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The nonequilibrium attractors of systems undergoing Gubser flow within relativistic kinetic theory are
studied. In doing so we employ well-established methods of nonlinear dynamical systems which rely on
finding the fixed points, investigating the structure of the flow diagrams of the evolution equations, and
characterizing the basin of attraction using a Lyapunov function near the stable fixed points. We obtain the
attractors of anisotropic hydrodynamics, Israel-Stewart (IS) and transient fluid (DNMR) theories and show
that they are indeed nonplanar and the basin of attraction is essentially three dimensional. The attractors of
each hydrodynamical model are compared with the one obtained from the exact Gubser solution of the
Boltzmann equation within the relaxation time approximation. We observe that the anisotropic hydro-
dynamics is able to match up to high numerical accuracy the attractor of the exact solution while the
second-order hydrodynamical theories fail to describe it. We show that the IS and DNMR asymptotic series
expansions diverge and use resurgence techniques to perform the resummation of these divergences. We
also comment on a possible link between the manifold of steepest descent paths in path integrals and the
basin of attraction for the attractors via Lyapunov functions that opens a new horizon toward an effective
field theory description of hydrodynamics. Our findings indicate that the reorganization of the expansion
series carried out by anisotropic hydrodynamics resums the Knudsen and inverse Reynolds numbers to all
orders and thus, it can be understood as an effective theory for the far-from-equilibrium fluid dynamics.

DOI: 10.1103/PhysRevD.97.044041

I. INTRODUCTION AND SUMMARY

Hydrodynamics is an effective theory which describes
the long-wavelength and/or small-frequency phenomena of
physical systems. The fluid dynamical equations of motion
are derived by assuming that the mean free path is smaller
than the typical size of the system [1]. The existence of a
large separation between the microscopic and macroscopic
scales can be reformulated as a small gradient expansion
around a background (usually the thermal equilibrium
state) which varies slowly. Thus, hydrodynamics would
be invalid in far-from-equilibrium situations where the
gradients of the hydrodynamical fields are large. This
might be the case in systems of small size. However,

recent experimental results of pp collisions at high energies
[2,3] have shown evidence of collective flow behavior
similar to the one observed in ultrarelativistic heavy-ion
collisions. The experimental data measured in pp collisions
can be described quantitatively by using hydrodynamical
models [4–6]. On the other hand, different theoretical toy
models for both weak and strong coupling [7–18] have
presented an overwhelming evidence that hydrodynamics
becomes valid even in nonequilibrium situations where
large gradients are present during the spacetime evolution
of the fluid. The success of hydrodynamical models to
describe small systems as well as applying it to far-from-
equilibrium situations calls for a better theoretical under-
standing of the foundations of hydrodynamics.
For different strongly coupled theories it has been shown

that the hydrodynamical gradient series expansion has zero
radius of convergence and thus, it diverges [19]. On the
other hand, the divergent behavior of the hydrodynamical
series expansion is also well known in weakly coupled
systems based on the Boltzmann equation for relativistic
and nonrelativistic systems [20–24]. A more detailed
mathematical analysis of the origin of this divergence
has unveiled the existence of a unique universal solution,
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the so-called attractor [25]. The attractor "solution" is
intrinsically related to the mathematical theory of resur-
gence [20,26,27] and its details depend on the particular
theory under consideration [28–37]. In simple terms, the
attractor is a set of points in the phase space of the
dynamical variables to which a family of solutions of an
evolution equation merge after transients have died out. In
relativistic hydrodynamics it has been found in recent years
that for far-from-equilibrium initial conditions the trajec-
tories in the phase space merge quickly towards a non-
thermal attractor before the system reaches the full thermal
equilibrium. This type of nonequilibrium attractor can be
fully determined by very few terms of the gradient series of
relatively large size which involves transient nonhydrody-
namical degrees of freedom [19,20]. This property of the
attractor solution indicates that the system reaches its
hydrodynamical behavior and thus, hydrodynamizes at
scales of time shorter than the typical thermalization and
isotropization scales. The fact that hydrodynamization hap-
pens in different size systems on short scales of time while
exhibiting this degree of universality in far-from-equilibrium
initial conditions might explain the unreasonable success of
hydrodynamics in small systems such aspp and heavy-light
ion collisions [38].
In this work we continue exploring the properties of

attractors for rapidly expanding systems within relativistic
kinetic theory. Previous works have focused on fluids
undergoing Bjorken flow [20,26,27,36,37] and nonhomo-
geneous expanding plasmas [39]. We expand these studies
by investigating the properties of the attractors in the
plasmas undergoing Gubser flow [40,41].
The Gubser flow describes a conformal system which

expands azimuthally symmetrically in the transverse plane
together with boost-invariant longitudinal expansion. The
symmetry of the Gubser flow becomes manifest in the de
Sitter space times a line dS3 ⊗ R [40,41] and thus, the
dynamics of this system is studied in this curved spacetime.
The search for attractors in the Gubser flow poses new
challenges due to the geometry and the symmetries asso-
ciated with this velocity profile. We determine the location
of the attractors with the help of well-known methods of
nonlinear dynamical systems [42,43]. Our results bring new
features and tools to the study of attractors which were not
addressed previously in the context of relativistic hydro-
dynamics. For instance, in the two-dimensional (2D)
system of ordinary differential equations (ODEs) derived
from different hydrodynamical truncation schemes, we
study the flow diagrams—streamline plots of the velocity
vector fields in the space of state variables—and carefully
examine the early- and late-time behavior of the flow
lines near each fixed point and show that the system is
exponentially asymptotically stable. We observe that the
attractor is a one-dimensional (1D) nonplanar manifold
only asymptotically because the 2D system cannot be
dimensionally reduced to a 1D nonautonomous one by

any reparametrization of the variables, which is a signature
of Gubser flow geometry governed by a true three-
dimensional (3D) autonomous dynamical system as
opposed to the Bjorken model.1 This is made more precise
in the context of this 3D dynamical system, where the
linearization problem is reviewed and a mathematically
rigorous definition of an attractor is given. We estimate the
shape of the basin of attraction by giving an approximate
Lyapunov function near the attracting fixed point. There we
touch upon an important link between the basin of attraction
and attractors with the manifold of steepest descent paths in
the path-integral formalism of quantum field theories and
briefly discuss the role of a Lyapunov function as an
analogue of some effective action for the stable hydrody-
namical and nonhydrodynamical modes.
We finally discuss the properties of attractors of second-

order hydrodynamical theories [Israel-Stewart (IS) [44] and
transient fluid (DNMR) theory [45]], anisotropic hydro-
dynamics (aHydro) [46–61] and the exact kinetic theory
solution of the Gubser flow [9,13]. The numerical compar-
isons lead us to conclude that aHydro reproduces with high
numerical accuracy the universal asymptotic attractor
obtained from the exact kinetic Gubser solution. Finally
we show that the asymptotic series solution of DNMR and
IS diverges asymptotically and we briefly comment on how
to cure this problem by using a resurgent trans-series.
The paper is structured as follows. In Sec. II we review

the Gubser flow, its exact solution for the Boltzmann
equation within the relaxation time approximation (RTA)
as well as different hydrodynamical truncation schemes. In
Sec. III we study extensively the flow lines of the IS theory
in two and three dimensions. Our numerical studies of the
attractors for different theories and their comparisons are
discussed in Sec. IV. In this section we also address the
issue of the divergences of the IS and DNMR hydrody-
namical theories and how to fix them using resurgent
asymptotics. Our findings are summarized in Sec. V. Some
technical details of our calculations are presented in the
Appendices.

II. SETUP

Before starting our discussion we first introduce the
notation used in this paper. We work in natural units where
ℏ ¼ c ¼ kB ¼ 1. The metric signature is taken to be
“mostly plus” ð−;þ;þ;þÞ. In Minkowski space with

1Previous studies of the Bjorken model have shown that after
rewriting the hydrodynamical equations for the temperature and
the only independent component of the shear viscous tensor in
terms of the variable w ¼ τTðτÞ (where τ and T are the
longitudinal proper time and temperature) reduce effectively to
a truly 1D nonlinear differential equation [20,26,27,36,37]. The
solution of this equation for a suitable initial condition determines
what has been, by abuse of terminology, called the “attractor
solution.” As we shall show in this work, this is not the case for
the Gubser flow.
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Milne coordinates xμ ¼ ðτ; r;ϕ; ςÞ the line element is
given by

ds2 ¼ gμνdxμdxν ¼ −dτ2 þ dr2 þ r2dϕ2 þ τ2dς2; ð1Þ

where the longitudinal proper time τ, spacetime rapidity ς
and polar coordinates r and ϕ are related to the usual
Cartesian coordinates (t, x, y, z) through the following
expressions:

τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
; ς ¼ arctanh

�
z
t

�
;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

q
; ϕ ¼ arctan

�
y
x

�
: ð2Þ

It is better to study the Gubser flow in de Sitter space times
a line (dS3 ⊗ R) that is a curved spacetime in which the
flow is static and the symmetries are manifest [40,41].
This is obtained by applying a conformal map between
dS3 ⊗ R and Minkowski space, which consists of
rescaling the metric ds2→dŝ2¼eΩds2 with Ω¼ logτ−2.
Afterwards one performs the coordinate transformation
xμ ¼ ðτ; r;ϕ; ηÞ ↦ x̂μ ¼ ðρ; θ;ϕ; ηÞ2 with

ρðτ̃; r̃Þ ¼ −arcsinh
�
1 − τ̃2 þ r̃2

2τ̃

�
;

θðτ̃; r̃Þ ¼ arctan

�
2r̃

1þ τ̃2 − r̃2

�
: ð3Þ

Here, τ̃ ¼ qτ and r̃ ¼ qr with q being an arbitrary energy
scale that sets the transverse size of the system [40,41]. The
time-like coordinate is the variable ρ ∈ ð−∞;∞Þ and the
polar coordinate is θ ∈ ½0; 2πÞ. Therefore, the line element
in dS3 ⊗ R reads as

dŝ2 ¼ −dρ2 þ cosh2ρðdθ2 þ sin2θdϕ2Þ þ dς2; ð4Þ

so the metric is ĝμν ¼ diagð−1; cosh2ρ; cosh2ρsin2θ; 1Þ. In
dS3 ⊗ R the flow velocity is the normalized time-like
vector ûμ ¼ ð1; 0; 0; 0Þ, which is invariant under the
q-deformed symmetry group SOð3Þq ⊗ SOð1; 1Þ ⊗ Z2

[40,41]. We choose the fluid velocity to be defined in
the Landau frame, i.e., T̂μνûν ≡ ϵ̂ûμ.

A. Relativistic kinetic theory for the Gubser flow

In kinetic theory the macroscopic hydrodynamic varia-
bles are calculated as momentum moments of the distri-
bution function. The symmetry of the Gubser flow restricts
the phase-space distribution fðx̂; p̂Þ ¼ fðρ; p̂2

Ω; p̂ςÞ, i.e.,
the distribution function depends only on invariants of the

SOð3Þq ⊗ SOð1; 1Þ ⊗ Z2 symmetry group: the de Sitter
time ρ, the combination of momentum components p̂2

Ω ¼
p̂2
θ þ p̂2

ϕ/sin
2θ where p̂θ and the longitudinal momentum

component p̂ϕ are conjugate to the coordinates θ;ϕ,
respectively, as well as p̂ς, which is conjugate to the
coordinate ς [9,13].3 Thus, in dS3 ⊗ R the RTA Boltzmann
equation reduces to a one-dimensional relaxation-type
equation [9,13]

∂ρfðρ; p̂2
Ω; p̂ςÞ ¼ −

1

τ̂rðρÞ
�
fðρ; p̂2

Ω; p̂ςÞ − feq

�
−û · p̂

T̂ðρÞ

��
;

ð5Þ

where T̂ is the temperature. In this work we use ∂ρ to mean
d/dρ and take feqðzÞ ¼ e−z as the local thermal equilibrium
distribution. The conformal symmetry demands τ̂rðρÞ ¼
c/T̂ðρÞ with c ¼ 5η/s where η and s are the shear viscosity
and entropy density, respectively. Given a solution for
the Boltzmann equation (5) one calculates the energy-
momentum tensor as a second-rank tensor moment
defined as4

T̂μνðρÞ ¼ hp̂μp̂νi: ð6Þ

The relaxation equations of T̂μν are obtained by either
solving Eq. (5) exactly or by finding an approximate
perturbative solution. In the next section we review differ-
ent approximate methods to obtain the fluid dynamical
equations within kinetic theory as well as the exact solution
of the kinetic Eq. (5).

B. Fluid dynamical theories

For weakly coupled systems the equations of the macro-
scopic fluid dynamical variables are derived from a micro-
scopic underlying kinetic theory based on the Boltzmann
equation. The derivation of these equations assumes that
the Boltzmann equation admits a generic solution of the
form

fðxμ; piÞ ¼ fbðxμ; piÞ
X
α;l

aαðxμÞMðlÞ
α ðxμ; piÞ; ð7Þ

where fb is a distribution function that describes the

evolution of an existing background, MðlÞ
α are orthogonal

polynomials of degree l, whose orthogonality properties
depend on f0, and aα are moments of the full distribution
function f. The leading-order background distribution
function is chosen based on the problem at hand [62].

2We assign variables with a hat to all quantities defined in
dS3 ⊗ R.

3A more detailed derivation of this exact solution can be found
in the original references [9,13].

4Any phase-space observable Ôðx̂; p̂μÞ obtained from a given
phase-space distribution fX will be denoted as hOðx̂; p̂ÞiX.
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In the rest of the section we shall briefly describe two
choices of the leading-order background distribution func-
tion which leads to different relaxation equations for the
components of the energy-momentum tensor.

1. Expansion around an equilibrium background

The canonical derivation of fluid dynamics assumes an
expansion around a local equilibrium background

fðx̂; p̂Þ ¼ feq

�
−
û · p̂

T̂ðρÞ

�
þ δfðx̂; p̂Þ: ð8Þ

For relativistic systems feq is taken to be the equilibrium
Jüttner distribution function fðxμ; piÞ ¼ 1/ðeβ½ðu·pÞ−μ� þ aÞ
where β ¼ 1/T with T being the temperature, μ the
chemical potential and a ¼ þ1;−1, 0 for particles follow-
ing Fermi-Dirac, Bose-Einstein or Maxwell-Boltzmann
statistics, respectively. The energy of the particle −û · p̂
is taken to be isotropic in the local rest frame (LRF) while
δf encodes the deviations from the thermal equilibrium
state. It is implicitly assumed that δf ≪ feq. For systems
close to equilibrium the four-momentum is decomposed
as p̂μ ¼ Êp̂ ûûμ þ p̂hμi where Êp̂ û ¼ −ðû · p̂Þ (in the LRF
Êp̂ û ≡ p̂ρ) while p̂hμi ¼ Δ̂μνp̂ν projects over the spatial
momentum component orthogonal to the flow velocity. For
the Gubser flow this vectorial decomposition of the four-
momentum allows to write the most general conformal
isotropic energy-momentum tensor [63]

T̂μν ¼ ϵ̂ûμûμ þ P̂Δ̂μν þ π̂μν; ð9Þ

where ϵ̂ is the energy density, P̂ is the isotropic pressure
and π̂μν is the shear stress tensor, which are the momentum
moments of the distribution function given by

ϵ̂ ¼ hð−û · p̂Þ2i; ð10aÞ

P̂ ¼ 1

3
hΔ̂μνp̂μp̂νi; ð10bÞ

π̂μν ¼ hp̂hμp̂νii: ð10cÞ

In Eq. (10c) we introduce the symmetric, orthogonal to ûμ

and traceless operator AhμBνi ¼ Δ̂μν
αβA

αBβ with Δ̂μν
αβ ¼

ðΔ̂μ
αΔ̂ν

β þ Δ̂μ
βΔ̂

ν
α − 2

3
Δ̂μνΔ̂αβÞ/2. For the Gubser flow there

is only one independent shear stress component π̂ ≡ π̂ςς

[40,41]. For conformal systems the equation of state reads
as P̂ ¼ ϵ̂/3.
The local temperature of the system introduced in Eq. (8)

is found from the Landau matching condition ϵ̂ ¼ ϵ̂eqðTÞ
[1]. This phenomenological constraint ensures that the
parameter T̂ in feq is adjusted such that the dissipative
corrections encoded in δf do not shift the value of the

energy density. As a consequence, deviations from the local
thermal equilibrium are captured entirely by the shear stress
tensor π̂μν ≡ hp̂hμp̂νiiδ where h� � �iδ indicates a momentum
moment weighted by δf.
The energy-momentum conservation law D̂μT̂

μν ¼ 0 for
the energy-momentum tensor (10a)–(10c) gives us the
following evolution equation for the energy density ϵ̂
[40,41]:

∂ρϵ̂

ϵ̂
þ 8

3
tanh ρ ¼ π̂

ϵ̂
tanh ρ; ð11Þ

which can be rewritten in terms of the temperature since for
conformal systems ϵ̂ ∼ T̂4 and thus, ∂ρT̂/T̂ ¼ 4∂ρϵ̂/ϵ̂. As a
result one finds [40,41]

∂ρT̂

T̂
þ 2

3
tanh ρ ¼ π̄

3
tanh ρ; ð12Þ

where π̄ ≔ π̂ςς/ðϵ̂þ P̂Þ. We point out that for the Gubser
flow there is only one independent component of the shear
viscous tensor [40,41]. The additional evolution equation
needed for π̄ is obtained by expanding δf within some
approximation. The form of δf is found by expanding it in
terms of a set of orthogonal polynomials in energy Êp̂ û, and
a set of irreducible tensors in momentum invariant under
the little group SOð3Þ of the Lorentz transformations, i.e.,
1, phμi, phμpνi, etc. Afterwards, the relaxation equations of
the dissipative macroscopic quantities are obtained by
applying a systematic truncation method based on a power
counting in the Knudsen Kn and inverse Reynolds Re−1

numbers [45]. The lowest truncation order provides the IS
equations while the inclusion of all other second-order
terms, i.e. in Kn2, Re−2 and Kn · Re−1, gives the DNMR
equations. A detailed discussion of these power-counting
schemes can be found in Ref. [45].
For the normalized shear stress π̄ ¼ π̂/ðϵ̂þ P̂Þ one finds

the following evolution equations for the IS and DNMR
theories, respectively [13,64]:

τ̂π̂

�
dπ̄
dρ

þ 4

3
ðπ̄Þ2 tanh ρ

�
þ π̄ ¼ 4

3

η

sT̂
tanh ρ; ð13aÞ

τ̂π̂

�
∂ρπ̄ þ 4

3
ðπ̄Þ2 tanh ρ

�
þ π̄ ¼ 4

3

η

sT̂
tanh ρ

þ 10

7
τ̂π̂ π̄ tanh ρ: ð13bÞ

The conformal symmetry implies τ̂π̂ ¼ c/T̂ with c ¼ 5η/s.

C. Anisotropic hydrodynamics

Anisotropic hydrodynamics [46–61] attempts to describe
systems with a large expansion rate along some particular
direction l̂μ. In these situations there is a momentum
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anisotropy along l̂μ driving the system far from equilib-
rium. Thus, instead of expanding around an equilibrium
configuration, it is better to consider an anisotropic back-
ground as a leading-order term for the generic expansion of
the Boltzmann equation (7), i.e.,

fðx̂; p̂Þ ¼ fa

�
−
û · p̂

Λ̂
;
ξ

Λ̂
ðl̂ · p̂Þ

�
þ δf̃ðx̂; p̂Þ: ð14Þ

The parameter ξ measures the strength of momentum
anisotropy along the l̂μ direction, Λ̂ is an arbitrary
momentum scale and δf̃ takes into account residual
dissipative corrections. In principle, the parameter ξ mea-
sures the size of the microscopic momentum-space anisot-
ropies. For anisotropic systems the four-momentum of
particles is decomposed as p̂μ ¼ Êp̂ ûûμ þ Êp̂ l̂ l̂

μ þ p̂fμg

where Êp̂ l̂ ¼ ðl̂ · p̂Þ is the spatial component of the particle

momentum along the space-like vector l̂μ (l̂μ l̂μ ¼ 1) while
p̂fμg ¼ Ξ̂μνp̂ν are the spatial components of the momentum
which are orthogonal to both ûμ and l̂μ. Here, we introduce
the projection tensor Ξ̂μν ¼ ĝμν þ ûμûν − l̂μl̂ν ¼ Δ̂μν − l̂μl̂ν

which is orthogonal to ûμ and l̂μ [48,54,55,65–68]. We also
define the symmetric traceless operator AfμBνg ¼ Ξ̂μν

αβA
αBβ

with Ξ̂μν
αβ ¼ ðΞμ

αΞν
β þ Ξν

βΞ
μ
α − Ξ̂μνΞαβÞ/2. By construction

Ξ̂μν
αβ is also orthogonal to ûμ and l̂μ.
The anisotropic decomposition for p̂μ allows us to write

the most general anisotropic energy-momentum tensor as
[48,55]

T̂μν ¼ ϵ̂ûμûν þ P̂Ll̂
μl̂ν þ P̂⊥Ξ̂μν; ð15Þ

where the energy density ϵ̂, transverse and longitudinal
pressures P̂⊥ and P̂L, respectively, are the following
momentum moments:

ϵ̂ ¼ ûμûνT̂
μν ≡ hð−û · p̂Þ2i; ð16aÞ

P̂⊥ ¼ 1

2
Ξ̂μνT̂

μν ≡ 1

2
hΞ̂μνp̂μp̂νi; ð16bÞ

P̂L ¼ l̂μ l̂νT̂
μν ≡ hðl̂ · p̂Þ2i: ð16cÞ

In this case the conformal symmetry implies that ϵ̂ ¼
2P̂⊥ þ P̂L. For the Gubser flow the shear stress tensor can
be related to the total pressure anisotropy through [48,55]

π̂μν ¼ 2

3
ðP̂L − P̂⊥Þ

�
l̂μl̂ν −

1

2
Ξ̂μν

�
: ð17Þ

1. PL matching

When introducing the leading-order anisotropic distri-
bution function defined in Eq. (14) we did not comment on
how to determine the parameters Λ̂ and ξ. The different
variants of aHydro have been proposed in recent years in
order to perform this matching procedure [46–61]. In a
previous study of the Gubser flow, it was shown that the P̂L
matching scheme [48] provides the most accurate macro-
scopic description when comparing its predictions with
the ones obtained from an exact solution of the RTA
Boltzmann equation. Thus, we shall consider in this work
this matching procedure.
We start by introducing first the anisotropic integrals

Inlq ¼ hð−û · p̂Þn−l−2qðl̂ · p̂ÞlðΞ̂μνp̂μp̂νÞqi
≡ ÎnlqðΛ̂; ξÞ þ Ĩnlq: ð18Þ

The first term on the rhs of the previous equation comes
from the leading-order contribution associated with the
anisotropic distribution function fa [Eq. (14)] while the
second term corresponds to the subleading contribution
from δf̃ in Eq. (14). In Appendix A we show how to
perform the integrals of the leading-order anisotropic
distribution function for the massless case. The functional
form of fa is taken to be the RS ansatz which in the LRF
looks like [69]

faðx̂; p̂; Λ̂; ξÞ ¼ feqðERSðξÞ/Λ̂Þ ð19Þ

where feqðzÞ ¼ e−z is a Maxwellian distribution function
evaluated for the momentum-anisotropic argument

ERSðξÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðû · p̂Þ2 þ ξðl̂ · p̂Þ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2
Ω/ðcosh2ρÞ þ ð1þ ξÞp̂2

ς

q
: ð20Þ

The leading-order anisotropic variables contributing to the
anisotropic energy-momentum tensor (15) are

T̂μν
RS ¼ ϵ̂RSûμûν þ P̂RS

L l̂μl̂ν þ P̂RS⊥ Ξ̂μν; ð21Þ

where

ϵ̂RS ¼ hð−û · p̂Þ2ia ¼ Î200ðΛ̂; ξÞ; ð22aÞ

P̂RS
L ¼ hðl̂ · p̂Þ2ia ¼ Î220ðΛ̂; ξÞ; ð22bÞ

P̂RS⊥ ¼ 1

2
hΞ̂μνp̂μp̂νia ¼

1

2
Î201ðΛ̂; ξÞ: ð22cÞ

The traceless condition of the conformal anisotropic energy-
momentum tensor implies that ϵ̂RS ¼ 2P̂RS⊥ þ P̂RS

L . The
conservation law gives the evolution equation for the energy
density
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∂ρϵ̂RS þ
8

3
ϵ̂RS tanh ρ ¼ 2

3
ðP̂RS

L − P̂RS⊥ Þ tanh ρ: ð23Þ

The matching condition for the energy density
ϵ̂RSðΛ̂; ξÞ ¼ ϵ̂eqðTÞ leads to the following relation between
the temperature T̂ and the momentum scale Λ̂:

Λ̂ ¼ T̂

ðR̂200ðξÞÞ1/4
: ð24Þ

The function R̂200ðξÞ is given in Eq. (A3). This relation
ensures that the energy density does not receive any
contribution from the residual deviation δf̃ in Eq. (14).
Now, for the Gubser flow the conservation law (23)
indicates that the pressure anisotropy is the force that
drives the system far from equilibrium. The microscopic
origin of this force is the momentum anisotropy created by
the expansion of the system which in the LRF is measured
by the anisotropy parameter ξ. Hence, one simply adjusts
the value of ξ such that the leading-order anisotropic
distribution function fa fully captures the information of
the full pressure anisotropy. For the Gubser flow this means
that the longitudinal pressure P̂L [Eq. (16c)] does not
receive contributions from the residual deviation δf̃ of the
distribution function (14), i.e. P̂L ¼ P̂RS

L . Now the effective
shear viscous tensor is related to the total pressure
anisotropy via the identity (17) which in this case gives [48]

π̂RS ¼
2

3
ðP̂RS

L − P̂RS⊥ Þ

¼ hðl̂ · p̂Þ2 − 1

3
ð−û · p̂Þ2ia

¼ Î220ðΛ̂; ξÞ −
1

3
Î200ðΛ̂; ξÞ: ð25Þ

Thus, the P̂L matching prescription can be recast into
the following condition for the effective shear viscous
component:

π̂ ¼ π̂RS: ð26Þ

Furthermore, Eq. (25) allows us to rewrite the conservation
law (23) as

∂ρϵ̂RS þ
8

3
ϵ̂RS tanh ρ ¼ π̂RS tanh ρ: ð27Þ

For the P̂L matching, the equation for π̂RS is found from
Eq. (25). After some algebra one finds the following
evolution equation for the normalized effective shear π̄5:

∂ρπ̄ þ π̄

τ̂r
¼ 4

3
tanh ρ

�
5

16
þ π̄ − π̄2 −

9

16
F ðπ̄Þ

�
; ð28Þ

where

F ðπ̄Þ≡ R̂240ðξðπ̄ÞÞ
R̂200ðξðπ̄ÞÞ

: ð29Þ

The functions R̂240 and R̂200 are listed in Appendix A.
Furthermore, ξðπ̄Þ in Eq. (29) is the inverse of the function

π̄ðξÞ ¼ π̂

ϵ̂þ P̂
¼ 3Î220 − Î200

4Î200

¼ 1

4

�
3R̂220ðξÞ
R̂200ðξÞ

− 1

�
: ð30Þ

An advantage of using aHydro is that by construction the
transverse and longitudinal pressures remain positive dur-
ing the entire evolution of the system as is expected in
kinetic theory.6 These constraints imply −1/4 < π̄ < 1/2
which is in agreement with the anisotropy parameter
ξ ∈ ð−1;∞Þ. On the other hand, the lhs of Eq. (30) is
identified as a term proportional to the inverse Reynolds
number Re−1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

πμνπ
μν

p
/P0 (with P0 ¼ ϵ̂/3 for the con-

formal case) [45]. Equation (30) therefore indicates that the
anisotropy parameter resums nonperturbatively not only
large gradients (i.e., Knudsen number) but also large Re−1

numbers. An analogous relation between the effective shear
and the anisotropy parameter was found in the Bjorken case
[46]. The dissipative corrections OðRe−2Þ arise in general
from the most nonlinear sector of the collisional kernel [45]
and thus, the calculation of these terms is cumbersome even
for the simplest kernels [70]. Moreover, some of the
nonlinear terms OðRe−2Þ calculated in the DNMR theory
lead to violations of causality [71].

D. Exact solution to the Boltzmann equation
in the RTA approximation

The RTA Boltzmann equation (5) admits the following
exact solution [9,13]:

fexðρ; p̂2
Ω; p̂ςÞ ¼ Dðρ; ρ0Þf0ðρ0; p̂2

Ω; p̂ςÞ þ
1

c

Z
ρ

ρ0

dρ0

×Dðρ; ρ0ÞT̂ðρ0ÞfeqðÊp̂ðρ0Þ/T̂ðρ0ÞÞ; ð31Þ

5Technical details of this derivation are discussed in Sec. III C
of Ref. [48].

6The positive-definite condition of the longitudinal and trans-
verse pressures is not a requirement for holographic models
within the AdS/CFT correspondence since the quasiparticle
picture does not exist in these theories. In weakly coupled
theories where the quasiparticle picture exists, the positivity of
the pressure is violated in the presence of external fields.
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where Dðρ; ρ0Þ ¼ exp ½− 1
c

R
ρ
ρ0
dρ0T̂ðρ0Þ� is the damping

function. For the initial condition of the distribution
function f0 at ρ0 we shall consider the RS ansatz [69]

f0ðρ0; p̂2
Ω; p̂ςÞ ¼ exp

�
−

1

Λ̂0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2
Ω

cosh2 ρ0
þ ð1þ ξ0Þp̂2

ς

s �
;

ð32Þ

where Λ̂0 is the initial temperature and ξ0 is the initial
momentum anisotropy along the ς direction. From the exact
solution for f one gets the energy density and the only
independent component of the shear stress [9,13]:

ϵ̂ðρÞ ¼ Î200;

¼ Dðρ; ρ0Þ
�
cosh ρ0
cosh ρ

�
4

ϵ̂RSðΛ̂0; ξFSðρ; ρ0; ξ0ÞÞ

þ 1

c

Z
ρ

ρ0

dρ0Dðρ; ρ0ÞT̂ðρ0Þ
�
cosh ρ0

cosh ρ

�
4

× ϵ̂RSðT̂ðρ0Þ; ξFSðρ; ρ0; 0ÞÞ; ð33aÞ

π̂ðρÞ ¼ Î220 −
1

3
Î200;

¼ Dðρ; ρ0Þ
�
cosh ρ0
cosh ρ

�
4

π̂RSðΛ̂0; ξFSðρ; ρ0; ξ0ÞÞ

þ 1

c

Z
ρ

ρ0

dρ0Dðρ; ρ0ÞT̂ðρ0Þ
�
cosh ρ0

cosh ρ

�
4

× π̂RSðT̂ðρ0Þ; ξFSðρ; ρ0; 0ÞÞ: ð33bÞ

We note that ξFSðρ; ρα; ξαÞ ¼ −1þ ð1þ ξαÞðcosh ραcosh ρ Þ2.
These integral equations are solved numerically by means
of the method described in Refs. [11–13,72]. The temper-
ature of the system is obtained from the energy density
through the Landau matching condition, i.e., ϵ̂RSðΛ̂; ξÞ ¼
ð3/π2ÞΛ̂4R̂200ðξÞ ¼ 3T̂4/π2.

III. FLOW DIAGRAMS OF THE IS THEORY

In dS3 ⊗ R the expansion rate of the Gubser flow
θ̂ ¼ 2 tanh ρ becomes a constant when ρ → �∞. As we
shall see below this geometrical property of the velocity
profile poses a challenge to find the attractors of different
hydrodynamical theories. In this section we explain a
method for finding the attractors based on the mathematical
theory of nonautonomous systems [42,43]. We discuss
extensively the case of IS theory. The same method can be
used in different models.
The gist of what we are about to do in this section is to

study the flow diagrams of the Gubser flow from the
perspective of nonlinear dynamical systems. The flow lines
at early times do dictate the far-from-equilibrium behavior
of any system governed by a set of differential equations

and at late times they show what happens to the matter
distribution until it evolves to a steady state (thermally
nonequilibrium) at ρ → ∞.7

As a minor digression, we recall that for the Bjorken
flow, the second-order hydrodynamical equations can be
entirely reduced to one single explicitly time-dependent
ODE (i.e. 1D nonautonomous parametrized by a new time
w) due to scaling symmetry [19,25]. This suggests that its
attractor is a planar 1-manifold characterized by w and the
basin of attraction is indeed 2D. But what is the proper
definition of an attractor? It is an invariant set of points and
every flow line starting from a point within the field of
attraction of the attracting fixed point, will always limit to
this set of points at late times. Given a set of initial values
for Bjorken time, the flow lines always lie on a plane and as
long as they belong to a special set of numbers, they tend to
the attractor at late times. This set defines the basin of
attraction: given an initial time τ0, there is an associated
T̂ðτ0Þ and π̄ðτ0Þ, and the basin of attraction is elaborated as
the set of all pairs of ðT̂ðτ0Þ; π̄ðτ0ÞÞ such that the Bjorken
flow lines are doomed to limit to the equilibrium. We recall
that ðT̂; π̄Þ is the actual phase space8 of the Bjorken flow
which fixes the dimensionality of the basin of attraction
as well.
In the case of Gubser flow, we simply identify the fixed

points and discuss whether or not they are stable by
analyzing the eigenvalues of the Jacobian matrix of the
linearized flow equations near each fixed point. We find
that there are two unstable saddle points and one stable
fixed point which determines the steady state of the system
in any hydrodynamics theory. This task is carried out by
analyzing the null lines of the 2D nonautonomous system
(34a)–(34b). The intersection of these lines gives the fixed
points. By analyzing the asymptotics of flow lines close to
the steady state, it is determined that the fixed point is
indeed exponentially asymptotically stable. One observa-
tion that we make is that the flow equations cannot be
reduced to one single nonautonomous ODE by any kind of
reparametrization unless at very late times such that ρ is
large enough that we can take tanh2 ρ ∼ 1. But this is fine
from the viewpoint of attractors since they are asymptotic
or in other words limit sets. This does not affect the
dimensionality of the attractor and hence Gubser flow lines
still evolve into a 1-manifold but in reality it is no longer a
planar curve since the time direction is not fully decoupled
from the ODE in terms of the new time w, which will be

7Throughout this paper the word “equilibrium” is always
meant to be thermal equilibrium and a steady state expresses a
state of the system which requires energy or continual work to
remain stationary and it thus does not imply thermal equilibrium.

8In this section, “phase space” is referred to as the space of
independent macroscopic variables labeling a flow diagram. The
latter represents the dynamics of the underlying hydrodynamical
system via the connection between the velocity fields and the
macroscopic variables that form the flow lines.
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clarified in Sec. III B 1. What about the basin of attraction?
We study this point in great detail in Sec. III B 2 where we
observe that the impossibility of this dimensional reduction
to a 1D system is a symptom of the peculiarity of the
q-deformed conformal symmetry SOð3Þq which is not a
simple scaling of variables and time as in the Bjorken case.
The variable τ ¼ tanh ρ is promoted to be independent
which lifts the phase space dimensionality by 1, now being
labeled by ðT̂; π̄; τÞ. Therefore, we lift the dynamical
system describing the flow equations to a 3D autonomous
system where ρ dependency is now implicit. So the basin of
attraction is three dimensional, being identical to the
dimensions of the autonomous system (or phase space).
We finally emphasize the importance of the basin of

attraction and the way to define it locally and globally. As
was said before, the basin of attraction defines an effective
attractive potential field for the flow lines, thus forcing
them to evolve into the stable steady state at late times. This
is an important problem in far-from-equilibrium hydro-
dynamics, i.e., to map out all the divergent flows and only
probe the relevant stable ones. Similar to the path integral
where a steepest descent path is one that counts as
contributing to the path-integral manifold, in hydrodynam-
ics the space of all flow lines taking initial values in the
basin of attraction would determine this manifold.
Effectively, it is just enough to consider all the paths
starting at ρ → −∞ somewhere on the boundary of the
basin where the attractive force field of the fixed point is the
weakest. This field is determined by an effective potential
function(al) known as the Lyapunov function V that
satisfies two key properties: V > 0, and dV/dρ ≤ 0. The
existence of V hints at the stability of the steady state and
that the linearized flow equations are asymptotically stable.
The local function V loc can always be computed in the near-
equilibrium region by solving the Lyapunov equation given
in Sec. III B 2 and we hence solve it to estimate the shape of
the local basin of attraction. The global function is difficult
to precisely build but there are numerical and analytical
optimization techniques that are mentioned in the same
subsection. The global Lyapunov function mimics the
behavior of all stable fluctuations both at early and late
times which in this regard might be a very useful tool to
construct an effective partition function for hydrodynamics.
We will close this section by commenting on this issue.

A. From the perspective of a 2D nonautonomous
dynamical system

Using a secondary time parameter τ ¼ tanh ρ ∈ ½−1; 1�,
Eqs. (12) and (13b) are put into the forms

dT̂
dτ

¼ τT̂
3ð1 − τ2Þ ðπ̄ðτÞ − 2Þ; ð34aÞ

dπ̄
dτ

¼ −
1

1 − τ2

�
4

3
π̄2ðτÞτ þ 1

c
π̄ðτÞT̂ðτÞ − 4

15
τ

�
: ð34bÞ

These two equations can be combined in such a way that
we are left with the following second-order nonlinear
nonautonomous differential equation for the temperature
T̂ðτÞ in the IS theory:

135cτT̂ 02ðτÞ þ T̂2ðτÞ
ðτ2 − 1Þ2 ð76cτ

3 − 45τðτ2 − 1ÞT̂ 0ðτÞÞ

þ 30τ2T̂3ðτÞ
ðτ2 − 1Þ2 −

15cT̂ðτÞ
ðτ2 − 1Þ

×

�
ð13τ2 − 3ÞT̂ 0ðτÞ − 3τ

τ2 − 1
T̂ 00ðτÞ

�
¼ 0:

To find the fixed points of the system, we solve
Eqs. (34a)–(34b) for π̄N and T̂N along the respective null
lines. (An A null line is a trajectory in the phase space along
which dA/ds ¼ 0 where s is the flow time variable.) We
first consider the case where the T̂ null line is given by the
solution π̄NðτÞ ¼ 2 to Eq. (34a) with vanishing temperature
derivative, and T̂ðτÞ is a nonzero constant. The Gubser π̄
null line equation,

4

3
π̄2NðτÞτ þ

1

c
π̄ðτÞT̂NðτÞ −

4

15
τ ¼ 0 ð35Þ

then fixes thevalue of the temperature at T̂NðτÞ ¼ −38cτ/15,
which at large time τ ∼ 1 is simply T̂c ¼ −38c/15. The
intersections of these null lines are not generally reached by
all flow lines since near τ ∼ 1 there are flow lines, for
instance, that either diverge from or converge to this point.
Furthermore, knowing that the system converges to a fixed
point sometime at late times τ ≫ 0, it is certainly not physical
to consider that the point to be reached has a negative
temperature ð−38c/15Þ and thus we are led to a situation
where we look for the stable steady state in the range
π̄ ¼ π̄c < 2. Figure 1 indicates explicitly why this point
cannot define a stable steady state for the system. Taking this
to be the case, one may solve for temperature fromEq. (34a),
to only obtain

T̂ðτÞ ¼ T̂0ð1 − τ2Þ2−π̄c6 ; ð36Þ
for a constant T̂0 > 0. Note that this represents the evolution
of temperature near τ ¼ 1 and it is always positive for all
times. We can check that

lim
τ→1−

ð1 − τ2Þ dT̂
dτ

¼ − lim
τ→1−

τ

6
ð2 − π̄cÞT̂ðτÞ ¼ 0: ð37Þ

Inserting this temperature intoEq. (34b) gives the shear along
the π̄ null line toward the stable steady state,

π̄�NðτÞ ¼
3

8cτ

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64c2τ2

45
þ ð1 − τ2Þ2−π̄c3

r
− ð1 − τ2Þ2−π̄c6

!
:

ð38Þ

BEHTASH, CRUZ-CAMACHO, and MARTINEZ PHYS. REV. D 97, 044041 (2018)

044041-8



Wealso notice that limτ→1−ð1 − τ2Þ dπ̄�Ndτ vanishes as expected.
At the limit τ → 1−, this yields the value of π̄�c ¼ �1/

ffiffiffi
5

p
.

Similarly the ray T̂ ¼ 0 is a T̂ null line, alongwhichEq. (34a)
can be solved subject to the conditions π̄�ð∞Þ ¼ �1/

ffiffiffi
5

p
to give

π̄�ðτÞ ¼ ∓ 1ffiffiffi
5

p � 2ffiffiffi
5

p ðe 8

3
ffiffi
5

p ð1 − τ2Þ 4

3
ffiffi
5

p þ 1Þ
; ð39Þ

which demonstrates the evolution of the shear component of
the trajectories near the fixed points ð0; π�c Þ. The fixed points
in the IS theory of the Gubser flow are therefore determined
to be

Fixed points∶ π̄�c ¼ � 1ffiffiffi
5

p ; T̂c ¼ 0; and

π̄c ¼ 2; T̂c ¼ −
38c
15

; ð40Þ

which is consistent with the flow diagrams plotted in Fig. 2.
We can also read the Lyapunov exponent9 of T̂ from the
asymptotic solution (36), for both fixed points with

π̄�c ¼ �1/
ffiffiffi
5

p
, about which temperature goes like T̂�ðρÞ ∼

T̂0e
λ�
T̂
ρ where λ�

T̂
¼ − 1

3
ð2 ∓ 1/

ffiffiffi
5

p Þ, thus hinting at the
exponentially fast running up of the flow lines at ρ → ∞
to the stable steady state and even faster convergence to the
repelling point only along the attracting direction. Along the
shear component of the flow trajectories close to ð0;�1/

ffiffiffi
5

p Þ
the Lyapunov exponent is given by λπ̄ ¼ −8/ð3 ffiffiffi

5
p Þ, which is

a sign of seemingly drastic convergence ð∼eλþπ̄ ρÞ to the steady
state or divergence from the repeller. This provides de facto
evidence of the asymptotically exponential stability of the
steady state in the Gubser model which can be rigorously
derived by building Lyapunov functions of the linearized
system.
We will be mainly interested in the late-time behavior of

the Gubser flow near the attracting fixed point. We refer to
this as an “attractor” that points to the existence of some
bounded set, BA

e , namely an absorbing set, in the phase
space X of all independent state variables ðT̂; π̄Þ and
possibly time τ:BA

e is indeed invariant under the forward
evolution of state equations in time such that every solution
of the system of ODEs has to ultimately enter BA

e provided
that the chosen initial conditions for the flow trajectories
put them in a bounded set Be known as the “basin of
attraction” for the attracting fixed point. Notice that by way
of definition, BA

e ⊂ Be. Let ϕτ be the flow defined by the
Gubser dynamical system, Eqs. (34a)–(34b); then we can
define an attractor for this system by

(a)

(b)

FIG. 1. IS flow lines of the Gubser model for (a) early time and
(b) late time. The black dots indicate the phase-space fixed points.
In panel (a) the repelling fixed point ð0;−1/ ffiffiffi

5
p Þ at early times

(here τ ¼ −0.9) directs the flows in the basin towards the attractor
at late times. Notice that 3As þ 2 ¼ −1/

ffiffiffi
5

p
whereAs defines the

initial condition in Eq. (43). Physically, this is the situation where
the distribution of matter is most anisotropic, and thus farthest
from the stable steady state. In panel (b) the flow diagram shows
that the stable fixed point (40) is approached by the flow lines at
late times (here τ ¼ 0.9). Note that, in terms of the new variable τ
the time flows from τ ¼ −1 to τ ¼ 1 and therefore an observer
with a line of sight along the time direction would see the flow
lines coming out of the point ð0; 1/ ffiffiffi

5
p Þ at early times and going in

at late times, which suggests that the basin of attraction is three
dimensional. At late times the flow diagram for Gubser flow in
the IS theory at ∼τ ¼ 0.9 shows that there is one attracting fixed
point e.g. a sink, and two repelling fixed points e.g. saddle points.
The area trapped between the green lines on the top right
represents the physical portion of the basin of attraction at a
given time slice.

9The Gubser flow as a dynamical system is deterministic in the
sense that the stability of its fixed points is quantified by the
eigenvalues of the linearization matrix [the so-called Jacobian
matrix, cf. Eq. (49)] at these points. Therefore, the Lyapunov
exponents are the real parts of the eigenvalues of this matrix
computed along a flow trajectory that satisfies the ordinary
differential Eq. (47). The more interesting case of deterministic
chaos occurs when the maximal Lyapunov exponent is positive.
In the current system under study, or in any known hydrody-
namical system, the maximal Lyapunov exponent is always
negative near a stable fixed point which does not give rise to
chaos.
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A ¼ ⋂
τ≥−1

ϕτðBA
e Þ; ð41Þ

which will be compact and invariant, and subject to the
condition

ϕ−1 ∉ XnBe ð42Þ

every flow trajectory will approach this set as τ → 1−.
Since there are two other fixed points in the Gubser flow
geometry, this condition guarantees that the flow trajecto-
ries will not start in the other basins ⊂ XnBe; otherwise
ϕτ>−1 would always lie in XnBe. Hence any flow line
starting in the basin of attraction Be independently of their
whereabouts will always converge asymptotically to the
attractor A at late times.
In general an attracting fixed point defining a basin of

attraction for any (nonchaotic) model is referred to as the
dynamical equilibrium state of the system and for the
Gubser system this is denoted by ðT̂e; π̄eÞ. From a differ-
entiable geometry point of view, in the phase space of a 2D
autonomous dynamical system, one would expect the
attractor A to be a manifold of codimension 1. For a 2D
nonautonomous dynamical system such as the one at hand,

this may not be the case unless it could be reduced to a
single nonautonomous ODE, by a reparametrization of
state variables and τ. In the case that such a reduction is
possible, the attractor A can be formally defined using,
instead of the flows ϕτ, the map AðwÞ∶U → R for some
U ¼ ½wmin; wmax� ⊆ R, where for instance, w ≔ wðT̂; τÞ,
and AðwÞ is an algebraic function of π̄ subject to the
boundary conditions

Aðw → wmaxÞ ¼ Ae and Aðw → wminÞ ¼ As ð43Þ

such that ðT̂e;A−1
e ;τmaxÞ∈BA

e and ðT̂s;A−1
s ; τminÞ ∈ ∂Be.

10

We keep in mind that ðT̂s;A−1
s ; τminÞ is basically a saddle

point in second-order hydrodynamical theories in which the
underlying dynamical system entails a term proportional to
π̄2. Finally, the one-dimensional manifold of A can be
represented by

A ∼
w≫wmin

AðwÞ: ð44Þ

Let us introduce the parametrization w ¼ tanh ρ/T̂ of
Gubser time and the function AðwÞ defined as

AðwÞ ¼ 1

tanh ρ

∂ρT̂

T̂
¼ d logðT̂Þ

d logðcosh ρÞ : ð45Þ

Using these definitions, the evolution equations of the IS
theory [Eqs. (12) and (13a)] boil down to the following
ODE:

3wðcoth2ρ − 1 −AðwÞÞ dAðwÞ
dw

þ 4

3
ð3AðwÞ þ 2Þ2

þ 3AðwÞ þ 2

cw
−

4

15
¼ 0; ð46Þ

where π̄ ¼ 3AðwÞ þ 2 from the conservation law (12).
This reduces the dimensionality of the problem only
asymptotically (e.g. ρ → �∞) to one as opposed to the
Bjorken model where a truly one-dimensional ODE was
achieved via a similar trick in Ref. [25]. Therefore it is
expected that the attractors for the Gubser flow in all the
hydrodynamical schemes are 1D nonplanar manifolds
and correspondingly the basins of attraction are three
dimensional. We analyze this below briefly in the
context of dynamical systems for the IS theory but bear

FIG. 2. The late-time behavior of flow lines in the IS theory of
Gubser flow. The wedge near the fixed point ð0; 1/ ffiffiffi

5
p Þ asymp-

totically evolves into a 1D manifold that represents the behavior
of a Gubser attractor at late times. The other two fixed points are
clearly saddle points of which the lower one in the plot feeds the
attractor at early times. The flow line lying on the segment BA has
the fastest convergence among all other flows due to the repelling
nature of the saddle point. The coloring of the flow lines is
implemented in such a way that one could perceive the depth of
the 3D basin of attraction by looking into the flow diagram
perpendicularly.

10Two remarks are due here. First, we point out that in the
Gubser flow geometry, the sink appears to be also located on the
boundary of Be which is related to the way the flow time is
introduced in the state equations. We refer the reader to a different
coordinate system used in Eq. (53) in which this sink is located
inside the basin. Second, the saddle point is a source of
propulsion and this fact plays a role in determining the rate at
which the convergence of flow lines occurs.
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in mind that a similar line of thought can be applied to
any other theory as well.

B. From the perspective of a 3D autonomous
dynamical system

In this section we study the linearization problem by
enhancing the 2D system to a 3D autonomous one,
determine the stability conditions, and show that the
attractor is a nonplanar manifold of codimension 2. We
will sketch the proof of the exponential asymptotic stability
of the steady state in Gubser flow and create a local
Lyapunov function to estimate the basin of attraction that is
conjectured to be crucial in the study of an effective field
theory of stable hydrodynamical and nonhydrodynamical
modes.

1. Linearization and exponential asymptotic stability

The nonautonomous system (34a)–(34b) can easily be
extended to an autonomous system by considering the time
τ as an additional variable. Therefore the IS theory of
Gubser flow is a truly 3D autonomous system of ODEs
given by

dT̂
dρ

¼ 1

3
T̂ðπ̄ − 2Þτ; dπ̄

dρ
¼ 4

3

�
1

5
− π̄2

�
τ −

1

c
π̄ T̂;

dτ
dρ

¼ 1 − τ2: ð47Þ

This is a polynomial vector field whose fixed points
ðT̂c; π̄c; τcÞ are given by

ð−38c/15; 2;�1Þ; ð0;−1/
ffiffiffi
5

p
;�1Þ; ð0; 1/

ffiffiffi
5

p
;�1Þ:
ð48Þ

Because of the symmetry ðT̂; π̄; τÞ → ð−T̂; π̄;−τÞ of
the 3D problem (47), we are left with only three fixed
points A ¼ ð0; 1/ ffiffiffi

5
p

; 1Þ, B ¼ ð0;−1/ ffiffiffi
5

p
;−1Þ, and C ¼

ð−38c/15; 2; 1Þ. We now solve the linearized system
around any fixed point, namely

0
B@

∂ρT̂

∂ρπ̄

∂ρτ

1
CA ¼

0
B@

1ðπ̄−2Þ
3

τ T̂τ
3

T̂ðπ̄−2Þ
3

− π̄
c − T̂

c −
8π̄τ
3

4
15
− 4π̄2

3

0 0 −2τ

1
CA

ðT̂c;π̄c;τcÞ

×

0
B@

T̂ − T̂c

π̄ − π̄c

τ − τc

1
CA; ð49Þ

and find the eigenvalues of the Jacobian matrix at every
fixed point to be

A∶
�
−2;−

8

3
ffiffiffi
5

p ;−
2

3
þ 1

3
ffiffiffi
5

p
�
;

B∶
�
−2;

8

3
ffiffiffi
5

p ;−
2

3
−

1

3
ffiffiffi
5

p
�
;

C∶
�
−2;

7

5
−

ffiffiffiffiffiffiffiffi
821

p

15
;−

7

5
þ

ffiffiffiffiffiffiffiffi
821

p

15

�
:

One can then immediately see that A is a sink (all
eigenvalues are negative), and B, C have two positive
eigenvalues, thus making them saddle points, as expected
and since the eigenvalues all are nonzero, the fixed points
are hyperbolic. Hence, we can apply the Hartman-Grobman
(HG) theorem [73,74],11 that allows the local flow structure
(phase-space portrait) near a hyperbolic fixed point to be
topologically equivalent to the flow diagram of its linear-
ized system. For the Gubser flow in the IS theory, the flow
diagram shown in Fig. 2 confirms the HG theorem in the
vicinity of all the fixed points. This figure also portrays the
state of flow lines on the time slice τ ¼ 0.7 of the three-
dimensional phase space. Using the HG theorem and the
fact that A is an exponentially asymptotically stable fixed
point of Gubser flow, it is then easy to write down the
Lyapunov exponents of phase-space variables along all the
trajectories converging to the attractor by the eigenvalues
given above, which are

λT̂ ¼ −
2

3
þ 1

3
ffiffiffi
5

p ; λπ̄ ¼ −
8

3
ffiffiffi
5

p ; λτ ¼ −2; ð50Þ

which matches the result previously obtained from the 2D
analysis. The attractor may therefore be parametrized
vectorially in the phase space spanned by ðu1;u2;u3Þ as

e
R

ρ

ρ0
dρ0Aðwðρ0ÞÞτðρ0Þ

u1 þ ð3AðwðρÞÞ þ 2Þu2 þ τρu3; ð51Þ

for some constant ρ0. Evidently only for large ρ, τðρÞ tends
to one exponentially faster than the other two converge to
the fixed point i.e., λτ < λπ̄ < λT̂ such that u3 is just a point
in the phase space and Eq. (51) at ρ → ∞ lies on the plane
spanned by fu1;u2g, and is well approximated by

T̂0eλT̂ρu1 þ
�

1ffiffiffi
5

p − π̄0eλπ̄ρ
�
u2 þ u3; ð52Þ

given the initial conditions recovered from the asymptotics.

11This mathematical theorem states that the behavior of a
nonlinear system of differential equations in a domain near its
hyperbolic equilibrium points is qualitatively the same as the
behavior of the linearized version of these differential equations
near this fixed point. Hyperbolicity means that no eigenvalue of
the Jacobian matrix associated with the linearized dynamical
system has a real part equal to zero. Therefore, one can use the
linearization of the original dynamical system to analyze its
behavior around equilibria.
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Since the nonautonomous system (34a)–(34b) is expo-
nentially asymptotically autonomous for the attracting
fixed point, with the limiting functions giðT̂; π̄Þ being
the rhs of the two equations that resulted from
tanh2 ρ ∼ 1, Theorem 2.2 of Ref. [75] applies where solving
for the attractor of either 2D or 3D systems would yield the
same result. The main assumption is to suppose a 1-to-2
transformation of the form t ¼ �e−2ρ where for each value
of ρ there is a pair of values for t, such that the steady state
is not on the boundary of the basin of attraction, Be. Then
ρ ¼ − 1

2
log jtj in both cases. Also, let F3ðT̂; π̄; tÞ ≔ −2t

where the index 3 denotes the rhs of the third equation in
the 3D problem. We define for i ¼ 1, 2 (the rhs of the ith
state equation)

FiðT̂; π̄; tÞ ¼
8<
:

fi
�
T̂; π̄ þ 1ffiffi

5
p ;− 1

2
log jtj

�
; t ≠ 0

gi
�
T̂; π̄ þ 1ffiffi

5
p
�
; t ¼ 0

ð53Þ

where we have shifted π̄ for later purposes. With this new
time parametrization, Eq. (47) may be cast into the form

dT̂
dρ

¼ 1

3
T̂

�
π̄ − 2þ 1ffiffiffi

5
p
�
1 − jtj
1þ jtj ;

dπ̄
dρ

¼ −
4π̄

3

�
2ffiffiffi
5

p þ π̄

�
1 − jtj
1þ jtj −

T̂
c

�
π̄ þ 1ffiffiffi

5
p
�
;

dt
dρ

¼ −2t: ð54Þ

We note that the Jacobian matrix of this 3D system, JacðFiÞ
has a block form at ðT̂; π̄; 0Þ and the origin is a fixed point, i.e.
Fið0; 0; 0Þ ¼ 0, and JacðgiÞð0;0Þ has negative eigenvalues.
Since the original system is exponentially asymptotically
autonomous, and gið0; 0Þ ¼ 0 the exponential asymptotic
stability immediately follows.
Last, a few remarks are due. There is a sense in which

one must consider the aforementioned coordinate trans-
formation inspired by the asymptotics of the series sol-
utions to the flow equations (34a)–(34b) mainly the study
of resurgence properties and trans-series [26,27]. Focusing
on just a simple series solution is problematic on its own
because of divergence issues but above all else lies the fact
that there is a challenge to pick a good expansion variable
for the Gubser flow due to the peculiarities of de Sitter time.
The natural choice for such a series expansion should at
first glance be either tanh ρ or coth ρ, but they come with a
caveat; they never grow bigger than 1 as ρ → ∞ and thus
not are useful from the perspective of series asymptotics. It
turns out that the exponential asymptotic stability of the
fixed point offers a suitable and rather natural choice for
the expansion variable which will be briefly touched upon
in Sec. IV B 2. It suffices to state that the rate at which the
converging flow trajectories approach the sink is known

from the analysis above to be exponentially fast and
therefore one can expand around this fixed point by
considering a variable of the type 1/t or any arbitrary
positive real power of it.

2. Local and global estimates of the basin
of attraction

A path-integral analogy: Before going into any details,
we seek to motivate the reader to think about the question
of why the basin of attraction and Lyapunov functions are
extremely important concepts from a physical standpoint.
In the Feynman path-integral formalism of quantum field

theory and quantum mechanics, one often encounters
integrals of the sort

Z ¼
Z
M
Dϕe−S½ϕ� ð55Þ

where S½ϕ� is the action functional of the underlying theory
that involves some field ϕ and the manifold M defines the
space of fields or paths over which the integral is
performed. To keep the generality of the problem, we
complexify ϕ and thus S½ϕ� is complex valued and M is a
middle-dimensional manifold in the space of complex
fields. We will come to the dynamical system interpretation
of this integral in a moment. But first, we have to note that
the main problem of understanding what M is made of and
finding it in a general field theory is extremely difficult.
Qualitatively,M is considered to be built out of the union of
all the paths that are connected to a critical point (a stable
fixed point of S½ϕ� that satisfies some equation of motion
subject to the stationary action principle) which are the
physically relevant paths (steepest descent paths) in the
phase space or configuration space over which the field ϕ
takes values. So the most favored configuration is the one
along which ReðS½ϕ�Þ increases as one approaches the
critical point attached to it by some dynamical flow
involving the action functional and an appropriate flow
time tf defined over the real line, for instance. This is
described by an ODE of the form12

dϕ
dtf

¼ δS½ϕ�
δϕ

; ð56Þ

where the rhs is nothing but the variation of the action
functional with respect to the dynamical field ϕ which now
depends on tf and the bar represents complex conjugation.
The set of fixed points of this “flow equation” now
describes the saddle solutions to some equation of motion

12We note that even if ϕ is complexified, the number of degrees
of freedom of the complex theory is the same as the original
one on the manifold M, namely it is a middle-dimensional
manifold in the complex space as dictated by the form of the flow
equation (56).
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governed by the action principle δS½ϕ�/δϕ ¼ 0. This
simple-looking flow equation resembles the more compli-
cated dynamical system given by Eqs. (34a)–(34b) but the
idea is that all the flow lines along which ReðS½ϕ�Þ → ∞
contribute to the construction of M13 where the stability
condition is guaranteed in Eq. (56) as tf → ∞ since then a
fixed point is reached where ϕ remains constant for all
times thereafter. So M is a stable manifold of integration
shaped by the solutions to Eq. (56) that by construction is
the manifold of steepest descent paths. We note that the
initial conditions to solve this equation are picked by the
convergence properties of Eq. (55) at tf → −∞. Namely,
ϕ ¼ ϕ0 if ReðS½ϕ0�Þ → ∞ at this limit; otherwise the path
integral would be divergent. The collective space of such
initial values is called a “good space” denoted by Gc.
Formally speaking, Gc ¼ ∪i Gi where in each good sub-
space Gi the real part of the action functional remains
always positive. Hence the flow must begin from the points
in Gc where the paths can converge to the critical points
along any direction in M. In a hydrodynamical system, we
can then regardM as a “Lefschetz thimble” made out of all
the flow lines attached to the attracting fixed point for the
field ϕ in the path integral (55) starting at time ρ → −∞ and
the collective space Gc as the boundary of the basin of
attraction. In other words,

Gc ≔
n
⋃
i
ϕi;0∶ϕi;0 ¼ ϕiðρ → −∞Þ ∈ ∂Be

o
;

M ≔
n
⋃
i
ϕiðρÞ∶ϕiðρ → −∞Þ ∈ Gc;ϕiðρ → ∞Þ

¼ fixed point ∈ Be

o
: ð57Þ

There is in principle no universally well-established
picture where we have an effective field theory approach
to hydrodynamics; rather we choose to go to the phase
space of state variables and flow time to make our
analogies with the picture given above. But what about
the action functional in the phase space? It is kind of
obvious that the Lyapunov function(al) V that depends on
the phase-space parameters of the underlying hydrody-
namical system acts like an effective action for all the
stable (and thus relevant) hydrodynamical modes. Once
defined, V is always positive definite, and more impor-
tantly its derivative with respect to the flow time has to be
always nonpositive i.e.

dV/dρ ≤ 0; ð58Þ

similarly to the negative of the real part of the action
functional decreasing on M due to stability conditions set
by the properties of Eq. (56).14 Given a global Lyapunov
function, we therefore can write an effective action
functional for the Gubser flow in any theory15

Seffðx; cÞ ≔
Z

dρ
	�

dx
dρ

�
2

− Vðx; cÞ


; ð59Þ

where xðρÞ ¼ ðT̂; π̄; tÞ, and c is a “coupling constant.”
Note that this effectively describes the underlying hydro-
dynamical system as a theory of phase-space variables
π̄; T̂; t taking values in Be—the basin of attraction for the
stable fixed point. Finally the partition function can be
formulated as

ZeffðcÞ ¼
Z
M
DT̂Dπ̄Dte−

R
dρððdxdρÞ2−Vðx;cÞÞ; ð60Þ

where M was defined in Eq. (57). This can be generalized
to any theory of hydrodynamics which probes far-equi-
librium aspects as well. In what follows, we create a local
Lyapunov function and review a few techniques for
obtaining a global one that practically speaking is the
ultimate goal of taking this approach. In an upcoming
work, we will explore this effective partition function and
to what extent it captures the properties of the original
(relativistic) hydrodynamics.
Local Lyapunov function: We showed in the previous

subsection that the dynamical ODEs in Eq. (54) limit to a
2D autonomous system close to t ¼ 0,

dT̂
dρ

¼ 1

3
T̂
�
π̄ − 2þ 1ffiffiffi

5
p
�
;

dπ̄
dρ

¼ −
4π̄

3

�
2ffiffiffi
5

p þ π̄

�
−
T̂
c

�
π̄ þ 1ffiffiffi

5
p
�
; ð61Þ

where (0,0) is an exponentially asymptotically stable
fixed point similarly to (0,0,0) being the same for the
3D autonomous system.
A local Lyapunov function V locðT̂; π̄; tÞ can estimate the

basin of attraction near the fixed point (0,0,0) of Eq. (54)
that contains the origin inside its basin. Like the global
Lyapunov function, V locðT̂; π̄; tÞ is a continuous positive-
definite scalar function V locðT̂; π̄; tÞ defined on the set
D ¼ fjtj > 0; T̂ ∈ R; π̄ ∈ Rg. V loc has continuous first-
order partial derivatives at every point of D. Here we first

13Morse theory and its complex generalization, also called
Picard-Lefschetz theory are recent attempts toward understating
the means of building this M at least in calculable cases where it
is indeed of finite dimension such as quantum mechanics and
certain quantum field theories with nice properties [76–79].

14One can think of the effective action as a Morse-Bott
functional, which satisfies dReð−SÞ/dρ ≤ 0.

15For a similar discussion on the relation between the effective
potentials and Lyapunov potential functions based on gradient
flow equations, check Ref. [80].

FAR-FROM-EQUILIBRIUM ATTRACTORS AND NONLINEAR … PHYS. REV. D 97, 044041 (2018)

044041-13



focus on a local construction of the basin of attraction,
where a local Lyapunov function V loc ¼ xTPx should exist
such that xT ¼ ðT̂; π̄; tÞ and P satisfies the Lyapunov
equation [81]

JacðFiÞTð0;0;0ÞPþ PJacðFiÞð0;0;0Þ ¼ −W;

JacðFiÞð0;0;0Þ ¼

0
B@

1
3
ð1/ ffiffiffi

5
p

− 2Þ 0 0

−1/ð ffiffiffi
5

p
cÞ −8/ð3 ffiffiffi

5
p Þ 0

0 0 −2

1
CA;

ð62Þ

for some arbitrary W > 0. Choosing W ¼ diagð1; 1; 1Þ, we
solve this equation for P and insert the resulting matrix into
the formula for V locðT̂; π̄; tÞ to obtain

V loc

α
¼ 29c2ð57

ffiffiffi
5

p
π̄2 þ 76t2 þ 24ð10þ

ffiffiffi
5

p
ÞT̂2Þ

þ 342ð10 − 7
ffiffiffi
5

p
Þcπ̄ T̂ þ27ð60 − 13

ffiffiffi
5

p
ÞT̂2; ð63Þ

where α ¼ 1
8816c2. As discussed before, along every flow

line in the basin of attraction, V loc should effectively
decrease with time; therefore

∂ρV loc

βðtÞ ¼ −58c2ð38t2ðjtj þ 1Þ þ ðjtj − 1Þ½2ðð10þ
ffiffiffi
5

p
Þπ̄ − 19ÞT̂2 − 19π̄2ð

ffiffiffi
5

p
π̄ þ 2Þ�Þ − 57cπ̄ T̂½ð5ð5

ffiffiffi
5

p
− 3Þπ̄ þ 29Þjtj

þ ð15þ 4
ffiffiffi
5

p
Þπ̄� þ 9T̂2½ðð73

ffiffiffi
5

p
− 125Þπ̄ − 38

ffiffiffi
5

p
þ 133Þjtj þ ð60

ffiffiffi
5

p
− 65Þπ̄� < 0; ð64Þ

where βðtÞ ¼ 1
2204c2ðjtjþ1Þ is a positive function. This pro-

vides the main restriction on the shape of the basin.
We note that the function V loc defines a symmetric basin

of attraction under t → −t which is consistent with
Proposition 2.9 of Ref. [75]. The two-time coordinate
patch ðT̂; π̄;�e−ρÞ does in fact tell us that from the eyes
of an observer sitting at the origin, there is a mirror
symmetric copy of the attractor, say AR, with respect to
the t ¼ 0 plane to which all the flow lines starting at t ≫ 0
will be seen to converge as well. This is simply a symmetry
of the new coordinate system. The left copy AL is depicted
in Fig. 3 along with the basin of attraction corresponding to
the Lyapunov function in Eq. (63). Finding a Lyapunov
function that captures the global basin of attraction for
nonautonomous systems of higher dimensions (>1) is in
general a hard problem and in most cases an analytic result
cannot be obtained unless the dynamical system entails
some nice properties due to hidden symmetries that could
give rise to further simplifications.
Sum-of-squares (SOS) polynomials are another recent

method developed based on global optimization for many
applications including Lyapunov stability analysis and
control theory [82]. This method attempts to find a sum
of the form

fðx ¼ x1;…; xnÞ ¼
XN
i¼0

g2i ðxÞ ≥ 0 ð65Þ

i.e., to solve an n-dimensional optimization problem for
some positive integer N where giðxÞ are all polynomials.
Here all xi depend on a time parameter ρ. If there is a λ ∈ R
that allows a quadratic expansion of fðxÞ ¼ xTPðλÞx in
terms of monomials for some n × nmatrix PðλÞ such that P
factorizes as PðλÞ ¼ QQðλÞT for a rank-N matrixQ, then f
is said to have an SOS decomposition of the form (65). For

f to be a Lyapunov function V, one more condition comes
from the fact that −dV/dρ has to be a SOS as well.
Another method that is similar in spirit to SOS pro-

gramming calls for a solution of the partial differential
equation [75,83]

FIG. 3. The local basin of attraction for the 3D system (54) for
the Gubser flow in the IS theory using the Lyapunov function
(63). The boundary of the basin is topologically isomorphic to a
deformed 2-sphere which is locally a ρ ¼ const hypersurface.
For better visibility, the basin shape and size are set by the
conditions −100 < dV loc/dρ ≤ 0 and V loc < 5 respectively,
which can be (mathematically) estimated based on for instance
a near-equilibrium energy scale of the hydrodynamical modes.
In the new coordinate system the origin (red dot) is the stable
steady state that corresponds to the point ð0; 1/ ffiffiffi

5
p

; 1Þ in the
original coordinate system and, locally speaking, all the initial
conditions chosen from the inside of this basin will yield
converging trajectories towards the origin at late times. We
remark that the heart-shaped gap mimics the asymptotics of
boundary flow lines converging to the stable fixed point from
below on the boundary of the basin of attraction in Fig. 1.
The black line represents the IS asymptotic attractor solved
numerically.
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V 0ðt;xÞ ¼ −t2 − kxk2; ð66Þ

where k::k shows the usual distance from the origin
assuming that it defines a stable fixed point for the
dynamical system. The differentiation is implemented
with respect to a flow time ρ. It has been comprehensively
shown in the literature that in various (non)linear dynami-
cal systems, global Lyapunov functions can be well
approximated by solving Eq. (66) using radial basis
functions; see for instance Ref. [81]. We leave this to a
future work and rather show a numerical plot of 2D
surfaces in the basin of attraction for different initial
values of τ in Fig. 4.
Let us summarize the key take-home lessons learned in

this section:

(1) For any value of flow time, as long as the initial
values initiate the flows in the basin of attraction, the
flow lines will always go toward the attractor.

(2) The attractor is an invariant set of numbers toward
which the flow lines evolve inside the basin of
attraction at late times. If there are no repelling fixed
points around, with an underlying regular geometry,
the rate of convergence to the attractor for all the
flows should be uniform.

(3) The flow line that begins at the saddle point located on
the boundary of the basin, goes to the attractor at the
fastest possible rate among all other flow lines because
it gets propelled by the repulsive force of this point.
For a flow starting from ðT̂ðρ0Þ; π̄ðρ0Þ; τðρ0ÞÞ, this
rate can be quantified by

FIG. 4. Basin of attraction for different initial times τ. We used as initial conditions a rectangular boundary in variables ðT̂; π̄Þ ¼
½1 × 10−4; 1� × ½−1.0; 0.4� and then chose an initial time, and let the 3D system evolve as Eq. (47). (a) In this plot the flow begins on the
boundary of the basin of attraction at τ ¼ −1, and the surfaces made out of all the flow lines merge onto the attractor before finishing up
at the stable fixed point. In plots (b), (c) and (d), there are two different behaviors observed for the initial conditions: one for when the
flows start inside the basin of attraction, in which case the system evolves toward the stable fixed point asymptotically, and the other
when the initial condition triggers the flows outside the basin of attraction, in which case the flow lines diverge. The separating blue flow
lines determine a portion of the boundary of the basin of attraction.
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r ≔
Z

∞

ρ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð∂ρT̂Þ2 þ ð∂ρπ̄Þ2 þ ð∂ρτÞ2

q
dρ; ð67Þ

which is literally the length of the curve of thevelocity
vector field or flow line.

(4) Out of all the flows starting at the same time slice,
say τ ¼ −1, the ones closer to the surrounding
saddle points will have more repelling force and
thus a faster convergence.

(5) It is not mentioned as often that the role of the basin
of attraction is important in determining the (multi)
stability and strength of the attractors as well as the
usefulness of the dynamical systems in considera-
tion even in the regimes far from (thermal) equilib-
rium. So knowing the topology and size of the basin
of attraction is necessary for the study of hydrody-
namical flows and the search for attractors per se in a
dynamical system with a stable fixed point and some
unstable fixed points would not be illuminating.
Things evolve toward stability–either quickly or
slowly—as long as they are initiated with values
in the basin of attraction.

(6) The attractor line has the fastest rate of convergence
due to the propulsion of the saddle point it starts
from and therefore naturally there is always a fast
convergence of modes nearby even in the far-from-
equilibrium regime of hydrodynamics.

(7) Any effective theory of hydrodynamics can be
written as a simple kinetic term with a Lyapunov
potential functional that describes the relevant physi-
cal modes that only belong to the basin of attraction.
In the effective field theory language, everything
outside the basin of attraction is integrated out.

IV. UNIVERSAL ASYMPTOTIC ATTRACTORS
FOR DIFFERENT DYNAMICAL MODELS

The relaxation equations of the different components of
the energy-momentum tensor derived from a particular
microscopic theory do not lead necessarily to the same
attractor. In this section we present numerical calculations
of the attractors of different hydrodynamical models and
the exact solution of the RTA Boltzmann equation.
In order to determine the attractors we follow closely the

procedure outlined in the work of Heller and Spalinski [25]
which was based on the slow-roll-down approximation
[84].16 The reader should bear in mind that the attractors
calculated in this section are asymptotical since the basin of
attraction is three dimensional as we argued in the previous
section.
The equations of IS, DNMR and aHydro can be

combined into a unique ODE for the functionAðwÞ defined
in Eq. (45), which reads as

3wðcoth2 ρ − 1 −AðwÞÞ dAðwÞ
dw

þHðAðwÞ; wÞ ¼ 0;

ð68Þ

where the functional form of HðAðwÞ; wÞ depends on the
hydrodynamical model under consideration. For the hydro-
dynamical schemes studied in this work HðAðwÞ; wÞ takes
three functional forms given by respectively

HIS ¼
4

3
ð3AðwÞ þ 2Þ2 þ 3AðwÞ þ 2

cw
−

4

15
; ð69aÞ

HDNMR ¼ 4

3
ð3AðwÞ þ 2Þ2 þ ð3AðwÞ þ 2Þ

	
1

cw
−
10

7



−

4

15
;

ð69bÞ

HaHydro ¼
4

3
ð3AðwÞ þ 2Þ2 þ ð3AðwÞ þ 2Þ

	
1

cw
−
4

3




−
5

12
þ 3

4
F ð3AðwÞ þ 2Þ: ð69cÞ

These expressions were determined using the conserva-
tion law (12) together with Eqs. (13a) and (13b) for IS and
DNMR respectively while for anisotropic hydrodynamics
we considered Eqs. (23) and (25). We note that for aHydro
it is necessary to rewrite the function (29) in terms of
AðwÞ.
When applying the slow-roll-down approximation

dA/dw ¼ 0 in Eq. (68) one needs to find the roots
of HðAðwÞ; wÞ≡ 0. We take the late-time or asymptotic
limit tanh2 ρ ∼ 1 which was explained before and it
poses no problem in the universality of the attractor due
to the exponentially fast convergence of flow lines
toward it at late times. In the case of IS and DNMR this
constraint gives two different solutions so one chooses
only the stable one AþðwÞ [25,26], which are respec-
tively given by

Aþ ¼ −
1

24

"�
16þ 3

cw

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
16þ 3

cw

�
2

− 48

�
76

15
þ 2

cw

�s #
; ð70aÞ

Aþ ¼ −
1

24

"�
82

7
þ 3

cw

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
82

7
þ 3

cw

�
2

− 48

�
232

105
þ 2

cw

�s #
: ð70bÞ

The initial condition for solving the differential
Eq. (68) for IS and DNMR is obtained by evaluating

16This is more rigorously equivalent to walking on a null line
in the vicinity of a stable fixed point.
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limw→−∞AþðwÞ≡Ai.
17 Afterwards, as mentioned

before, one simply solves Eq. (68) while taking
ρ → −∞ (and thus coth2 ρ − 1 → 0). For the case of
aHydro the initial condition is determined by finding
numerically the roots of HðAðwÞ; wÞ [Eq. (69c)] which
gives Ai ≈ −0.75. In the next subsection we discuss the
numerical solutions of Eq. (68) for each approximation
scheme.

A. Numerical results

We are now ready to discuss the numerical results for the
attractors (late-time asymptotic behavior) for each trunca-
tion scheme together with the exact attractor of the Gubser
solution (31). The exact location of the attractor was found

by following the technique explained in Ref. [35]. For
completeness we briefly explain it in Appendix B. When
solving it numerically we used ρ0 ¼ −10, which is good
enough for our purposes because this value avoids unphys-
ical behavior e.g. negative temperatures [13,85].
In Fig. 5 the asymptotic attractors (late-time tail of the

solid red line) of the IS (top left panel), DNMR (top right
panel), anisotropic hydrodynamics (bottom left panel) and
the exact solution of the Gubser flow (bottom right panel)
for a variety of initial conditions (gray lines) are shown. In
each plot we chose c ¼ 5η/s with η/s ¼ 3/ð4πÞ. The set of
initial conditions were chosen by allowing the initial
condition of the effective shear to be either prolate
(π̄ < 0 and thus P̂L < P̂⊥), or oblate (π̄ > 0 and thus
P̂L > P̂⊥). The former configuration corresponds to Ai <
−2/3 while the latter indicates Ai > −2/3. The initial
values Ai of the different asymptotic attractors (late-time
tail of the solid red line) in Fig. 5 are always below Ai <
−2/3 so that the steady-state attractor of fluids undergoing
Gubser flow corresponds to a prolate configuration. This
result is valid independently of the hydrodynamical model
and is in agreement with the methods discussed in Sec. III
since the saddle fixed points are located precisely when
π̄jρ→−∞ < 0.We also notice that independently of the theory,
prolate configurations merge faster to their corresponding

FIG. 5. Attractors for different theories (solid red line) and numerical solutions for a large set of initial conditions (solid gray lines).
The (steady state) nonequilibrium attractors shown in this figure correspond to IS (top left panel), DNMR (top right panel), aHydro
(bottom left panel) and the exact solution of the Gubser flow (bottom right panel). In each case we use c ¼ 15/ð4πÞ.

17Alternatively, one can also predict the value of the initial
condition for Aþðw → −∞Þ from the method discussed in
Sec. III. In this case one equates the value of π̄ðρ → −∞Þ at
the stable fixed point to the conservation law (12). For instance,
for c ¼ 15/ð4πÞ the values of π̄ðρ → −∞Þ at the stable fixed
points for IS and DNMR are 1/

ffiffiffi
5

p
and 15/28 − 1/28

ffiffiðp 1909/5Þ,
respectively, so Aþðρ → −∞Þ in turn takes the approximate
values −0.8157 and −0.7207 for the former and the latter
hydrodynamics model. These numbers coincide exactly with
the w → −∞ limit of Eqs. (70a)–(70b).
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attractors than the oblate ones. Furthermore, the positive-
definite condition of the transverse and longitudinal pres-
sures implies that −3/4 < AðwÞ < −1/2. The positivity of
the pressures is satisfied only by aHydro and the exact
Gubser solution and thus one cannot initialize AðwÞ below
these values. This statement was tested numerically and
explains why there are no gray lines below the early-time
line of the attractor in the bottom panels of Fig. 5. However,
for the IS and DNMR evolution equations this condition can
be slightly broken by initializing AðwÞ below the attractor
as is shown in the top panels of Fig. 5. This indicates that the
basin of attraction of IS and DNMR theories is larger than
aHydro and the exact solution while being physically
invalid. If one restricts IS and DNMR to satisfy the
positivity condition of the pressures, it would physically
shrink the phase space of initial conditions and thus, the
basin of attraction [86].
A natural question which arises in our context is, what is

the best model that matches the underlying exact micro-
scopic kinetic theory? We answer this question by plotting
in Fig. 6 the attractors of different hydrodynamical theories
together with the one obtained for the exact Gubser solution
(31). First, we observe that none of the truncated approxi-
mated schemes—DNMR and IS—are able to be in good
agreement with the exact attractor over the entire w regime
studied here. One might be at first surprised that none of the
hydrodynamical truncation schemes do work even at large
w when the system supposedly reaches its thermal state.
However, the Gubser flow does not reach this state
asymptotically since the expansion rate θ̂ ¼ 2 tanh ρ satu-
rates at large �ρ without vanishing exactly. Among these
two hydrodynamical truncation schemes, we find the IS to
be closer to the numerical values of the exact attractor than
DNMR albeit still unable to match it to high numerical

accuracy. Now, the best theory to describe the exact
attractor shown Fig. 6 is aHydro. A closer look shows
that all the hydrodynamical models are not able to match
the exact result in the small w region (−0.8≲ w≲ 2) as is
shown in the inset of Fig. 6. However, the numerical
difference between IS and aHydro with respect to the exact
result is no larger than 4% in this w interval while DNMR
deviates entirely in this regime of w. In the large or
intermediate regime, on the other hand, we verify numeri-
cally that the largest numerical deviation between the
aHydro attractor and the exact one does not exceed
0.06%. The numerical results presented here provide
conclusive proof that aHydro resums effectively the
Knudsen and inverse Reynolds numbers to all orders
independent of the initial conditions. We point out again
that the notion of “attractor solution” is ill defined and one
should not care about what occurs in the mid-range or
early-time regimes of w because the attractor is actually a
statement about the late-time asymptotics of the flow lines.
We can only say that the attractor solution is just a solution
to some system of ODEs with a given initial value that is
located exactly at the saddle point on the boundary of the
basin of attraction. But because there is one unstable and
two stable directions at this point (one of the eigenvalues of
the Jacobian matrix being positive implies an unstable
direction), then—as it is metastable—the saddle point will
initiate a flow inside the basin of attraction and finally the
attractor will absorb it. We point out that this flow line is
the fastest to converge to the stable fixed point and thus the
attractor. In general this is an invariant set of numbers that
flow lines converge to at very large w and as can be seen in
Fig. 6, even for w > 0 there is no separation between flow
lines due to the exponentially fast convergence. This is
much better than what we could have asked for from the
approximation tanh2 ρ ∼ 1 that was applied to get AðwÞ
in Eq. (68).

B. Asymptotic perturbative series expansion

The numerical comparisons between different models
discussed previously demonstrated that the IS and DNMR
theories cannot describe the exact steady-state attractor.
This failure is somehow expected since both theories are
derived from an asymptotic series expansion of the dis-
tribution function. Here we show strong evidence of the
divergence of this series by numerically solving the
recursion relations among the expansion coefficients of
an asymptotic series ansatz. These recursion relations are
derived analytically from the underlying hydrodynamical
equations of motion. We briefly comment on how to fix the
divergences by using resurgence techniques.

1. Divergence of IS and DNMR theories

Since w ∈ ð−∞;∞Þ, one can propose an asymptotic
series ansatz of the form
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FIG. 6. Asymptotic attractors of the IS (dotted green lines),
DNMR (dash-dotted blue lines), aHydro (short-dashed orange
lines) and exact Gubser solution (solid black line). For all cases
we use c ¼ 15/ð4πÞ.
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AðwÞ ¼
X∞
n¼0

Anw−n; ð71Þ

that is claimed to solve Eq. (68) in the asymptotic limit
ρ → �∞ with HðAðwÞ; wÞ given by Eqs. (69a) and (69b).
After equating this ansatz to Eq. (68) one obtains the
following recursive relations for the kth coefficient (k ≥ 2)
of the IS and DNMR series, respectively:

Xk
n¼0

ðnþ 4ÞAnAk−n þ
Ak−1

c
þ 16Ak

3
¼ 0; ð72aÞ

Xk
n¼0

ðnþ 4ÞAnAk−n þ
Ak−1

c
þ 82Ak

21
¼ 0: ð72bÞ

For the IS A0 ¼ 1
15
ð ffiffiffi

5
p

− 10Þ and A1 ¼ − 9þ2
ffiffi
5

p
61c while

for the DNMR A0 ¼ − 1

84
ffiffi
5

p ð ffiffiffiffiffiffiffiffiffiffi
1909

p þ 41
ffiffiffi
5

p Þ and

A1 ¼ − 1266þ11
ffiffiffiffiffiffiffi
9545

p
9139c . The truncation of this power series

at n ¼ 30 is sufficient for the purpose of convergence tests
in general. In Fig. 7 we present the numerical solutions of
the recursive Eqs. (72a)–(72b) for both IS and DNMR
theories when c ¼ 15/ð4πÞ. From this figure we observe
that for both of these hydrodynamical models

1 < lim
n→30

sup ðAnÞ1/n < lim
n→∞

sup ðAnÞ1/n; ð73Þ

so the root test [87] fails for the ansatz of AðwÞ [Eq. (71)]
and thus, the asymptotic series expansions of the IS and
DNMR theories are divergent. Figure 7 also indicates that
in this asymptotic regime the divergence in the DNMR case
is more severe. This is due to the new term in Eq. (69b)
which survives in the large-w limit instead of converging to
zero and thus any divergence in AðwÞ in the IS theory will
be magnified in the DNMR theory. This result also
confirms earlier numerical studies of the Gubser flow
(see for instance Fig. 3 in Ref. [13]) where it was found

that in the large-ρþ limit the DNMR solution does a poorer
job than IS when comparing the predictions of both theories
with the RTA exact solution (31).

2. Resurgence to the rescue

The true nature of the attractor from the perspective
of solving for a series solution would be unveiled by
studying the resurgent asymptotic expansions around
this solution which mimics the instanton corrections on
top of perturbation theory in quantum field theories. This
can be packaged into a formal exponential series solution
known as a trans-series which accounts for all sorts of
corrections such as exponential, logarithmic, etc. [88]. For
the system of Eqs. (34a)–(34a) with the substitution τ ¼
ð1 − e2ρÞ/ð1þ e2ρÞ an analytic solution of this sort can be
written as [89]

T̂ðeρÞ ¼ T̂ð0;0ÞðeρÞ þ σ11σ
0
2e

m1ρe−jλT̂ jeρ T̂ð1;0ÞðeρÞ
þ σ01σ

1
2e

m2ρe−jλπ̄ jeρ T̂ð0;1ÞðeρÞ þ � � �

¼
X∞

n1;n2¼0

σn11 σn22 em⃗·n⃗ρe−n⃗·λ⃗e
ρ
T̂ðn1;n2ÞðeρÞ; ð74Þ

where eρ is a good variable for the trans-series since at large
ρ, w ∼ 1/T̂ðρÞ ∼ coshðρÞ−λT̂ ∼ ðeρÞ−λT̂ from the asymptotic
solution (36), with λ⃗ ¼ ðjλT̂ j; jλπ̄jÞ ¼ ð1

3
ð2 − 1ffiffi

5
p Þ; 8/ð3 ffiffiffi

5
p ÞÞ

being the absolute value of the Lyapunov exponents of
trajectories converging to the attracting fixed point. Here,

T̂ðn1;n2Þ ¼ e−n⃗·ðm⃗þβ⃗ÞX∞
l¼0

T̂ðn1;n2Þ
l e−lρ; ð75Þ

is the formal power series and m⃗¼ðm1;m2Þ¼ð1;1Þ−Int½β⃗�
with Int½:� meaning the “integer part of” where β⃗ is a
constant real vector field whose components are the
coefficients of the term proportional to ðe−ρT̂; e−ρπ̄Þ after
linearization. σ1;2 ∈ C are the trans-series expansion
parameters and the real part of σ1 imposes the initial
condition for the temperature. Similarly, for π̄ we propose a
trans-series of the form

π̄ðeρÞ ¼ π̄ð0;0ÞðeρÞ þ σ11σ
0
2e

m1ρe−jλT̂ jeρ π̄ð1;0ÞðeρÞ
þ σ01σ

1
2e

m2ρe−jλπ̄ jeρ π̄ð0;1ÞðeρÞ þ � � �

¼
X∞

n1;n2¼0

σn11 σn22 em⃗·n⃗ρe−n⃗·λ⃗e
ρ
π̄ðn1;n2ÞðeρÞ: ð76Þ

The real part of σ2 ∈ C encodes the initial data for π̄ in
solving for the full set of trans-series solutions.
But what about the imaginary parts? In reality, the

leading large-order terms in both factorially divergent
series π̄ð0;0Þ and T̂ð0;0Þ,

FIG. 7. jAnj1/n as a function of n for both IS (black) and DNMR
(red) theories. We use c ¼ 15/ð4πÞ.
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T̂ð0;0Þ
l ∝

ðl − 1þm1Þ!
jλT̂ jlþm1

; π̄ð0;0Þl ∝
ðl − 1þm2Þ!

jλπ̄jlþm2
ð77Þ

where l → ∞, can be transformed into functions with
singularities in the complex plane that need to be dodged
via careful contour deformations. We introduce the Borel
transform,

B½T̂ð0;0Þ�ðsÞ ¼
X∞
l¼0

T̂ð0;0Þ
l sl

l!
; B½π̄ð0;0Þ�ðsÞ ¼

X∞
l¼0

π̄ð0;0Þl sl

l!

ð78Þ

that has a finite radius of convergence by construction. To
capture the divergence of the original series as a tangible
object, one performs a Borel summation of the series in
Eq. (78), of the preferred form

T ϵ½T̂ð0;0Þ�ðeρÞ ¼
Z

∞þiϵ

0

e−e
ρsB½T̂ð0;0Þ�ðsÞds;

T ϵ½π̄ð0;0Þ�ðeρÞ ¼
Z

∞þiϵ

0

e−e
ρsB½π̄ð0;0Þ�ðsÞds; ð79Þ

which are nothing but the inverse Laplace transforms of the
Borel functions. Since there are in general singularities on
the real line in the Borel plane (s plane) that capture the
divergence of the original series, there is a slight shift of the
integration contour ðϵ ¼ þ0Þ or ðϵ ¼ −0Þ and depending
on how this is qualitatively done, we would end up with a
discontinuity along the contour of integration that by the
Cauchy residue theorem would generate a pure imaginary
part once we jump from the þi0 to −i0 contour or vice
versa. This is related to the fact that the real line is simply a
“Stokes line,” and the jump associated with the disconti-
nuity across it, is called the “Stokes jump” performed by a
Stokes constant iS1 with S1 being real. These jumps are
calculated via the formula

σ⃗ðϵÞI ¼

8>><
>>:

σ⃗−I ¼ σ⃗Ið−0Þ for ϵ < 0;

σ⃗0I ¼ σ⃗Ið−0Þ þ 1
2
S1ê1 for ϵ ¼ 0;

σ⃗þI ¼ σ⃗Ið−0Þ þ S1ê1 for ϵ > 0

ð80Þ

where ê1 ¼ ð1; 0Þ and σ⃗I ¼ ðImσ1; Imσ2Þ, which was
obtained originally by a “balanced average” summation
of the formal divergent series [89]. Therefore, the reality
condition on the trans-series exactly on the positive real
axis would imply that

σ⃗0I ¼ 0 ⇒ σ⃗�I ¼
�
� 1

2
S1; 0

�
: ð81Þ

V. CONCLUSIONS

The properties of the attractors of different hydrody-
namical systems undergoing Gubser flow were studied
within relativistic kinetic theory. Our work extended
previous studies of attractors by incorporating techniques
and tools of nonlinear dynamical systems. We extensively
discussed the application of these methods to the IS
evolution equations to investigate the stability properties
of the fixed points, the flow lines around those and the
Lyapunov exponents. These techniques were proven to be
strikingly useful in the understanding of the reason behind
the impossibility of reducing the 2D system of ODEs of
each hydrodynamical scheme into a single one universally
as it was done in the Bjorken case [25]. It was shown that
this nonreduction is intrinsically related to the dimension-
ality of the basin of attraction and that the tanh ρ also acts as
an independent variable of ρ that is responsible for the extra
dimension of the phase space compared to the Bjorken
case. Inspired by the exponential asymptotic stability
and resurgent trans-series-type arguments, we defined a
natural time variable, t ¼ �e−2ρ, which was expounded in
Sec. III B 2. In this coordinate system, the observer sees
two copies of the same flow starting at t → �∞ that
approach the point (0,0,0) which is now the stable fixed
point of the system, hence making the basin symmetric
under t → −t. This method is a very well-known trick used
in usually exponentially asymptotically stable systems to
connect the basin of attraction in nonautonomous systems
to that of autonomous ones as well as compactifying the
basin in case the time dependency is in the form of an
unbounded function. It also brings the fixed point to the
origin which is crucial for the construction of Lyapunov
functions. This helped us build such a function for the IS
theory and discuss the shape of the basin of attraction at
least locally near the steady-state equilibrium. This notion
of the Lyapunov function from dynamical systems was
shown to be related to an effective-action description of
hydrodynamics motivated by Picard-Lefschetz theory.
The attractors of the IS, DNMR and aHydro models were

obtained via the slow-roll-down approximation while the
attractor associated to the Gubser RTA solution was
determined through Romatschke’s method [35]. From
the numerical comparisons between the attractors of differ-
ent theories with the exact solution we conclude that
(a) hydrodynamical models based on an asymptotic series
expansion of the distribution function (i.e., IS and DNMR)
are unable to provide a quantitative description of the
attractor of the exact solution and, (b) the best agreement
with the exact attractor is achieved by aHydro up to high
numerical accuracy. For the IS and DNMR approximation
schemes we showed that their corresponding asymptotic
solutions to the respective differential equations are diver-
gent. The origin of the divergences and how to resum them
was briefly discussed by applying resurgence techniques.

BEHTASH, CRUZ-CAMACHO, and MARTINEZ PHYS. REV. D 97, 044041 (2018)

044041-20



The success of aHydro to describe the asymptotic
attractor of the exact Gubser solution demonstrates that
this theory is able to take into account both, large inho-
mogeneities in the fluid due to collisions (quantified by the
Knudsen number) as well as big spacetime inhomogeneities
of the macroscopic fluid variables (quantified by the inverse
Reynolds number). As a matter of fact, the match between
the aHydro attractor and the exact one demonstrates that
aHydro resums the Kn and Re−1 to all orders. This
resummation is carried out by reorganizing the asymptotic
expansion series in a nonperturbative way by including the
largest momentum-space anisotropies present in the plasma
into the leading-order anisotropic distribution function.
The very common techniques in the context of nonlinear

dynamical systems presented in this work and applied to
hydrodynamics, can be extended to study a long list of
properties of other relevant more complex physical systems
than the one studied here. This list may include an
investigation of hydrodynamization processes and the
dynamics of attractors for more general nonlinear colli-
sional kernels [7,22,90], holographic models [8,14–18],
spatially nonhomogeneous expanding fluids [39] and non-
relativistic systems [51,52]. On the other hand, it is also
interesting to investigate the rich structure and topology of
the basin of attractors in turbulent flows and other chaotic
systems of interest. On a more theoretical subject, the
possibility of formulating effective actions for hydrody-
namics by exploring the analogy between the steepest
descent directions in the path integrals and the flow lines
starting at the boundary of the basin of attraction for the
attractors opens a new perspective to reformulate this old
problem. Moreover, the issues addressed in this work shed
more light on new questions that remain to be answered
within the aHydro framework. For instance, in the resur-
gence program, the attractor is understood as the leading-
order asymptotic trans-series [43,91]. This mathematical
statement together with our results suggest a highly non-
trivial relation between the nonperturbative resummation of
large Knudsen and inverse Reynolds numbers carried out
by aHydro and a certain class of solutions of the nonlinear
Boltzmann equation that can be expressed as a trans-series.
We leave these matters to future works.
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APPENDIX A: ANISOTROPIC INTEGRALS

Here we calculate the anisotropic integrals Înlq that
appear in this paper. First we define

ÎnlqðΛ̂; ξÞ ¼ hð−û · p̂Þn−l−2qðl̂ · p̂ÞlðΞ̂μνp̂μp̂νÞqia
¼
Z
p̂
ðp̂ρÞn−l−2qp̂l

η

�
p̂2
Ω

cosh2 ρ

�
q

fa: ðA1Þ

By considering the change of variables

p̂θ

cosh ρ
¼ λ sin α cos β; ðA2aÞ

p̂ϕ

cosh ρ sin θ
¼ λ sin α sin β; ðA2bÞ

p̂η ¼ λð1þ ξÞ−1/2 cos α; ðA2cÞ

one is able to factorize the integral (A1) as

ÎnlqðΛ̂; ξÞ ¼ Ĵ nðΛ̂ÞR̂nlqðξÞ; ðA3Þ

where

Ĵ nðΛ̂Þ ¼
Z

∞

0

dλ
2π2

λnþ1e−λ/Λ̂ ¼ ðnþ 1Þ!
2π2

Λ̂nþ2; ðA4Þ

R̂nlqðξÞ ¼
1

2ð1þ ξÞðn−2qÞ/2
Z

1

−1
dxð1 − x2Þqxl

× ½ð1þ ξÞð1 − x2Þ þ x2�ðn−l−2q−1Þ/2: ðA5Þ

The explicit forms of the functions R̂nlq used in this paper
are given by

R̂200ðξÞ ¼
1

2

�
1

1þ ξ
þ arctan

ffiffiffi
ξ

pffiffiffi
ξ

p
�
; ðA6aÞ

R̂220ðξÞ ¼
1

2ξ

�
−

1

1þ ξ
þ arctan

ffiffiffi
ξ

pffiffiffi
ξ

p
�
; ðA6bÞ

R̂240ðξÞ ¼
1

2ξ2

�
3þ 2ξ

1þ ξ
− 3

arctan
ffiffiffi
ξ

pffiffiffi
ξ

p
�
: ðA6cÞ

The moments Îeqnlq associated with the equilibrium distri-
bution function are obtained by considering the ξ → 0 limit
of Eq. (A3):

FAR-FROM-EQUILIBRIUM ATTRACTORS AND NONLINEAR … PHYS. REV. D 97, 044041 (2018)

044041-21



ÎeqnlqðT̂Þ≡ lim
ξ→0

ÎnlqðΛ̂; ξÞ ¼ ÎnlqðT̂; 0Þ: ðA7Þ

APPENDIX B: ATTRACTOR OF THE RTA
BOLTZMANN EQUATION FOR

THE GUBSER FLOW

The attractor for the exact solution (31) was found
by considering Romatschke’s technique [35]. For the
Gubser case the slow-roll condition, cf. Refs. [25,35,84],
dAðwÞ/dw ¼ 0 gives

1

4

	
1

ϵ̂2 tanh ρ
ðϵ̂∂2

ρϵ̂ − ð∂ρϵ̂Þ2Þ −
1

sinh2ρ

∂ρϵ̂

ϵ̂


����
ρ¼ρ0;ξ¼ξ0

¼ 0;

ðB1Þ

which is nothing but the equation for theA null line. As we
pointed out in Secs. III and IV one eliminates the ρ
dependence by considering the asymptotic behavior at
ρ → −∞. For numerical purposes it is enough to take
ρ0 ¼ −10 and thus limρ→−10 tanh ρ ≈ −1. By doing this the
terms entering in the constraint (B1) are given by

ϵ̂jρ¼−10;ξ¼ξ0
¼ Î200ðΛ̂0; ξ0Þ;

∂ρϵ̂jρ¼−10;ξ¼ξ0
¼ 3Î200ðΛ̂0; ξ0Þ − Î220ðΛ̂0; ξ0Þ;

∂2
ρϵ̂jρ¼−10;ξ¼ξ0

¼ 9Î200ðΛ̂0; ξ0Þ − 4Î220ðΛ̂0; ξ0Þ

þ Î240ðΛ̂0; ξ0Þ þ
½R̂200ðξ0Þ�1/4Λ̂0

c

× ½Î220ðΛ̂0; ξ0Þ − Îeq220ð½R̂200ðξ0Þ�1/4Λ̂0Þ�:
ðB2Þ
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