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In this work we propose a recipe for the quantum simulation of traversable wormhole spacetimes in a
Bose-Einstein condensate, both in 1þ 1D and 3þ 1D. While in the former case it is enough to modulate
the speed of sound along the condensate, in the latter case we need to choose particular coordinates, namely
generalized Gullstrand-Painlevé coordinates. For weakly interacting condensates, in both cases we present
the spatial dependence of the external magnetic field which is needed for the simulation, and we analyze
under which conditions the simulation is possible with the experimental state-of-the-art.
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I. INTRODUCTION

Quantum simulators enable to study properties of quan-
tum systems which are otherwise out of experimental reach,
by mimicking them with more experimentally amenable
quantum systems. In this sense, among other possible
approaches, they may be thought of as a window to the
analysis of physics lying at the edges of the theory [1–3],
and even beyond [4–7].
Traversable wormholes are interesting cosmological

objectswhich appear in certain solutions of general relativity
equations. In principle, they connect distant regions of the
universe, or even regions of different universes. Due to this
behavior as a spacetime shortcut, they are the focus of great
theoretical interest, and they are used as a pedagogical tool in
general relativity [8–11]. In particular, they are proposed and
studied like a way for interstellar travels [8]. Recently, they
have generated renewed attention as possible “black hole
mimickers” [12,13].
However, today their existence has not been demon-

strated in a direct or indirect observational way. Moreover,
it seems that they do not appear naturally in our universe,
and there are theoretical reasons to expect that they must be
forbidden [14]. Indeed, in order for these objects to be
stable, they must be made of exotic material which violate
the weak energy condition [8,9] and these spacetimes may
contain closed timelike curves (CTCs), which might imply
a violation of the principle of causality [9]. In this sense,
a quantum simulator can be a useful tool in the analysis
of traversable wormholes. Indeed, recently one of us has
proposed a quantum simulator of a traversable wormhole
spacetime by means of a dc-SQUID array [15]. This

proposal was restricted to 1þ 1D and to a particular type
of wormhole, namely the Ellis wormhole.
Bose-Einstein condensates (BEC) haven been used

widely in quantum simulation of cosmological objects,
namely black holes [16,17] or gravitational waves [2].
In this work, we show how to simulate a variety of

traversable wormhole spacetimes in a BEC, both in
1þ 1D—where we go beyond the Ellis wormhole case—
and in themore realistic 3þ 1D case. In the former case, it is
enough tomodulate the speed of sound along the condensate
by means of a Feshbach resonance. In the latter, we
introduce particular coordinates to achieve the simulation,
namely generalized Gullstrand-Painlevé (GP) coordinates.
We will analyze in detail the prospects for an experimental
implementation with current technology.

II. TRAVERSABLE WORMHOLE SPACETIMES

We start from the line element of a traversable wormhole
spacetime, which is given by [8,15]

ds2 ¼ −c2e2ϕðrÞdt2 þ 1

1 − bðrÞ
r

dr2 þ r2ðdθ2 þ sin2θdϕ2Þ;

ð1Þ

where ϕðrÞ is the redshift function and bðrÞ is the shape
function, and both functions depend on the radius r only.
The features of the wormhole are fully determined by these
two functions. In particular, ϕ and b can be adjusted in
order to allow a travel trough the wormhole. In the case of
the shape function, there exists a value r ¼ b0 such that
bðr ¼ b0Þ ¼ r ¼ b0, which determines the position of the
wormhole’s throat. It defines the proper radial distance l to
the throat as l ¼ � R

r
b0
dr0ð1 − bðr0Þ/r0Þ−1/2, which defines*jesmateo@ucm.es
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two different regions into the same universe for l>0,
corresponding to r going from ∞ to b0, and l < 0, corre-
sponding to r going from b0 to∞. Therefore, when r → ∞,
we have two asymptotically flat regions corresponding to
l → �∞, which are connected through the wormhole throat
at l ¼ 0, i.e. at r ¼ b0. The embedding diagram of Fig. 1
shows a pictorial way to understand these concepts.
For simplicity, we will study a massless wormhole, i.e.

ϕðrÞ ¼ 0, and therefore the expression (1) reduces to

ds2 ¼ −c2dt2 þ 1

1 − bðrÞ
r

dr2 þ r2ðdθ2 þ sin2 θdϕ2Þ; ð2Þ

and now the wormhole is characterized by bðrÞ only.
On the other hand, the effective metric of a BEC in

3þ 1 dimensions is a curved metric, which is given as
follows [2,18,19]

Gμν ¼
ρc
cs

�
gμν þ

�
1 −

c2s
c2

�
vμvν
c2

�
; ð3Þ

where gμν is the real spacetime metric in which the con-
densate is, that it can be curved in general. In our case we
take gμν ¼ ημν, where ημν is the flat Minkowski metric (note
that in this workwe choose the “mostly plus” convention for
the signature of ημν). Furthermore, ρ is the density of the
BEC, cs is the phonon propagation speed in the condensate,
and vμ is the velocity flow 4-vector, which is associated to
the 4-divergence of the BEC’s phase [18].
In order to simulate a traversable wormhole in the BEC,

the aim is to relate the effective metric (3) with (2).

III. 1 + 1D CASE

For simplicity, we work first with the 1þ 1 dimensional
case. Here, we can leverage the conformal invariance of the
Klein-Gordon equation in 1þ 1D. The line element (1)
becomes

ds2 ¼ −c2dt2 þ 1

1 − bðrÞ
r

dr2; ð4Þ

that is conformal to

ds2 ¼ −c2
�
1 −

bðrÞ
r

�
dt2 þ dr2 ¼ −c2ðrÞdt2 þ dr2; ð5Þ

i.e. we found a metric with an effective speed of light which
depends on the radial distance as follows

c2ðrÞ ¼ c2
�
1 −

bðrÞ
r

�
: ð6Þ

Notice that we are not interested in this spacetime per se,
but only as a 1þ 1D section of a 3þ 1D spacetime. Of
course, there is no throat in one spatial dimension, but only
a one-dimensional section of it, namely a point.
Meanwhile, the metric (3) of a condensate in 1þ 1

dimensions, and considering that the velocity flow is just
vμ ¼ ðc; 0Þ, reduces to

Gμν ¼
ρc
cs

��−1 0

0 1

�
þ
�
1 −

c2s
c2

��
1 0

0 0

��

¼ ρc
cs

�
−ðcs/cÞ2 0

0 1

�
; ð7Þ

and therefore the line element is conformal to

ds2 ¼ −
c2s
c2

c2dtþ dr2 ¼ −c2sdt2 þ dr2: ð8Þ

To achieve that the metric (8) simulates the target metric
(5), the task is to modulate the speed of sound in the BEC,
that we suppose in general cs ¼ cs0fðrÞ, with cs0 constant,
as the expression (6) of the effective speed of light at the
wormhole. It is important to remark that we do not simulate
a real spacetime, but an acoustic spacetime in which cs
plays the role of c.
In a weakly interacting condensate, the speed of sound

depends on the coupling strength g, which in turn depends
on the scattering length a of the BEC as follows [2,16]

cs ¼
ffiffiffiffiρg
m

p
g ¼ 4πℏ2a

m

9=
; ⇒ cs ¼ csðaÞ ¼

ℏ
m

ffiffiffiffiffiffiffiffiffiffiffi
4πρa

p
; ð9Þ

where m is the atomic mass of the BEC and ρ is its density.
Near the Feshbach resonance, a depends on the external

magnetic field B [2,20]

a ¼ abg

�
1 −

ω

B − B0

�
; ð10Þ

where abg is the background scattering length, ω is the
width of the resonance and B0 is the value of B at which the
resonance takes place. Replacing (10) in (9) we have

FIG. 1. Embedding diagram for an Ellis wormhole (shape
function given in (13) with q ¼ −1) with radius of the throat
b0 ¼ 3. The upper part corresponds to l > 0, while the lower part
corresponds to l < 0. These asymptotically flat regions are
connected by the wormhole’s throat at r ¼ b0 (l ¼ 0). This
embedding diagram is derived following the standard techniques
given in [8].
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cs ¼ csðBÞ ¼ cs0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ω

B − B0

r
; ð11Þ

where cs0 ¼ ðℏ/mÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πρabg

p
is constant.

Now, we have to found the explicit dependence of B on
the distance r, in order to relate (11) with (6). If we equate
these expressions, we have

ω

B − B0

¼ bðrÞ
r

⇒ ω ¼ bðrÞ
r

ðB − B0Þ

⇒ BðrÞ ¼ r
bðrÞωþ B0; ð12Þ

so the external field depends on the explicit form of the
shape function bðrÞ.
Then we choose as shape function of the wormhole [21]

bðrÞ ¼ b1−q0 rq; ð13Þ

where b0 is the wormhole throat radius. Replacing this
in (12), B becomes

BðrÞ ¼ r1−q

b1−q0

ωþ B0; ð14Þ

where we have the freedom that offers us the radius b0 and
the parameter q. Note that q ¼ −1 corresponds to the Ellis
wormhole case.
In order to choose the best value of q, we compare

the curve

aðrÞ
abg

¼ 1 −
ω

BðrÞ − B0

¼ 1 −
b1−q0

r1−q
ð15Þ

which is the result of replacing (10) in (14), with state-of-
the-art experiments for the spatial variation of the scattering
length [20].
Now, taking the following experimental values of a

cesium BEC from [20] ω ¼ 157 mG, B0 ¼ 47.766 G and
abg ≃ 950a0, where a0 is the Bohr radius, we can plot the
curves aðrÞ/ð100a0Þ and BðrÞ from (15) and (14), respec-
tively, for several values of b0 and q. For the sake of
convenience, we do a final step before the plots, and this is
to define a new spatial coordinate such that [15]

jxj ¼ r − b0; x ∈ ð−∞;∞Þ: ð16Þ
Clearly, x ¼ 0 at the wormhole’s throat r ¼ b0, and
acquires different sign at both sides of the throat.
With all these considerations, we obtain the plots which

are given in the Fig. 2. We observe that the plots of
aðrÞ/100a0 [2(a)–(d)] for the values q < 1 are similar to
the experimental Fig. 4 in [20]. Moreover, for the interval
0 < q < 1 we obtain a maximum value for a/100a0 which
is very close to the experimental one [see in particular

2(b) and (f) for the value q ¼ 0.95]. Of course, in our case
the curve looks less smooth than the experimental one
as we get close to the throat. Besides, for 0 < q < 1, we
found more similarities with Fig. 4 in [20] for small
values of b0. This is due to the fact that the ratio b0/r is
dimensionless, and hence the size of the condensate
determines the size of the throat. So, green lines represent
wormhole’s scales bigger than its corresponding BEC’s
scale in the plot. However, a good figure of merit can be
the variation of scattering length per unit length of the
BEC. By inspection of the 0 to 15 μm region in Fig 4(c)) of
[20], in which the largest variation occurs, we find that
they can vary the parameter a/ð100a0Þ an amount of 0.067
per micron, approximately. Referring to our case, differ-
entiating (15), with the change (16), and evaluating this
expression for the values of q and b0 which provides the
most similar plot to the experimental one, i.e. q ¼ 0.95,
b0 ¼ 1, and taking x ¼ 10 -the range of x for which we
have the greatest increase of this parameter—we obtain a
variation of 0.038 per micron. So, we have that our
requirements are totally compatible with the capability
shown in [20].
Therefore the family of wormhole spacetimes corre-

sponding to the range 0 < q < 1 could be simulated in the
lab with the technology of [20]. We want to remark that the
value q ¼ −1 corresponds to the Ellis wormhole [22],
which is the most frequent in the literature [9,15,23,24],
and whose simulation has already been proposed in the one
dimensional case in [15]. Therefore, it is important to note
that we propose a simulation of a different one-dimensional
kind of wormhole. An example of embedding diagram is
given in Fig. 3.

IV. 3 + 1D CASE

This case is more sophisticate than the former. Now a
modulation of cs is not enough, because (2) and (3) are
more involved than in the one-dimensional case. In
particular, we are no longer able to exploit the conformal
invariance of the Klein-Gordon equation.
We start by writing the real background metric in (3)

gμν ¼ ημν in spherical coordinates, in analogy with (2).
Now, for the velocity flow of the BEC without lack of
generality we take vμ ¼ ðc; vr; 0; 0Þ. With all these con-
siderations, the metric (2) becomes

Gμν ¼
ρc
cs

0
BBBBBBBB@

−
c2s
c2

−
�
1−

c2s
c2

�
vr

c
0 0

−
�
1−

c2s
c2

�
vr

c
1þ

�
1−

c2s
c2

�ðvrÞ2
c2

0 0

0 0 r2 0

0 0 0 r2sin2θ

1
CCCCCCCCA

ð17Þ
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where the covariant components of the contravariant
4-vector vμ are vμ ¼ ð−c; vr; 0; 0Þ, which explains the
minus sign in the nondiagonal elements.
Therefore, now we have a nondiagonal metric for the

BEC, through which we want to simulate the diagonal

wormhole metric (2). In order to do it, we introduce a
change of coordinates for the wormhole spacetime, which
provides a nondiagonal metric.
We choose coordinates based on the Gullstrand-Painlev

(GP) ones [25,26], which were originally introduced for

FIG. 2. Scattering length a (a)–(d) and magnetic field B (e)–(h) vs. x, for several values of q and b0. The value of q is q ¼ 2 (a) and (e),
q ¼ 0.95 (b) and (f), q ¼ −0.5 (c) and (g),q ¼ −1 (d) and (h). In all the plots: b0 ¼ 0.5 (yellow, solid), b0 ¼ 1 (blue, dotted), b0 ¼ 10
(green, dashed).
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the Schwarzschild black hole. For these coordinates,
the new time coordinate follows the proper time of a
free-falling observer who starts from far away at zero
velocity.
We will construct GP-like coordinates for the wormhole

spacetime based on the generalized GP coordinates given in
[27], for more general observers with velocity v∞ ≠ 0
in the infinity, which falls towards the hole following
geodesics.
So we start from the timelike geodesics of the metric (2),

for the Ellis wormhole case in which the shape function is
bðrÞ ¼ b20/r. These geodesics are given, with c ¼ 1, in their
first-order form, by [23,24]

ṫ ¼ E; ð18Þ

1þ ṙ2

1 − b2
0

r2

þ L2

r2
¼ E2; ð19Þ

where E and L are the energy and the angular momentum
per unit mass of the observer, respectively. This energy
satisfies E ≥ 1 and its related to v∞ by

E ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2∞

p : ð20Þ

For simplicity, we consider radial geodesics, hence
L ¼ 0. So we have

ṫ ¼ E; ð21Þ

ṙ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1 −

b20
r2

�
ðE2 − 1Þ

s
; ð22Þ

where we choose the minus sign, which corresponds to
ingoing geodesics.
Therefore, the 4-velocity of the observer is

uμ ¼ ðṫ; ṙ; 0; 0Þ, and its covariant counterpart is given as
follows

uμ ¼

0
B@−E;−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

1 − b2
0

r2

vuut ; 0; 0

1
CA; ð23Þ

so we can identify it with the gradient of a new
temporal GP-like coordinate tr, i.e., uμ ¼ −∂μtr, which is
given by

tr ¼ Etþ
Z

dr

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

1 − b2
0

r2

vuut : ð24Þ

From this, we have

dt ¼ 1

E
dtr −

1

E

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

1 − b2
0

r2

vuut dr;

dt2 ¼ 1

E2
dt2r þ

1

E2

�
E2 − 1

1 − b2
0

r2

�
dr2 −

2

E2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

1 − b2
0

r2

vuut dtrdr;

ð25Þ

and replacing (25) in (2), the wormhole line element in
these GP-like coordinates is

ds2 ¼ −
1

E2
dt2r þ

2

E2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − 1

1 − b2
0

r2

vuut dtrdr

þ 1

E2ð1 − b2
0

r2Þ
dr2 þ r2dΩ2: ð26Þ

In order to recover units, we must take into account first that
the energy per unit mass is given by

E ¼ γc2 ¼ c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðv∞c Þ2

q ; ð27Þ

which has units of c2. The line element must have units of
square length, and the metric elements must be dimension-
less, so we have

FIG. 3. Numerical embedding diagram for a wormhole space-
time with shape function given in (13) with q ¼ 0.5, and with
radius of the throat b0 ¼ 3. This embedding diagram is derived
following the standard techniques given in [8]. This value of q is
within the interval 0 < q < 1 for which we achieve the simu-
lation in the one-dimensional case.
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ds2 ¼ −
c4

E2
c2dt2r þ 2

c4

E2

ffiffiffiffiffiffiffiffiffiffiffiffi
E2

c4 − 1

1 − b2
0

r2

vuut cdtrdr

þ 1

E2

c4 ð1 −
b2
0

r2Þ
dr2 þ r2dΩ2; ð28Þ

which can be expressed in terms of the Lorentz factor γ,
through the expression (27), as follows

ds2¼−
c2

γ2
dt2r þ

2

γ2

ffiffiffiffiffiffiffiffiffiffiffi
γ2−1

1− b2
0

r2

vuut cdtrdrþ
1

γ2ð1− b2
0

r2Þ
dr2þ r2dΩ2:

ð29Þ

Note that in the case of a free-falling observer, i.e. v∞ ¼ 0
and hence γ ¼ 1, we recover the original line element of the
wormhole (2), so this case is not interesting for us.
We can see that we have, like in the 1-dimensional case

[see (6)], an effective speed of light

ceff ¼ γ−1c; ð30Þ

so we can rewrite (29) in terms of ceff as follows

ds2 ¼ −c2effdt2r þ
2

γ

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − 1

1 − b2
0

r2

vuut ceffdtrdr

þ 1

γ2ð1 − b2
0

r2Þ
dr2 þ r2dΩ2: ð31Þ

In fact we can reproduce the wormhole spacetime in the
condensate, not in a real spacetime, therefore we have to
write an acoustic wormhole spacetime, in our GP-like
coordinates, i.e. we have to replace in (31) ceff and γ by

cseff ¼ γ−1s cs0 ; ð32Þ

γs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − v2∞
c2s0

r ; ð33Þ

(note that we have performed the same step, in an implicit
way, at the one-dimensional case) so we find the following
acoustic wormhole spacetime line element

ds2 ¼ −c2seffdt
2
r þ

2

γs

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2s − 1

1 − b2
0

r2

vuut cseffdtrdr

þ 1

γ2sð1 − b2
0

r2Þ
dr2 þ r2dΩ2: ð34Þ

Now, we compare this line element to the line element of
the BEC, which is given, from (17), as follows

ds2 ¼ −c2sdt2 − 2

�
1 −

�
cs
c

�
2
�
vr

c
cdtdr

þ
�
1þ

�
1 −

�
cs
c

�
2
��

vr

c

�
2
�
dr2 þ r2dΩ2; ð35Þ

and, in order to achieve an acoustic wormhole, we have to
rewrite the nondiagonal term like grtcsdtdr�

1 −
�
cs
c

�
2
�
vr

c
cdtdr ¼ −vr

�
1

cs
−
cs
c2

�
csdtdr: ð36Þ

Equating component to component of both metrics, we
obtain

(i) from gtt

cs ¼ cseff ¼
cs0
γs

¼ cs0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

v2∞
c2s0

s
; ð37Þ

(ii) from gtr

2

γs

ffiffiffiffiffiffiffiffiffiffiffi
γ2s −1

1− b2
0

r2

vuut cseffdtrdr¼ 2vr
�
1

cseff
−
cseff
c2

�
cseffdtdr;

ð38Þ
(iii) from grr

1

γ2sð1 − b2
0

r2Þ
dr2 ¼

�
1þ

�
1 −

�
cs
c

�
2
��

vr

c

�
2
�
dr2;

ð39Þ

so we have the following system of equations

1

γs

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2s − 1

1 − b2
0

r2

vuut ¼ vr
�
γs
cs0

−
cs0
γsc2

�
ð40aÞ

1

γ2sð1 − b2
0

r2Þ
¼ 1þ

�
1 −

�
cs0
cγs

�
2
��

vr

c

�
2

ð40bÞ

Now, in order to solve this system, we take into account
that

vr

c
;

cs0
c

≪ 1;

so we can approximate the previous system (40a), (40b) to
zero order in vr/c and cs0 /c. Hence we get

(i) for the left-hand side of (40a)

1

γs

ffiffiffiffiffiffiffiffiffiffiffiffi
γ2s − 1

1 − b2
0

r2

vuut ¼ v∞
cs0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − b2
0

r2

s
;
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(ii) for the right-hand side of (40a)

vrγs
cs0

−
vrcs0
γsc2

≃
vrγs
cs0

¼ vr

cs0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − b2
0

r2

s
;

(iii) for the left-hand side of (40b)

1

γ2sð1 − b2
0

r2Þ
¼

1 − v2∞
c2s0

1 − b2
0

r2

;

(iv) for the right-hand side of (40b)

1þ
�
1 −

c2s0
γ2sc2

��
vr

c

�
2

¼ 1þ
�
vr

c

�
2
�
1 −

b20
r2

��
cs0v

r

c2

�
2

≃ 1

Therefore, we finally find

v∞
cs0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − b2
0

r2

s
¼ vr

cs0

ffiffiffiffiffiffiffiffiffiffiffiffi
1

1 − b2
0

r2

s
ð41aÞ

1 − v2∞
c2s0

1 − b2
0

r2

¼ 1 ð41bÞ

We have obtained two independent equations from
vr and cs0 , and therefore we get trivially, for (41a) and
(41b), respectively, the following zero order solution in
vr/c and cs0 /c

vr ¼ v∞; ð42Þ

cs0 ¼
v∞
b0

r; ð43Þ

that is,we obtain thatvr is constant, andcs0 is linear in r, with
slope given by v∞/b0.
Now, we solve numerically the system without approx-

imations, i.e., Eqs. (40a) and (40b), in order to check how it
fits the zero order solution. These results are shown in
Fig. 4. In the lab, the values for the sound speed are
typically of the order of 10−2–10−3 m/s, therefore, in order
to achieve the simulation in the lab, we only show in Fig. 4
plots with cs0 of this order.
By inspection of these plots, we found a great agreement

between the numerical solutions for the complete system,
i.e. without approximations, and the zero order solutions.
Perhaps we found a small discrepancy for vr near the throat
of the wormhole, but such discrepancy is smooth, and does
not occur for all the plots, only takes places in the plot (d).
The spatial step which has been used for our plots (given

in the Table I) is consistent with the healing length of the
BEC, which provides the length scale above which the
Gross-Pitaevskii equation and the Bogoliubov theory of
the BEC work, and it is given by [28]

FIG. 4. Plots for the numerical solutions cs0ðrÞ (blue diamonds) and vrðrÞ (green asterisks) of the system (40a) and (40b) and for the
zero order solutions (42) for vr (green line) and (43) for cs0 (blue line), for several values of v∞ (in m/s) and b0: (a) (0.001,0.1),
(b) (0.009,1), (c) (0.01,1), (d) (0.01,3). The units of r are the same of the units of b0. Typically, for BECs, these units are μm.
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ξ ¼ 1

8πaρ
¼ ℏffiffiffi

2
p

mcs
ð44Þ

where we have used the relation between the scattering
length a and cs given by (9). Note that here we have
approximate cs ¼ cs0 , due to, by (32), v∞ ≪ 1 and there-
fore γs ≃ 1. Thereby, we need a spatial resolution which is
significantly larger than ξ.
Table I shows the values for this healing length corre-

sponding to the initial values of cs0 in Fig. 4 for several
alkali atoms which have been usually used in the context of
Feshbach resonances in the lab [29], together with the
chosen spatial resolution of these plots. Note that the value
of ξ for the end of the plots is really irrelevant, since far
from the throat the behavior of the velocities is the desired
one. Therefore, due to the fact that we are only interested in
the magnitude order, we only calculate ξ corresponding to
the initial values of the plots. Hence, as we can see in the
table, the spatial step corresponding to (b) and (c) is one
order of magnitude greater than ξb;c;d for Cs and Rb, for (d),
the spatial step is one order of magnitude greater than this
value ξb;c;d for Li, Na and K, and finally the spatial step
corresponding to (a) is one order of magnitude greater
than ξa for Li. However, for the latter case, we have
b0 ¼ 0.1 μm, i.e. the size of the wormhole throat is smaller
than the healing length ξa, and thereby the throat would be
in a more microscopic level in the BEC than the one we can
consider according with the Bogoliubov theory.
In conclusion, we can simulate a wormhole spacetime

seen by an observer which falls towards the hole, i.e. in
the GP-like coordinates given by (24), in condensates
of Rubidium and Cesium for the profiles of the velocities
of the BEC vr and cs given in (42) and (43) for the
values ðv∞; b0Þ ¼ ð0.009; 1Þ; ð0.01; 1Þ, and in condensates
of Lithium, Sodium and Potassium for the value
ðv∞; b0Þ ¼ ð0.01; 3Þ.

Then we want to translate the dependence in r for cs0 that
we have obtained in a radial dependence of the magnetic
field B and the scattering length a of the BEC, which are
experimentally controllable magnitudes. For this purpose,
we proceed in a total analogous way to what was done in
the one-dimensional case, i.e we compare our expression
(43) for cs0 with the dependence on B of the cs of a weakly
interacting BEC, given in (11). First, it is important to
remark that now we have to use cs instead of cs0 , where
both are related by (37), and taking into account the
expression (43) for cs0, we have for cs

cs ¼
v∞
b0

r

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

b20
r2

r
¼ v∞

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

b20
− 1

s
: ð45Þ

Now, if we equate the expressions (11) and (45) we
obtain for BðrÞ

c̃2s

�
1−

ω

B−B0

�
¼v2∞

�
r2

b20
−1

�

⇒BðrÞ¼ c̃2sω

c̃2s−v2∞ðr2b2
0

−1ÞþB0¼
ω

1− v2∞
c̃2s
ðr2b2

0

−1Þ
þB0; ð46Þ

where c̃s ¼ ðℏ/mÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πρabg

p
. Note that, in order to avoid

confusions, we rename cs0 in (11) as c̃s.
For the Feshbach resonance, from this equation of

BðrÞ we can obtain an expression for the scattering
length in terms of the spatial coordinate. Replacing (46)
in (10) we get

aðrÞ
abg

¼ v2∞
c̃2s

�
r2

b20
− 1

�
: ð47Þ

At this point, it is important to note that the radial
coordinate r goes from ∞ to b0 in the upper branch of the
wormhole, while in the lower branch r would go from b0
to ∞. Therefore, r itself would not be the laboratory
coordinate if we want to simulate both branches in the same
BEC. So in order to achieve the wormhole in the laboratory,
with its two branches, we need to define a different radial
coordinate, in an analogous way as what we did in the one-
dimensional case [see Eq. (16)]. Note that at least a finite
region of each branch could be accommodated in a single
BEC, hence the range of the new coordinate can be finite.
Let be x the new radial coordinate of the lab. We can

define this coordinate as follows,

jx − Rj ¼ r − b0; ð48Þ

so that the throat of the wormhole is in x ¼ R. Due to the
fact that xmust be positive, r cannot be greater than Rþ b0,
and thus we have that x goes from 0 to 2R. Thereby

TABLE I. Left: Healing length values for several alkali atoms
corresponding to the velocities cs0b;c;d ¼ 0.01 m/s for the start of
the plots (b), (c) and (d), and cs0a ¼ 0.02 m/s for the start of the
plot (a). All these plots corresponding to Fig. 4. Right: Spatial
step used for the plots of Fig. 4.

Atom ξb;c;dðμÞm ξaðμÞm
Li 0.648 0.324
Na 0.195 0.098
K 0.115 0.058
Rb 0.053 0.026
Cs 0.034 0.017

Plot Spatial step (μm)

a) 1.5
b) 0.6
c) 0.4
d) 1.2
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one branch goes from 0 to R, and the other one goes from
R to 2R.
Now, we can rewrite in terms of x the expressions (43),

(46) and (47) of the magnitudes that we need for the
simulation [note that vr is constant, so vrðrÞ ¼ vrðxÞ], and
we obtain respectively

cs0ðxÞ ¼
v∞
b0

ðjx − Rj þ b0Þ; ð49Þ

BðxÞ ¼ ω

1 − v2∞
c̃2s
ððjx−Rjþb0Þ2

b2
0

− 1Þ
þ B0; ð50Þ

aðxÞ
abg

¼ v2∞
c̃2s

�ðjx − Rj þ b0Þ2
b20

− 1

�
: ð51Þ

Finally, we plot the expressions for the scattering length
and the magnetic fields in terms of x, given by (51) and
(50), respectively, in order to compare with the exper-
imental spatial variation of a, given in [20], as in the
one-dimensional case. We particularise these expressions
for Cesium condensates, which is the element used in [20],
and we take again the same parameters abg, ω and B0

as before. For the density of the BEC, we use the typical
value ρ ¼ 1015 cm−3 [30,31]. On the other hand, for
the parameters relative to the wormhole v∞ and b0,
we use the values of these quantities from plots 4 which
are in agreement with the healing length for Cs,
i.e. ðv∞; b0Þ ¼ ð0.009; 1Þ; ð0.01; 1Þ.
In Fig. 5(a) we see that the behavior of the spatial

dependence of a is similar as the one-dimensional case,
but now this quantity reaches higher values than in the
experimental plots. This fact could imply that our

wormhole is not realizable in BECs of Cs with current
technology. Moreover, two asymptotes arise in Fig. 5(b),
rendering a magnetic field profile which seems experimen-
tally challenging. It seems likely that considering more
general values of the parameter q might result in more
amenable profiles for the external magnetic field and the
scattering length, as in the one-dimensional case. We leave
the exploration of this idea for future research.

V. CONCLUSIONS

We provide a recipe to perform a quantum simulation of
wormhole spacetimes in weakly interacting BECs, both in
1þ 1 and 3þ 1 dimensions.
In the one-dimensional case, we propose a profile for the

external magnetic field and the scattering length of the BEC
in terms of the spatial coordinate, which allows to simulate
a family of wormhole spacetimes corresponding to the
range 0 < q < 1. We show that this is within reach of
current state-of-the-art technologies.
On the other hand, in the three-dimensional case we

present a solution which enables to build up a quantum
simulator of an Ellis wormhole spacetime in generalized
Gullstrand-Painlevé coordinates. We show a simple and
elegant form for the speed of the phonons of the con-
densate, and a corresponding expression for the magnetic
field and the scattering length, from which the simulation
can be achieved. However, the experimental requirements
in this case seem to go beyond current capabilities.
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FIG. 5. Plots for expressions (51) and (50) for condensates of Cesium and for several values of v∞ and b0. For each plot: v∞ ¼
0.009 m/s and b0 ¼ 1 μm (yellow, solid), v∞ ¼ 0.01 m/s and b0 ¼ 1 μm (blue, dotted). We choose for these plots R ¼ 5 ðμmÞ for the
size of the wormhole’s branches.
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