
 

Deep neural networks to enable real-time multimessenger astrophysics

Daniel George1,2,* and E. A. Huerta1,2
1Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

2NCSA, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

(Received 18 October 2017; published 26 February 2018)

Gravitational wave astronomy has set in motion a scientific revolution. To further enhance the science
reach of this emergent field of research, there is a pressing need to increase the depth and speed of the
algorithms used to enable these ground-breaking discoveries. We introduce Deep Filtering—a new
scalable machine learning method for end-to-end time-series signal processing. Deep Filtering is
based on deep learning with two deep convolutional neural networks, which are designed for classification
and regression, to detect gravitational wave signals in highly noisy time-series data streams and also
estimate the parameters of their sources in real time. Acknowledging that some of the most sensitive
algorithms for the detection of gravitational waves are based on implementations of matched filtering, and
that a matched filter is the optimal linear filter in Gaussian noise, the application of Deep Filtering
using whitened signals in Gaussian noise is investigated in this foundational article. The results indicate
that Deep Filtering outperforms conventional machine learning techniques, achieves similar
performance compared to matched filtering, while being several orders of magnitude faster, allowing
real-time signal processing with minimal resources. Furthermore, we demonstrate that Deep Filtering
can detect and characterize waveform signals emitted from new classes of eccentric or spin-precessing
binary black holes, even when trained with data sets of only quasicircular binary black hole waveforms.
The results presented in this article, and the recent use of deep neural networks for the identification of
optical transients in telescope data, suggests that deep learning can facilitate real-time searches of
gravitational wave sources and their electromagnetic and astroparticle counterparts. In the subsequent
article, the framework introduced herein is directly applied to identify and characterize gravitational wave
events in real LIGO data.

DOI: 10.1103/PhysRevD.97.044039

I. INTRODUCTION

Gravitational wave (GW) astrophysics is a well-
established field of research. To date, the Advanced
Laser Interferometer Gravitational Wave Observatory
(aLIGO) detectors [1,2] have detected five GW events
from binary black hole (BBH) mergers that are consistent
with Einstein’s general relativity predictions [3–7].
By the end of aLIGO’s second discovery campaign (O2),

the European advanced Virgo (aVirgo) detector [8] joined
aLIGO, establishing the first, three-detector search for GW
sources in the advanced detector era. This international
network was critical for the detection of the fifth BBH
merger with improved sky localization, and also provided
the means to carry out new phenomenological tests of
gravity [7].
The international aLIGO-aVirgo detector network was

used for the first detection of GWs from two colliding

neutron stars (NSs), GW170817 [9–11], whichwas followed
up with broadband electromagnetic observations after sev-
eral hours [12]. Thesemultimessenger observations led to the
first direct confirmation that NS mergers are the progenitors
of gamma-ray bursts,GRB170817A [13–19], and the cosmic
factories where about half of all elements heavier than iron
are produced [12]. These major scientific breakthroughs,
worthy of the 2017 Nobel Prize in Physics, have initiated a
new era in contemporary astrophysics.
Ongoing improvements in the sensitivity of aLIGO and

aVirgo, will enable future multimessenger observations
with astronomical facilities [20–25], increasing the number
and types of GW sources, and providing new and detailed
information about the astrophysical origin, and cosmic
evolution of compact objects.
Multimessenger astrophysics is an interdisciplinary pro-

gram that brings together experimental and theoretical
physics, cosmology, fundamental physics, high-performance
computing (HPC) and high-throughput computing (HTC).
For instance, at the interface of HPC and theoretical physics,
numerical relativity (NR) simulations of Einstein’s field
equations are extensively used to validate the astrophysical

*Corresponding author.
dgeorge5@illinois.edu

PHYSICAL REVIEW D 97, 044039 (2018)

2470-0010=2018=97(4)=044039(23) 044039-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.044039&domain=pdf&date_stamp=2018-02-26
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevD.97.044039
https://doi.org/10.1103/PhysRevD.97.044039


nature of GW sources [26,27]. Furthermore, NR simulations
of NS mergers, neutron star–black hole mergers, core
collapse supernovae and other massive, relativistic systems
provide key physical insights into the physics of GWsources
that are expected to generate electromagnetic (EM) and
astroparticle counterparts [18,28–32].
On the other hand, large-scale GW data analysis has

traditionally relied on HTC resources. Flagship GW
searches have been very successful at exploiting these
resources to identify and characterize GW sources [33–36].
Within the next few years GW discovery campaigns will
bring together an international network of GW interferom-
eters, that will gather data for extended periods of time.
As the sensitivity of this detector network reaches design
sensitivity, the detection rate will continue to increase in
successive detection campaigns. Furthermore, existing low-
latency (online) matched-filtering-based algorithms cur-
rently target a four-dimensional parameter space, which
describes spin-aligned compact binary systems.1

Accelerating the offline Bayesian parameter estimation
algorithms, which typically last from several hours to a
few days, is no trivial task since they have to sample a
15-dimensional parameter space [37–40]. In light of these
challenges, there are ongoing efforts to reduce the size of
template banks used for matched-filtering-based GW
searches [41]. Based on these considerations, and realizing
that to maximize the science one can extract from GW
observations, it is essential to rapidly cover a deeper
parameter space of astrophysically motivated sources, the
GW community has been exploiting state-of-the-art HPC
facilities to increase the pool of computational resources to
carry out for large scale GW data analysis [42,43].
To further contribute to fully realize the multimessenger

astrophysics program, this article introduces a new machine
(deep) learning algorithm, Deep Filtering, which is
based on deep neural networks (DNNs) [44] to directly
process highly noisy time-series data for both classification
and regression in real time. In particular, this algorithm
consists of two deep convolutional neural networks [45]
that take time-series inputs, and are capable of detecting
and estimating parameters of GW signals whose peak
power is weaker than that of the background noise.
The main objective in developing Deep Filtering is

to complement and enhance the existing, low-latency GW
detection algorithms, such as PyCBC [33] and gstLAL
[46], to enable deeper and faster GW searches. Deep
Filtering may be applied to identify and rapidly
constrain the astrophysical parameters of GW transients.
This real-time analysis would then be followed up by
existing offline Bayesian parameter estimation pipelines
[37,38]. A targeted search of this nature can significantly

reduce the size of multidimensional template banks, ena-
bling the use of established matched-filtering searches
at a fraction of their computational cost to quantify the
significance of new GW detections. This approach would
combine the best of two approaches: the scalable nature of
DNNs with the sophistication of LIGO-Virgo detection
pipelines.
In this foundational article, we describe the key features

of Deep Filtering and carry out a systematic study of
DNNs trained using a data set of inspiral-merger-ringdown
BBH waveforms [47,48] to cover the BBH parameter space
where ground-based GW detectors are expected to have the
highest detection rate [49]. This analysis is carried out
using GW signals whitened with aLIGO’s design sensi-
tivity [50] injected into Gaussian noise. This simplified
scenario is studied in this first article to illustrate the key
ideas and new deep learning methods in a transparent
manner, and also to compare these results to a matched
filter, the optimal linear filter in Gaussian noise, which is at
the core of some of the most sensitive GW detection
pipelines [33,34]. In the subsequent article, the methods
presented here are successfully applied for the detection
and characterization of GW signals in real LIGO data [51].
The results in this article suggest that DNNs may be ideal

tools for enhancing GW analysis. In particular, DNNs are
able to interpolate between waveform templates, in a similar
manner to Gaussian process regression (GPR),2 and to
generalize to some new classes of signals beyond the
templates used for training. An important advantage of
Deep Filtering is its scalability, i.e., all the intensive
computation is diverted to the one-time training stage, after
which the data sets can be discarded, i.e., the size of the
template banks presents no limitation when using deep
learning. With existing computational resources on super-
computers, such as Blue Waters, it will be feasible to train
DNNs that target a nine-dimensional parameter space within
a few weeks. Furthermore, once trained these DNNs can be
evaluated in real time with a single CPU, and more intensive
searches over longer time periods covering a broader range
of signals can be carried out with a dedicated GPU.
The analysis presented here, contextualized with recent

work to understand and characterize aLIGO non-Gaussian
noise transients [55,56], and new deep learning applica-
tions for transient identification in large sky surveys [57]
suggests that it is feasible to create an efficient deep
learning pipeline to perform all tasks—identifying the
presence or absence of GW signals, classifying noise
transients, reconstructing the astrophysical properties of
detected GW sources, and identification of EM counter-
parts of GW events, thus paving a natural path to

1Astrophysically motivated sources describe a nine-
dimensional parameter space: two component masses, eccentric-
ity, and two three-dimensional vectors describing the spin of each
binary component.

2GPR [52–54] is a statistical tool that can serve as a
probabilistic interpolation algorithm providing information about
the training set of NR simulations needed to accurately describe a
given parameter space and generates interpolated waveforms that
match NR counterparts above any given level of accuracy.

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-2



realizing real-time multimessenger astrophysics with a
unified framework.
This article is organized as follows. Section II provides a

comprehensive overview of artificial neural networks and
deep learning, particularly focusing on convolutional neu-
ral networks in the context of time-series signal processing.
Section III describes the assumptions, data sets, and
procedure to construct the DNN-based GW analysis pipe-
line. The results are reported in Sec. IV. In Sec. V, the
immediate implications for GW astrophysics missions are
discussed. We summarize the findings and outline their
broader applications in Sec. VI.

II. NEURAL NETWORKS AND DEEP LEARNING

This section presents a brief overview of the main
concepts of deep learning, including machine learning,
artificial neural networks, and convolutional neural net-
works in the context of time-series signal processing.
The vast majority of algorithms are designed with a

specific task in mind. They require extensive modifications
before they can be reused for any other task. The term
machine learning refers to a special class of algorithms that
can learn from examples to solve new problems without
being explicitly reprogrammed. This enables cross-domain
applications of the same algorithm by training it with
different data [58]. More importantly, some of these algo-
rithms are able to tackle problems which humans can solve
intuitively but find difficult to explain using well-defined
rules; hence they are often called “artificial intelligence” [58].
The two main categories of machine learning are

supervised and unsupervised learning. In supervised learn-
ing, the algorithm learns from some data that is correctly
labeled, while unsupervised learning algorithms have to
make sense of unstructured and unlabeled data [59]. This
work focuses on an application of supervised learning,
where labeled data obtained from physics simulations is
used to train an algorithm to detect signals embedded in
noise and also estimate multiple parameters of the source.
Although traditional machine learning algorithms have

been successful in several applications, they are limited
in their ability to deal directly with raw data. Often the
data has to be simplified manually into a representation
suitable for each problem. Determining the right represen-
tation is extremely difficult and time consuming, often
requiring decades of effort even for domain experts, which
severely limits the applicability of these algorithms [58].
Representation learning is a field of machine learning
which aims to resolve this issue by creating algorithms
that can learn by themselves to find useful representations
of the raw data and extract relevant features from it
automatically for each problem [60].
Deep learning is one of the most rapidly growing

subfields of machine learning, which resolves this difficulty
of feature engineering with algorithms that can find useful
representations of the raw data by extracting multiple levels

of relevant features automatically for each problem. This is
achieved by combining a computational architecture con-
taining long interconnected layers of “artificial neurons”
with powerful learning (optimization) algorithms [44,58].
These DNNs are able to capture complex nonlinear
relationships in the data by composing hierarchical internal
representations, all of which are learned automatically
during the training stage. The deepest layers are able to
learn highly abstract concepts, based on the simpler outputs
of the previous layers, to solve problems that previously
required human-level intelligence thus achieving state-of-
the-art performance for many tasks [59].

A. Artificial neural networks

Artificial neural networks (ANNs), the building blocks
of DNNs, are biologically inspired computational models
that have the capability to learn from observational data
[61]. The fundamental units of neural networks are artificial
neurons (loosely modeled after real neurons [62]), which
are based on perceptrons introduced by Rosenblatt in 1957
[63]. A perceptron takes a vector of inputs (x⃗) and computes
a weighted output with an offset known as bias. This can
be modeled by the equation fðx⃗Þ ¼ w⃗ · x⃗þ b, where the
weights (w⃗) and bias (b) are learned through training.
Minsky and Papert showed that a single perceptron has

many limitations [64]. However, it was later found that
these limitations can be overcome by using multiple layers
of interconnected perceptrons to create ANNs [59]. The
universality theorem [65] proves that ANNs with just three
layers (one hidden layer) can model any function up to any
desired level of accuracy.
Multilayer perceptrons are also known as feed-forward

neural networks because information is propagated forward
from the input layer to the output layer without internal
cycles (i.e. no feedback loops) [58]. While potentially more
powerful cyclic architectures can be constructed, such
as recurrent neural networks [58], they are often more
computationally expensive to train. Therefore, only feed-
forward neural networks are considered in this article.
An ANN usually has an input layer, one or more hidden

layers, and an output layer (shown in Fig. 1). A nonlinear
“activation” function is applied to the output of each of the
hidden layers. Without this nonlinearity, using multiple
layers would become redundant, as the network will
only be able to express linear combinations of the input.
The most commonly used nonlinear activation functions
are the logistic sigmoid, hyperbolic tan, and the rectified
linear unit (also called ReLU or ramp). It has been
empirically observed that the ramp produces the best results
for most applications [66]. This function is mathematically
expressed as maxð0; xÞ.
The key ingredient that makes ANNs useful is the

learning algorithm. Almost all neural networks used today
are trained with variants of the back-propagation algorithm
in conjunction with the gradient descent methods [59].

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-3



The idea is to propagate errors backward from the output
layer to the input layer after each evaluation of a neural
network, in order to adjust the weights of each neuron so
that the overall error is reduced in a supervised learning
problem [68]. The weights of an ANN are usually initial-
ized randomly to small values and then back propagation is
performed over multiple rounds, known as epochs, until the
errors are minimized. Stochastic gradient descent with
mini-batches [69] has been the traditional method used
for learning. This technique uses an estimate of the gradient
of the error over subsets of the training data in each iteration
to change the weights of the ANN. The magnitude of these
changes is determined by the “learning rate.” New methods
with variable learning rates such as adaptive momentum
estimation (ADAM) are becoming more popular and have
been shown empirically to achieve better results more
quickly for a wide range of problems [70].

B. Convolutional neural networks

A convolutional neural network [45] (CNN), whose
structure is inspired by studies of the visual cortex in
mammals [58], is a type of feed-forward neural network.
CNNs have been found to approach or even surpass human-
level accuracy3 at a variety of image and video processing
tasks [44,71].
The introduction of a “convolution layer,” containing a

set of neurons that share their weights, is the critical
component of these networks. Multiple convolution layers
are commonly found in DNNs, with each having a separate
set of shared weights that are learned during training. The
name comes from the fact that an output equivalent to a
convolution, or sometimes cross-correlation [58], operation
is computed with a kernel of fixed size. A convolutional
layer can also be viewed as a layer of identical neurons that

each “look” at small overlapping sections of the input,
defined as the receptive field.
The main advantage of using these layers is the ability to

reduce computational costs by having shared weights and
small kernels, thus allowing deeper networks and faster
training and evaluation speeds. Because of the shared
weights, CNNs are also able to automatically deal with
spatially translated as well as (with a fewmodifications [44])
rotated and scaled signals. In practice, multiplemodules each
consisting of a sequence of convolution and pooling (sub-
sampling) layers, followed by a nonlinearity, are used. The
pooling layers further reduce computational costs by con-
straining the size of theDNN,while alsomaking the networks
more resilient to noise and translations, thus enhancing their
ability to handle new inputs [44]. Dilated convolutions [72]
are a recent development which enables rapid aggregation of
information over larger regions by having gaps within each
of the receptive fields. In this study,we focus onCNNs as they
are the most efficient DNNs on modern hardware, allowing
fast training and evaluation (inference).

C. Time-series analysis with convolutional
neural networks

Conventional methods for digital signal processing such
asmatched filtering (cross-correlation or convolution against
a set of templates) [73] in time-domain or frequency space are
limited in their ability to scale to a large parameter space of
signal templates, as discussed in Refs. [39,41], while being
too computationally intensive for real-time parameter esti-
mation analyses [37]. Signal processing using machine
learning in the context of GW astrophysics is an emerging
field of research [55,56,74–79]. These traditional machine
learning techniques, including shallow ANNs, require
“handcrafted” features extracted from the data as inputs
rather than the rawnoisydata itself.DNNs, on the other hand,
are capable of extracting these features automatically.
Deep learning has been previously applied for the clas-

sification of glitches with spectrogram images as inputs to
CNNs [56,78,80] and unsupervised clustering of transients
[81], in the context of aLIGO. Using images as inputs is
advantageous for two reasons: (i) there are well-established
architectures of two-dimensional CNNs which have been
shown to work (GoogLeNet [82], VGG [83], ResNet [84]);
and (ii) pretrained weights are available for them, which can
speed up the training process via transfer learning while also
providing higher accuracy even for small data sets [56].
However, experiments showed that this approach would
not be optimal for detection or parameter estimation since
many signals having low signal-to-noise ratio (SNR4) are not
visible in spectrograms, as shown in Fig. 2.

FIG. 1. Diagram of a neural network. An ANN or multilayer
perceptron with one hidden layer is depicted [67]. The circles
represent neurons and arrows represent connections (weights)
between neurons. Note that each neuron has only a single output,
which branches out to connect with neurons in the next layer.

3In the context of classification, accuracy is defined as the ratio
of inputs whose labels were predicted correctly with respect to the
total number of inputs.

4Note that the standard definition of optimal matched-filtering
SNR is used in this article, as described in Ref. [85]. This SNR is
on average proportional to 12.9� 1.4 times the ratio of the
amplitude of the signal to the standard deviation of the noise for
the test set.

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-4



Theoretically, all the information about the signal is
encoded within the time series, whereas spectrograms are
lossy noninvertible representations of the original data.
Although two-dimensional CNNs are commonly used,
especially for image-related tasks, by directly feeding the
time-series data as inputs to one-dimensional CNNs, one
can obtain higher sensitivities of detection (defined as the
fraction of signals detected with respect to the total number
of signals present in the inputs) at low SNR, lower error5

rates in parameter estimation, and faster analysis speeds.
This automated feature learning allows the algorithm
to develop more optimal strategies of signal processing
than when given hand-extracted information such as
spectrograms. There has been a few attempts at signal
processing using CNNs with raw noisy time-series data in
other domains which considered estimation of a single
parameter [86,87].
This article demonstrates that DNNs can be used for

both signal detection and multiple-parameter estimation
directly from highly noisy time-series data, once trained
with templates of the expected signals, and that deep
CNNs outperform many traditional machine learning
algorithms shown in Fig. 14, and reach accuracies
comparable to matched-filtering methods. The results
show that deep learning is more computationally efficient
than matched filtering for GW analysis. Instead of
repeatedly performing overlap computations against all
templates of known signals, the CNN builds a deep
nonlinear hierarchical structure of nested convolutions,

with small kernels, that determines the parameters in a
single evaluation. Moreover, the DNNs act as an efficient
compression mechanism by learning patterns and encod-
ing all the relevant information in their weights, analogous
to a reduced-order model [88], which is significantly
smaller than the size of the training templates. Therefore,
the DNNs automatically perform an internal optimization
of the search algorithm and can also interpolate, or even
extrapolate, to new signals not included in the template
bank (unlike matched filtering).
Note that matched filtering performs the convolution of

the input data against a set of templates; therefore, it is
equivalent to a single convolution layer in a neural network,
with very long kernels corresponding to each signal in the
template bank. Therefore, Deep Filtering can be
viewed as a more efficient extension of matched filtering,
which performs template matching against a small set of
short-duration templates, which are learned automatically,
and aggregates this information in the deeper layers to
effectively model the full range of long-duration signals.

III. METHOD

As a proof of concept in this first article, we focus on
GWs from BBH mergers, which are expected to dominate
the number of GW detections with ground-based GW
detectors [49,89,90]. Note that this method can be
extended to GW signals produced by other types of
events by adding more neurons in the final layer corre-
sponding to the number of classes/parameters, changing
the size of the input layer depending on the length of the
templates, and training with template banks of these GW
signals injected into simulated or real noise.

FIG. 2. Sample of input data. The red time series is an example of the input to the deep neural network algorithm. It contains a binary
black hole agravitational waveform signal (blue), which was whitened with aLIGO’s design sensitivity and superimposed in noisy data
with SNR ¼ 7.5 (the peak power of this signal is 0.36 times the power of background noise). The component masses of the merging
black holes are 57 M⊙ and 33 M⊙, respectively. The corresponding spectrogram on the right shows that the gravitational wave signal on
the left is not visible, and thus cannot be detected by an algorithm trained for image recognition. Nevertheless, the deep neural network
detects the presence of this signal directly from the (red) time-series input with over 99% sensitivity, and reconstructs the source’s
parameters with a mean relative error of about 10%.

5The error on the test set is defined as the mean of the
magnitudes (absolute values) of the relative error in estimating
each parameter averaged over all inputs in the test set and over
each parameter.

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-5



We have divided the problem into two separate parts,
each assigned to a different DNN, so that they may be used
independently. The first network, henceforth known as the
“classifier,” will detect the presence of a signal in the input,
and will provide a confidence level for the detection. The
classes chosen for now are “True” or “False” depending on
whether or not a signal from a BBHmerger is present in the
input. The second network, referred to as the “predictor,”
will estimate the parameters of the source of the signal (in
this case, the component masses of the BBH). The predictor
is triggered when the classifier identifies a signal with a
high probability.
The system is partitioned in this manner so that, in the

future, more classes of GW transients [28,29,91], may be
added to the classifier, and separate specialized predictors
can be made for each type of signal. Moreover, categories
for various types of anomalous sources of noise, like
glitches and blips [36,80], can also be incorporated in
the classifier [56].

A. Assumptions

For this initial study, the signals are assumed to be
optimally oriented with respect to the detectors, and that the
individual spins and orbital eccentricities are zero. This
reduces the parameter space to two dimensions, namely, the
individual masses of the BBH systems, which are restricted
to lie between 5 M⊙ and 75 M⊙. Furthermore, the inputs
are constrained to have a duration of 1 second, and a
sampling rate of 8192 Hz throughout this analysis, which
was an arbitrary choice made initially, which was found to
perform well for the type of events that are considered here.
Note that the classifier will be applied to the continuous
data stream by using a sliding window of width 1 second.
However, it is straightforward to use inputs of any duration
by changing a hyperparameter corresponding to the input
size of the CNNs, which will result in the computational
cost scaling linearly with the length of the input.
Throughout this analysis, the signals are whitened using

aLIGO’s power spectral density (PSD) at the “zero-detuned
high-power” design sensitivity [50], shown in Fig. 3, to
approximate the sensitivity of LIGO at different frequen-
cies. Consideration of transient sources of detector noise
are deferred to the subsequent article. This is in line with
previous studies, which have first showcased a machine
learning algorithm for LIGO data analysis using simulated
noise [38,77,92], and then followed up with an independent
study where the algorithm is tested using real aLIGO noise
[76]. In this article, we follow a similar approach by
describing the key concepts and methods for the con-
struction of DNNs for GW data analysis in the context of
Gaussian noise, and then show in the following article how
this Deep Filtering algorithm can be directly applied
to detect and characterize GW events in real LIGO data,
which has non-Gaussian and nonstationary noise including
glitches [51].

B. Obtaining data

Supervised deep learning algorithms are more effective
when trained with large data sets [58]. Obtaining high-
quality training data has been a difficult and cumbersome
task in most applications of DNNs, such as object
recognition in images, speech and text processing, etc.
Fortunately, this issue is not faced here since one can take
advantage of scientific simulations to produce the neces-
sary data for training.
Over the last decade, sophisticated techniques have

been developed to perform accurate three-dimensional
NR simulations of merging BHs [91,93]. For the analysis
at hand, effective-one-body (EOB) [47,48] waveforms that
describe GWs emitted by quasicircular, nonspinning BBHs
are used. The final 1 second window of each template is
extracted for this analysis.
Following the standard practice in machine learning, the

data is split into separate sets for training and testing. For
the training data set, the BBHs component masses are in
the range 5 M⊙ to 75 M⊙ in steps of 1 M⊙. The testing
data set has intermediate component masses, i.e., masses
separated from values in the training data set by 0.5 M⊙.
By not having overlapping values in the training and testing
sets, one can ensure that the network is not overfitting, i.e.,
memorizing only the inputs shown to it without learning to
generalize to new inputs. The distribution of component
masses, and a template from the training and testing sets, is
shown in Fig. 4.
Subsequently, the location of the peak of each signal is

shifted randomly within an interval of 0.2 seconds in both
the training and testing sets to make the DNNs more robust
with respect to time translations. Next, different realizations
of Gaussian white noise are superimposed on top of the
signals over multiple iterations, thus amplifying the size
of the data sets. The power of the noise was adjusted
according to the desired SNR for each training session. As

FIG. 3. Sensitivity curve of aLIGO. Throughout this analysis,
the zero-detuned high-power sensitivity configuration for aLIGO
[50] is used to simulate the colored noise in the detectors by
whitening the GW signals. The amplitude spectral density (ASD)
of the noise vs frequency for this configuration is shown in the
figure.

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-6



usual, the inputs are standardized to have zero mean and
unit variance to make the training process easier [94].
The final training sets at each SNR are produced from

∼2500 templates of GWs from BBH mergers by adding
multiple batches of noise and shifting in time. It is also a
standard practice to use a validation set to monitor the
performance on unseen data during training in order to
prevent overfitting. The validation and testing sets at each
SNR are generated from a different set of ∼2500 templates
by superimposing different noise realizations.

C. Designing neural networks

Similar DNN architectures are used for both the classifier
and predictor, which demonstrates the versatility of this
method. The only difference is the addition of a softmax
layer to the classifier to obtain probability estimates as the
outputs. The strategy is to first train the predictor on the
data sets labeled with the BBH masses, and then transfer
the weights of this pretrained network to initialize the
classifier and then train it on data sets in which half of the
inputs contained an injected signal. This transfer learning
process reduces the training time required for the classifier,
while also slightly improving its accuracy at low SNR.

Overall, we designed and tested around 80 configura-
tions of DNNs ranging from one to four convolutional
layers and one to three fully connected layers (also called
linear layers) similar to Ref. [95], but modified for time-
series inputs. Among these, a design for the classifier with
three convolutional layers followed by two fully connected
layers yields good results with the fastest inference speed.
We tried adding a few recent developments such as batch
normalization [96] and dropout [97] layers. However, they
are not used in the final design as they did not provide
improvements for the simple problem that is considered
here. Note that the addition of noise to the signals during
the training process serves as a form of regularization in
itself. Many of the layers have parameters, commonly
known as hyperparameters, which are tuned manually via a
randomized trial-and-error procedure.
Depth is a hyperparameter which determines the number

of filters in each convolutional layer. The choices for depth
in the consecutive layers are 16, 32, and 64 respectively.
Kernel sizes of 16, 8, and 8 are used for the convolutional
layers and 4 for all the (max) pooling layers. Stride, which
specifies the shift between the receptive fields of adjacent
neurons, is chosen to be 1 for all the convolution layers and
4 for all the pooling layers. Dilation determines the overall
size of each receptive field, which could be larger than the
kernel size by having gaps in between. Here, it is a measure
of the temporal extend of the convolutions. Using a dilation
of 4 in the final two convolution layers improves the

FIG. 4. Distribution of data. The figure shows the distribution
of component masses of BBHs for the training and testing data
sets. The mass ratios are confined between 1 and 10, which
accounts for the missing points in the lower right corner. This
mass-ratio range is chosen because the state-of-the-art EOB
model used to create the data sets has only been validated for
these mass-ratio values. Each point represents a quasicircular,
nonspinning GW signal of 1 second duration, sampled at
8192 Hz, which is whitened with aLIGO’s expected noise
spectrum at design sensitivity. These waveforms are normalized
and translated randomly in time. Thereafter, multiple batches of
noise at each SNR are added to produce training and testing
data sets.

FIG. 5. Architecture of the deep neural network. This is the
deep dilated one-dimensional CNN, modified to take time-series
inputs, designed for prediction, which outputs two real-valued
numbers for the two component masses of the BBH system. For
classification, a softmax layer was added after the 14th layer to
obtain the probabilities for two classes, i.e., “True” or “False.”
The input is the time series sampled at 8192 Hz and the output is
either the probability of each class or the value of each parameter.
Note that the number of neurons in layer 14 can be increased to
add more categories for classification or more parameters for
prediction. The size of this CNN is about 2 MB.

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-7



performance. The final layout of the classifier DNN is
shown in Fig. 5.
Deeper networks are expected to provide further

improvements in accuracy although at the cost of slower
evaluation speed. To show this, we also designed a deeper
net, shown in Fig. 6, with four convolution layers and three
fully connected layers that had improved sensitivity for
detection and significantly better performance for param-
eter estimation. Although this design performs slightly
better, it is a factor of 5 slower on a GPU for evaluation.
This CNN has convolution layers whose kernel sizes were
16, 16, 16, and 32 with dilations 1, 2, 2, and 2 respectively.
The pooling layers all have kernel size 4 and stride 4.
A loss function (cost function) is required to compute

the error after each iteration by measuring how close the
outputs are with respect to the target values. A new loss
function, i.e., the mean absolute relative error loss, is
applied for training the predictor. For classification, the
standard cross-entropy loss function [58] is used.

D. Training strategy

Hyperparameter optimization is performed by trial and
error to design architectures of the CNNs that achieve the

best performance in terms of speed and accuracy. First, we
use Gaussian white noise without whitening the signals i.e.,
a flat PSD, to determine the optimal architectures of the
DNNs. This design was also found to be optimal for signals
whitened with the zero-detuned PSD of aLIGO. This
indicates that the same architecture will perform well on
a wide variety of PSDs. Once the best performing DNNs
are chosen, they are trained for a total of approximately
10 hours. The DNNs are designed and trained using the
neural network functionality in MATHEMATICA, based
internally on the open-source MXNet framework [98],
which utilizes the CUDA deep learning library (cuDNN)
[99] for acceleration using GPUs. The ADAM [70] method
is used as the learning algorithm. A snapshot of the training
process is shown in Fig. 7.
A new strategy was devised to reduce the training time

of DNNs, while also ensuring an optimal performance, by
starting off training the predictor on inputs having high
SNR (≥100) and then gradually increasing the noise in
each subsequent training session until a final SNR dis-
tribution randomly sampled in the range 5 ≤ SNR ≤ 15.
This process ensures that the performance can be quickly
maximized for low SNR, while remaining accurate for
signals with high SNR. For instance, 11% error (defined as
the mean of the absolute values of the relative error
averaged over all the test set elements and over each
parameter) is obtained when trained using this scheme,
with gradually decreasing SNR, and only about 21% mean
error at parameter estimation is obtained on the test set
when directly trained on the same range of SNRs without
this scheme.

FIG. 6. Architecture of the deeper neural network. This is the
deeper version of the CNN, modified to take time-series inputs,
designed for parameter estimation. The input is the time series
sampled at 8192 Hz and the output is the predicted value of each
parameter. This can be converted to a classifier by adding a
softmax layer after layer 19 to obtain the probability for a
detection. Note that the number of neurons in layer 19 can be
increased to add more categories for classification or more
parameters for prediction. The two neurons in the final layer
output the two parameters corresponding to the individual masses
of BBHs. The size of this CNN is approximately 23 MB.

FIG. 7. Visualization of training. This is a snapshot of one of
the training sessions for parameter estimation. The mean squared
error on the training set is plotted in orange and the blue curve
measures the error on the validation set.

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-8



Furthermore, the classifier performs better (with an
increase from 96 to 99% accuracy on the test set) when
its initial weights are transferred from the fully trained
predictor, i.e., the classifier is created by simply adding a
softmax layer to the trained predictor and then trained on
the data set of signals and noise. These techniques are also
useful when applying Deep Filtering for GW detec-
tion and characterization in real LIGO data [51]. Therefore,
they may also be useful for training neural networks, in
general, with noisy time-series data.

IV. RESULTS

A. Detection

Defining sensitivity as the ratio of the number of correct
detections made to the total number of inputs containing
signals, at a fixed false-alarm rate, the classifier achieved
100% sensitivity throughout the parameter space for signals
with SNR ≥ 10, and a single-detector false-alarm rate less
than 0.6%. The false-alarm rate of Deep Filtering can
be further decreased by combining the classifications on
multiple detector inputs and by computing the overlap of
the template predicted by Deep Filtering with the
input data to confirm each detection.
The left panel of Fig. 8 presents the sensitivity of

detection using the shallower DNN architecture shown
in Fig. 5. After training over the entire range of SNRs, and
tuning the single detector false-alarm rate to 0.6%, we
found that the sensitivity of detection saturates at 100% for
SNR ≥ 10, i.e., GWs with SNRs in this range are always
detected. Under the same set of assumptions, i.e., training
strategy and single-detector false-alarm rate, but now using

the deeper DNN in Fig. 6, the right panel of Fig. 8 indicates
that the sensitivity of detection saturates at 100% for
SNR ≥ 9, and performs similarly to matched filtering
throughout the SNR range used for comparison. These
results indicate that Deep Filtering can extract GW
signals weaker than the background noise.
Note that Fig. 8 showed results averaged over the BBH

parameter space under consideration. To further investigate
the performance in different regions of the parameter space,
Fig. 9 presents the sensitivity of detection, using the deeper
DNN shown in Fig. 6, for each template in the test set
assuming a fixed SNR ¼ 6. It is worth pointing out that the
sensitivity of detection for each template in the test set is
100% for SNR ≥ 10 in each region of parameter space. For
very-low-mass BBH systems, at the limit of sensitivity of
independent implementations of matched filtering, i.e.,
SNR ∼ 6 [33], the sensitivity of the classifier is relatively
lower. This is because for low-mass BBH GWs, the last
second of the signal is contained in the high-frequency
regime of the aLIGO band (∼4.4 kHz/M) beyond aLIGO’s
range of optimal sensitivity. Therefore, to attain better
sensitivity of detection for low-mass systems, the DNNs
can be trained using data sets with longer waveform
templates, which may be explored in a subsequent article.
On the other hand, the DNNs are capable of correctly
identifying high-mass BBH events. This is a promising
result, because high-mass BBH templates are short lived
and they are difficult to accurately extract and characterize
in LIGO data, as shown in Ref. [100]. In summary, Deep
Filtering performs well throughout the BBH parameter
space for GW events with SNR ≥ 10, excelling in the
detection of high-mass systems even at lower SNR.

FIG. 8. Left panel: Sensitivity of detection with smaller CNN. This is the sensitivity of the shallower classifier, shown in Fig. 5, as a
function of SNR on the test set at a fixed false-alarm rate. Note that the sensitivity was measured with the same classifier after training
once over the entire range of SNR, i.e., without specifically retraining it for each SNR. This curve saturates at a sensitivity of 100% for
SNR ≥ 10, i.e, signals with (SNR ≥ 10) are always detected. The single-detector false-alarm rate was tuned to be about 0.5% for this
classifier. Note that the optimal matched-filter SNR is on average proportional to 12.9� 1.4 times the ratio of the amplitude of the signal
to the standard deviation of the noise for the test set. Right panel: Sensitivity of detection with deeper CNN. The same as in the left panel,
but now using the deeper classifier, shown in Fig. 6. This deeper DNN now leads to a slightly increased sensitivity of detection, which
saturates at 100% for SNR ≥ 9, i.e., signals with SNR ≥ 9 are always detected. These results imply that Deep Filtering is capable
of detecting signals weaker than the background noise.

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-9



To provide a baseline for comparing the classification
results, we trained standard implementations of all com-
monly used machine learning classifiers—random forest,
support vector machine, k-nearest neighbors, hidden
Markov model, shallow neural networks, naive Bayes,
and logistic regression—along with the DNNs on a simpler
training set of 8000 elements for fixed total mass and peak
signal amplitude. It can be seen that unlike DNNs, none of
these algorithms were able to directly handle raw noisy data
even for this simple problem as shown in Fig. 10.

B. Parameter estimation

Figure 11 shows the variation in relative error against SNR
for predicting the component masses of BBH GW signals
from the test set, embedded in Gaussian noise, for each
architecture of the DNNs shown in Figs. 5 and 6. This
indicates that the predictor can measure the component
masses with an error of the same order as the spacing
between templates for SNR ≥ 13. These results show that
the deeper predictor shown in Fig. 6 consistently out-
performed matched filtering at each SNR, as shown in
the right panel of Fig. 11. For SNR ≥ 50 both predictors
could be trained to have a relative error less than 5%,
whereas the error with matched filtering using the same
templates was always greater than 11% with the given
template bank. This means that, unlike matched filtering, the
deep learning algorithm is able to automatically perform
interpolation between the known templates to predict inter-
mediate values. Furthermore, the largest relative errors were
concentrated at lower masses, because a small variation in
predicted masses leads to larger relative errors in this region.

The distribution of errors and uncertainties were esti-
mated empirically in each region of the parameter space,
and it was observed that the errors closely follow Gaussian
normal distributions for each input for SNR (≥9), thus
allowing easier characterization of uncertainties. Figure 12
presents a sample of the distribution of errors incurred in
predicting the component masses of a BBH system with
component masses (57 M⊙, 33 M⊙). The dependence of
the error with which the component masses of each
template of the test data set are recovered in each region
of the parameter space is presented in Fig. 13 using the
deeper CNN shown in Fig. 6 assuming a fixed SNR ¼ 10).
Finally, we tested the baseline performance of a variety

of common machine learning techniques including linear
regression, k-nearest neighbors, shallow neural networks,
Gaussian process regression, and random forest on the
simpler problem of predicting the mass ratio after fixing the
total mass. The results shown in Fig. 14 indicate that, unlike
DNNs, they could not predict even a single parameter
accurately when trained directly on time-series data.
Having quantified the performance of Deep

Filtering for GW signals emitted by nonspinning,
quasicircular BBH mergers, in the following section, the
ability of the DNN-based algorithm to automatically
identify new classes of signals beyond the parameter space
employed for the original training and testing procedure,
without retraining, is explored.

C. New classes of gravitational wave sources

In this section, we test the ability of Deep Filtering
to detect two distinct types of signals that were not
considered during the training stage, namely (i) moderately

FIG. 9. Sensitivity at SNR ¼ 6. The color indicates the sensi-
tivity (%) of detection at each region of parameter space in the test
set at a fixed SNR ¼ 6 using the deeper CNN shown in Fig. 6.
This indicates that for a low BBH total mass, 1 s templates may
not be sufficiently long. Note that for SNR ≥ 10, however, the
classifier achieved 100% sensitivity throughout the parameter
space.

FIG. 10. Comparison with machine learning methods for
detection. The figure compares the accuracy of different machine
learning methods for detection after training each with roughly
8000 elements, half of which contained noisy whitened signals
with a fixed peak power, less than the background noise, and
constant total mass, with the other half being pure Gaussian
noise with unit standard deviation; see Sec. A 3 for a detailed
description of this comparison. An accuracy of 50% can be
obtained by randomly guessing.

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-10



eccentric NR simulations (approximate eccentricity
(e0 ≲ 0.2 when entering the aLIGO frequency band), that
we recently generated with Einstein Toolkit—an open-
source, NR software [91]—using the Blue Waters petascale
supercomputer, and (ii) NR waveforms from the SXS
catalog [101] that describe spin-precessing, quasicircular
BBHs, with each BH having spin ≥0.5 oriented in random
directions [101]. Sample waveforms of these GW classes
are shown in Fig. 15. Since these NR simulations scale
trivially with mass, the data was enlarged by rescaling
the signals to have different total masses. Thereafter, the

templates were whitened and added to different realizations
of noise, in the same manner as before, to produce test sets.
The DNN classifiers detected all these signals with

nearly the same sensitivity as the original test set, with
100% sensitivity for SNR ≥ 10. Remarkably, the predictor
quantified the component masses of the eccentric simu-
lations for SNR ≥ 12 with a mean relative error less than
20% for mass ratios q ¼ f1; 2; 3; 4g, and less than 30% for
(q ¼ 5.5) respectively. For the spin-precessing systems that
were tested, with SNR ≥ 12, the mean error in predicting
the masses was less than 20% for q ¼ f1; 3g, respectively.

FIG. 11. Left panel: Error in parameter estimation with smaller net. This shows the mean percentage error of estimated masses on the
test sets at each SNR using the predictor DNN with three convolution layers shown in Fig. 5. Note that the DNN was trained only once
over the range of SNR and was then tested at different SNR, without retraining. A mean relative error less than 20% was obtained for
SNR ≥ 8. At high SNR, the mean error saturates at around 11%. Right panel: Error in parameter estimation with deeper net. This shows
the mean percentage error of estimated masses on the test sets at each SNR using the deeper CNN with four convolution layers shown in
Fig. 6. A mean relative error less than 15% was obtained for SNR ≥ 7. At high SNR, the mean error saturates at around 7%. Note that we
were able to optimize this predictor to have less than 3% error for very high SNR (≥50), which demonstrates the ability of Deep
Filtering to learn patterns connecting the templates and effectively interpolate to intermediate points in parameter space.

FIG. 12. P-P plot of errors in parameter estimation This is a
P-P (probability) plot of the distribution of errors in predictingm1

for test parametersm1 ¼ 57 M⊙ andm2 ¼ 33 M⊙, superimposed
with different realizations of noise at SNR ¼ 9. The best fit is a
Gaussian normal distribution with mean ¼1.5M⊙ and standard
deviation ¼4.1M⊙. The errors followed similar Gaussian dis-
tributions in other regions of the parameter space as well.

FIG. 13. Error in parameter estimation at SNR ¼ 10. This
figure shows the mean relative error (%) in predicting the
component masses for each template in the test set at a fixed
SNR ¼ 10 using the deeper CNN shown in Fig. 6.

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-11



It is worth emphasizing that there exist GW algorithms
that search for a wide range of high-SNR, short-duration
(burst) GW signals with minimal assumptions [35], i.e.,
without resorting to the use of waveform templates to
identify GW events. Indeed, these “burst” pipelines were
used to carry out the first direct detection of GWs [3,35].
These searches do not, however, attain the same sensi-
tivity as template-based searches for low-SNR and long-
duration GW signals. Other recent advances in GW data

analysis have explored the detection of spin-precessing
BBH mergers using matched-filtering-based algorithms
[33,37,39,102].
In view of the aforementioned considerations, let us

discuss the importance of these findings. First of all,
previous studies have reported that no matched-filtering
algorithm has been developed to extract continuous GW
signals from compact binaries on orbits with low to
moderate values of eccentricity, and available algorithms
to detect binaries on quasicircular orbits are suboptimal
to recover these events [103]. Recent analyses have also
made evident that existing GW detection algorithms are
not capable of accurately detecting or reconstructing the
parameters of eccentric signals [104–108].
However, when we scale the GW waveform from the

NR simulation used in the left panel of Fig. 15 to describe
BBH mergers with a mass ratio (q ¼ 5.5) and total mass
(M∈ ½50M⊙;90M⊙�), and with initial eccentricity e0¼0.2
when they enter the aLIGO band, Deep Filtering was
able to identify these signals with 100% sensitivity (for
SNR ≥ 10), and recover the masses of the system with a
mean relative error ≤30% for SNR ≥ 12. To put these
results in context, the right panel of Fig. 2 in Ref. [104],
shows that a signal of this nature will be poorly recovered
with a matched-filtering quasicircular search.
If we now consider eccentric GWsignals that are relativity

weak, i.e., SNR ≥ 10, this means that these events do not
fall into the category of loud, short-duration, events that
GW “burst” pipelines are able to recover without the use of
templates. For reference, these low-latency GW pipelines,
that use minimal assumptions, recovered short-duration
high-SNR GW events such as GW150914, but missed
long-duration low-SNR events, such as GW151226, which
was identified by the matched-filtering-based GW pipeline

FIG. 15. New types of signals. Left panel: This waveform was obtained from one of our NR simulations of eccentric BBH merger that
has a mass ratio of 5.5, a total mass of about 90 M⊙, and an initial eccentricity e0 ¼ 0.2 when it enters the aLIGO band. The Deep
Filtering pipeline successfully detected this signal, even when the total mass was scaled between 50 M⊙ and 90 M⊙, with 100%
sensitivity (for SNR ≥ 10) and predicted the component masses with a mean relative error ≤30% for SNR ≥ 12. See also Fig. 18 for
more types of eccentric waveforms that were used. Right panel: One of the spin-precessing waveforms obtained from the NR
simulations in the SXS catalog with component masses equal to 25 M⊙ each. The individual spins are each 0.6 and oriented in
unaligned directions. The DNNs also successfully detected this signal, even when the total mass was scaled between 40 M⊙ and
100 M⊙, with 100% sensitivity for SNR ≥ 10 and predicted the component masses with a mean relative error ≤20% for SNR ≥ 12. See
also Fig. 19 for more examples of spin-precessing waveforms which were tested.

FIG. 14. Comparison of machine learning methods for param-
eter estimation. The figure shows the mean relative error obtained
by various machine learning algorithms for predicting a single
parameter, i.e., mass ratio, using a training set containing about
8000 signals with fixed amplitude ¼ 0.6 added to white noise
with unit standard deviation. Note that scaling the alternate
methods to high-dimensional parameter spaces to predict multi-
ple parameters is often difficult, unlike deep learning, which is
more scalable, where neurons can be added to the final layer of
neural networks to predict each parameter.

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-12



gstLAL [4]. If we now consider that we have found similar
results for a larger set of eccentric BBH signals with mass
ratios (q ≤ 5.5) and (e0 ≤ 0.2) ten orbits before merger, then
these results imply that, in the context of stationary Gaussian
noise, Deep Filtering can detect and characterize
eccentric BBH mergers that are poorly recovered by
matched-filtering-based quasicircular searches, and whose
SNRs are low enough to not be optimally recovered by GW
detection pipelines with minimal assumptions. Results in
the subsequent article [51], show that this is also the case
when real LIGO noise is used.
This ability to generalize to new categories of signals,

without being shown any such examples, means that
DNN-based pipelines may be able to increase the depth
of existing GW detection algorithms without incurring
additional computational expense. These results provide
an incentive to develop DNNs that are also trained with
data sets of eccentric and spin-precessing GWs to further
improve the accuracy with which the Deep Filtering
algorithms can detect and characterize these events in low
latency.

D. Speed and computational cost

Furthermore, the simple classifier and predictor (in
Fig. 5) are only 2 MB in size each, yet they achieve
excellent results. The average time taken for evaluating
them per input of 1 second duration is approximately
6.7 milliseconds, and 106 microseconds using a single
CPU and GPU respectively. The deeper predictor CNN (in
Fig. 6), which is about 23 MB, achieves slightly better
accuracy at parameter estimation but takes about 85 milli-
seconds for evaluation on the CPU and 535 microseconds
on the GPU, which is still orders of magnitude faster than
real time. Note that the current deep learning frameworks
are not well optimized for CPU evaluation. For compari-
son, we estimated an evaluation time of 1.1 seconds for
time-domain matched filtering [46] on the same CPU
(using two cores) with the same template bank of clean
signals used for training; the results are shown in Fig. 16.
This fast inference rate indicates that real-time analysis can
be carried out with a single CPU or GPU, even with DNNs
that are significantly larger and trained with template banks
of millions of signals.6 Note that CNNs can be trained on
millions of inputs in a few hours using distributed training
on parallel GPUs [111]. Furthermore, the input layer of the
CNNs can be modified to consider inputs/templates of any
duration, which will result in the computational cost scaling
linearly with the input size. Therefore, even with inputs that

are 1000s long, the analysis can still be carried out in
real time.
For applying the Deep Filtering method to a

multidetector scenario, one can directly apply the DNNs
pretrained for single-detector inference separately to each
detector and check for coincident detections with similar
parameter estimates. Enforcing coincident detections
would decrease the false-alarm probability, from about
0.59% to about 0.003%. Once the Deep Filtering
pipeline detects a signal then traditional matched filtering
may be applied with a select few templates around the
estimated parameters to cross-validate the event and esti-
mate the confidence measure. Since only a few templates
need to be used with this strategy, existing challenges
to extend matched filtering for higher-dimensional GW
searches may thus be overcome, allowing real-time analysis
with minimal computational resources.

V. DISCUSSION

It was found that the DNN architecture is resilient to the
nature of the detectors’ PSD. The best-performing archi-
tecture was the same when using Gaussian noise without
whitening the signals i.e., a flat PSD, and when using
signals whitened with aLIGO’s design sensitivity. By
incorporating examples of transient detector noise in the

FIG. 16. Speed-up of analysis. The DNN-based pipeline is
many orders of magnitude faster compared to matched filtering
(cross-correlation or convolution) against the same template bank
of waveforms (tested on batches of inputs using both cores of an
Intel Core i7-6500U CPU and an inexpensive NVIDIA GeForce
GTX 1080 GPU for a fairer comparison). Note that the evaluation
time of a DNN is constant regardless of the size of training data,
whereas the time taken for matched filtering is proportional to the
number of templates being considered, i.e., exponentially propor-
tional to the number of parameters. Therefore, the speed-up of
Deep Filtering would be higher in practice, especially when
considering larger template banks over a higher-dimensional
parameter space.

6For example, a state-of-the-art CNN for image recognition
[109,110] has hundreds of layers (61 MB in size) and is trained
with over millions of examples to recognize thousands of
different categories of objects. This CNN can process very large
inputs, each having dimensions 224 × 224 × 3, using a single
GPU with a mean time of 6.5 milliseconds per input.

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-13



training set, the DNNs can also be taught to automatically
ignore or classify glitches. While only simple DNNs were
explored in this first study, our results show that deeper
DNNs improve the accuracy of interpolation between GW
templates for prediction as well as the sensitivity at low
SNR, while retaining real-time performance. Even though
the analysis presented in this article was carried out using
Gaussian noise, the following article [51] shows that the
key features of this method remain the same when using
real LIGO data, and that Deep Filtering is able to
learn from and adapt to the characteristics of LIGO noise,
without changing the architecture of the DNNs.
Deep learning is known to be highly scalable, over-

coming what is known as the curse of dimensionality
[58,112]. This intrinsic ability of DNNs to take advantage
of large data sets is a unique feature to enable simultaneous
GW searches over a higher-dimensional parameter
space that is beyond the reach of existing algorithms.
Furthermore, DNNs are excellent at generalizing or
extrapolating to new data. Initially, we had trained a
DNN to predict only the mass ratios at a fixed total mass.
Extending this to predict two-component masses only
required the addition of an extra neuron to the output
layer. The preliminary results in this article with simulated
data indicates that the DNNs may be able to detect and
reconstruct the parameters of eccentric and spin-precessing
compact sources that may go unnoticed with existing aLIGO
detection algorithms [103,105–107]. The extendability of
this approach to predict additional parameters such as spins,
eccentricities, etc., may also be explored. Note that there are
also emerging techniques to estimate and quantify uncer-
tainties in the parameter predictions of DNNs [113], which
may be applied to enhance this method.
This DNN algorithm requires minimal preprocessing.

In principle, aLIGO’s colored noise can be superimposed
into the training set of GW templates, along with observed
glitches. It has been recently found that deep CNNs are
capable of automatically learning to perform bandpass
filtering on raw time-series inputs [114], and that they
are excellent at suppressing highly nonstationary colored
noise [115] especially when incorporating real-time noise
characteristics [116]. This suggests that manually devised
preprocessing and whitening steps may be eliminated and
raw aLIGO data can be fed to DNNs. This would be
particularly advantageous since it is known that Fourier
transforms are the bottlenecks of aLIGO pipelines [33].
Once DNNs are trained with a given aLIGO PSD, they

can be more quickly retrained, via transfer learning, during a
detection campaign for recalibration in real time based on
the latest characteristics of each detector’s noise. Deep
learning methods can also be immediately applied through
distributed computing via citizen science campaigns such as
Einstein@Home [117] as several open-source deep learning
libraries, including MXNet, allow scalable distributed train-
ing and evaluation of neural networks simultaneously on

heterogeneous devices, including smartphones and tablets.
Low-power devices such as FPGAs and GPU chips dedi-
cated for deep learning inference [118–120] may even be
placed on the GW detectors to reduce data transfer issues and
latency in analysis.
DNNs automatically extract and compress information

by finding patterns within the training data, creating a
dimensionally reduced model [121]. The fully trained
DNNs are each only 2 MB (or 23 MB for the deeper
model) in size yet encode all the relevant information from
about 2500 GW templates (about 200 MB, before the
addition of noise) used to generate the training data. Once
trained, analyzing a second of data takes only milliseconds
with a single CPU and microseconds with a GPU. This
means that real-time GW searches could be carried out by
anyone with an average laptop computer or even a
smartphone, while big data sets can be processed rapidly
in bulk with inexpensive hardware and software optimized
for inference. The speed, power efficiency, and portability
of DNNs could allow for rapid analysis of the continuous
stream of data from GW detectors [51] or other astronomi-
cal facilities [57].

VI. CONCLUSION

The framework for signal processing presented in this
article may be applied to enhance existing low-latency
(online) GW data analysis techniques in terms of both
performance and scalability and could help in enabling
real-time multimessenger astrophysics observations in the
future. Deep CNNs were exposed to time-series template
banks of GWs, and allowed to develop their own strategies
to detect and predict source parameters for a variety of
GW signals embedded in highly noisy simulated data. The
DNN-based method introduced in this article has been
applied in Ref. [51] to build a Deep Filtering pipeline,
trained with real LIGO noise, including glitches, which
detect true GWs in real LIGO data and accurately estimate
their parameters. These results, provide an incentive to
further improve and extend Deep Filtering to target a
larger class of GW sources, incorporating glitch classifi-
cation and clustering [81], and GW denoising [79] algo-
rithms to accelerate and broaden the scope of GW searches
with aLIGO and future GW missions.
It was found that even though the DNNs were trained

using a data set of GWs that describe only quasicircular,
nonspinning BBH mergers, Deep Filtering is capable
of detecting and characterizing low-SNR GW signals that
describe nonspinning, eccentric BBH mergers, and quasi-
circular, spin-precessing BBH mergers. This provides
motivation to enhance the Deep Filtering algorithm
introduced herein to predict more parameters by including
millions of spin-precessing and eccentric templates for
training potentially using distributed computing methods in
HPC facilities.

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-14



Employing DNNs for multimessenger astrophysics
offers opportunities to harness AI computing with rapidly
emerging hardware architectures and software optimized
for deep learning. In addition, the use of state-of-the-art
HPC facilities will continue to be used to numerically
model GW sources, getting insights into the physical
processes that lead to EM signatures, while also providing
the means to continue using distributed computing to
train DNNs.
This new approach may help in enabling real-time

multimessenger observations by providing immediate
alerts for follow-up after GW events. Since deep CNNs
also excel at image processing, they have been applied
for transient identification in large sky surveys and high-
cadence surveys, respectively [57,122]. These results,
combined with the analysis presented here and in
Ref. [51] suggest an extensive scope for deep learning
techniques to develop a new framework to further the
multimessenger astrophysics program.

ACKNOWLEDGMENTS

This research is part of the Blue Waters sustained-
petascale computing project, which is supported by the
National Science Foundation, Awards No. OCI-0725070
and No. ACI-1238993 and the state of Illinois. Blue Waters
is a joint effort of the University of Illinois at Urbana-
Champaign and its National Center for Supercomputing
Applications. The eccentric numerical relativity simulations
used in this article were generated on Blue Waters with the
open-source Einstein Toolkit software. We express our
gratitude to Gabrielle Allen, Ed Seidel, Roland Haas,
Miguel Holgado, Haris Markakis, Justin Schive, Zhizhen
Zhao, other members of the NCSA Gravity Group, and
Prannoy Mupparaju for their comments and interactions and
to the many others who provided feedback. We thank Vlad
Kindratenko for granting us unrestricted access to numerous
GPUs and HPC resources in the Innovative Systems Lab at
NCSA. We are grateful to NVIDIA for their generous
donation of several Tesla P100 GPUs, which were used
in this analysis. We also acknowledge Wolfram Research for
technical assistance and for developing the software stack
used to carry out this study and draft this publication.

APPENDIX: SUPPLEMENTARY MATERIALS

MATHEMATICA [123] was used for training and testing
the DNNs and comparator methods as well as for data
processing and visualization. Detailed documentation for
all the functions mentioned in this section can be found at
https://reference.wolfram.com.

1. Preparing training and testing data

We generated inspiral-merger-ringdown GW templates
that describe BBH systems, with zero component spins,
on quasicircular orbits with the open-source EOB model
[47,48], that is implemented in LIGO’s Algorithm Library

[124], which is also used currently to generate template
banks for aLIGO analysis pipelines. For the training set, we
chose component masses from 5.75 M⊙ to 75 M⊙ in steps
of 1 M⊙ such that m1 > m2. The test set contained
intermediate masses, i.e., masses from 5.25 M⊙ to
75 M⊙ in steps of 1 M⊙. The validation set contained
intermediate masses, i.e., masses from 5 M⊙ to 75 M⊙ in
steps of 1 M⊙. We deleted points with a mass ratio greater
than 10. Each of these masses were rounded so that the
mass ratio was a multiple of 0.1. This gave the distribution
shown in Fig. 4. The EOB waveforms were generated from
an initial GW frequency of 15 Hz using a sampling rate of
8192 Hz. For this study, we used the dominant waveform
mode ðl; mÞ ¼ ð2; 2Þ. The detectors’ strain is given by
[125] hðtÞ ¼ hþðtÞFþ þ h×ðtÞF×, where Fþ;× represent
the antenna pattern of the detectors. As we had assumed
optimally oriented systems, which satisfy Fþ ¼ 1; F× ¼ 0,
only the hþ component was extracted from these templates.
We selected the final 1 second of data from each of these

waveforms and resampled them at 8192 Hz. Next, they were
all whitened by dividing with aLIGO’s design sensitivity
amplitude spectral density of noise, in Fourier space. We
used the “zero-detuned high-power” sensitivity of aLIGO,
shown in Fig. 3, which can be downloaded at Ref. [126].
Each template is a vector of 8192 real numbers labeled with
the component masses. Random examples in the final
training template bank are shown in Fig. 17. Before every
training session, each template was independently translated
to the left by up to 0.2 seconds randomly, and padded with
zeros on the right to keep the total length invariant, to
produce multiple time series with the same parameters so
that the positions of the peaks are not always at a fixed
location. The mean position of the signal peak after trans-
lations was at 0.8 s. Batches of different realizations of
Gaussian noise with standard deviations set according to the
desired SNR were added to each of these templates, and the
resulting time series were scaled to have zero mean and unit
standard deviation, before each session. Note that the
addition of noise may instead be incorporated into the
training at run time and changed automatically in each
round, to make the process more efficient.

2. Designing and training neural networks

For training both of our DNNs, the back-propagation
algorithm was performed over multiple rounds, known as
epochs, until the errors were minimized. Stochastic gra-
dient descent with mini-batches [69] has been the tradi-
tional method used for back propagation. This technique
uses an estimate of the gradient of the error over subsets of
the training data in each iteration to change the weights of
the DNN. The magnitude of these changes is determined
by the “learning rate.” Variations of this with adaptive
learning rates such as ADAM have been shown to achieve
better results more quickly [70], and therefore we chose this
method as our learning algorithm.

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-15

https://reference.wolfram.com
https://reference.wolfram.com
https://reference.wolfram.com


We employed a random trial-and-error procedure for
optimizing the hyperparameters, in which different values
of hyperparameters such as stride, depth, kernel size,
and dilation, were manually tuned for each layer and the

performance of each DNN was interactively monitored
during training as shown in Fig. 7. We did not use any zero
padding for the convolution and pooling layers, since the
sampling rate was high enough so that points near the edges

FIG. 17. Examples of training templates. This shows 28 randomly chosen examples of clean signal templates in our training data set,
obtained with the EOB code, after whitening with the aLIGO PSD but prior to the addition of noise. The original test sets contained the
same type of signals with different component masses. These signals are all produced by mergers of nonspinning, noneccentric BBHs.

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-16



were irrelevant. We experimented with the ramp (ReLU)
and tanh functions for the nonlinear activation layers and
found that the ReLU performed the best, which is typically
the case for convolutional networks [71]. A reshape layer
was added at the input in order to convert vector inputs into
a matrix with a single row which can be processed by the
convolution layers designed for image processing. These
DNNs were designed with the NetChain function and
trained with the NetTrain function in the Wolfram
Language. This neural network functionality was internally
implemented via the open-source MXNet deep learning
library [98] written in C++, which uses standard well-
established methods for training. The source code is
available at https://github.com/dmlc/mxnet.
When training, the TargetDevice was set to “GPU.” The

initial learning rate was set to 0.001 and the weights of each
neuron were automatically initialized randomly according
to the Xavier (Glorot) method [127] (and manually reset
when needed with NetInitialize). The standard
ADAM method was used, with the parameters β1 ¼ 0.93
and β2 ¼ 0.999 which are the exponential decay rates for
the first and second moment estimates respectively. L2
regularization was set to zero. The size of the mini-batches
was chosen automatically depending on the specifications
of the GPU and data sets. The loss functions were selected
to be the mean squared error for prediction and cross-
entropy loss for the detection/classification task. The
maximum number of overall batches was set to 100 000;
however, the training was often stopped earlier manually
when over-fitting was found to occur, i.e., the error on the
validation set stopped decreasing. Most of the intensive
training was done on NVIDIA Tesla P100 GPUs with
version 11 of the Wolfram Language; however, a few test
sessions were performed with NVIDIA Tesla K40, GTX
1080, and GT 940M GPUs.
For all sessions, the SNR for each time series was

randomly sampled from the range 5–10 and multiplied
with a constant factor. Initially this constant factor was set
to 20, which implies that the first session of training had
SNR ≥ 100. Then this constant factor in subsequent train-
ing rounds was lowered in decreasing step sizes until it was
1, i.e., the final SNR range was uniformly sampled between
5 and 15. For prediction, each time series was labeled with
the component masses of the BBH system that generated
the original waveforms.
For classification, we initially added batches of noise

having half this size, and the desired SNR, to the clean
templates and appended pure noise to get the same number
of elements in total for each session. The labels were
changed to “True” or “False,” depending on whether a
signal was present, for training the classifier. The weights of
the trained predictor were extracted and used to initialize the
same layers in the classifier. We initialized this classifier with
the pretrained weights of the predictor and added a softmax
layer to produce probabilities of different classes as output.

The NetDecoder function was used within the classifier to
convert the numeric vectors of probabilities to classes with
labels “True” or False.” Then we trained this network using
the same procedure with SNR ≥ 100 and slowly decreased
the SNR every round until we obtained a final SNR
distribution uniformly sampled in the range 5 to 10. The
fraction of noise in the training set was tuned by trial and
error to about 87.5% to lower the false-alarm rate to the
desired value.
Considering that all the DNNs we tested are tiny by

modern standards and only a small space of hyperpara-
meters was explored by us, we expect that higher accu-
racies over a wider range of parameters and types of signals
can be obtained by exploring more complex configurations
of DNNs, choosing more optimal hyperparameters, and
using a larger set of carefully placed training templates
covering the full range of GW signals.

3. Comparisons with other methods

Comparisons with other machine learning methods used
built-in standard implementations of these common algo-
rithms as documented in the Wolfram Language [123].
Open-source versions of these methods are also available in
libraries such as scikit-learn. Optimal parameters for each
model were chosen automatically by the Classify and
Predict functions. The time series of 1 second duration
sampled at 8192 Hz were directly used as inputs to all
methods. The mean of the absolute values of the relative
error on the test set was measured for prediction. For
classification, the accuracy on the test set was measured
using the ClassifierMeasurements function. The
steps followed are described below. To provide a fair
comparison, each method was directly given the same
raw time series as inputs. Note that it may be possible to
improve the performance of any machine learning method
by providing hand-extracted “expert” features instead or a
DNN may be used as a feature extractor for each of the
alternative methods.
For comparison with different methods for prediction

(parameter estimation), we used the same EOB waveforms
as before but fixed the total mass to be 60 M⊙ for training
and testing, to predict only the mass ratio. Thus, we used 91
templates covering mass ratios from 1 to 10 in steps of 0.1
for training and 15 templates with intermediate mass ratios
for testing. The size of this training data was enhanced by
adding different realizations of Gaussian noise, scaled by
the same total mass of 60 M⊙ and labeled with the mass
ratio. Then 88 different realizations of noise were added
to each of the training templates to produce a total of 8008
time series for training and 264 different realizations of
noise were added to each of the testing templates to obtain
3960 time series for testing. A validation set of 2640
elements was also produced by adding another 176 differ-
ent realizations of noise to each of the testing templates.
The noise was chosen to have a Gaussian distribution and a

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-17

https://github.com/dmlc/mxnet
https://github.com/dmlc/mxnet


unit standard deviation. The amplitudes of all the signals
were set to 0.6 and added to the noise to create the inputs
for training and testing. The inputs were then normalized to
have unit standard deviation and zero mean. Smaller data
sets were used because the other methods are not imple-
mented efficiently on GPUs, unlike DNNs, and therefore
the training procedure was done on a high-performance
CPU machine over several days. The predictor DNN was
initialized randomly and retrained with this new data set for
comparison. The mean relative errors we obtained with the
different methods, shown in Fig. 14, are as follows: DNN—
10.92%; shallow neural networks—49.93%; Gaussian
process regression—67.43%; linear regression—67.50%;
random forest—67.59%; k-nearest neighbors—51.18%.
For comparing the classifiers, we trained all the methods

from scratch with the same set of templates, labeled “True,”
appended with 50% pure Gaussian noise labeled “False,”
comprised of 7662 time series. The testing and validation
sets contained 3516 elements, each having 50% noise. The
ratio of the amplitude of the signals to the standard
deviation of the noise was fixed at 0.6. The classifier
DNN was also initialized randomly and retrained with this
data set. Note that this implies that DNNs can be success-
fully trained with much smaller data sets for the detection
task alone at fixed high SNR. A larger number of templates
were used in our analysis in order to perform parameter
estimation, which is a harder problem than classification
since the parameter space is continuous as opposed to a
finite discrete set of classes, and to improve the perfor-
mance at low SNR. The accuracy of these methods
obtained on the test set, shown in Fig. 14, are as follows:
DNN—99.81%; shallow neural networks—50.40; support
vector machine—51.45%; logistic regression—50.55;
random forest—50.97%; k-nearest neighbors—58.58%;
naive Bayes—50.84%; hidden Markov model—55.19%.
For both classification and prediction, shallow neural
networks refer to fully connected neural networks with
less than three hidden layers.
To measure the speed of evaluation (inference) of the

DNNs on new inputs, the AbsoluteTiming function
was used to measure the total time for the evaluation of
each method over batches of 1000 inputs and the average
time per input was computed. The benchmarks were all run
with MATHEMATICA 11, which uses the Intel MKL library,
on a Windows 10 64-bit machine with an Intel Skylake
Core i7-6500U CPU. A desktop-grade NVIDIAGTX 1080
GPU was used for measuring the speed-up of analysis with
DNNs, instead of the expensive high-performance GPUs
that were used for training, since this has a price closer to a
desktop CPU and thus provides a fair comparison against
the performance of the CPU at similar costs. The measured
times averaged over batches of inputs were 6.67 millisec-
onds and 106 microseconds per input (vector of length
8192) with the CPU and GPU respectively.
We used a standard implementation of time-domain

matched filtering (similar to Ref. [46]) with the same

template bank of clean signals by computing the cross-
correlation (which was the same as the convolution with
time-reversed templates) of an input of 1 second duration
from the test set against the same templates in the training
set using the same sampling rate. The parameters were
estimated to be those of the best matching template. The
threshold of single-detector matched-filter SNR required
for detection was tuned to be about 5.3 to have a false-alarm
rate similar to the classifier’s. Since the peak of the signal
was shifted within 0.2 seconds while training the DNNs, we
also assumed the same window for the location of the peak
for matched filtering by truncating the templates to have a
0.8 second duration (removing the part near the edges,
which does not contain the signal). The ListCorrelate
function, which uses the Intel MKL library, was used to
perform this computation and the mean time per input on
the same CPU (optimized to use both cores) over 1000
parallelized runs was measured to be about 1.1 seconds.
For timing the larger DNN deployed for the Image

Identification Project [109], we used the NetModel
function to obtain the pretrained model in version 11 of
the Wolfram Language. This DNN is based on the
Inception V2 model originally proposed in Ref. [110].
The timing of inference was done using an NVIDIA Tesla
P100 GPU on a batch of 1000 inputs, each being an RGB
image having a resolution of 224 × 224 pixels. The average
time per input for batches of 1000 images was measured to
be 6.54 milliseconds. This DNN is publicly available for
download via Ref. [128].

4. Measuring accuracy and errors

For computing the sensitivity at each SNR, we applied
the DNN classifier to time-series inputs containing the
true signals, produced by adding 10 different realizations of
noise to each of the clean templates (about 2500) in the test
set and computed the ratio of detected signals to the total
number of inputs. The SNR was varied from 2 to 17 in steps
of 0.5. Therefore, about 0.8 million seconds of data, in total,
sampled at 8192 Hz was used for constructing the sensitivity
plots. The false-alarm rate was measure by applying the
classifier to 100 000 realizations of Gaussian noise with
duration 1 s and sampling rate 8192 Hz.
For measuring the mean relative errors in prediction at

each SNR, we applied the predictor on time-series inputs
produced by adding 10 different realizations of noise to
each of the clean templates in the test set and averaged this
at each SNR. The absolute value of the relative errors in
predicting each component mass was averaged. The SNR
was varied from 2 to 17 in steps of 0.5. Thus, about
0.8 million seconds of data in total, sampled at 8192 Hz,
was also used for preparing each of these plots.
The distribution of errors for randomly chosen tem-

plates in the test set was measured after the addition of
1000 different realizations of noise to each of them at
fixed SNR. We verified that the errors closely match

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-18



Gaussian distributions using standard probability-
probability (P-P) plots at randomly chosen points in the
parameter space for SNR ≥ 9. For lower SNR, the dis-
tribution was slightly skewed. The best-fitting parameters
of the normal distribution were automatically chosen by
the ProbabilityPlot function and a random sample
is shown in Fig. 12.
Although this analysis was originally intended for

quasicircular, nonspinning binaries, we tested the perfor-
mance of the DNNs on new classes of signals without
extra training. The eccentric NR signals used in this study
were generated using the open-source Einstein Toolkit
software [129], on the Blue Waters supercomputer. For
reproducibility purposes, we are including the metadata
information of the simulations we used as auxiliary
supplementary material. A large catalog of eccentric

NR simulations will be presented in a subsequent pub-
lication. The waveforms extracted from the Einstein
Toolkit data are rendered in natural units of M, and
describe BBH systems with a total mass of 1 M⊙. All
four waveforms we used for this article are also attached
and have the identifiers E0001, E0009, E0017, E0025,
and L0020 for mass ratios 1, 2, 3, 4, and 5.5 respectively.
The first four simulations had an eccentricity of 0.1 and
the last had 0.2 when entering the LIGO band. The
parameter files that we used for our eccentric simulations
were modified versions of the open-source parameter file
[130]. We had used resolutions of 32, 36, and 40 grid
points across each BH matching resolution used in typical
production simulations. We verified that these exhibited
strong convergent behavior. Full simulation data will be
provided upon request.

FIG. 18. Examples of eccentric signals. These are the five simulations of eccentric BBH systems with different mass ratios, which we
used to test the DNNs. Each of these signals were scaled to have different total masses by stretching in time to enlarge the size of the test
set. They were produced with the open-source Einstein Toolkit software on the Blue Waters supercomputer. The initial conditions were
chosen such that the eccentricity was 0.1 for the first four simulations and 0.2 for the final simulation for each system as it enters the
aLIGO band.

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-19



As discussed before, since GW templates scale trivially
with mass, more templates were produced by scaling the
eccentric NR waveforms to have total masses between
85 M⊙ and a maximum mass depending on the mass ratio,
to ensure that the simulations provided enough data for
about 1 second and the component masses lie between
5 M⊙ and 75 M⊙, which is the range of component masses
that the predictor was originally trained for. The maximum
mass for each mass ratio was set so that the largest
component mass was 75 M⊙. We again used the real
(þ) component of the dominant ðl; mÞ ¼ ð2; 2Þ mode.
A random template at each mass ratio is shown in Fig. 18.
The mean relative errors were predicted on a test set

obtained after adding 10 000 different realizations of noise
with SNR ¼ 10 and 12 for every value of total mass for each
mass ratio. The mean of the absolute values of the relative
errors was calculated. We separately analyzed the prediction
rates for each signal, since they differed by a large rate for
different mass ratios. A step size of 0.5 M⊙ was used to vary
the total mass by stretching E0001, E0009, E0017, E0025,
and L0020. The ranges used for total masses were different
for different mass ratios according to the constraint that
individual masses should lie between 5 M⊙ and 75 M⊙. For
measuring the sensitivity of detection, we used the combined

data set of all these templates used for prediction, at a fixed
SNR of 10, each added to 10 000 realizations of noise to
create a single test set.
For testing with spin-precessing systems, we used wave-

forms extracted from four NR simulations that describe
quasicircular, spin-precessing BBH systems obtained from
the publicly available catalog of simulations performed by
the SXS Collaboration [101], hosted at https://www.black-
holes.org/waveforms/catalog.php. The full data and param-
eters for each simulation can be found at this website. The
BBH configurations we selected, labeled SXS:BBH:0050,
SXS:BBH:0053, SXS:BBH:0161, SXS:BBH:0163, re-
present compact binaries with the largest values of spin
(larger than 0.5 each) oriented in arbitrary directions, so as
to exacerbate the effect of spin precession, and serve as
strong tests of the robustness of the detection and parameter
reconstruction algorithms. Their mass ratios were 3, 3, 1,
and 1 respectively.
The spin-precessing NR waveforms we selected cor-

respond to the highest quality waveforms for each
simulation. This was found in the highest-resolution runs
(labeled with highest “Lev”). The second-order extrapo-
lation to infinite radius (N2-Extrapolated file) within
the “rhOverM_Asymptotic_GeometricUnits.h5” files was

FIG. 19. Examples of spin-precessing signals. These are the four GW simulations of spin-precessing BBHs from the SXS catalog,
which we used to test the DNNs. Each of these signals was also scaled to have different total masses by stretching in time to enlarge the
size of the test set. The individual spins of each system were higher than 0.5, and the orientation was in arbitrary directions, i.e., the spins
were not aligned or antialigned. Full details of these simulations are available at https://www.black-holes.org/waveforms/catalog.php.

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-20

https://www.black-holes.org/waveforms/catalog.php
https://www.black-holes.org/waveforms/catalog.php
https://www.black-holes.org/waveforms/catalog.php
https://www.black-holes.org/waveforms/catalog.php
https://www.black-holes.org/waveforms/catalog.php
https://www.black-holes.org/waveforms/catalog.php
https://www.black-holes.org/waveforms/catalog.php
https://www.black-holes.org/waveforms/catalog.php
https://www.black-holes.org/waveforms/catalog.php


selected. Since we assumed optimally oriented systems for
this study, we chose the þ component of the dominant
waveform mode, ðl; mÞ ¼ ð2; 2Þ, which captures the
signatures of spin precession. The total mass was again
scaled in the same manner, with the constraints on the
range of component masses and that the signal should
last 1 second. These NR simulations were longer than the
eccentric ones; therefore, the lower limit of total mass was
set to 60 M⊙. The upper limit was chosen such that, for
each mass ratio, the largest component mass was 75 M⊙.

A randomly chosen template for each system is shown
in Fig. 19.
The mean of the absolute value of the relative errors in

predicting component masses was computed separately for
the different mass ratios (1 and 3), in the same manner as
for spin-pressing systems. For each signal, 10 000 sets of
different noise realizations were added at each value of total
mass, which was varied in steps of 0.5 M⊙. The sensitivity
of detection was measured on the combined set of signals
obtained in the same manner as before.

[1] LIGO Scientific and Virgo Collaborations, Phys. Rev. Lett.
116, 131103 (2016).

[2] J. Aasi et al. (LIGO Scientific Collaboration), Classical
Quantum Gravity 32, 7 (2015).

[3] B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016).
[4] B. P. Abbott et al., Phys. Rev. Lett. 116, 241103 (2016).
[5] B. P. Abbott et al., Phys. Rev. Lett. 118, 221101 (2017).
[6] B. P. Abbott et al. (LIGO Scientific and Virgo Collabora-

tions), Astrophys. J. 851, L35 (2017).
[7] B. P. Abbott et al., Phys. Rev. Lett. 119, 141101 (2017).
[8] F. Acernese et al., Classical Quantum Gravity 32, 024001

(2015).
[9] B. P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017).

[10] B. P. Abbott et al., Living Rev. Relativity 19, 1 (2016).
[11] L. P. Singer, L. R. Price, B. Farr, A. L. Urban, C. Pankow,

S. Vitale, J. Veitch, W.M. Farr, C. Hanna, K. Cannon, T.
Downes, P. Graff, C.-J. Haster, I. Mandel, T. Sidery, and A.
Vecchio, Astrophys. J. 795, 105 (2014).

[12] B. P. Abbott et al., Astrophys. J. 848, L12 (2017).
[13] B. P. Abbott et al., Astrophys. J. Lett. 848, L13 (2017).
[14] D. Eichler, M. Livio, T. Piran, and D. N. Schramm, Nature

(London) 340, 126 (1989).
[15] B. Paczynski, Astrophys. J. Lett. 308, L43 (1986).
[16] R. Narayan, B. Paczynski, and T. Piran, Astrophys. J. Lett.

395, L83 (1992).
[17] C. S. Kochanek and T. Piran, Astrophys. J. 417, L17

(1993).
[18] C. D. Ott, Classical Quantum Gravity 26, 063001 (2009).
[19] E. S. Phinney, arXiv:0903.0098.
[20] T. Abbott et al. (Dark Energy Survey Collaboration), Mon.

Not. R. Astron. Soc. 460, 1270 (2016).
[21] A. A. Abdo et al., Astrophys. J. Suppl. Ser. 208, 17 (2013).
[22] J. A. Tyson, Proc. SPIE Int. Soc. Opt. Eng. 4836, 10

(2002).
[23] L. Amendola et al., Living Rev. Relativity 16, 6 (2013).
[24] N. Gehrels and D. Spergel (on behalf of the WFIRST SDT

and Project), J. Phys. Conf. Ser. 610, 012007 (2015).
[25] S. Adrián-Martínez et al. (Antares Collaboration, IceCube

Collaboration, LIGO Scientific Collaboration, and Virgo
Collaboration), Phys. Rev. D 93, 122010 (2016).

[26] B. P. Abbott et al., Phys. Rev. D 94, 064035 (2016).
[27] J. Healy et al., arXiv:1712.05836.

[28] P. Mösta, B. C. Mundim, J. A. Faber, R. Haas, S. C. Noble,
T. Bode, F. Löffler, C. D. Ott, C. Reisswig, and E. Schnetter,
Classical Quantum Gravity 31, 015005 (2014).

[29] R. Haas, C. D. Ott, B. Szilagyi, J. D. Kaplan, J. Lippuner,
M. A. Scheel, K. Barkett, C. D. Muhlberger, T. Dietrich,
M. D. Duez, F. Foucart, H. P. Pfeiffer, L. E. Kidder, and
S. A. Teukolsky, Phys. Rev. D 93, 124062 (2016).

[30] E. Abdikamalov, S. Gossan, A. M. DeMaio, and C. D. Ott,
Phys. Rev. D 90, 044001 (2014).

[31] L. E. Kidder, S. E. Field, F. Foucart, E. Schnetter, S. A.
Teukolsky, A. Bohn, N. Deppe, P. Diener, F. Hébert, J.
Lippuner, J. Miller, C. D. Ott, M. A. Scheel, and T.
Vincent, J. Comput. Phys. 335, 84 (2017).

[32] S. Nissanke, M. Kasliwal, and A. Georgieva, Astrophys. J.
767, 124 (2013).

[33] S. A. Usman et al., Classical Quantum Gravity 33, 215004
(2016).

[34] K. Cannon, R. Cariou, A. Chapman, M. Crispin-Ortuzar,
N. Fotopoulos, M. Frei, C. Hanna, E. Kara, D. Keppel, L.
Liao, S. Privitera, A. Searle, L. Singer, and A. Weinstein,
Astrophys. J. 748, 136 (2012).

[35] B. P. Abbott et al., Phys. Rev. D 93, 122004 (2016).
[36] N. J. Cornish and T. B. Littenberg, Classical Quantum

Gravity 32, 135012 (2015).
[37] R. Smith, S. E. Field, K. Blackburn, C.-J. Haster, M.

Pürrer, V. Raymond, and P. Schmidt, Phys. Rev. D 94,
044031 (2016).

[38] J. Veitch et al., Phys. Rev. D 91, 042003 (2015).
[39] I. Harry, S. Privitera, A. Bohé, and A. Buonanno, Phys.

Rev. D 94, 024012 (2016).
[40] T. B. Littenberg, B. Farr, S. Coughlin, and V. Kalogera,

Astrophys. J. 820, 7 (2016).
[41] N. Indik, H. Fehrmann, F. Harke, B. Krishnan, and A. B.

Nielsen, arXiv:1712.07869.
[42] E. A. Huerta, R. Haas, E. Fajardo, D. S. Katz, S. Anderson,

P. Couvares, J. Willis, T. Bouvet, J. Enos, W. T. C. Kramer,
H. W. Leong, and D. Wheeler, arXiv:1709.08767.

[43] D. Weitzel, B. Bockelman, D. A. Brown, P. Couvares, F.
Würthwein, and E. Fajardo Hernandez, arXiv:1705.06202.

[44] Y. Lecun, Y. Bengio, and G. Hinton, Nature (London) 521,
436 (2015).

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-21

https://doi.org/10.1103/PhysRevLett.116.131103
https://doi.org/10.1103/PhysRevLett.116.131103
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1103/PhysRevLett.116.241103
https://doi.org/10.1103/PhysRevLett.118.221101
https://doi.org/10.3847/2041-8213/aa9f0c
https://doi.org/10.1103/PhysRevLett.119.141101
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevLett.119.161101
https://doi.org/10.1007/lrr-2016-1
https://doi.org/10.1088/0004-637X/795/2/105
https://doi.org/10.3847/2041-8213/aa91c9
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.1038/340126a0
https://doi.org/10.1038/340126a0
https://doi.org/10.1086/184740
https://doi.org/10.1086/186493
https://doi.org/10.1086/186493
https://doi.org/10.1086/187083
https://doi.org/10.1086/187083
https://doi.org/10.1088/0264-9381/26/6/063001
http://arXiv.org/abs/0903.0098
https://doi.org/10.1093/mnras/stw641
https://doi.org/10.1093/mnras/stw641
https://doi.org/10.1088/0067-0049/208/2/17
https://doi.org/10.1117/12.456772
https://doi.org/10.1117/12.456772
https://doi.org/10.12942/lrr-2013-6
https://doi.org/10.1088/1742-6596/610/1/012007
https://doi.org/10.1103/PhysRevD.93.122010
https://doi.org/10.1103/PhysRevD.94.064035
http://arXiv.org/abs/1712.05836
https://doi.org/10.1088/0264-9381/31/1/015005
https://doi.org/10.1103/PhysRevD.93.124062
https://doi.org/10.1103/PhysRevD.90.044001
https://doi.org/10.1016/j.jcp.2016.12.059
https://doi.org/10.1088/0004-637X/767/2/124
https://doi.org/10.1088/0004-637X/767/2/124
https://doi.org/10.1088/0264-9381/33/21/215004
https://doi.org/10.1088/0264-9381/33/21/215004
https://doi.org/10.1088/0004-637X/748/2/136
https://doi.org/10.1103/PhysRevD.93.122004
https://doi.org/10.1088/0264-9381/32/13/135012
https://doi.org/10.1088/0264-9381/32/13/135012
https://doi.org/10.1103/PhysRevD.94.044031
https://doi.org/10.1103/PhysRevD.94.044031
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevD.94.024012
https://doi.org/10.1103/PhysRevD.94.024012
https://doi.org/10.3847/0004-637X/820/1/7
http://arXiv.org/abs/1712.07869
http://arXiv.org/abs/1709.08767
http://arXiv.org/abs/1705.06202
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539


[45] Y. LeCun and Y. Bengio, in The Handbook of Brain
Theory and Neural Networks, edited by M. A. Arbib (MIT,
Cambridge, MA, 1998), p. 255.

[46] C. Messick et al., Phys. Rev. D 95, 042001 (2017).
[47] A. Taracchini, A. Buonanno, Y. Pan, T. Hinderer, M.

Boyle, D. A. Hemberger, L. E. Kidder, G. Lovelace, A. H.
Mroué, H. P. Pfeiffer, M. A. Scheel, B. Szilágyi, N. W.
Taylor, and A. Zenginoglu, Phys. Rev. D 89, 061502
(2014).

[48] A. Bohé et al., Phys. Rev. D 95, 044028 (2017).
[49] K. Belczynski, D. E. Holz, T. Bulik, and R. O’Shaughnessy,

Nature (London) 534, 512 (2016).
[50] D. Shoemaker, Advanced LIGO anticipated sensitivity

curves, LIGO Document T0900288-v3, https://dcc.ligo
.org/LIGO-T0900288/public.

[51] D. George and E. A. Huerta, Phys. Lett. B 778, 64 (2018).
[52] D. J. C. Mackay, Information Theory, Inference and

Learning Algorithms (Cambridge University Press,
Cambridge, England, 2003).

[53] C. J. Moore, C. P. L. Berry, A. J. K. Chua, and J. R. Gair,
Phys. Rev. D 93, 064001 (2016).

[54] C. J. Moore and J. R. Gair, Phys. Rev. Lett. 113, 251101
(2014).

[55] M. Zevin, S. Coughlin, S. Bahaadini, E. Besler, N. Rohani,
S. Allen, M. Cabero, K. Crowston, A. Katsaggelos, S.
Larson, T. K. Lee, C. Lintott, T. Littenberg, A. Lundgren,
C. Oesterlund, J. Smith, L. Trouille, and V. Kalogera,
arXiv:1611.04596.

[56] D. George, H. Shen, and E. A. Huerta, arXiv:1706.07446.
[57] N. Sedaghat and A. Mahabal, arXiv:1710.01422.
[58] I. Goodfellow, Y. Bengio, and A. Courville,Deep Learning

(MIT, Cambridge, MA, 2016).
[59] J. Schmidhuber, Neural Netw. 61, 85 (2015).
[60] Y. Bengio, A. Courville, and P. Vincent, IEEE Trans.

Pattern Anal. Mach. Intell. 35, 1798 (2013).
[61] M. Nielsen, Neural Networks and Deep Learning (2016),

http://neuralnetworksanddeeplearning.com/.
[62] D. Graupe, Principles of Artificial Neural Networks,

3rd ed. (World Scientific, Singapore, 2013).
[63] F. Rosenblatt, Psychol. Rev. 65, 386 (1958).
[64] M. Minsky and S. Papert, Perceptrons: An Introduction to

Computational Geometry (MIT, Cambridge, MA, 1969).
[65] K. Hornik, M. Stinchcombe, and H. White, Neural Netw.

2, 359 (1989).
[66] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. Lecun,

What is the best multi-stage architecture for object rec-
ognition?, in 2009 IEEE 12th International Conference on
Computer Vision, Kyoto, 2009 (IEEE, New York, 2009),
p. 2146.

[67] Wikimedia Commons: Artifical Neural Network, https://
upload.wikimedia.org/wikipedia/commons/thumb/e/e4/
Artificial_neural_network.svg/2000px-Artificial_neural_
network.svg.png.

[68] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, in
Neural Networks: Tricks of the Trade (Springer-Verlag,
Berlin, 1998), p. 9.

[69] S. Ruder, arXiv:1609.04747.
[70] D. P. Kingma and J. Ba, arXiv:1412.6980.
[71] A. Krizhevsky, I. Sutskever, and G. E. Hinton, in Advances

in Neural Information Processing Systems 25, edited by

P. Bartlett (Curran Associates, Inc., Red Hook, NY, 2012),
p. 1097.

[72] F. Yu and V. Koltun, in ICLR (2016).
[73] B. J. Owen and B. S. Sathyaprakash, Phys. Rev. D 60,

022002 (1999).
[74] P. Graff, F. Feroz, M. P. Hobson, and A. Lasenby, Mon.

Not. R. Astron. Soc. 421, 169 (2012).
[75] N. Mukund, S. Abraham, S. Kandhasamy, S. Mitra, and

N. S. Philip, Phys. Rev. D 95, 104059 (2017).
[76] J. Powell, A. Torres-Forné, R. Lynch, D. Trifirò, E. Cuoco,

M. Cavaglià, I. S. Heng, and J. A. Font, Classical Quantum
Gravity 34, 034002 (2017).

[77] J. Powell, D. Trifirò, E. Cuoco, I. S. Heng, and M.
Cavaglià, Classical Quantum Gravity 32, 215012 (2015).

[78] S. Bahaadini, N. Rohani, S. Coughlin, M. Zevin, V.
Kalogera, and A. K. Katsaggelos, arXiv:1705.00034.

[79] H. Shen, D. George, E. A. Huerta, and Z. Zhao, arXiv:
1711.09919.

[80] M. Zevin, S. Coughlin, S. Bahaadini, E. Besler, N. Rohani,
S. Allen, M. Cabero, K. Crowston, A. Katsaggelos, S.
Larson, T. K. Lee, C. Lintott, T. Littenberg, A. Lundgren,
C. Oesterlund, J. Smith, L. Trouille, and V. Kalogera,
Classical Quantum Gravity 34, 064003 (2017).

[81] D. George, H. Shen, and E. A. Huerta, arXiv:1711.07468.
[82] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, in
2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Curran Associates, Inc., Red Hook,
NY, 2015).

[83] K. Simonyan and A. Zisserman, arXiv:1409.1556.
[84] K. He, X. Zhang, S. Ren, and J. Sun, arXiv:1512.03385.
[85] B. J. Owen and B. S. Sathyaprakash, Phys. Rev. D 60,

022002 (1999).
[86] T. J. O’Shea, J. Corgan, and T. C. Clancy, Convolutional

radio modulation recognition networks, in Engineering
Applications of Neural Networks: 17th International
Conference, EANN 2016, Aberdeen, UK, September 2–5,
2016, Proceedings, edited by C. Jayne and L. Iliadis
(Springer, New York, 2016), p. 213.

[87] Y. Zheng, Q. Liu, E. Chen, Y. Ge, and J. L. Zhao, Time
series classification using multi-channels deep convolu-
tional neural networks, in Web-Age Information Manage-
ment: 15th International Conference, WAIM 2014, Macau,
China, June 16–18, 2014. Proceedings, edited by F. Li, G.
Li, S.-w. Hwang, B. Yao, and Z. Zhang (Springer,
New York, 2014), p. 298.

[88] M. Pürrer, Phys. Rev. D 93, 064041 (2016).
[89] K. Belczynski, S. Repetto, D. Holz, R. O’Shaughnessy,

T. Bulik, E. Berti, C. Fryer, and M. Dominik, Astrophys. J.
819, 108 (2016).

[90] B. P. Abbott et al., Phys. Rev. X 6, 041015 (2016).
[91] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R.

Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter, G.
Allen, M. Campanelli, and P. Laguna, Classical Quantum
Gravity 29, 115001 (2012).

[92] A. Torres-Forné, A. Marquina, J. A. Font, and J. M. Ibáñez,
Phys. Rev. D 94, 124040 (2016).

[93] A. H. Mroué, M. A. Scheel, B. Szilágyi, H. P. Pfeiffer,
M. Boyle, D. A. Hemberger, L. E. Kidder, G. Lovelace,
S. Ossokine, N. W. Taylor, A. Zenginoğlu, L. T. Buchman,

DANIEL GEORGE and E. A. HUERTA PHYS. REV. D 97, 044039 (2018)

044039-22

https://doi.org/10.1103/PhysRevD.95.042001
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.89.061502
https://doi.org/10.1103/PhysRevD.95.044028
https://doi.org/10.1038/nature18322
https://dcc.ligo.org/LIGO-T0900288/public
https://dcc.ligo.org/LIGO-T0900288/public
https://dcc.ligo.org/LIGO-T0900288/public
https://doi.org/10.1016/j.physletb.2017.12.053
https://doi.org/10.1103/PhysRevD.93.064001
https://doi.org/10.1103/PhysRevLett.113.251101
https://doi.org/10.1103/PhysRevLett.113.251101
http://arXiv.org/abs/1611.04596
http://arXiv.org/abs/1706.07446
http://arXiv.org/abs/1710.01422
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
http://neuralnetworksanddeeplearning.com/
http://neuralnetworksanddeeplearning.com/
https://doi.org/10.1037/h0042519
https://doi.org/10.1016/0893-6080(89)90020-8
https://doi.org/10.1016/0893-6080(89)90020-8
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
https://upload.wikimedia.org/wikipedia/commons/thumb/e/e4/Artificial_neural_network.svg/2000px-Artificial_neural_network.svg.png
http://arXiv.org/abs/1609.04747
http://arXiv.org/abs/1412.6980
https://doi.org/10.1103/PhysRevD.60.022002
https://doi.org/10.1103/PhysRevD.60.022002
https://doi.org/10.1111/j.1365-2966.2011.20288.x
https://doi.org/10.1111/j.1365-2966.2011.20288.x
https://doi.org/10.1103/PhysRevD.95.104059
https://doi.org/10.1088/1361-6382/34/3/034002
https://doi.org/10.1088/1361-6382/34/3/034002
https://doi.org/10.1088/0264-9381/32/21/215012
http://arXiv.org/abs/1705.00034
http://arXiv.org/abs/1711.09919
http://arXiv.org/abs/1711.09919
https://doi.org/10.1088/1361-6382/aa5cea
http://arXiv.org/abs/1711.07468
http://arXiv.org/abs/1409.1556
http://arXiv.org/abs/1512.03385
https://doi.org/10.1103/PhysRevD.60.022002
https://doi.org/10.1103/PhysRevD.60.022002
https://doi.org/10.1103/PhysRevD.93.064041
https://doi.org/10.3847/0004-637X/819/2/108
https://doi.org/10.3847/0004-637X/819/2/108
https://doi.org/10.1103/PhysRevX.6.041015
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1103/PhysRevD.94.124040


T. Chu, E. Foley, M. Giesler, R. Owen, and S. A.
Teukolsky, Phys. Rev. Lett. 111, 241104 (2013).

[94] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, Efficient
backprop, in Neural Networks: Tricks of the Trade, edited
by G. B. Orr and K.-R. Müller (Springer-Verlag, Berlin,
1998), p. 9.

[95] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Proc. IEEE
86, 2278 (1998).

[96] S. Ioffe and C. Szegedy, arXiv:1502.03167.
[97] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and

R. Salakhutdinov, J. Mach. Learn. Res. 15, 1929 (2014).
[98] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,

B. Xu, C. Zhang, and Z. Zhang, arXiv:1512.01274.
[99] S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran,

B. Catanzaro, and E. Shelhamer, arXiv:1410.0759.
[100] A. H. Nitz, Classical Quantum Gravity 35, 035016 (2018).
[101] T. Chu, H. Fong, P. Kumar, H. P. Pfeiffer, M. Boyle, D. A.

Hemberger, L. E. Kidder, M. A. Scheel, and B. Szilagyi,
Classical Quantum Gravity 33, 165001 (2016).

[102] S. Privitera, S. R. P. Mohapatra, P. Ajith, K. Cannon, N.
Fotopoulos, M. A. Frei, C. Hanna, A. J. Weinstein, and
J. T. Whelan, Phys. Rev. D 89, 024003 (2014).

[103] V. Tiwari, S. Klimenko, N. Christensen, E. A. Huerta,
S. R. P. Mohapatra, A. Gopakumar, M. Haney, P. Ajith,
S. T. McWilliams, G. Vedovato, M. Drago, F. Salemi,
G. A. Prodi, C. Lazzaro, S. Tiwari, G. Mitselmakher, and
F. Da Silva, Phys. Rev. D 93, 043007 (2016).

[104] E. A. Huerta, C. J. Moore, P. Kumar, D. George, A. J. K.
Chua, R. Haas, E. Wessel, D. Johnson, D. Glennon, A.
Rebei, A. M. Holgado, J. R. Gair, and H. P. Pfeiffer, Phys.
Rev. D 97, 024031 (2018).

[105] E. A. Huerta, P. Kumar, B. Agarwal, D. George, H.-Y.
Schive, H. P. Pfeiffer, R. Haas, W. Ren, T. Chu, M. Boyle,
D. A. Hemberger, L. E. Kidder, M. A. Scheel, and B.
Szilagyi, Phys. Rev. D 95, 024038 (2017).

[106] E. A.Huerta, P.Kumar, S. T.McWilliams,R.O’Shaughnessy,
and N. Yunes, Phys. Rev. D 90, 084016 (2014).

[107] E. A. Huerta and D. A. Brown, Phys. Rev. D 87, 127501
(2013).

[108] E. A. Huerta, S. T. McWilliams, J. R. Gair, and S. R.
Taylor, Phys. Rev. D 92, 063010 (2015),

[109] The Wolfram Language Image Identification Project,
https://www.imageidentify.com/.

[110] S. Ioffe and C. Szegedy, Proceedings of Machine Learning
Research 37, 448 (2015).

[111] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L.
Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He,
arXiv:1706.02677.

[112] Y. Bengio and Y. LeCun, in Large Scale Kernel Machines,
edited by L. Bottou, O. Chapelle, D. DeCoste, and J.
Weston (MIT, Cambridge, MA 2007).

[113] L. Perreault Levasseur, Y. D. Hezaveh, and R. H. Wechsler,
Astrophys. J. 850, L7 (2017).

[114] W. Dai, C. Dai, S. Qu, J. Li, and S. Das, arXiv:1610.00087.
[115] Y. Xu, J. Du, L. R. Dai, and C. H. Lee, IEEE/ACM

Transactions on Audio, Speech, and Language Processing
23, 7 (2015).

[116] A. Kumar and D. Florêncio, arXiv:1605.02427.
[117] H. J. Pletsch and B. Allen, Phys. Rev. Lett. 103, 181102

(2009).
[118] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,

in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (ACM,
New York, 2015), p. 161.

[119] GPU-based deep learning inference: A performance and
power analysis, https://www.nvidia.com/content/tegra/
embedded-systems/pdf/jetson_tx1_whitepaper.pdf.

[120] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz,
and W. J. Dally, SIGARCH Comput. Archit. News 44, 243
(2016).

[121] G. E. Hinton and R. R. Salakhutdinov, Science 313, 504
(2006).

[122] G. Cabrera-Vives, I. Reyes, F. Förster, P. A. Estévez, and
J.-C. Maureira, Astrophys. J. 836, 97 (2017).

[123] Wolfram Language System & Documentation Center,
https://reference.wolfram.com/language/.

[124] LSC, LSC Algorithm Library software packages LAL,
LALWRAPPER, and LALAPPS, http://www.lsc-group.phys
.uwm.edu/lal.

[125] B. S. Sathyaprakash and B. F. Schutz, Living Rev. Rela-
tivity 12, 2 (2009).

[126] D. Shoemaker, Advanced LIGO anticipated sensitivity
curves (2010), https://dcc.ligo.org/cgi-bin/DocDB/Show
Document?docid=2974.

[127] X. Glorot and Y. Bengio, Proceedings of Machine Learn-
ing Research 9, 249 (2010).

[128] NetModel, https://reference.wolfram.com/language/ref/
NetModel.html.

[129] F. Löffler, J. Faber, E. Bentivegna, T. Bode, P. Diener, R.
Haas, I. Hinder, B. C. Mundim, C. D. Ott, E. Schnetter, G.
Allen, M. Campanelli, and P. Laguna, Classical Quantum
Gravity 29, 115001 (2012), https://einsteintoolkit.org/.

[130] B. Wardell, I. Hinder, and E. Bentivegna, Simulation of
GW150914 binary black hole merger using the Einstein
Toolkit, https://doi.org/10.5281/zenodo.155394.

DEEP NEURAL NETWORKS TO ENABLE REAL-TIME … PHYS. REV. D 97, 044039 (2018)

044039-23

https://doi.org/10.1103/PhysRevLett.111.241104
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
http://arXiv.org/abs/1502.03167
http://arXiv.org/abs/1512.01274
http://arXiv.org/abs/1410.0759
https://doi.org/10.1088/1361-6382/aaa13d
https://doi.org/10.1088/0264-9381/33/16/165001
https://doi.org/10.1103/PhysRevD.89.024003
https://doi.org/10.1103/PhysRevD.93.043007
https://doi.org/10.1103/PhysRevD.97.024031
https://doi.org/10.1103/PhysRevD.97.024031
https://doi.org/10.1103/PhysRevD.95.024038
https://doi.org/10.1103/PhysRevD.90.084016
https://doi.org/10.1103/PhysRevD.87.127501
https://doi.org/10.1103/PhysRevD.87.127501
https://doi.org/10.1103/PhysRevD.92.063010
https://www.imageidentify.com/
https://www.imageidentify.com/
https://www.imageidentify.com/
http://arXiv.org/abs/1706.02677
https://doi.org/10.3847/2041-8213/aa9704
http://arXiv.org/abs/1610.00087
https://doi.org/10.1109/TASLP.2014.2364452
https://doi.org/10.1109/TASLP.2014.2364452
https://doi.org/10.1109/TASLP.2014.2364452
http://arXiv.org/abs/1605.02427
https://doi.org/10.1103/PhysRevLett.103.181102
https://doi.org/10.1103/PhysRevLett.103.181102
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://www.nvidia.com/content/tegra/embedded-systems/pdf/jetson_tx1_whitepaper.pdf
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1145/3007787.3001163
https://doi.org/10.1126/science.1127647
https://doi.org/10.1126/science.1127647
https://doi.org/10.3847/1538-4357/836/1/97
https://reference.wolfram.com/language/
https://reference.wolfram.com/language/
https://reference.wolfram.com/language/
http://www.lsc-group.phys.uwm.edu/lal
http://www.lsc-group.phys.uwm.edu/lal
http://www.lsc-group.phys.uwm.edu/lal
http://www.lsc-group.phys.uwm.edu/lal
http://www.lsc-group.phys.uwm.edu/lal
https://doi.org/10.12942/lrr-2009-2
https://doi.org/10.12942/lrr-2009-2
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=2974
https://reference.wolfram.com/language/ref/NetModel.html
https://reference.wolfram.com/language/ref/NetModel.html
https://reference.wolfram.com/language/ref/NetModel.html
https://reference.wolfram.com/language/ref/NetModel.html
https://reference.wolfram.com/language/ref/NetModel.html
https://doi.org/10.1088/0264-9381/29/11/115001
https://doi.org/10.1088/0264-9381/29/11/115001
https://einsteintoolkit.org/
https://einsteintoolkit.org/
https://doi.org/10.5281/zenodo.155394
https://doi.org/10.5281/zenodo.155394
https://doi.org/10.5281/zenodo.155394
https://doi.org/10.5281/zenodo.155394

