε

358

45
: ð75Þ

In particular, the operator identity (48) essentially simpli-
fies, as B0 ¼ 0 on a space of constant curvature,

A0

1
H0

¼ 1

K0

A0; K0 ¼ Δ − R0 þ
f
f1

: ð76Þ

Therefore, by using (76), the evaluation of the scalar trace
becomes very simple:

Tr0 lnS0 ¼ Tr0

�
f1
f2

−
1

K0

A0A
†
0

�
: ð77Þ

The product A0A†
0 factorizes into two minimal second-

order operators,

A0A
†
0 ¼ −3

�
Δ −

1

3
R0

��
Δ −

1

2
R0

�
: ð78Þ

Combining (77) with (78), we find

MICHAEL S. RUF and CHRISTIAN F. STEINWACHS PHYS. REV. D 97, 044049 (2018)

044049-8



Tr0 lnS0jdiv ¼ Tr0 ln

�
3

�
Δ −

1

3
R0

��
Δ −

1

2
R0

�

þ f1
f2

�
Δ − R0 þ

f
f1

��




div

− Tr0 ln

�
Δ − R0 þ

f
f1

�




div

¼ 1

ε

�
721

90
− 28

f
f1R0

þ 12

�
f

f1R0

�
2

þ 8
f

f2R2
0

−
4

3

�
f1

f2R0

�
2
�
: ð79Þ

The off-shell divergences of the traces in (79) are extracted
by the generalized Schwinger-DeWitt formalism [48].
On shell, the fourth-order operator in the first trace of

(79) factorizes into two second-order operators, one of
which cancels the contribution from the second trace:

Tr0 lnS0jdivE0¼0 ¼ Tr0 ln

�
Δ −

1

3
R0 þ

2

3

f
f2R0

�




div
: ð80Þ

Combining (74), (75) and (79), the one-loop divergences
directly calculated on a de Sitter background read

Γ1jdivR0
¼ 1

2
Tr2 lnH0jdiv − Tr1 lnQ0jdiv þ

1

2
Tr0 lnS0jdiv:

ð81Þ

This agrees with the off-shell one-loop divergences (66),
which were obtained by reducing the result for an arbitrary
background (C13).

C. One-loop divergences: Irreducible decomposition

An independent calculation for the off-shell divergences
is obtained by making use of the decomposition of hμν into
its irreducible components:

hμν ¼ h⊥μν þ
gμν
4

hþ 2∇ðμv⊥νÞ þ 2

�
∇μ∇νbþ gμν

4
Δb

�
:

ð82Þ

Here, h⊥μν is a symmetric transverse-traceless tensor,
h ¼ gμνhμν is the trace, v⊥μ is a transversal vector and b
the longitudinal scalar, which are subjected to the differ-
ential constraints

gμνh⊥μν ¼ 0; ∇μh⊥μν ¼ 0; ∇μv⊥μ ¼ 0: ð83Þ

This decomposition is particularly useful on a de Sitter
background for two reasons. First, the fluctuation operator
acquires a simple, almost diagonal, block form. Second, the
projection operators, required in the functional traces over

the invariant subspaces, are significantly less complicated
than on general backgrounds.
Under an infinitesimal diffeomorphism (15), generated

by the vector ξμ ¼ ξ⊥μ þ∇μξ with ∇μξ⊥μ ¼ 0, the field hμν
transforms as

δξhμν ¼ 2∇ðμξ⊥νÞ þ 2∇μ∇νξ: ð84Þ

Therefore, the individual components change as

δξh⊥μν ¼ 0; δξv⊥μ ¼ ξ⊥μ ; δξh ¼ −2Δξ; δξb ¼ ξ:

ð85Þ

Clearly, h⊥μν is gauge invariant, while the transverse vector
v⊥μ and the trace h as well as the longitudinal scalar b are
not. Note that the decomposition in the scalar sector of (82)
is not unique. Alternatively, we could choose a basis in
which the gauge invariant physical components become
manifest. We can eliminate the trace h in favor of the
conformal mode σ, which is defined as the gauge invariant
combination,

σ ≔ hþ 2Δb; δξσ ¼ 0: ð86Þ

1. Fluctuation operator

The irreducible decomposition (82) suggests the change
of variables

hμν ↦ ðh⊥μν; v⊥μ ; h; bÞT; ð87Þ

where now each component is considered as an indepen-
dent field. The fluctuation operator on de Sitter space F0

then acquires the block matrix form

F0 ¼

2
6664
Ft

Fv

Fhh Fhb

Fbh Fbb

3
7775: ð88Þ

The individual components are given by

Ft ¼ −
f1
2

�
Δ −

1

3
R0 þ

f
f1

�
; ð89Þ

Fv ¼ f1

�
Δ −

3

4
R0 þ

f
f1

��
Δ −

1

4
R0

�
; ð90Þ

Fhh ¼
9f2
16

�
Δ2 −

�
2

3
R0 −

2

9

f1
f2

�
ΔþR2

0

9
−
2

9

f1
f2

R0 þ
2

9

f
f2

�
;

ð91Þ
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Fbb ¼
9f2
4

�
Δ2 −

�
1

3
R0 þ

2

3

f1
f2

�
Δ

þ 2

3

f1
f2

R0 −
2

3

f
f2

��
Δ −

1

3
R0

�
Δ; ð92Þ

Fhb ¼ Fbh ¼
9f2
8

�
Δ −

1

3
R0

�
2

Δ: ð93Þ

The change of variables for differentially constrained
fields leads to additional functional determinants from
the Jacobian Jh, which is extracted from

hh; hi2 ¼ hh⊥; h⊥i2 þ
�
v⊥;

�
Δ −

1

4
R0

�
v⊥

�
1

−
1

8
hh; hi0 þ

3

2

�
b;Δ

�
Δ −

1

3
R0

�
b

�
0

: ð94Þ

The Jacobian block operator Jh, understood as acting on a
vector (87), reads

Jh ¼

2
6664

1

Δ − 1
4
R0

1

ðΔ − 1
3
R0ÞΔ

3
7775: ð95Þ

2. Ghost operator

A similar decomposition is carried out for the ghost
sector. The (anti)ghost fields decompose as

ωμ ¼ ωμ
⊥ þ∇μu; ∇μω

μ
⊥ ¼ 0; ð96Þ

ω̄μ ¼ ω̄⊥
μ þ∇μū; ∇μω̄⊥

μ ¼ 0: ð97Þ

In analogy to the previous subsection, we find for the block
matrices of the ghost operator and ghost Jacobian

Q0 ¼
�Δ − 1

4
R0

ΔðΔ − 1
2
R0Þ

�
; Jω ¼

�
1

Δ

�
:

ð98Þ

3. Evaluation of traces

The one-loop divergences for (88) decompose into the
sum of traces over transverse-traceless tensors, transverse
vectors and scalars:

Tr lnF0jdiv ¼ Tr2;⊥ lnFtjdiv þ Tr1;⊥ lnFvjdiv

þ Tr ln

�
Fhh Fhb

Fbh Fbb

�




div

: ð99Þ

The transversal-traceless tensor trace and transversal vector
traces are given by

Tr2;⊥ lnFtjdiv ¼ Tr2;⊥ ln

�
Δ −

1

3
R0 þ

f
f1

�




div
; ð100Þ

Tr1;⊥ lnFvjdiv ¼ Tr1;⊥ ln

�
Δ −

3

4
R0 þ

f
f1

�




div

þ Tr1;⊥ ln
�
Δ −

1

4
R0

�




div
: ð101Þ

On a de Sitter background, all operators in the scalar trace
commute with each other and we evaluate the trace of the
scalar block operator as

Tr ln

�
Fhh Fhb

Fbh Fbb

�
¼ Tr0 ln ðFhhFbb − FhbFbhÞ: ð102Þ

Here, Fs ≔ FhhFbb − FhbFbh is a scalar operator of order
ten. The scalar trace in (102) decomposes into the following
sum of scalar traces:

Tr0 lnFsjdiv ¼ Tr0 lnΔjdiv þ Tr0 ln

�
Δ −

1

3
R0

�




div

þ Tr0 ln

�
Δ − R0 þ

f
f1

�




div

þ Tr0 ln

�
Δ2 −

1

3

�
5

2
R0 −

f1
f2

�
Δ

þ 1

3

�
1

2
R2
0 −

f1
f2

R0 þ
f
f2

��




div
: ð103Þ

Note that the last scalar trace is identical to the first trace
in (79). Similarly, the divergent contribution from the
Jacobian (95) is given by

Tr ln Jhjdiv ¼ Tr01;⊥ ln

�
Δ −

1

4
R0

�




div

þ Tr00 lnΔjdiv

þ Tr00 ln
�
Δ −

1

3
R0

�




div
: ð104Þ

A prime on a trace indicates the subtraction of the modes
associated with the lowest eigenvalue. Apart from these
modes, there is a cancellation of contributions from the
fluctuation operator (101) and (103) with contributions
from (104). The ghost trace decomposes as

Tr lnQ0jdiv ¼ Trln1;⊥
�
Δ −

1

4
R0

�




div

þ Tr0 lnΔjdiv

þ Tr0 ln

�
Δ −

1

2
R0

�




div
: ð105Þ
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Again, the contribution of the Jacobian cancels one of the
traces in (105) up to zero modes:

Tr ln Jωjdiv ¼ Tr00 lnΔjdiv: ð106Þ

The evaluation of the nontrivial traces in (100), (101)
and (103) can be found in Appendix D. Altogether, the
divergent part of the one-loop effective action on a de Sitter
background, obtained in terms of the irreducible decom-
position, reads

Γ1jdivR0
¼ 1

2
Tr lnF0jdiv −

1

2
Tr ln Jhjdiv

− Tr lnQ0jdiv þ Tr ln Jωjdiv

¼ 1

ε

�
−
313

20
þ 1

2
Ntot − 54

�
f

R0f1

�
2

þ 54
f

R0f1

−
2

3

�
f1

R0f2

�
2

þ 4
f

R2
0f2

�
: ð107Þ

The total number of zero modes and negative modes is
given by

Ntot ¼ NðJhÞ − 2NðJωÞ ¼ 16 − 2 ¼ 14; ð108Þ

where the traces in (104) contribute ten zero modes, five
negative modes and one zero mode to NðJhÞ, respectively,
while the trace in (106) contributes one zero mode to
NðJωÞ; see e.g. Table 8 in [51].5 Inserting (108) into (107),
the result coincides with (66).

VI. CHECKS AND COMPARISON WITH
PREVIOUS RESULTS

A. Comparison with one-loop calculation for Einstein
gravity with a cosmological constant

General relativity with a cosmological constant corre-
sponds to the special case of (1) with

fðRÞ ¼ −
M2

P

2
ðR − 2ΛÞ; ð109Þ

where Λ is the cosmological constant and MP the Planck
mass. In particular, we have

f2 ¼ 0; ϒμ ¼ 0: ð110Þ

As noted before, in this case the scalar contribution is
absent from the divergent part of the effective action (34),
which allows us to test the tensor and vector contributions

by comparing them to previous calculations performed in
[25,26,48]. Using (39) and (46), the result for the one-loop
divergences reads

Γ1jdivEH ¼ 1

2
Tr2 lnHjdivEH − Tr1 lnQjdivEH

¼ 1

16π2ε

Z
d4xg1/2

�
−
53

90
G −

7

20
RμνRμν

−
1

120
R2 þ 13

6
ΛR −

5

2
Λ2

�
: ð111Þ

For Λ ¼ 0, we recover the well-known result for Einstein
gravity without a cosmological constant [25,48].
For Λ ≠ 0, we compare with the calculation in [26],

which is performed on an Einstein space. In view of (5) and
(110) this is equivalent to the equation of motion

Rμν ¼ Λgμν: ð112Þ

Therefore, on shell (111) reduces to

Γ1jdivEH;E¼0 ¼
1

ε

�
−
53

45
χðMÞ þ 87

20

Λ2VðMÞ
12π2

�
; ð113Þ

where VðMÞ is the volume of M and χðMÞ the Euler
characteristic of M,

VðMÞ ≔
Z
M

d4xg1/2; ð114Þ

χðMÞ ≔ 1

32π2

Z
M

d4xg1/2G: ð115Þ

The result (113) is in perfect agreement with [26].6

B. Comparison with zeta function calculation
for f ðRÞ gravity on de Sitter space

Since the spectrum of the Laplacian on a sphere is known
explicitly, the one-loop effective action can be evaluated by
the zeta function technique. In combination with the
irreducible decomposition (82), this zeta function technique
is used in [31] to calculate the one-loop effective action
for fðRÞ gravity on a de Sitter background. We extract the
one-loop divergences from the result presented in [31],
Eq. (3.33), by focusing on the contributions proportional to
lnðl2R0/12Þ. Here, l is a reference scale with dimension of
length. Since the authors have chosen a different gauge, we
compare the gauge-independent on-shell result. Inserting
the logarithmic contributions from Eqs. (B.29), (B.35) and
(B.38) into Eq. (3.33) and using the on-shell relation (67),
we find

5These modes are related to the symmetries of the de Sitter
background; see e.g. [55–61] for more details. 6Note that they present the poles in dimension as d − 4 ¼ −2ε.
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Γ1jdivE0¼0 ¼
1

ε

�
−
�
143

20
þ 1

2
Ntot

0

�
þ 4

f
R2
0f2

−
8

3

�
f

R2
0f2

�
2
�
:

ð116Þ

According to [31], Ntot
0 is the total number of zero modes.7

The f-dependent structures coincide with our on-shell
result (68). However, the f-independent structure seems
to be incompatible with (68), as it would require
Ntot

0 ¼ −24.

C. Comparison with the f ðRÞ truncation in the
functional renormalization group

We recover the one-loop result on a de Sitter background
from the functional renormalization group flow of fðRÞ
gravity similar to the procedure described e.g. in [62–64].
The Wetterich equation describes the functional renorm-
alization group flow of the effective averaged action Γk
with respect to the momentum scale k [34,35],

∂tΓk ¼
1

2
Tr

�
δ2Γk

δϕδϕ
þ Rk

�−1
∂tRk: ð117Þ

Here t ¼ lnðk/μÞ is the logarithmic scale with the arbitrary
reference scale μ and Rk is a scale-dependent regulator
function. In the one-loop approximation the Wetterich
equation reduces to [51],

∂tðSþ Γ1
kÞ ¼

1

2
Tr

�
δ2S
δϕδϕ

þ Rk

�−1
∂tRk: ð118Þ

This corresponds to a replacement of the full effective
action Γk by its one-loop approximation Sþ Γ1

k on the left-
hand side of (117) and a replacement of the effective action
Γk by the “bare” action on the right-hand side of (117). In
[51], the functional trace in (117) is calculated for the fðRÞ
truncation. Equations (113)–(114) in [51] are expressed in
terms of the dimensionless variables

R̃ ¼ Rk−2; f̃n ¼ fnk2ðn−2Þ: ð119Þ

We extract the one-loop result from Eq. (113) in [51] by
neglecting the explicit scale dependence of f̃, that is by
setting

∂tf̃n ¼ 0: ð120Þ

Restoring the original dimensionful quantities R and fn by
introducing explicit factors of the momentum scale k, we
integrate the flow from the UV scale k ¼ Λ down to the
reference scale k ¼ μ and obtain the one-loop approxima-
tion of the effective action:

Γ1 ¼ −
Z

Λ

μ
dk∂kΓ1

k: ð121Þ

The resulting expression for the effective action contains
contributions that diverge as Λ → ∞,

Γ1 ¼ Γ1
quart þ Γ1

quad þ Γ1
log þ UV-finite terms: ð122Þ

Here, Γ1
quart, Γ1

quad, Γ1
log are quartic, quadratic and logarith-

mic divergent contributions respectively. As dimensional
regularization annihilates all power law divergences, only
the logarithmic divergent part is relevant for the comparison
to our result. It is isolated by expanding the integrand ∂kΓ1

k
around k ¼ ∞, and extracting the terms proportional to
k−1. In this way we find

Γ1
log ¼ ln

�
Λ2

μ2

��
147

20
− 30

�
f

R0f1

�
2

þ 10
f

R0f1

−
2

3

�
f1

R0f2

�
2

−
8

3

f
R2
0f2

þ 2

3

f1
R0f2

�
: ð123Þ

On shell, this reduces to

Γ1
log;E0¼0 ¼ ln

�
Λ2

μ2

��
97

20
þ 4

f
R2
0f2

−
8

3

�
f

R2
0f2

�
2
�
: ð124Þ

Identifying ln ðΛ2/μ2Þ ¼ 1/ε, this expression agrees with
our on-shell result on de Sitter space (68).8

VII. CONCLUSION

Our main result is the calculation of the divergent part
of the one-loop effective action for fðRÞ gravity on an
arbitrary background. This generalizes previous calcula-
tions of quantum corrections in fðRÞ gravity, which have
been restricted to constant curvature backgrounds.
Allowing for arbitrary backgrounds increases the complex-
ity of the one-loop calculation considerably, but permits us
to access the individual coefficients of the quadratic
curvature invariants and the structures involving derivatives
of the Ricci scalar.
Our result is relevant for cosmological fðRÞ theories,

as it allows us to investigate the influence of quantum
corrections on the dynamics of a time-dependent
Friedmann-Robertson-Walker background. Other interest-
ing applications include the study of black hole solutions
in fðRÞ gravity. Note that on shell the derivative structures
in (61) also contribute to the renormalization of the

7Ten zero modes from the vector sector are already taken into
account in the result (116).

8The on-shell agreement is obtained only for the “α-gauge,”
corresponding to the second expression for Σ in Eq. (114) in [51]
[the factor of 384π2 in Eq. (113) in [51] is presumably a typo and
set to 1 in our comparison].
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fðRÞ structure. On constant curvature backgrounds these
contributions are absent as they are proportional to alge-
braic on-shell condition E0 and vanish.
We have represented our main result in terms of three

different bases in the space of invariants in order to perform
the on-shell reduction and de Sitter reduction. As an
internal consistency check of our method, we have repeated
the calculation directly in de Sitter space—once with the
same method as for the calculation on an arbitrary back-
ground, and once by a decomposition of the fluctuation
field into its irreducible components. All results on de Sitter
space are consistent with the de Sitter reduction of the result
for arbitrary backgrounds. In addition, we have compared
our result with previous calculations in fðRÞ gravity. We
find perfect agreement with the one-loop calculations
for Einstein gravity [25,48] and Einstein gravity with a
cosmological constant [26]. We also coincide with the exact
renormalization group analysis, obtained for the fðRÞ
truncation on a de Sitter background [51]. Apart from
the coefficient for the f-independent structure, we also
agree with the one-loop result for fðRÞ gravity in de Sitter
space of [31].
Besides the main result, our calculation contains an

interesting technical aspect. Standard perturbative heat-
kernel methods for UV divergences are based on an
expansion around the principal part of the fluctuation
operator. These methods fail if the principal symbol is
degenerate, which is the case for fðRÞ gravity where the
degeneracy is a result of the dyadic structure of the
principal part. The technique developed in this article turns
this drawback into an advantage. In fact, as discussed in
detail in Sec. II B, the dyadic structure is the essential
element of our technique and allows us to complete the
calculation in the first place. Moreover, it naturally organ-
izes the calculation in a transparent way, by subdividing it
into the evaluation of three functional traces (37) and
thereby isolates the contribution of the additional higher-
derivative scalar degree of freedom.
Finally, since our result captures all one-loop structures,

it provides the basis for an investigation of the equivalence
between fðRÞ gravity and scalar-tensor theories at the one-
loop quantum level, which we address in a separate
publication [65].
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APPENDIX A: FORMALISM AND NOTATIONS

1. Bundle structure

The formalism involves the general structure of a vector
bundle V over a d ¼ 4 dimensional Riemannian manifold
ðM; gÞ. Fields ϕ are elements of the space of smooth
sections F ¼ C∞ðVÞ of V. In local coordinates we identify

a field ϕ by its components ϕAðxÞ, where A;B;… are the
bundle indices,

ϕ ↦ ϕAðxÞ: ðA1Þ

In addition, we assume that V is endowed with a metric
compatible, torsion-free affine connection ∇. Throughout
the paper, we denote matrix valued operatorsL∶ F 1 → F 2

in boldface:

L ↦ LA
B: ðA2Þ

On the space of fields F , we define an inner product

hϕ1;ϕ2i ¼
Z

d4xg1/2ϕA
1 ðxÞγABðxÞϕB

2 ðxÞ; ðA3Þ

where the bundle metric γAB satisfies

det γAB ≠ 0; γACγ
CB ¼ δBA: ðA4Þ

For an operator L∶ F 1 → F 2, the inner products on F 1

and F 2 allow us to define the (formal) adjoint
L†∶ F 2 → F 1,

hϕ2;Lϕ1i2¼hL†ϕ2;ϕ1i1; ϕ1∈F 1;ϕ2∈F 2: ðA5Þ

Here, 1 ↦ δAB is the identity operator and Rμν ↦ Rμν
A
B is

the bundle curvature, defined by the commutator

½∇μ;∇ν�ϕA ¼ Rμν
A
Bϕ

B: ðA6Þ

The reduction of the general formalism to the case of
symmetric rank-two tensor fields hμν, vector fields ξμ and
scalar fields φ is summarized in Table I.
The explicit expression for the ultralocal, dedensitized

DeWitt metric γμν;ρσ and its inverse γμν;ρσ are

γμν;ρσ ¼ 1

4
ðgμρgνσ þ gμσgνρ − gμνgρσÞ; ðA7Þ

γμν;ρσ ¼ gμρgνσ þ gμσgνρ − gμνgρσ; ðA8Þ

γμν;αβγαβ;ρσ ¼ δμνρσ ¼ 1

2
ðδμρδνσ þ δμσδνρÞ: ðA9Þ

2. One-loop divergences

The fundamental fluctuation operator F ↦ FA
Bð∇Þ is

defined as the (formally) self-adjoint operator

FA
Bð∇xÞδðx; x0Þ ≔ g−1/2γAC

δ2Stot
δϕCðxÞδϕBðx0Þ : ðA10Þ
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Note that the delta function δðx; x0Þ has density weight zero
in the first argument x and unit weight at x0. The one-loop
effective action is expressed as the sum of three functional
traces for the gauge-fixed fluctuation operator F, the ghost
operator Q and the Nielsen-Kallosh operator O,

Γ1 ¼
1

2
Tr lnF − Tr lnQþ 1

2
Tr lnO: ðA11Þ

The ghost contribution enters twice with opposite sign, due
to the Grassmannian nature of the ghost field and the
antighost field. The Nielsen-Kallosh operator only gives a
nontrivial contribution to the one-loop divergences in case
it involves derivatives. The functional trace of a two point
tensor TA

Bðx; yÞ involves integration over its coincidence
limit and the internal bundle trace tr,

TrTA
BðxA; xBÞ ¼

Z
d4x trTA

Bðx; xÞ

¼
Z

d4x TA
AðxÞ: ðA12Þ

For a minimal second-order operator with potential P,

L ¼ Δþ P; Δ ≔ −∇μ∇μ; ðA13Þ

the divergent part of the functional trace Tr lnL can be
calculated by the heat-kernel-based Schwinger-DeWitt
technique [48,66]. In dimensional regularization divergen-
ces are isolated as poles in dimension ε ¼ 2 − d/2 for
d → 4. The one-loop divergences can be given in closed
form [66],

Tr lnLjdiv ¼ −
1

16π2ε

Z
d4xg1/2tra2: ðA14Þ

Here, a2 is the coincidence limit x0 → x of the second
Schwinger-DeWitt coefficient

a2 ¼
1

180
ðRμνρσRμνρσ − RμνRμνÞ1þ 1

12
RμνRμν

þ 1

2

�
P −

R
6
1

�
2

þ t:d:; ðA15Þ

where t.d. denotes total derivatives.

3. Universal functional traces

Any differential operator L can be represented as a sum
of terms ordered according to the number of derivatives:

Lð∇Þ ¼ Dð∇Þ þΠð∇Þ: ðA16Þ

Here, the principal part D encompasses the highest deriva-
tive part, while all lower-order derivative terms are

collected in the differential operator Π. The components
of the principal part read

Dð∇Þ ↦ ½DA
B�μ1…μ2k∇μ1…∇μ2k : ðA17Þ

We call an operator L minimal if its principal part is given
by ½DA

B�μ1…μ2k∇μ1…∇μ2k ¼ DA
BΔk; otherwise we call it

nonminimal. For nonminimal or higher-order operators, the
original Schwinger-DeWitt algorithm for minimal second-
order operators (A13) has to be modified. In [48] the
authors propose a generalization of the Schwinger-DeWitt
algorithm, which is based on a perturbative expansion inΠ.
Essential for this perturbative treatment is the notion of
background dimension M, which is understood as the
mass dimension of the background tensorial coefficients
of the differential operator. We write L ¼ OðMkÞ for an
operator L, which has at least background dimension Mk.
The generalized Schwinger-DeWitt algorithm allows us to
reduce the calculation of divergences for nonminimal and
higher-order operators to the evaluation of a few tabulated
universal functional traces (UFT) [48] for the second-order
minimal operator Δþ P,

½UA
BðPÞ�ðp;nÞμ1…μp ¼ ∇μ1…∇μp

δAB
ðΔþ PÞn






div

x0¼x
: ðA18Þ

We denote the inverse of an operatorL by 1/L, such that its
bundle structure is indicated by the corresponding identity
matrix 1 ↦ δAB. Different traces are characterized by the
pair ðp; nÞ and can be classified according to their degree of
divergence:

χdiv ¼ p − 2nþ d: ðA19Þ

In d ¼ 4, divergent contributions arise for 0 ≤ χdiv ≤ 4. For
P ¼ 0, the UFT were introduced and tabulated in [48,67].
These traces were extended for P ≠ 0 in [68]. We list all
UFT with P ¼ 0 appearing in our calculation:

Uð2;3Þ
μν ¼ g1/2

16π2ε

�
−
1

4
gμν

�
; ðA20Þ

Uð4;4Þ
μνρσ ¼ g1/2

16π2ε

1

24
ðgμρgνσ þ gμσgνρ þ gμνgρσÞ; ðA21Þ

Uð3;3Þ
μνρ ¼ 0; ðA22Þ

Uð0;1Þ ¼ g1/2

16π2ε

1

6
R; ðA23Þ

Uð2;2Þ
μν ¼ g1/2

16π2ε

1

6

�
Rμν −

1

2
gμνR

�
: ðA24Þ

Note that since all the scalar UFT listed above have P ¼ 0,
we have suppressed the argument P.
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APPENDIX B: EXPLICIT COEFFICIENTS OF THE OPERATORS B and X

1. Coefficients of the operator B

Below, we list the tensorial background coefficients of the operator B as defined in (50). Without loss of generality, we
have defined the Bi as totally symmetric tensors.9 Note that all coefficients Bi are identically zero on a space of constant
curvature such that B0 ≡ 0. Therefore, the operator identity (76) essentially simplifies in de Sitter space. In d ¼ 4, the
coefficients read

Bμνρσ
2 ¼ ðgαβgρσ − gαðρgσÞβÞ

�
Pαβ

μν−
�
f
f1

−R

�
δμναβ þ 2RμðανβÞ

�
þ gμðρðRσÞνþϒσÞ;νÞþ gνðσðRρÞμþϒ;ρÞμÞ− 2gμνðRρσ þϒρ;σÞ

¼ gμðρgσÞν
�
7

4
ϒαϒα −Rþ 3

2
ϒα

;α

�
þ gμνgρσ

�
−
5

4
ϒαϒαþ

1

2
R−ϒα

;α

�
− gρσðRμν −ϒμϒν− 2ϒμ;νÞ

þ 2gμðρðRσÞν−ϒσÞϒνÞþ 2gνðσðRρÞμ−ϒρÞϒμÞ− gμνðRρσ þϒρ;σÞ; ðB1Þ
Bμνρ
3 ¼ gρβðϒαPαβ

μν − 2Pαβ
μν;αÞ − gαβðϒρPαβ

μν − 2Pαβ
μν;ρÞ − gρðνϒμÞ

�
f
f1

− R

�
þ gμν

�
ϒρ

�
f
f1

− R

�
− 2ϒαRρ

α −ϒα
;αρ

�

þ gρðνðϒαRμÞα þ R;μÞ þϒ;αjμÞ
α Þ −ϒðμRνÞρ þ 4Rρðμ;νÞ − 2ϒαRαðμνÞρ − 2Wμν;ρ − 3Rμν;ρ; ðB2Þ

Bμν
4 ¼ −ðAαβPαβ

μνÞ þ ðKWμνÞ þ RαðμðRνÞ
α −ϒνÞ

;αÞ − Rμ
α
ν
βðRαβ −ϒα;βÞ −ϒαðRμν;α − Rαðμ;νÞÞ

þ ΔRμν −
1

2
ϒðμR;νÞ þ R;ðμνÞ: ðB3Þ

2. Coefficients of the operator X

The coefficients of the operator X, defined in (55), are listed below explicitly. Since formally X† ¼ X, the coefficient
Xμνρ
3 can only be built from derivatives of the leading coefficient Xμν

2 . Without loss of generality, we have defined the Xi as
totally symmetric tensors. The explicit coefficients read

Xμν
2 ¼ gμν

�
4

3
R −

f
f1

−
1

3

f1
f2

þ 3

4
ϒαϒα −

1

2
ϒα

;α

�
þ 2Rμν − 3ϒμϒν þ 2ϒμ;ν; ðB4Þ

Xμνρ
3 ¼ −X2

ðμν;ρÞ − X2
σðμ

;σgνρÞ; ðB5Þ

Xμν
4 ¼ gμν

�
−
2

3

f
f2

þ 2

3
R

�
f0
f1

þ f1
f2

þϒα
;α − 3ϒαϒα −

1

2
R

�
þ Rαβ

�
19

6
ϒαϒβ −

2

3
Rαβ

�
−

f
f1

�
5

6
ϒαϒα þϒα

;α

�

þ ðϒαϒαÞ
�
5

16
ϒβϒβ þ 17

6
ϒβ

;β

�
−
13

12
ðϒα

;αÞ2
�
þ Rμν

�
2

3

f
f1

þ 13

6
ϒαϒα −

8

3
Rþ 4ϒα

;α

�

þ Rμανβ

�
4

3
Rαβ −

14

4
ϒαϒβ

�
þϒμϒν

�
19

3

f
f1

−
5

4
ϒαϒα þ 10

3
R −

31

6
ϒα

;α

�

þϒμ;ν

�
−2

f
f1

−
1

3
Rþ 5

6
ϒαϒα þ 7

3
ϒα

;α

�
þ 4

3
RμαRν

α −
10

3
Rα

ðμϒνÞϒα þ t:d:; ðB6Þ

where we have neglected total derivative terms in Xμν
4 .

APPENDIX C: REPRESENTATIONS OF THE
FINAL RESULT

1. Representation in terms of E

For the on-shell reduction, it is convenient to express the
final result in terms of the rescaled extremal Eμν and its

trace E. This representation makes the terms which are
proportional to the equations of motion manifest. The
conversion from the ϒ-representation (61) is performed
by a systematic procedure which involves several integra-
tion by parts identities listed below. The procedure involves
the following steps. First, we eliminate structures that
contain derivatives of ϒμ in three steps. Structures with
three derivatives ∇∇∇ϒ are total divergences and are
neglected. Structures which involve second derivatives

9We use the Mathematica tensor algebra bundle xAct
[69–71] to check the explicit coefficients (B1)–(B6).
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ϒ∇∇ϒ are partially integrated to structures that only
involve first-order derivatives ∇ϒ∇ϒ. Finally, structures
that involve first-order derivatives ∇ϒ are converted into
structures that involve the rescaled extremal curvatures and
ϒϒ structures. In this way, all structures involving deriv-
atives of ϒ are eliminated. Finally, structures that involve
undifferentiated ϒ terms are eliminated by the integration
by parts identities we list below. The equalities ¼• are to be
understood to hold only under the integral sign modulo
surface terms:

ϒμ;ν ¼ Eμν −
1

3

�
Eþ R −

1

2

f
f1

�
gμν þ Rμν −ϒμϒν;

ðC1Þ

ðϒμϒμÞ2 ¼• −
1

3

�
Eþ R −

f
f1

�
ðϒμϒμÞ

þ 2

3
ðEμν þ RμνÞϒμϒν; ðC2Þ

f1
f2

ðϒμϒμÞ ¼• RΔ ln f1; ðC3Þ

f
f1

ðϒμϒμÞ ¼• −
1

6

�
Eþ R − 2

f
f1

�
f
f1

þ 1

2
RΔ ln f1; ðC4Þ

RðϒμϒμÞ ¼• −
1

3

�
Eþ R − 2

f
f1

�
Rþ RΔ ln f1; ðC5Þ

EðϒμϒμÞ ¼• −
1

3

�
Eþ R − 2

f
f1

�
Eþ EΔ ln f1; ðC6Þ

Eμνϒμϒν ¼• 1
2
EμνEμν þ 1

2
EμνRμν −

1

6
E

�
Eþ R −

1

2

f
f1

�
;

ðC7Þ

Rμνϒμϒν ¼• EμνRμν þ RμνRμν −
R
3

�
Eþ R −

1

2

f
f1

�

þ 1

2
RΔ ln f1: ðC8Þ

Applying these rules we express the final result (61) in
terms of the extremal Eμν and its trace E,

Γ1jdiv ¼
1

32π2ε

Z
d4xg1/2

�
−
71

60
G −

609

80
RμνRμν þ 1

3

f
f2

−
115

288

�
f
f1

�
2

−
1

18

�
f1
f2

�
2

−
15

64

f
f1

Rþ 3919

1440
R2

þ 15

64
RΔ ln f1 þ E

�
55

108
E −

419

432

f
f1

þ 2933

864
R

þ 221

288
Δ ln f1

�
− Eμν

�
403

96
Eμν þ 2987

288
Rμν

��
:

ðC9Þ

2. Representation in terms of ∇R
The final result can be expressed in terms of the Ricci

scalar R and its derivatives. Moreover, the quadratic
curvature invariants can be represented in terms of the
Ricci scalar R, the Weyl tensor Cμνρσ and the trace-
free Ricci tensor Sμν. In four dimensions the latter are
defined as

Cμνρσ ≔ Rμνρσ − ðRμ½ρgσ�ν þRν½σgρ�μÞ þ
1

3
Rgμ½ρgσ�ν; ðC10Þ

Sμν ≔ Rμν −
1

4
gμνR: ðC11Þ

This representation is best suited for the reduction to
constant curvature backgrounds as the Weyl tensor Cμνρσ

and the trace-free Ricci tensor Sμν vanish in this case:

Cμνρσ ¼ 0; Sμν ¼ 0: ðC12Þ

The result (61), expressed in terms of the Ricci scalar
and the trace-free contributions to Riemann tensor, takes
the form

Γ1jdiv ¼
1

32π2ε

Z
d4xg1/2

�
−
9

2

�
f
f1

�
2

−
1

18

�
f1
f2

�
2

þ 9

2

f
f1

Rþ 1

3

f
f2

−
173

240
R2 þ 167

180
SμνSμν −

71

60
CμναβCμναβ

þ 20

9

�
f2
f1

�
2

SμνR;μR;ν þ
�
69

4

f
f2

�
f2
f1

�
3

−
9

4

f2
f1

−
331

57

�
f2
f1

�
2

R

�
R;μR;μ þ

�
137

12

f3
f2

�
f2
f1

�
2

−
247

24

�
f2
f1

�
3
�
ðR;μR;μÞΔR

−
137

24

�
f2
f1

�
2

ðΔRÞ2 þ
�
247

24

f3
f2

�
f2
f1

�
3

−
137

24

�
f3
f1

�
2

−
403

32

�
f2
f1

�
4
�
ðR;μR;μÞ2

�
: ðC13Þ

MICHAEL S. RUF and CHRISTIAN F. STEINWACHS PHYS. REV. D 97, 044049 (2018)

044049-16



APPENDIX D: FUNCTIONAL TRACES FOR
CONSTRAINED FIELDS

The traces in Sec. V C are taken over fields which satisfy
the constraints (83); that is, we have to evaluate traces over
transversal-traceless tensor fields and transversal vector
fields. The constrained heat traces are given by (see e.g. the
third and sixth column in Table 9 of [51])

Tr1;⊥e−sΔ ¼ 1

ð4πsÞ2
�
3þ 1

4
R0s −

7

1440
R2
0s

2 þOðs3Þ
�
;

ðD1Þ

Tr2;⊥e−sΔ ¼ 1

ð4πsÞ2
�
5 −

5

6
R0s −

1

432
R2
0s

2 þOðs3Þ
�
:

ðD2Þ

With these expressions, we calculate the divergent con-
tributions of the trace over constrained fields for a gener-
alized Laplacian Δþ P with constant scalar potential P:

Tr2;⊥ ln ðΔþ PÞjdiv ¼ 1

ε

�
1

18
− 20

P
R0

− 60

�
P
R0

�
2
�
; ðD3Þ

Tr1;⊥ ln ðΔþ PÞjdiv ¼ 1

ε

�
7

60
þ 6

P
R0

− 36

�
P
R0

�
2
�
: ðD4Þ

This allows us to extract the divergences in (100) and (101).
Almost all of the remaining scalar traces are of the standard
form for minimal second-order operators, such that we
directly employ (A14) to evaluate them. The only non-
standard trace is that of the fourth-order scalar operator.
Expanding the expression around the principal part Δ2 and
using the universal functional traces (A24), we find

Tr0 ln

�
Δ2þ 1

3

�
f1
f2

−
5

2
R0

�
Δþ 1

3

�
f
f2

−
f1
f2

R0þ
1

2
R2
0

��




div

¼ 1

ε

�
−
374

45
−
4

3

�
f1

f2R0

�
2

þ 8
f

f2R2
0

�
: ðD5Þ
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