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A technique for translating the classical scattering function of two gravitationally interacting bodies into
a corresponding (effective one-body) Hamiltonian description has been recently introduced [Phys. Rev. D
94, 104015 (2016)]. Using this technique, we derive, for the first time, to second-order in Newton’s
constant (i.e. one classical loop) the Hamiltonian of two point masses having an arbitrary (possibly
relativistic) relative velocity. The resulting (second post-Minkowskian) Hamiltonian is found to have a
tame high-energy structure which we relate both to gravitational self-force studies of large mass-ratio
binary systems, and to the ultra high-energy quantum scattering results of Amati, Ciafaloni and Veneziano.
We derive several consequences of our second post-Minkowskian Hamiltonian: (i) the need to use special
phase-space gauges to get a tame high-energy limit; and (ii) predictions about a (rest-mass independent)
linear Regge trajectory behavior of high-angular-momenta, high-energy circular orbits. Ways of testing
these predictions by dedicated numerical simulations are indicated. We finally indicate a way to connect
our classical results to the quantum gravitational scattering amplitude of two particles, and we urge
amplitude experts to use their novel techniques to compute the two-loop scattering amplitude of scalar
masses, from which one could deduce the third post-Minkowskian effective one-body Hamiltonian.
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I. INTRODUCTION

The recent observation [1–4] of gravitational wave
signals from inspiralling and coalescing binary black holes
has been significantly helped, from the theoretical side, by
the availability of a large bank of waveform templates,
defined [5,6] within the analytical effective one-body
(EOB) formalism [7–11]. The EOB formalism combines,
in a suitably resummed format, perturbative, analytical
results on the motion and radiation of compact binaries,
with some nonperturbative information extracted from
numerical simulations of coalescing black-hole binaries
(see [12] for a review of perturbative results on binary
systems, and [13] for a review of the numerical relativity of
binary black holes). Until recently, the perturbative results
used to define the EOB conservative dynamics were mostly
based on the post-Newtonian (PN) approach to the general
relativistic two-body interaction. The conservative two-
body dynamics was derived, successively, at the second
post-Newtonian (2PN) [14,15], third post-Newtonian
(3PN) [16], and fourth post-Newtonian (4PN) [17] levels
(with a crucial 4PN contribution having been analytically
derived by black-hole perturbation theory [18]). For more
references on the derivation (and rederivations) of the PN-
expanded dynamics, and for recent progress, see, [12,19,20].

Anticipating on the needs of the upcoming era of high
signal-to-noise-ratio gravitational-wave observations, it is
important to construct theoretically improved versions of
the two-body conservative dynamics. [Here, we consider
non-spinning two-body systems of masses m1, m2.] With
this aim in mind, a novel theoretical approach to the
derivation of the general relativistic two-body interaction
(and of its EOB formulation) was recently introduced [21].
The basic idea of Ref. [21] was to derive improved versions
of the two-body dynamics from the (gauge-invariant)
scattering function Φ linking (half) the center of mass
(c.m.) classical gravitational scattering angle χ to the total
energy, Ereal ≡ ffiffiffi

s
p

, and the total angular momentum, J,
of the system.1

1

2
χ ¼ ΦðEreal; J;m1; m2; GÞ: ð1:1Þ

The (dimensionless) scattering function can be expressed as
a function of dimensionless ratios, say

1

2
χ ¼ Φðh; j; νÞ; ð1:2Þ

*damour@ihes.fr

1We add a subscript “real” to the total energy to avoid
confusion with our later use of a corresponding “effective
energy”. We shall always keep track of the factors G≡
GNewton and ℏ, while we shall set c ¼ 1 whenever we are not
directly interested in the PN expansion of our results.
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where we denoted

h≡ Ereal

M
; j≡ J

Gm1m2

¼ J
GμM

; ð1:3Þ

with

M≡m1 þm2; μ≡ m1m2

m1 þm2

;

ν≡ μ

M
¼ m1m2

ðm1 þm2Þ2
: ð1:4Þ

As 1/j ¼ Gm1m2/J, the perturbative expansion of the
(classical) scattering function in powers of the gravitational
constant G [post-Minkowskian (PM) expansion, which,
contrary to the PN one does not assume slow velocities] is
seen to be equivalent to an expansion in inverse powers of
the angular momentum:

1

2
χclassðEreal;JÞ¼

1

j
χ1ðh;νÞþ

1

j2
χ2ðh;νÞþ

1

j3
χ3ðh;νÞþ���

ð1:5Þ

Here, χ1ðh; νÞ/j is the first post-Minkowskian (1PM)
approximation of (half) the scattering function, χ2ðh; νÞ/j2
the second post-Minkowskian (2PM) one, χ3ðh; νÞ/j3 the
third post-Minkowskian (3PM) one, etc.
Reference [21] (re)derived the leading-order (LO), 1PM

approximation χ1ðh; νÞ/j to the scattering function (first
derived in [22]), emphasized its link to the corresponding
LO quantum scattering amplitude, and showed how to
transcribe it within EOB theory. [The latter transformation
is crucial for translating an information valid for hyper-
boliclike motions (scattering states) into an information
concerning ellipticlike motions (bound states), as most
relevant for gravitational-wave physics.] The generalization
of 1PM scattering to spinning bodies has been recently
worked out [23,24].
The first aim of the present work will be to extend the

results of Ref. [21] to the next-to-leading order (NLO) in
the expansion in powers of G, i.e. to the 2PM level
(OðG2Þ). This will be done by using the 2PM-level results
derived more than thirty years ago in Refs. [25–28].
As we shall discuss below, the EOB transcription of the
2PM-level scattering χ1ðh; νÞ/jþ χ2ðh; νÞ/j2 yields inter-
esting insights on the high-energy behavior of the gravi-
tational interaction, and of its EOB formulation.
The second aim of the present work will be to usher in

techniques for translating (via an EOB formulation) quan-
tum gravitational scattering results into quantities of direct
use for improving the description of the classical dynamics
of compact binaries (such as inspiralling and coalescing
binary black holes). There have been many advances in
perturbative quantum gravity (and notably high-energy
scattering), coming from various avenues, notably: string

theory [29–31], eikonal quantum field theory [32–34],
gauge-gravity duality [35–39], on-shell techniques
[40–42], and a novel leading-singularities technique
[43,44]. We shall make contact with some of these results
(notably the high-energy scattering results of Amati,
Ciafaloni and Veneziano [29,30]), and indicate what would
be the most interesting quantum scattering amplitudes to
compute to significantly improve our knowledge of the
general relativistic dynamics of two-body systems.

II. CLASSICAL TWO-BODY SCATTERING
FUNCTION AT NEXT TO LEADING ORDER

(SECOND POST-MINKOWSKIAN
APPROXIMATION)

The (classical) relativistic gravitational two-body scatter-
ing function 1

2
χclassicalðEreal; J;m1; m2;GÞ can be obtained as

a power series in G by iteratively solving the equations of
motion of the two worldlines, together with Einstein’s
gravitational field equations. Let us sketch here how the
computation (in PM perturbation theory) of the scattering
function can be naturally represented as a sum of Feynman-
like diagrams. The main purpose of the present section is to
exhibit the similarity of the latter classical scattering dia-
grams to the usual, quantum (Feynman) diagrams. It would
be interesting to study whether this similarity would allow
one to import, or translate, the improved, modern computa-
tional quantum amplitude techniques mentioned above into
corresponding, improved classical scattering computations.
The equation of motion of each worldline xμa ¼ xμaðσaÞ

(with a ¼ 1, 2) can be written (in first-order form) as the
Euler-Lagrange equations of the HamiltonianH ¼ 1

2
gαβðxÞ

pαpβ, namely

dxμa
dσa

¼ gμνðxaÞpaν;

dpaμ

dσa
¼ −

1

2
∂μgαβðxaÞpaαpaβ: ð2:1Þ

We use a mostly positive signature with, e.g., gμνpaμpaν ¼
−m2

a. Each worldline parameter σa is linked to the
corresponding proper time sa via σa ¼ sa/ma.
The equations of motion of the (contravariant) metric

gμνðxÞ are obtained by gauge-fixing the Einstein equations
Rμν − 1

2
Rgμν ¼ 8πGTμν. Using, say, harmonic coordinates,

one gets equations for gμνðxÞ≡ ημν − hμνðxÞ of the form
(in four spacetime dimensions)

□hμν ¼ −16πGSμν þOð∂∂hhþ hSÞ; ð2:2Þ

with □ ¼ ημν∂μ∂ν,

Sμν ¼ Tμν −
1

2
Tαβgαβgμν; ð2:3Þ
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and

TμνðxÞ ¼
X
a¼1;2

Z
dσap

μ
apν

a
δ4ðx − xaðσaÞÞffiffiffi

g
p ; ð2:4Þ

where pμ
a ≡ gμνpaν and g ¼ − det gμν.

The scattering function is obtained from the total change
of the 4-momenta between the infinite past and the infinite
future:

Δpaμ ¼
Z þ∞

−∞
dσa

dpaμ

dσa

¼ −
1

2

Z þ∞

−∞
dσa∂μgαβðxaÞpaαpaβ: ð2:5Þ

More precisely, the (absolute value of the) scattering angle
χ in the center of mass (c.m.) frame is related to the
magnitude of the spatial projections (in the c.m. frame)

Δp ¼ Δp1 ¼ −Δp2 of Δpaμ
2 via

sin
χ

2
¼ jΔpaj

2jpaj
¼ jΔpaj

2pc:m:
: ð2:6Þ

The integral expression (2.5) can be used as the basis of
a perturbative computation of χ. If we start by considering
the two worldlines as given, we can insert in (2.5) the
iterative solution of the field equations (2.2), say [with a
(time-symmetric) Green’s function Gðx − yÞ satisfying
□Gðx − yÞ ¼ −4πδ4ðx − yÞ]

hμνðxÞ ¼ 4G
Z

d4yGðx − yÞSμνðyÞ þOðG2Þ: ð2:7Þ

At LO in G this yields the following integral expression
for Δp1μ

Δp1μ ¼ 2G
Z

dσ1dσ2p1αp1β

× ∂μPαβ;α0β0 ðx1ðσ1Þ − x2ðσ2ÞÞp2α0p2β0

þ 2G
Z

dσ1dσ01p1αp1β∂μPαβ;α0β0 ðx1ðσ1Þ

− x1ðσ01ÞÞp1α0p1β0 þOðG2Þ ð2:8Þ

where

Pαβ;α0β0 ðx − yÞ ¼
�
ηαα

0
ηββ

0 −
1

2
ηαβηα

0β0
�
Gðx − yÞ; ð2:9Þ

denotes the graviton propagator (in x space).

It is natural to associate with the two OðG1Þ terms in
Eq. (2.8) the two Feynman-like diagrams of Fig. 1. The
crosses on the left worldline [corresponding to x1ðσ1Þ]
represent the partial derivatives ∂μ acting on the graviton
propagators. The diagram on the left corresponds to the first
integral on the right-hand side (rhs) of Eq. (2.8) (involving
a propagation of the gravitational interaction between the
two worldlines), while the diagram on the right correspond
to the second integral [involving a “gravitational loop,”
i.e. a propagation of the gravitational interaction between
the same worldline x1ðσ1Þ]. More about this below.
At second order in the iterative solution of the field

equation (2.2) (still assuming some given worldlines
xμaðσaÞ; paμðσaÞ), there will be further contributions, of
order at leastOðG2Þ, toΔp1μ, some of whose diagrammatic
representations are illustrated in Fig. 2. [The cubic vertices,
between the two worldlines, in Fig. 2 represent the cubi-
cally nonlinear gravitational interactions. The wiggly lines
represent, as in Fig. 1, the graviton propagator (2.9).]
However, this is not the complete story because the above

integral expressions for Δp1μ (graphically represented in

FIG. 1. Feynman-like diagrams for the classical gravitational
scattering at first order in G.

FIG. 2. Some of the Feynman-like diagrams for the classical
gravitational scattering at second order in G.

2We assume that we are solving the two-body problem with the
time-symmetric Green’s function Gsym ¼ 1

2
ðGret þ GadÞ, so that

the dynamics is conservative.
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Figs. 1 and 2) had assumed that the worldlines xμaðσaÞ;
paμðσaÞ were some given solutions of the (interacting)
equations of motion (2.1). [This is why they have been
drawn as curved worldlines in Figs. 1 and 2.] To convert the
latter formal perturbative expansion for (2.5) into an explicit
perturbative series for the scattering function, one needs to
complement it by a perturbative expansion of the worldlines
themselves:

xμaðσaÞ ¼ 0x
μ
aðσaÞ þG1x

μ
aðσaÞ þG2

2x
μ
aðσaÞ þ � � � ;

paμðσaÞ ¼ 0
paμðσaÞ þ G1paμðσaÞ þ G2

2
paμðσaÞ þ � � �

ð2:10Þ

The LO (OðG0Þ) worldline solution is a set of two
straight worldlines, say 0x

μ
aðσaÞ ¼ 0x

μ
að0Þ þ 0p

μ
aσa, where

0p
μ
a are constant momenta (say the incoming 4-momenta

of the particles). Inserting this LO worldline solution in
the perturbative solution (2.7) of the field equation, and
neglecting OðG2Þ corrections, yields an explicit 1PM
(OðG1Þ) metric perturbation

G1hμνðxÞ ¼ 4G
Z

d4yGðx − yÞ

×

�
0T

μνðyÞ − 1

2 0T
αβðyÞηαβημν

�
; ð2:11Þ

where

0T
μνðxÞ ¼

X
a¼1;2

Z
dσa 0p

μ
a0p

ν
aδ

4ðx − 0xaðσaÞÞ: ð2:12Þ

Inserting then the OðG1Þ solution (2.11) in the worldline
equations of motion (2.1), yieldsOðG1Þworldline equations
of motion for xμaðσaÞ ¼ 0x

μ
aðσaÞ þ G1x

μ
aðσaÞ þOðG2Þ,

namely

d1x
μ
a

dσa
¼ ημν 1paν − 1h

μνðxaÞ0paν;

d1paμ

dσa
¼ 1

2
∂μ1h

αβðxaÞ 0paα0paβ: ð2:13Þ

The OðG1Þ correction
1
paμðσaÞ to the momenta paμðσaÞ ¼

0paμðσaÞ þG1paμðσaÞ þOðG2Þ (with the boundary con-
dition that lim−∞paμðσaÞ ¼ 0paμ) is obtained as an integral,
namely

1paμðσaÞ ¼
Z

σa

−∞
dσ0a

1

2
∂μ1h

αβðxaðσ0aÞÞ0paα0paβ: ð2:14Þ

Then theOðG1Þ correction 1x
μ
aðσaÞ to theworldlinexμaðσaÞ¼

0x
μ
aðσaÞþG1x

μ
aðσaÞþOðG2Þ is obtained by integrating the

first equation (2.13) with suitable boundary conditions in the

infinite past. [Because of the ∼1/σa decrease of the rhs of
the first equation (2.13) one must separate a logarithmic term
before imposing a usual decaying boundary condition at
σa → −∞.]
The explicit, first-post-Minkowskian (1PM) [OðG1Þ]

value of the scattering angle is then obtained by computing
the σa → þ∞ limit of

1
paμðσaÞ and inserting it in Eq. (2.6).

The explicit integral expression of Δpaμ defined by the
σa → þ∞ limit of (2.14) is obtained from the previous
result (2.8) by replacing everywhere on the rhs xμaðσaÞ by
0x

μ
aðσaÞ ¼ 0x

μ
að0Þ þ 0p

μ
aσa, and paμðσaÞ by 0p

μ
a, where we

recall that 0p
μ
a are the constant, incoming momenta of

the particles. The latter explicit integral expression for
Δpaμ, at the 1PM order, can be vizualized by diagrams
similar to those of Fig. 1, except for the fact that the two
worldlines must now be drawn as straight worldlines
xμaðσaÞ ¼ 0x

μ
aðσaÞ ¼ 0x

μ
að0Þ þ 0p

μ
aσa. It is then shown that

(after regularization) the second (one-loop) diagram in
Fig. 1 gives a vanishing contribution, so that the 1PM
scattering angle is proportional to Gm1m2, and obtainable
from the single explicit integral (which no longer assumes
that the worldlines are known beforehand)

Δp1μ ¼ 2G
Z

dσ1dσ20p1α0p1β

× ∂μPαβ;α0β0 ð0x1ðσ1Þ − 0x2ðσ2ÞÞ0p2α00p2β0

þOðG2Þ: ð2:15Þ

The 1PM integral (2.15) can either be computed in
x-space (using the simple, x-spacevalue of the scalarGreen’s
function Gðx − yÞ ¼ δ½ðx − yÞ2�), as was done long ago in
Ref. [22], or in the Fourier domain (using GðkÞ ¼ 4π/k2), as
was recently done in Ref. [21]. The explicit, final result for
the OðG1Þ classical scattering angle is

sin
χOðGÞ
class

2
¼ G

J
2ðp1:p2Þ2 − p2

1p
2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp1:p2Þ2 − p2
1p

2
2

p : ð2:16Þ

It was emphasized in [21] that the Fourier-domain compu-
tation of Δp1μ closely parallels the computation of the
corresponding LO, one-graviton-exchange, Feynman gravi-
tational scattering amplitude (described by a Feynman
diagram similar to the left diagram in Fig. 1). The quantum
scattering amplitude M for the scattering of massive scalar
particles, reads (see, e.g. [33])

MOðGÞðs; tÞ ¼ 16π
G
ℏ
2ðp1:p2Þ2 − p2

1p
2
2

−t
; ð2:17Þ

where s≡ −ðp1 þ p2Þ2 ¼ E2
real c:m:, and−t≡ ðp0

1 − p1Þ2 ¼
q2
c:m: ¼ 4p2

c:m:sin2
χ
2
, are the usual Mandelstam quantities.

[See below for more explanations about the definition,
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and sign convention, forM.] We recall that Ereal, and J, are
both evaluated in the c.m. frame of the two-body system.
At the order G2, i.e at the second post-Minkowskian

(2PM) order, one can write down an explicit integral
expression for Δp1μ by inserting the next-to-leading-order
(NLO), OðG1Þ, solutions for the worldlines [obtained, as
explained above, by inserting Eq. (2.14) in the first
equation (2.13)] in the general iterative expression (2.8),
and its OðG2Þ analog (partly graphically represented in
Fig. 2). When aiming at the 2PM accuracy, it is enough
to replace in the OðG2Þ diagrams of Fig. 2 the curved
worldlines by the LO straight worldlines 0x

μ
aðσaÞ ¼

0x
μ
að0Þ þ 0p

μ
aσa, where 0p

μ
a. However, one must insert in

the formally OðG1Þ diagrams of Fig. 1 the NLO, OðG1Þ,
solutions for the worldlines, i.e. Eq. (2.14) for paμðσaÞ,
and the corresponding, explicit OðG1Þ solution for
xμaðσaÞ ¼ 0x

μ
aðσaÞ þ G1x

μ
aðσaÞ þOðG2Þ, involving a dou-

ble integral expression for 1x
μ
aðσaÞ. The corresponding

extra OðG2Þ contributions to the classical scattering
Δp1μ can be vizualized as additional OðG2Þ diagrams of
the ladder (and crossed-ladder) type, which are the classical
analogs of the usual quantum ladder diagrams. [One can
check that the classical ladder diagrams contain (in Fourier-
space) the denominators∼1/ðk:paÞ that are resummed in the
eikonal-approximation to the quantum ladder diagrams.]
The so-obtained explicit, 2PM [OðG2Þ] value of the

scattering angle has been computed in Refs. [25,27,28],
using the explicit x-space 2PM (OðG2Þ) equations of
motion [25,26]. It can be written as3

1

2
χclassðEreal; JÞ ¼

1

j
χ1ðÊeff ; νÞ þ

1

j2
χ2ðÊeff ; νÞ þOðG3Þ;

ð2:18Þ

where

χ1ðÊeff ; νÞ ¼
2Ê2

eff − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê2
eff − 1

q ; ð2:19Þ

and

χ2ðÊeff ; νÞ ¼
3π

8

5Ê2
eff − 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðÊeff − 1Þ
q : ð2:20Þ

Here, we have replaced the total (c.m.) angular momentum J
by its dimensionless counterpart j≡ J

Gm1m2
, and the total c.m.

energy Ereal ¼
ffiffiffi
s

p
by the dimensionless energy variable

Êeff ≡ Eeff

μ
≡ ðErealÞ2 −m2

1 −m2
2

2m1m2

¼ s −m2
1 −m2

2

2m1m2

: ð2:21Þ

The “effective energy” Eeff ¼ μÊeff plays a central role in
EOB theory [8,9], and the map f between Ereal and Eeff
defined by Eq. (2.21) was recently shown [21] to be exact4 to
all orders in the PN expansion. Note again that the expansion
in powers of 1/j ¼ Gm1m2/J in (2.18) is equivalent to the
PM expansion in powers of G.
The extreme mass-ratio limit m1 ≪ m2, corresponds to

ν ≪ 1. In this limit, the scattering angle χ should reduce to
the scattering angle of a test-particle moving around a
Schwarzschild black hole of mass M ¼ m1 þm2 ≈m2.
We shall check in the next section that this is indeed
the case. In the mean time, note that the OðGÞ energy-
dependent coefficient χ1ðÊeff ; νÞ is actually independent of
the symmetric mass-ratio ν, while the OðG2Þ coefficient
χ2ðÊeff ; νÞ depends on ν only through the factor [remem-
bering the definition (1.3)]

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðÊeff − 1Þ

q ¼ 1

h
¼ M

Ereal
; ð2:22Þ

multiplying the OðG2Þ test-particle (ν → 0) result

χSchwarz2 ðÊeffÞ ¼
3π

8
ð5Ê2

eff − 1Þ: ð2:23Þ

In Eq. (2.22), we used the well-known EOB inverse energy
map, namely

Ereal ¼ M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðÊeff − 1Þ

q
; ð2:24Þ

which inverts the quadratic relation Eeff ¼ fðErealÞ,
Eq. (2.21).
Another check of the 2PM scattering angle can be

obtained by reexpanding the G expansion (2.18) (each
term of which is an exact function of the energy) in a PN
way, i.e. in powers of 1/c2. This can be done, for instance,
by decomposing Ereal in rest-mass plus nonrelativistic
energy, say

Ereal ¼ Mc2 þ 1

2
μv2E: ð2:25Þ

[Here, we are not making an approximation but simply
introducing the notation vE for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEreal −Mc2Þ/μ

p
.] The

expansion in powers of vE/c then corresponds to a PN
expansion. When doing so, one must also remember that
the exact definition of the dimensionless angular momen-
tum j involves one power of c: j≡ cJ/ðGm1m2Þ. We have

3To the 2PM accuracy considered here, one could equivalently
write the lhs of (2.18) as sin 1

2
χ.

4The map f can be thought of as relating the dimensionless
ratio Eeff /μc2 to the dimensionless ratio ðEreal− ðm1þm2Þc2Þ/μc2
(see Eq. (1.5) in [21]). These ratios involve c but do not involve
G. Henceforth, the 1PM-based proof of the exactness of the map
f holds also at all higher PM orders.
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then successfully checked the values of the coefficients
χmnðνÞ (with m ¼ 1, 2 and 2ðm − 1Þ þ n ≤ 8) in the
4PN-level (Oð1/c8Þ) expansion of (2.18), say

1

2
χðE; JÞ ¼ Gm1m2

vEJ

�
1þ χ12ðνÞ

�
vE
c

�
2

þ χ14ðνÞ
�
vE
c

�
4

þ � � � þ χ18ðνÞ
�
vE
c

�
8
�

þ
�
Gm1m2

cJ

�
2
�
1þ χ22ðνÞ

�
vE
c

�
2

þ χ24ðνÞ
�
vE
c

�
4

þ χ26ðνÞ
�
vE
c

�
6
�

þO

�
1

c10

�
þO

��
Gm1m2

J

�
3
�
; ð2:26Þ

against the explicit PN-expanded scattering results of
Refs. [45,46]. [Let us note again, in this respect, a typo
in the first Eq. (5.51) (defining A2a) in [45]: the sign of the
coefficient of Ẽ on the rhs should be reversed, namely it
should read þð5 − 2νÞ/2.] Beware that Ref. [46] uses PN
expansions based on the different decomposition Ê2

eff ¼
1þ v2∞/c2. Let us emphasize that the 2PM-accurate result
(2.18) involves only the first and second powers of 1/j,
while the 4PN-accurate result of Ref. [46] involves many
other (and even arbitrarily large) powers of 1/j. In par-
ticular, the nonlocal contribution to 4PN scattering has a
large-j expansion which starts at order 1/j4, i.e. well
beyond the contributions contained in the 2PM scattering.

III. CLASSICAL SCATTERING ANGLE OF A TEST
PARTICLE AROUND A SCHWARZSCHILD

BLACK HOLE

As a check on the 2PM result above (obtained in
Refs. [25,27,28]), and as a warm up towards its EOB
transcription, let us consider the scattering of a test particle
of massm0 around a Schwarzschild black hole of massM0.
[Below we shall identify m0 to μ, and M0 to M.] As usual,
we start from the mass-shell condition

0 ¼ gμν0 PμPν þm2
0; ð3:1Þ

in the Schwarzschild metric

g0μνdxμdxν ¼ −A0dT2 þ B0dR2 þ C0ðdθ2 þ sin2 θdφ2Þ;
ð3:2Þ

where

A0ðRÞ ¼ 1 −
2GM0

R
; B0ðRÞ ¼

1

1 − 2GM0

R

;

C0ðRÞ ¼ R2: ð3:3Þ

The simplest way to compute the scattering angle is to use
Hamilton-Jacobi theory, i.e. to replace Pμ ¼ ∂μS0 in the
mass-shell condition (3.1) and to solve for the radial action
S0R (considered for equatorial motions) in

S0 ¼ −E0T þ Pφφþ S0RðR; E0; PφÞ: ð3:4Þ

This yields

S0RðR; E0; PφÞÞ ¼
Z

dRPRðR; E0; PφÞ; ð3:5Þ

where

PRðR; E0; PφÞ ¼ �
ffiffiffiffiffiffi
B0

A0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − A0

�
m2

0 þ
P2
φ

C0

�s
: ð3:6Þ

The relation between the angle φ and the radial coordinate
R is then obtained from (with J0 ≡ Pφ)

φðRÞ ¼ −
Z

dR
∂PRðR; E0; J0Þ

∂J0 ; ð3:7Þ

which yields

φðRÞ ¼ J0

Z
dR
C0

ffiffiffiffiffiffiffiffiffiffiffi
A0B0

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − A0ðm2

0 þ J2
0

C0
Þ

q : ð3:8Þ

The scattering angle χ is then obtained by subtracting π
from the full, two-sided radial integral, taken from the
incoming state (at time −∞, i.e. R ¼ þ∞ and a negative
sign for the square root) to the final state (at time þ∞, i.e.
R ¼ þ∞ and a positive sign for the square root):

π þ χ ¼
Z þ∞

−∞
J0

dR
C0

ffiffiffiffiffiffiffiffiffiffiffi
A0B0

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
0 − A0ðm2

0 þ J2
0

C0
Þ

q : ð3:9Þ

This expression [which is valid for any metric of the form
(3.2)] simplifies in the case of the Schwarzschild metric
(3.3) (for which, in particular A0B0 ¼ 1 and C0 ¼ R2). It is
convenient to replace the original variables R; E0; J0 by the
corresponding rescaled, dimensionless variables r; Ê0; j0
defined as

R≡GM0r; E0 ≡m0Ê0; J0 ≡GM0m0j0: ð3:10Þ

Introducing also the dimensionless integration variable

y≡ j0
r
¼ J0

m0R
; ð3:11Þ

we get
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π

2
þ χ

2
¼

Z
ymax
0

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê2
0 − ð1 − 2

j0
yÞð1þ y2Þ

q ; ð3:12Þ

where ymax
0 (which depends on Ê0 and j0) denotes the

positive root of the radical that is closest to 0. With the
further notation

c0 ≡ Ê2
0 − 1; ð3:13Þ

we have

χ

2
¼

Z
ymax
0

ðc0;j0Þ

0

dyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 − y2 þ 2

j0
yð1þ y2Þ

q −
π

2
: ð3:14Þ

The latter integral expression is convenient for expanding χ
in powers of 1/j0, i.e. for computing the coefficients in the
PM expansion (1.5) of the Schwarzschild scattering angle.
When j0 → ∞ (so that ymax

0 →
ffiffiffiffiffi
c0

p
), the integral on the rhs

becomes
R ffiffiffiffi

c0
p
0 dy/

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 − y2

p
¼ π

2, yielding, as needed,
limj0→∞χ ¼ 0. The successive terms χ1/j0 þ χ2/j20 þ � � �
in the PM expansion (1.5) can then be computed from the

expansion of the integrand 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 − y2 þ 2

j0
yð1þ y2Þ

q
in

successive powers of 1/j0. Actually, there are two subtleties
linked to this expansion. On the one hand, the upper limit
ymax
0 of the integral also depends on j0. On the other hand,

the formal expansion of 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 − y2 þ 2

j0
yð1þ y2Þ

q
in

powers of 1/j0, say [denoting Nn ≡ ð−1
2

n Þ]

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c0 − y2 þ 2

j0
yð1þ y2Þ

q ¼
X
n≥0

Nn

jn0

ð2yð1þ y2ÞÞn
ðc0 − y2Þ2nþ1

2

;

ð3:15Þ

involves denominators ∼ðc0 − y2Þ2nþ1
2 that become increas-

ingly singular near the upper limit of the integral. It was
shown in Ref. [47] that the correct values of the coefficients
in the 1/j0 expansion of integrals of the type (3.14) is very
simply obtained by taking the Hadamard partie finie (Pf) of
the singular integrals generated by the expansion above, i.e.

χ

2
¼

X
n≥1

Nn

jn0
Pf

Z ffiffiffiffi
c0

p

0

dy
ð2yð1þ y2ÞÞn
ðc0 − y2Þ2nþ1

2

: ð3:16Þ

Computing the latter Hadamard-regularized integrals yields,
for the coefficients in the PMexpansion of the Schwarzschild
scattering angle [using the notation (3.13)]

1

2
χSchwðÊ0; j0Þ ¼

X
n≥1

χSchwn ðc0Þ
jn0

; ð3:17Þ

where

χSchw1 ðc0Þ ¼
2c0 þ 1ffiffiffiffiffi

c0
p ¼ 2Ê2

0 − 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê2
0 − 1

q ; ð3:18Þ

χSchw2 ðc0Þ ¼
3π

8
ð5c0 þ 4Þ ¼ 3π

8
ð5Ê2

0 − 1Þ; ð3:19Þ

χSchw3 ðc0Þ ¼
64c30 þ 72c20 þ 12c0 − 1

3c3/20

; ð3:20Þ

χSchw4 ðc0Þ ¼
105π

128
ð33c20 þ 48c0 þ 16Þ: ð3:21Þ

It is then easily seen that the test-mass limit (ν → 0) of
both the 1PM-accurate, Eq. (2.19), and the 2PM-accurate,
Eq. (2.20), scattering angles agree with the corresponding
Schwarzschild results, Eqs. (3.18), (3.19), under the iden-
tifications m0 ¼ μ, M0 ¼ M, j0 ¼ j, and Ê0 ¼ Êeff .

IV. POST-SCHWARZSCHILD EXPANSION
OF EOB SCATTERING

If we now go back to the comparable mass case (ν ≠ 0),
Eqs. (2.18), (2.19) [with Êeff defined by Eq. (2.21)] for the
1PM (OðGÞ) contribution to the scattering function, display
the main result of Ref. [21]: namely, the 1PM real dynamics
is fully encoded [at order OðGÞ] in the following two EOB
ingredients: (i) the energy map (2.21) between the real
energy Ereal (and the real Hamiltonian Hreal) of the two-
body system, and the effective energy Eeff (and the
effective Hamiltonian Heff ); and (ii) the determination
of the effective Hamiltonian Eeff ¼ HeffðR;PÞ from the
mass-shell condition satisfied by an effective particle of
mass μ ¼ m1m2/ðm1 þm2Þ, and conserved energy Eeff ¼
−P0 following a geodesic in a Schwarzschild metric of
mass M. We can then parametrize the 2PM, and higher
PM, corrections to the dynamics by considering general
deformations of the latter Schwarzschild-like mass-shell
condition, i.e. a generalized mass-shell condition of the
type

0 ¼ gμνeffPμPν þ μ2 þQ; ð4:1Þ

where gμνeff is the (inverse of an) effective metric of the form

geffμν dxμdxν ¼ −AdT2 þ BdR2 þ Cðdθ2 þ sin2θdφ2Þ;
ð4:2Þ

andwhereQ is a Finsler-type additional contribution, which
contains higher-than-quadratic in momenta contributions.
In previous EOB work, it has been standard to

use deformed mass-shell conditions of the type (4.1),
involving effective-metric functions A, B, C that were
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ν− deformed versions5 of the Schwarzschild metric func-
tions A0, B0, C0 entering (3.2), and to constrain the
additional contribution Q to be at least quartic in the
momenta: Q ¼ OðP4Þ. In the present work, we find it
convenient to relax the constraint that Q be at least quartic
in momenta, and allow it to be a general even function of P
(depending also on R). Such a general QðR;PÞ can then
absorb any quadratic-in-momenta, ν-dependent deforma-
tion which was previously attributed to the metric functions
A and B. In the following, we shall allow Q to start at order
OðP2Þ. We can then, without loss of generality, assume that
the effective-metric functions A, B, C actually coincide
with the Schwarzschild ones A0, B0, C0. [To keep open the
possibility of being more general, we shall, however,
continue to denote them simply as A, B, C.]
The explicit form of the deformed mass-shell condition

reads

0 ¼ −
E2
eff

A
þ P2

R

B
þ P2

φ

C
þ μ2 þQ: ð4:3Þ

Solving this mass-shell condition for Eeff ¼ −P0 then
yields the effective Hamiltonian HeffðPÞ ¼ Eeff ¼ −P0.
Namely, its square reads

H2
effðR;PÞ ¼ A

�
μ2 þ P2

R

B
þ P2

φ

C
þQ

�
: ð4:4Þ

In view of the recent proof [21] of the exactness of the
energy map (2.21), the corresponding real Hamiltonian is

HrealðR;PÞ ¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ν

�
Heff

μ
− 1

�s
: ð4:5Þ

Finally, we parametrize here all the PM effects beyond the
1PM level by considering a general functionQ decreasing at
least like 1/R2 when R → ∞. [Indeed, the Oð1/RÞ terms
contained in the Schwarzschild metric functions have been
shown to fully describe the 1PM effects [21].]
Assuming that the deformed mass-shell condition (4.1),

i.e. (4.3), is solved for PR as a function of Eeff and J ¼ Pφ,
the scattering function χðEeff ; JÞ is given by a formula
precisely similar to the one used above for Schwarzschild
scattering, namely

π þ χðEeff ; JÞ ¼ −
∂
∂J

Z
dRPRðR; Eeff ; JÞ: ð4:6Þ

To use this exact, formal result, we need to approach it
perturbatively. Instead of considering its straightforward
PM expansion (i.e. its expansion in powers of G), we shall

consider what can be called its “post-Schwarzschild”
expansion. In the mass-shell condition (4.3) we consider
the Schwarzschild functions A, B, C as being exact
(without expanding them in powers of G), but we treat
Q as a formally small quantity.
As it has been shown that, to linear order in G, the two-

body scattering was described by an effective metric equal
to a Schwarzschild metric (of mass M ¼ m1 þm2), the
post-Schwarzschild deformation Q starts at order G2, and
can therefore be written as a perturbative PM expansion of
the type Q ∼G2 þG3 þG4 þ � � �. Correspondingly, we
can view the solution PRðEeff ; JÞ of the mass-shell con-
dition (4.3) as having a perturbative expansion in powers of
Q ¼ OðG2Þ of the form

PRðEeff ; JÞ ¼ Pð0Þ
R ðEeff ; JÞ þ PðQÞ

R ðEeff ; JÞ
þ PðQ2Þ

R ðEeff ; JÞ þOðQ3Þ: ð4:7Þ

Here Pð0Þ
R ðEeff ; JÞ is the solution of (4.3) when Q ¼ 0, i.e.,

Pð0Þ
R ðEeff ; JÞ ¼ �

ffiffiffiffi
B
A

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
eff − A

�
μ2 þ J2

C

�s
; ð4:8Þ

while PðQÞ
R ðEeff ; JÞ is the linear-in-Q correction to the

solution PRðEeff ; JÞ of (4.3), i.e.

PðQÞ
R ðEeff ; JÞ ¼ −

B

2Pð0Þ
R

Q: ð4:9Þ

As Q starts formally at order G2, the contribution quadratic
in Q will be of order

PðQ2Þ
R ðEeff ; JÞ ¼ OðQ2Þ ¼ OðG4Þ: ð4:10Þ

The corresponding Q-expansion of the scattering function
has the form

χðEeff ; JÞ ¼ χð0ÞðEeff ; JÞ þ χðQÞðEeff ; JÞ
þ χðQ2ÞðEeff ; JÞ þOðQ3Þ: ð4:11Þ

Here,

χð0ÞðEeff ; JÞ ¼ −π −
∂
∂J

Z
dRPð0Þ

R ðR; Eeff ; JÞ; ð4:12Þ

is simply the scattering function χSchwðEeff ; JÞ in the
Schwarzschild-type metric defined by the Schwarzschild-
like functions A, B, C. It is given by the formulas given in
the previous section, modulo the replacements

M0 → M; m0 → μ; E0 → Eeff ; J0 → J:

ð4:13Þ
5Actually, it was found convenient to use a Schwarzschild-type

coordinate gauge where C was fixed to C0 ¼ R2.
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We therefore conclude that the post-Schwarzschild con-
tribution to χðEeff ; JÞ is related to Q via the simple formula

χðEeff ;JÞ−χSchwðEeff ;JÞ¼ χðQÞðEeff ;JÞþχðQ2ÞðEeff ;JÞþ���
ð4:14Þ

where

χðQÞðEeff ; JÞ ¼ −
∂
∂J

Z
dRPðQÞ

R ðEeff ; JÞ; ð4:15Þ

χðQ2ÞðEeff ; JÞ ¼ −
∂
∂J

Z
dRPðQ2Þ

R ðEeff ; JÞ: ð4:16Þ

This yields

χðQÞðEeff ; JÞ ¼ þ ∂
∂J

Z
BdR

2Pð0Þ
R

Q; ð4:17Þ

and

χðQ2ÞðEeff ; JÞ ¼ OðQ2Þ ¼ OðG4Þ: ð4:18Þ

The linear-in-Q contribution can be rewritten as

χðQÞðEeff ; JÞ ¼ þ ∂
∂J

Z
dR
2PR

ð0Þ
Q ¼ þ ∂

∂J
Z

1

2
dσð0ÞQ;

ð4:19Þ

where PR
ð0Þ now denotes the contravariant radial (unper-

turbed) momentum, i.e.6

PR
ð0Þ ¼

1

B
Pð0Þ
R ¼ � 1ffiffiffiffiffiffiffi

AB
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
eff − A

�
μ2 þ J2

C

�s
; ð4:20Þ

while σð0Þ denotes the unperturbed (mass-normalized)
effective proper time along the motion

dσð0Þ ¼
dR
PR
ð0Þ

¼ dseffð0Þ
μ

: ð4:21Þ

Indeed, along the unperturbed geodesic motion, we have
PR
ð0Þ ¼ μdR/dseffð0Þ.
Combining the above results, and expressing them in

terms of the scattering function 1
2
χðEeff ; JÞ we have

1

2
ðχðEeff ; JÞ − χSchwðEeff ; JÞÞ ¼

1

4

∂
∂J

Z
dσð0ÞQþOðG4Þ:

ð4:22Þ

A first consequence of this result is that, within the
accuracy indicated, the directly observable scattering func-
tion only depends on the proper-time integral of the mass-
shell perturbation Q. In other words, modulo OðG4Þ the
physics is invariant under transformations of the type

Q0ðR;PÞ ¼ QðR;PÞ þ d
dσð0Þ

GðR;PÞ; ð4:23Þ

where the second term should be reexpressed in terms of
ðR;PÞ by using the (at this order, unperturbed) equations
of motion. It is easily seen that such a gauge-like trans-
formation of Q corresponds to a (linearized) canonical
transformation of the (Stueckelberg-like) proper-time
Hamiltonian

HðXμ; PμÞ ¼
1

2
ðgμνeffðXÞPμPν þ μ2 þQðX;PÞÞ: ð4:24Þ

Here, we allow Q to depend on all components of Xμ, and
Pμ. Above, we were generally assuming that P0 was
perturbatively replaced in terms of the spatial components
P, so as to get more directly an ordinary Hamiltonian
HeffðR;PÞ for the evolution with respect to the effective
time Teff . We will use below the gauge freedom (4.23) to
simplify the expression of Q.
The perturbative nature of the correlated PM expansions

of Q and χ is made clearer if we work with the following
dimensionless quantities [where the index μ on p and
P should be distinguished from the reduced mass μ ¼
m1m2/ðm1 þm2Þ]

pμ ≡ Pμ

μ
; Q̂≡ Q

μ2
; u≡ 1

r
≡GM

R
: ð4:25Þ

Using the basic fact that u≡ GM
R is of orderG, Q̂will have a

PM expansion the form

Q̂ ¼ u2q2ðpÞ þ u3q3ðpÞ þ u4q4ðpÞ þ � � � ; ð4:26Þ

where the term u2q2ðpÞ ∝ G2 is of the 2PM level,
u3q3ðpÞ ∝ G3 of the 3PM level, etc. For brevity, we have
simply denoted as p the momentumlike arguments that the
various qn’s depend upon. Actually, p could stand her for
any (dimensionless, and time-symmetric) scalar function of
pμ, n ¼ R/R, and also u, that admits a finite limit as u → 0.
For instance, we could take a function of ðn × pÞ2 ¼ p2

φu2

and ðn · pÞ2 ¼ p2
r , but (as it will be integrated over the

unperturbed scattering motion) we could also include a
dependence on the energy −p0 ¼ Êeff, considered along the

6In the expression below for PR
ð0Þ, the factor 1/

ffiffiffiffiffiffiffi
AB

p
is

actually equal to 1, but we did not use this simplification to
keep our formulas eventually applicable to a more general setting.
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unperturbed mass shell,7 i.e. on the unperturbed effective
Hamiltonian,

Êon−shell
eff ¼ ĤSchw

eff

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2uÞ½1þ ð1 − 2uÞðn · pÞ2 þ ðn × pÞ2�

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − 2uÞ½1þ ð1 − 2uÞp2

r þ p2
φu2�

q
: ð4:27Þ

Note in passing that we could also use a dependence on the
unperturbed square kinetic energy ð1 − 2uÞp2

r þ p2
φu2.

Transcribing the results above in terms of such dimen-
sionless variables, we can relate the PM expansion (2.18) of
(half) the scattering function to the PM expansion (5.7) of
Q̂ in the following way

1

j2
ðχ2ðÊeff ; νÞ − χSchw2 ðÊeff ; νÞÞ

þ 1

j3
ðχ3ðÊeff ; νÞ − χSchw3 ðÊeff ; νÞÞ þO

�
1

j4

�

¼ 1

4

∂
∂j

Z
dr
pr
ð0Þ

Q̂þOðG4Þ: ð4:28Þ

Here, we used the fact that χ1ðÊeff ; νÞ≡ χSchw1 ðÊeff ; νÞ. Note
from (1.3) that 1/j ¼ OðGÞ so that the term Oð1/j4Þ on the
lhs is of the same order as the OðG4Þ error term on the rhs
(linked to the contribution quadratic in Q).
We shall explicitly check below that the integral

R
dr
pr Q̂

has a large-j expansion of the type ∼ 1
j þ 1

j2 ¼ � � �. We can

then integrate the above result with respect to j to get

−
1

j
ðχ2ðÊeff ; νÞ − χSchw2 ðÊeff ; νÞÞ

−
1

2

1

j2
ðχ3ðÊeff ; νÞ − χSchw3 ðÊeff ; νÞÞ þO

�
1

j3

�

¼ 1

4

Z
dr
pr
ð0Þ

Q̂þOðQ̂2Þ: ð4:29Þ

V. DETERMINING THE EFFECTIVE
HAMILTONIAN AT THE 2PM

ACCURACY

Let us now focus on the contribution to the rhs of (4.29)
brought by the 2PM term u2q2ðpÞ in Q̂. We recall that the
subscript (0) added to pr indicates that (to linear order in Q̂)
we can neglect the effect of Q̂ in the integral

R
dr/pr, i.e.

integrate over the Schwarzschild scattering dynamics, with
pr
ð0Þ given by the following rescaled version of (4.20)

pr
ð0Þ ¼ � 1

μ
ffiffiffiffiffiffiffi
AB

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
eff − A

�
μ2 þ J2

C

�s

¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê2
eff − ð1 − 2uÞð1þ j2u2Þ

q
: ð5:1Þ

Inserting Q̂ ¼ u2q2ðpÞ on the rhs of (4.29) (and using
r ¼ 1/u) yields

1

4

Z
� duq2ðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ê2
eff − ð1 − 2uÞð1þ j2u2Þ

q : ð5:2Þ

The integral here (as well as all integrals above) are to be
taken over the full scattering motion, with time going from
−∞ to þ∞, i.e over both the incoming motion (starting at
r ¼ þ∞ with pr < 0), and the outgoing one (with pr > 0
back to r ¼ þ∞). We can simplify the evaluation
of this integral by assuming that we used a canonical
transformation (4.23) such that the function q2ðpÞ ¼
q2ððn × pÞ2; ðn · pÞ2; uÞ (considered along the unper-
turbed, Schwarzschild mass-shell) depends only on the
unperturbed effective Hamiltonian (4.27), and is therefore
constant during the integration over the scattering motion.
At this order of approximation, we could alternatively
consider that q2ðpÞ is only a function of, e.g.,

p2 ¼ p2
r þ ðn × pÞ2 ¼ Ê2

eff

1 − 2u
þ 2up2

r − 1

¼ Ê2
eff − 1þOðGÞ: ð5:3Þ

[However, if we were expressing q2ðpÞ as a function of p2,
the OðGÞ correction in (5.3) would modify the determi-
nation of the 3PM term u3q3ðpÞ.]
Assuming q2ðpÞ ¼ q2ðÊeffÞ, we recognize on the rhs of

(5.2) an integral giving the scattering angle of a test particle
in a Schwarzschild background. More precisely, we find
(using u ¼ y/j where y was the integration variable used in
Sec. III)

Z þ∞

−∞

dr
pr
ð0Þ

u2 ¼
Z

du

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê2
eff − ð1 − 2uÞð1þ j2u2Þ

q
¼ 1

j
½π þ χSchwðÊeff ; jÞ�

¼ 1

j

�
π þ 2

χSchw1 ðÊeffÞ
j

þO

�
1

j2

��
; ð5:4Þ

where we inserted the beginning of the PM expansion,
derived in Sec. III above, of the Schwarzschild scattering
angle.

7We could also allow in Q a dependence on −p0 unrestricted
by any mass-shell condition. This is, however, inequivalent
[beyond the leading-order, OðG2Þ, in PM perturbation theory]
to using a dependence on −pon−shell

0 .
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One sees that we can neglect the fractional Oð1/jÞ
correction linked to χSchw1 ðÊeffÞ when relating the post-
Schwarzschild 2PM scattering angle to q2ðÊeffÞ. We then
get the very simple link

−
1

j
ðχ2ðÊeff ; νÞ − χSchw2 ðÊeffÞÞ ¼

1

4

π

j
q2ðÊeffÞ; ð5:5Þ

i.e.

q2ðÊeff ; νÞ ¼ −
4

π
½χ2ðÊeff ; νÞ − χSchw2 ðÊeffÞ�: ð5:6Þ

When considering the 3PM contribution to the scattering
angle, and the corresponding 3PM contribution to Q̂,
expressed in terms of the unperturbed Hamiltonian
Êon−shell
eff , i.e.

Q̂ ¼ u2q2ðĤSchw
eff Þ þ u3q3ðĤSchw

eff Þ þOðu4Þ; ð5:7Þ

we find the following link

q3ðÊeff ; νÞ ¼
4

π

2Ê2
eff − 1

Ê2
eff − 1

ðχ2ðÊeff ; νÞ − χSchw2 ðÊeffÞÞ

−
χ3ðÊeff ; νÞ − χSchw3 ðÊeffÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ê2
eff − 1

q : ð5:8Þ

Note that, as the Schwarzschild scattering is the ν → 0 limit
of the two-body one, the above expressions for q2 and q3
explicitly show that

lim
ν→0

q2ðÊeff ; νÞ ¼ 0 ¼ lim
ν→0

q3ðÊeff ; νÞ: ð5:9Þ

Summarizing: from Eq. (4.4), the squared effective
Hamiltonian has the form

Ĥ2
effðr;pÞ ¼ Ĥ2

Schw þ ð1 − 2uÞQ̂; ð5:10Þ

where

Ĥ2
Schwðpr; r; pφÞ≡ ð1 − 2uÞ½1þ ð1 − 2uÞp2

r þ p2
φu2�;

ð5:11Þ

and where the PM-expansion of Q̂ is given by Eq. (5.7). In
the latter PM-expanded value of Q̂, the explicit expression
for the function q2ðĤSchw

eff Þ reads [after inserting the 2PM
scattering angle (2.20) in the link (5.6)]

q2ðĤSchw;νÞ ¼
3

2
ð5Ĥ2

Schw − 1Þ
2
41− 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðĤSchw − 1Þ
q

3
5:

ð5:12Þ

In other words, the PM expansion (or, in fact, the post-
Schwarzschild expansion) of the dimensionless squared
effective Hamiltonian can be written (after a suitable
canonical transformation) as

Ĥ2
effðpr; r; pφ; νÞ

¼ Ĥ2
Schw þ ð1 − 2uÞ½u2q2ðĤSchw; νÞ

þu3q3ðĤSchw; νÞ þ u4q4ðĤSchw; νÞ þ � � ��; ð5:13Þ

where u≡ 1/r, where ĤSchw is defined by Eq. (5.11), and
where the function q2 is given by Eq. (5.12), while the
function q3 is currently unknown, but is deducible from the
3PM scattering function via Eq. (5.8). Similarly q4ðÊeffÞ
would be deducible from the 4PM scattering function (but
one would have to take into account the nonlinear effects in
Q in the derivation above).
Note in (5.13) the presence of the overall factor

1 − 2u in front of the u2, u3, u4 terms coming from
combining Eq. (5.10) with the definition of Q̂ ¼
u2q2ðÊeffÞ þ u3q3ðÊeffÞ þ � � �. Evidently, when working at
the 2PM accuracy, one could approximate, modulo the 3PM
contribution Oðu3Þ, the function ð1 − 2uÞu2q2ðĤSchw; νÞ
entering the 2PM-accurate Hamiltonian simply by
u2q2ðĤSchw; νÞ.

VI. COMPARING AND CONTRASTING THE 2PM
HAMILTONIAN TO PREVIOUS RESULTS

Let us first compare the 2PM-accurate effective
Hamiltonian (5.13) to the corresponding PN-expanded
effective Hamiltonian. Here, we shall focus on the
3PN-accurate effective Hamiltonian [9,16] (see [48] for
the 4PN-accurate effective Hamiltonian). In order to
compare the PM-expanded result (5.13) to the correspond-
ing 3PN-expanded Hamiltonian we need to apply a suitable
canonical transformation. Indeed, Ref. [9] has used a
gauge where the quartic-in-momenta terms in the post-
Schwarzschild contribution Q̂ðx;pÞ to the mass-shell
condition were transformed so as to involve only p4

r ¼
ðn · pÞ4. This type of gauge is rather different from the one
we found convenient to use above. It is straightforward to
construct a PN-expanded canonical transformation between
the two types of gauge; it is of the form

gðr; pr; pφÞ ¼ pr

�
1

c4
g0
r
þ 1

c6

�
g1
r2

þ g2p2
φ

r3
þ g3p2

r

r

��
;

ð6:1Þ
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with, for instance, g0 ¼ 3
2
ν at the 2PN level, and similar

OðνÞ coefficients g1, g2, g3 at the 3PN level.
Using such a gauge transformation, the 3PN effective

Hamiltonian of [9] can be put in the form of Eq. (5.13)
with PN-expanded versions of the various coefficients q2,
q3 and q4. [Indeed, the PN-expansion of the contribution
u4q4ðĤSchw; νÞ starts at the 3PN order, while the next term
u5q5ðĤSchw; νÞ would start at the 4PN level.] We then
found that the PN-expanded version of q2ðĤSchw; νÞ
obtained from the 3PN-accurate Hamiltonian was in full
agreement with the PM-exact expression (5.12), while the
PN-expanded versions of the currently unknown next PM
terms q3 and q4 were given by

qPN3 ðĤSchw; νÞ ¼ 5νþ 1

4
ð108ν − 23ν2ÞðĤ2

Schw − 1Þ
þOððĤ2

Schw − 1Þ2Þ; ð6:2Þ

qPN4 ðĤSchw; νÞ ¼ ν

�
175

3
−
41

32
π2
�
−
7

2
ν2

þOðĤ2
Schw − 1Þ: ð6:3Þ

Here, we have used as PN expansion parameter

Ĥ2
Schw − 1 ¼ OðuÞ þOðp2Þ ¼ O

�
1

c2

�
: ð6:4Þ

Concerning the PN expansion of q2 note that it starts as

qPN2 ðĤSchw; νÞ ¼ 6νðĤSchw − 1Þ þOððĤSchw − 1Þ2Þ;
ð6:5Þ

where we now used

ĤSchw − 1 ¼ Ĥ2
Schw − 1

ĤSchw þ 1
∼
1

2
ðĤ2

Schw − 1Þ; ð6:6Þ

as PN expansion parameter.
An important information contained in our 2PM-accurate

result (5.12) for q2ðĤSchw; νÞ is that, while its PN expansion
leads to a ν-expansion of the typeq2ðνÞ ∼ νþ ν2 þ ν3 þ � � �,
its exact PM form shows that this ν expansion is non
uniformly valid in phase-space, and actually breaks down
at high energies. More precisely, when the product νĤSchw
becomes of order unity the ν-dependence of q2 changes
character. Most importantly, when the effective energy tends
to infinity we have

lim
ĤSchw→∞

q2ðĤSchw; νÞ ≈
15

2
Ĥ2

Schw; ð6:7Þ

where the rhs becomes independent of ν. As we shall see in
the next section, such a large-energy behavior applies also to

the higher PM contributions qnðĤSchwÞ, which are expected
to behave as

lim
ĤSchw→∞

qnðĤSchw; νÞ ≈ cðqÞn Ĥ2
Schw; ð6:8Þ

with purely numerical ν-independent coefficients cðqÞn .

VII. HIGH-ENERGY LIMIT OF TWO-BODY
SCATTERING AND TWO-BODY

DYNAMICS

Let us start by noting that the high-energy (HE) limit
(Êeff → ∞) of the two-body scattering function evaluated in
the effective 1PM-accurate metric [defined here by neglect-
ing Q ¼ OðG2Þ in Eq. (4.1)], i.e. the HE limit of the
scattering of a particle of mass μ ¼ m1m2/ðm1 þm2Þ in a
Schwarzschild metric of mass M ¼ m1 þm2, has the form
(from Sec. III)

1

2
χQ→0ðEreal; J;m1; m2; GÞ

¼HE2 Êeff

j
þ 15π

8

Ê2
eff

j2

þ 64

3

Ê3
eff

j3
þ 3465π

128

Ê4
eff

j4
þO

�
Ê5
eff

j5

�
: ð7:1Þ

Here, and below, the HE limit means Êeff → ∞, j → ∞
with Êeff /j fixed. The indication “HE” above an equal sign
indicates an equality holding in the HE limit.
When adding to this result the effect of the 2PM-accurate

value of Q [namely Q̂ ¼ u2q2ðĤSchwÞ with Eq. (5.12)], it
takes the new form

1

2
χQ

2PMðEreal; J;m1; m2; GÞ

¼HE2 Êeff

j
þ 0

Ê2
eff

j2

þ c3
Ê3
eff

j3
þ c4

Ê4
eff

j4
þO

�
Ê5
eff

j5

�
; ð7:2Þ

where the numerical coefficient of the OðÊ2effj2 Þ has

been reduced to zero [because of the factor

1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðÊeff − 1Þ

q
¼HE 0 in Eq. (2.20)], and where the

coefficients c3, c4, etc. are numerical coefficients that can,
in principle, be deduced from our results, and which differ
from the ones in Eq. (7.1).
It is clear from Eqs. (7.1) and (7.2) that, in the HE limit,

the scattering function 1
2
χQ→0ðEreal; J;m1; m2; GÞ does not

depend on all variables it could a priori depend, but is only
a function of the dimensionless ratio
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α≡ Êeff

j
≡GMEeff

J
: ð7:3Þ

Using the EOB link between Eeff and the real two-body
energy Ereal, namely

Eeff ¼
ðErealÞ2 −m2

1 −m2
2

2ðm1 þm2Þ
; ð7:4Þ

we then see that we can reexpress the expansion parameter
α as

α ¼ G
2

ðErealÞ2 −m2
1 −m2

2

J
¼HE 1

2

GðErealÞ2
J

: ð7:5Þ

Note that, in the HE limit, when α is expressed in terms of
the real two-body c.m. energy, and the real two-body c.m.
angular momentum, it no longer depends on the masses,
but only on the dimensionless combination GE2

real/J.
Another useful expression for α consists in using the
c.m. impact parameter b, which is such that

J ¼ bPc:m:: ð7:6Þ

The c.m. energy is the following function of the c.m.
momentum8 Pc:m:

Ereal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ P2
c:m:

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ P2
c:m:

q
¼HE2Pc:m:; ð7:7Þ

so that we can also write the HE limit of α as

α¼HEGEreal

b
: ð7:8Þ

The latter expression makes it particularly clear why,
during a HE collision, the scattering angle should only
depend on α. From the point of view of EOB theory, the
important fact contained in the different expressions above
for α is that it shows the compatibility between an effective
particle description where the total rest mass M plays an
explicit role (namely α ¼ GMEeff /J), and the standard way
of looking at a HE collision where one would instead
expect the mass-independent dimensionless parameter

Gs/J ≡GðErealÞ2/J¼HE2α to be the controlling parameter.
Note that the compatibility between the two descriptions
crucially relies on the quadratic nature of the EOB energy
map (7.4). This is a further confirmation of the usefulness
of this energy map.
It is easy to see that the structure of general HE

expansions of the type of Eq. (7.1) or (7.2) is a direct
consequence of having a mass-shell condition that is

quadratic in the momenta in the HE limit. Indeed, if we
neglect the rest-mass term m2

0 in the equations of Sec. III,
and rewrite the results there for arbitrary metric functions9

AðRÞ, BðRÞ, CðRÞ [in lieu of only A0ðRÞ; B0ðRÞ; C0ðRÞ], it
is clear from the start that only the ratio Eeff /J matters. More
explicitly, in the HE limit, the final formula (3.9) reads

π þ χ¼HE
Z

J
dR
C

ffiffiffiffiffiffiffi
AB

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
eff − J2 A

C

q

¼
Z

dR
C

ffiffiffiffiffiffiffi
AB

p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
E2eff
J2 − A

C

q : ð7:9Þ

In addition, if we use, for simplicity, a coordinate gauge
where CðRÞ ¼ R2, and if the coefficients AðRÞ, BðRÞ of the
effective metric depend on R only through the dimension-
less combination u ¼ GM/R [involving GM¼Gðm1þm2Þ
as length scale], we can rewrite (7.9) as

π

2
þ χ

2
¼HE

Z
umaxðαÞ

0

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AðuÞBðuÞp

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − u2AðuÞ

p ; ð7:10Þ

where α is defined by Eq. (7.3), and where we now
restricted the integration range to the interval 0 < u <
umaxðαÞ, where umaxðαÞ is the (positive) root of u2AðuÞ ¼
α2 closest to the origin. This shows explicitly that, in the
HE limit, χ depends only on α.
We have seen above that, in the HE limit, the rather

involved momentum dependence of the 2PM-accurate
mass-shell condition [which involves the complicated
function (5.12)] drastically simplified. More precisely,
inserting the HE limit (6.7) [and its higher PM analogs
(6.8)] in the mass-shell condition (4.1) (in which we recall
that A, B, C denote the Schwarzschild metric functions),
and neglecting the rest-mass contributions, we get the
following simple HE mass-shell condition

0 ¼ −
E2
eff

1 − 2u
þ KSchw

þ
�
15

2
u2 þ cðqÞ3 u3 þ � � �

�
ð1 − 2uÞKSchw; ð7:11Þ

where we denoted the Schwarzschild-like kinetic-energy by

KSchw ≡ ð1 − 2uÞP2
R þ P2

φ

R2
: ð7:12Þ

The HE mass-shell condition (7.11) is quadratic in
momenta. If we introduce the function

fðuÞ≡ ð1 − 2uÞ
�
15

2
u2 þ cðqÞ3 u3 þ cðqÞ4 u4 þ � � �

�
; ð7:13Þ

8We use here an upper case P as a reminder that Pc:m: is not
rescaled by μ as the EOB momentum p ¼ PEOB/μ, Eq. (4.25). 9and replacing E0 → Eeff , J0 → J.
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the HE mass-shell condition reads

0 ¼ −
E2
eff

1 − 2u
þ ð1þ fðuÞÞKSchw; ð7:14Þ

or, equivalently,

0 ¼ −
E2
eff

AHEðuÞ
þ KSchw ¼ −

E2
eff

AHEðuÞ
þ ð1 − 2uÞP2

R þ P2
φ

R2
;

ð7:15Þ

where we further defined

AHEðuÞ≡ ð1 − 2uÞ½1þ fðuÞ�: ð7:16Þ

In other words, we see that the HE limit of the scattering is
equivalent to a null geodesic in the “effective HE metric”

ds2 ¼ −AHEðuÞdT2 þ dR2

1 − 2u
þ R2ðdθ2 þ sin2θdφ2Þ;

ð7:17Þ

which differs from the Schwarzschild metric only through
the deformed time-time coefficient AHEðuÞ, given by
Eq. (7.16).
Our 2PM calculations above have only given us access to

the Oðu2Þ contribution to the correcting factor 1þ fðuÞ ¼
AHEðuÞ/ASchwðuÞ to ASchwðuÞ ¼ 1–2u, namely

1þ f2PMðuÞ ¼ 1þ ð1 − 2uÞ 15
2
u2 þOðu3Þ

¼ 1þ 15

2
u2 þOðu3Þ: ð7:18Þ

Let us now show how to derive a more accurate value of
fðuÞ from the ultrahigh-energy scattering results of Amati,
Ciafaloni and Veneziano [30]. Indeed, Ref. [30] evaluated
at two loops (using an eikonal expansion) the HE scattering
angle of two gravitons (or low-mass string states).10 In
terms of our parameter α, Eq. (7.3), their result [Eq. (5.28)
in [30]] reads

sin
1

2
χACV ¼HE 2αþ ð2αÞ3 þOðα5Þ; ð7:19Þ

or, equivalently,

1

2
χACV ¼HE 2αþ 7

6
ð2αÞ3 þOðα5Þ: ð7:20Þ

Note the information given by Amati, Ciafaloni and
Veneziano that, because of the analyticity properties in

s ¼ E2
real of scattering amplitudes, there are no contribu-

tions of order α4.
We need to compare Eq. (7.20) to the lightlike scattering

in the effective metric (7.17), i.e. [from (7.21)]

π

2
þ χ

2
¼HE

Z
umaxðαÞ

0

du

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AHEðuÞBðuÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 − u2AHEðuÞ

p ; ð7:21Þ

where AHEðuÞ is given by Eq. (7.16). Parametrizing the PM
expansion of fðuÞ as

fðuÞ ¼ f2u2 þ f3u3 þ f4u4 þ � � � ð7:22Þ

one can compute the integral in Eq. (7.21) in terms of the
numerical coefficients fn and compare the result to (7.20).
A convenient way of computing the integral (7.21) is to
replace the integration over the variable u by an integration
over the variable x defined so that

α2x2 ¼ u2AHEðuÞ: ð7:23Þ

This reduces the evaluation of the integral in Eq. (7.21) to
an integral of the type

Z
1

0

dxffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − x2

p ð1þ c1αxþ c2ðαxÞ2 þ � � �Þ; ð7:24Þ

where the coefficients cn are linear combinations of the
fn’s. One then finds that the result of Amati, Ciafaloni
and Veneziano implies the following PM expansion of the
correction factor fðuÞ:

fACVðuÞ ¼ 15

2
u2 − 18u3 þ 1845

16
u4 þOðu5Þ: ð7:25Þ

In other words, using the link (7.13), this implies that the
HE limit of the function ð1 − 2uÞQ̂ is of the form

ð1 − 2uÞQ̂ ¼HE
�
15

2
u2 − 18u3 þ 1845

16
u4 þOðu5Þ

�
Ĥ2

Schw:

ð7:26Þ

This is equivalent to

Q̂ ¼HE
�
15

2
u2 − 3u3 þ 1749

16
u4 þOðu5Þ

�
Ĥ2

Schw: ð7:27Þ

The agreement between the 2PM contribution (15
2
u2) in the

results so derived from the 2-loop computation of Ref. [30]
is an independent check of our results above. However, this
is only a check of the vanishing of the α2 contribution to the

HE limit of χ [due to the 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðÊeff − 1Þ

q
factor in

Eq. (2.20)]. It is remarkable that the results of Ref. [30]

10As the HE scattering is blind to the rest masses, one can
consider the scattering of gravitationally interacting massless
particles such as gravitons.
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allow one to derive non trivial information about the HE
behavior of Q at the 3PM and 4PM levels.

VIII. SELF-FORCE EXPANSION AND
LIGHT-RING BEHAVIOR

The EOB formalism was initiated by starting from the
PN-expanded dynamics, with the aim of extending its
validity beyond the range of applicability of PN theory
(slow velocities and small gravitational potentials) so as to
describe the last orbits and the coalescence of binary black
holes. One of the first results of EOB theory was to find
that, though the end of the inspiral motion is nonadiabatic
and involves a non-negligible radial motion of the coa-
lescing bodies, the kinetic energy associated with this radial
motion remains rather small compared to the kinetic energy
of the angular motion, even during the “plunge” phase
which follows the crossing of the last stable (circular) orbit
(LSO) [8]. This fact motivated Damour, Jaranowski and
Schäfer (DJS),when they found that the 3PNextension of the
EOB dynamics necessitated the introduction of quartic-in-
momenta contributions to the effective mass shell [i.e. a term
Q ¼ OðP4Þ in Eq. (4.1)], to use a canonical transformation
reducing the P4 dependence of Q [which would a priori
involve P4, ðn · PÞ2P2, and ðn · PÞ4] to a dependence on the
sole radial kinetic energy term, i.e. P4

R ≡ ðn · PÞ4 [9]. This
“DJS gauge” was recently extended to the 4PN level [48]. It
was shown in Ref. [9], by using a counting argument, that
there formally existed, at all PN orders, a PN-expanded
canonical transformation able to reduce theP dependence of
Q to a dependence on the sole PR.
The use of such a DJS gauge allowed EOB theory to

pack the description of the energetics of circular orbits into
the single EOB radial function Āðū; νÞ≡ −geff00 ðR̄Þ, where
ū≡GM/ðc2R̄Þ. [Here, we added a bar both over A and over
the usual EOB gravitational-potential variable u to distin-
guish the value of this radial potential in the DJS gauge
[denoted ĀðūÞ] from its value in the energy gauge [denoted
simply AðuÞ], which we use in this paper when discussing
the 2PM EOB dynamics.] This description turned out to be
quite convenient for finding good resummations of the PN
expansion

ĀPNðū; νÞ ¼ 1 − 2ūþ 2νū3 þ a4ðνÞū4
þ a5ðν; ln ūÞū5 þ � � � ð8:1Þ

of the radial potential Āðū; νÞ. It also led to the discovery of
remarkable cancellations leading to a dependence of
ĀPNðū; νÞ on ν which is linear at the 2PN and 3PN levels,
and no more than quadratic at the 4PN level (while all the
other functions describing the energetics of circular orbits
involve higher powers of ν). (See a detailed discussion of
this point in Ref. [49].)
More recently, the EOB formalism was directly extended

into the strong-field regime by incorporating results from

self-force (SF) theory [50–57]. Within the EOB framework,
SF theory corresponds to expanding the various EOB
potentials (ĀðūÞ, B̄ðūÞ, Q̄ðū; prÞ) in power series in ν, e.g.:

ĀSFðū; νÞ ¼ 1 − 2ūþ νa1SFðūÞ þ ν2a2SFðūÞ þOðν3Þ:
ð8:2Þ

Current SF theory only allows one to compute the con-
tributions linear in ν, such as a1SFðūÞ, but it can (numeri-
cally) compute it even in the strong-field domain, i.e. for
values of ū going even beyond the LSO, up to the lightring
(LR), i.e. ūLR ¼ 1

3
, when considering the dynamics of a

small mass around a nonspinning black hole. [In that
case, we recall that R̄LSO ¼ 6GM/c2 → ūLSO ¼ 1

6, while
R̄LR ¼ 3GM/c2 → ūLSO ¼ 1

3.] The first computation, at the
first self-force (1SF) level, of a combination of EOB
potentials in the strong-field domain was achieved in
Ref. [51], and covered the interval 0 < ū < 1

6
, i.e. from

large values of R̄ down to the LSO. The discovery of nice
identities connecting the binary dynamics to SF quantities
[58–61] then allowed one to separately compute [52]
the 1SF contribution a1SFðūÞ to the EOB A potential in
the interval 0 < ū < 1

5
. The (numerical) computation of

a1SFðūÞ was later extended up to the LR, i.e. in the interval
0 < ū < 1

3
[53], which is the largest interval where SF

theory can compute a1SFðūÞ (because this is the largest
interval in which there exist circular orbits around a
nonspinning black hole). [We recall that there exist stable
circular orbits when R̄LSO < R̄ < þ∞, and unstable cir-
cular orbits when R̄LR < R̄ < R̄LSO.]
A surprising finding of Ref. [53] was that the 1SF

contribution a1SFðūÞ to the EOB A potential had a divergent
behavior at the LR,11 namely

a1SFðūÞ ∼
ū→1

3

1

4
ζð1 − 3ūÞ−1/2; with ζ ≈ 1: ð8:3Þ

Reference [53] understood the origin of this divergence as
coming from the divergent-energy behavior of the small
particle as it approaches the LR, and argued that not only
was the energy-renormalized function

a1SFE ðūÞ≡ a1SFðūÞ
ÊSðūÞ

; where ÊSðūÞ ¼
1 − 2ūffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 3ū

p ; ð8:4Þ

11Reference [59] had earlier suggested (from the extrapolation of
a rational fit to numerical SF data in the interval 0 < x < 1

5
) the

existence of a singularity, at the LR, in the 1SF contribution to
the redshift function z1ðx; νÞ. However, as z0SF1 ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3x
p

, the
presence of a singularity of the type ∂z0SF1 ðxÞ/∂x ∼ ð1 − 3xÞ−1/2
was naturally expected, andwould have followed fromEOB theory
with aLR-regular radial potentialAðu; νÞ. The surprising fact is that
the LR singularity of z0SF1 ðxÞ is stronger than expected by an extra
factor ð1 − 3xÞ−1/2, i.e. of the type z0SF1 ðxÞ ∼ ð1 − 3xÞ−1.
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finite at the LR (namely a1SFE ðūÞ → 3
4
ζ as ū → 1

3
−), but that

it seemed to be naturally, and smoothly, extendable beyond
the LR (i.e. for ū > 1

3
), and even beyond the horizon

(located at ū ¼ 1
2
). Moreover, it seemed probable that the

natural extension of the regularized function a1SFE ðūÞ would
linearly vanish at the horizon (i.e. contain a factor 1 − 2ū).
In addition, Ref. [53] showed that the singular behavior

(8.3) of a1SFE ðūÞ was just a “coordinate singularity in the
EOB phase space” which “can be avoided by a suitable
phase-space transformation that replaces it with an alter-
native regular description”. The latter alternative, regular
description, suggested in Ref. [53], consists in abandoning
the use of the (restricted) DJS-gauge, and in using instead a
gauge such that

Ĥ2
effðpr; r; pφ; νÞ ¼ Ĥ2

Schw þ ν½Ĥ2
eff �1SF þOðν2Þ; ð8:5Þ

with a post-SchwarzschildQ-type contribution (ð1−2uÞQ̂¼
ν½Ĥ2

eff �1SFþOðν2Þ) of the type (see Eq. (139) in [53])

ν½Ĥ2
eff�1SF ¼ νa1SFE ðuÞ Ĥ

3
Schw

1 − 2u
þOðν2Þ; ð8:6Þ

where ĤSchw is the Schwarzschild effective Hamiltonian [see
Eq. (5.11)]. The crucial feature of Eq. (8.6) is the cubic
dependence on ĤSchw.
Let us compare the latter suggestion to our PM-expanded

result above (5.13). If we perform the SF expansion of our
PM-expanded Hamiltonian (5.13) (restricted to the 2PM
contribution q2, which is the only one currently known for
arbitrary large velocities) we get

Ĥ2
eff ¼ Ĥ2

Schw

þ 3

2
νð1 − 2uÞu2ð5ĤSchw

2 − 1ÞðĤSchw − 1Þ

×

�
1 −

3

2
νðĤSchw − 1Þ þ 5

2
ν2ðĤSchw − 1Þ2 þ � � �

�
:

ð8:7Þ
The two important points concerning this expansion are:
(i) we recover what was the main point suggested in [53],
namely that the singularity (8.3) appearing, at the LR, ū ¼ 1

3
,

in the DJS gauge can be transformed by using a different
phase-space gauge into a large-energy behavior of the 1SF
Hamiltonian of the form ½Ĥ2

eff �1SF ∼ νĤ3
Schw; and (ii) we get

the new information that this bad HE behavior is tamed by
higher SF contributions, as exemplified by the factor

1 −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2νðĤSchw − 1Þ
q

¼ νðĤSchw − 1Þ − 3

2
ν2ðĤSchw − 1Þ2

þ 5

2
ν3ðĤSchw − 1Þ3 þ � � � ð8:8Þ

Note indeed thatwhile the left-hand side (lhs) iswell behaved
and actually tends to unity in the HE limit ĤSchw → ∞, each
termon the rhs is divergent in theHE limit. This confirms one
of the points of Ref. [53], namely that the SF expansion is not
an expansion in the sole parameter ν, but rather an expansion
in an energy-corrected version of ν. In the present 2PM case,
we explicitly see that we have an expansion in powers of
νðĤSchw − 1Þ. In view of the results given above for the PN
expansions of the higher-PM analogs of u2q2ðĤSchwÞ, we
more generally expect that a general PM termwill have an SF
expansion controlled by the parameter

ν̃≡ νĤSchw: ð8:9Þ

[The main difference between νðĤSchw − 1Þ and νĤSchw is
that, a low energies, i.e. when doing a PN expansion,
νðĤSchw − 1Þ starts at order Oð νc2Þ, while νĤSchw ¼
νþOð νc2Þ.]
At the current stage, one can analytically control only the

leading-order contribution to the coefficient of Ĥ3
Schw in the

large-energy limit of the 1SF expansion of Ĥ2
Schw, namely

ν½Ĥ2
eff �2PM1SF ¼HEν

�
15

2
u2ð1 − 2uÞ þOðu3Þ

�
Ĥ3

Schw

¼HEν
�
15

2
u2 þOðu3Þ

�
Ĥ3

Schw: ð8:10Þ

The numerical value at the LR, i.e. for u ¼ 1
3
(correspond-

ing to the HE limit for circular orbits), of the coefficient of
νĤ3

Schw is, when using the second line of Eq. (8.10),
15
18
≈ 0.833 33. By comparison, the numerical SF compu-

tation of [53] leads to a numerical coefficient at the LR
equal to [see Eq. (8.6)] ½a1SFE ðuÞ/ð1 − 2uÞ�u¼1

3
¼ 9

4
ζ ≈ 2.25.

One should not expect (in absence of higher PM contri-
butions) any close numerical agreement, but it is satisfac-
tory to find that the sign and the order of magnitude of the
lowest-order12 PM contribution is consistent with the SF
result.

IX. HIGH-ENERGY REGGE BEHAVIOR OF THE
EOB HAMILTONIAN, NUMERICAL
SIMULATIONS AND LIGHT-RING

BEHAVIOR

An interesting aspect of our result (5.13) is that it opens
the possibility of exploring the gravitational interaction in
the HE limit. The derivation of Eq. (5.13) assumed a
situation of small-angle scattering, but once we have
transcribed this information in terms of the Hamiltonian
(5.13), we can also discuss a situation where two compact

12If we had kept the 3PM-level correction −2u3 present in the
first line of Eq. (8.10), one would have obtained a result smaller
by a factor 3.
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objects (say two black holes) orbit each other, say on
circular orbits,13 at very high kinetic energies (correspond-
ing, in the ν ≪ 1 case, to motion near the LR). In the
previous section we considered the HE limit of the SF-
expanded dynamics, i.e. we first expanded the Hamiltonian
(5.13) in powers of ν, and then took the HE limit. Here, we
shall instead consider the HE limit of the non-SF-expanded
Hamiltonian (5.13). As already noticed around Eq. (8.8),
these two limits (HE and SF) do not commute, essentially
because the Hamiltonian crucially involves ν in the form of
the energy-dependent combination (8.9).
Let us consider the energetics of the sequence of

two-body circular orbits defined by the 2PM-accurate
Hamiltonian (5.13) (i.e., keeping only q2, and setting to
zero the higher PM contributions q3, q4 etc.). The ener-
getics of the sequence of circular orbits can be encoded in
various gauge-invariant functions. The conceptually sim-
plest one is the E-J curve, i.e. the functional link between
the total orbital angular momentum J of the binary system,
and the total energy Ereal. (We recall in passing that several
works have shown how to extract this gauge-invariant curve
from numerical simulations of both binary black holes and
binary neutron stars, and have (successfully) compared it to
its usual EOB description [62–64].) As is well-known, the
Regge approach to particle physics has shown the impor-
tance of considering the squared total energy, i.e.
Mandesltam variable s≡ E2

real, as a function of J. As the
EOB energy map (2.21) essentially identifies (modulo an
additive constant and some rescalings) s to the effective
energy Eeff ¼ μÊeff, we shall focus our attention here on the
functional link between Eeff and J, or, in rescaled variables,
between Êeff ¼ Eeff /μ and j ¼ J/ðGMμÞ ¼ J/ðGm1m2Þ.
Let us immediately note that the Regge slope ds/dJ is
given in terms of rescaled variables by

ds
dJ

¼ dE2
real

dJ
¼ 2

G
dÊeff

dj
: ð9:1Þ

Therefore, modulo the simple (mass-independent) factor
2/G, the slope of the dimensionless curve ÊeffðjÞ gives the
Regge slope ds/dJ.
To get the 2PM-accurate functional link (along circular

orbits) between Êeff and j, one must eliminate the radial
variable u ¼ 1/r between the circular Hamiltonian
Ĥcirc

eff ðu; j; νÞ≡ Ĥeffðu; pr ¼ 0; j; νÞ, i.e.

Ĥ2 circ
eff ðu; j; νÞ ¼ Ĥ2 circ

Schw þ 3

2
u2ð1 − 2uÞð5Ĥ2 circ

Schw − 1Þ

×

�
1 −

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðĤcirc

Schw − 1Þ
q �

; ð9:2Þ

where

Ĥ2 circ
Schwðu; jÞ≡ ð1 − 2uÞð1þ j2u2Þ; ð9:3Þ

and the condition defining circular orbits, i.e.

∂Ĥ2 circ
eff ðu; j; νÞ

∂u ¼ 0: ð9:4Þ

We show in Fig. 3 the numerically computed ÊeffðjÞ curve, in
the equal-mass case ν ¼ 0.25. This curve is actually made of
two branches: the lower branch (such that ÊeffðjÞ → 1− as
j → þ∞) corresponds to the sequence of stable circular
orbits (local minima of Ĥ2 circ

eff ðu; jÞ for a fixed j); while the
upper branch (along which ÊeffðjÞ → þ∞ as j → þ∞)
corresponds to the sequence of unstable circular orbits (local
maxima of Ĥ2 circ

eff ðu; jÞ for a fixed j). These two branches
meet at a cusp which corresponds to the LSO. The location
of the LSO for the case ν ¼ 1

4
is not very different from

its test-mass limit ν → 0. Indeed, when ν → 0 we have the
well-known Schwarzschild value uLSOðν ¼ 0Þ ¼ 1

6
¼

0.166 666 6 corresponding to jLSOðν ¼ 0Þ ¼ ffiffiffiffiffi
12

p ¼
3.464 102 and ÊLSO

eff ðν ¼ 0Þ ¼ 2
ffiffi
2

p
3

¼ 0.942 809. By con-
trast, when ν ¼ 1

4
, we find uLSOðν ¼ 1

4
Þ ≈ 0.166 683 8, cor-

responding to jLSOðν ¼ 1
4
Þ ≈ 3.474 742 and ÊLSO

eff ðν ¼ 1
4
Þ ≈

0.942 800 9. [The latter results are actually closer to their
ν → 0 analogs than the ones following from the 2PN-
expanded EOB Hamiltonian [7].]
Our interest here is not in such quantitative results

(which would be strongly modified by higher PM terms),
but rather in the new qualitative properties of the 2PM
Hamiltonian (to be considered next) which follow from the
large-energy behavior of the Hamiltonian (9.2), and that are
likely to hold also at higher PM orders.
The first such qualitative result is the ν-independence of

the Regge slope (9.1) in the HE limit. Indeed, when taking

3 4 5 6 7 8
0.9

1.0

1.1

1.2

1.3

1.4

1.5

j

ef
f

FIG. 3. Graph of the relation between the rescaled angular
momentum j and the rescaled effective energy Ĥeff for ν ¼ 0.25,
and the 2PM Hamiltonian.

13We recall that we are considering here the conservative
dynamics of a two-body system. We shall comment below on
how to use numerical simulations of the dissipative dynamics to
gain information about the conservative interaction.
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the limit j → þ∞ the ν-dependent last (inverse squareroot)
term in the circular Hamiltonian (9.2) tends to zero, so that
we have the HE limit

Ĥ2 circ
eff ðu; j; νÞ¼HEj2u2ð1 − 2uÞð1þ f2PMðuÞÞ; ð9:5Þ

where, consistently with Eq. (7.18),

f2PMðuÞ ¼ 15

2
u2ð1 − 2uÞ: ð9:6Þ

It is easily seen that maximizing the HE circular
Hamiltonian (9.5) with respect to u leads to u ¼ 1

3
(i.e.

the u-location of the HE, 2PM-accurate, LR happens to be
equal to its ν → 0 value). We then find that the HE limit of
the (rescaled) Regge slope (9.1) is equal to

dÊeff

dj
¼HE
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2ð1 − 2uÞð1þ f2PMðuÞÞ
q i

LR
; ð9:7Þ

where the LR subscript means that u should be replaced
by the value that maximizes the function u2ð1 − 2uÞ
ð1þ f2PMðuÞÞ. In the present (2PM-accurate) case, this
means u2PMLR ¼ 1

3
so that

�
dÊeff

dj

�2PM
¼HE

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

27

�
1þ 15

54

�s
≈ 0.217 543; ð9:8Þ

corresponding to a non-rescaled Regge slope of

ds
dJ

¼ 2

G
dÊeff

dj
≈
HE 0.435 087

G
: ð9:9Þ

The main interest of this result is not its numerical value
(which is likely to be significantly modified by higher PM
effects; see below), but the independence of this HE slope
on the mass ratio. Indeed, from the HE results discussed in
Sec. VII, the result (9.7) generalizes to higher PM orders
with exactly the same final expression, as given on the rhs
of Eq. (9.7), but with a correcting function fðuÞ modified
by higher powers of u. For instance, if we use the current
Amati-Ciafaloni-Veneziano-based knowledge of fðuÞ,
namely the value fACVðuÞ given by the rhs of Eq. (7.25)
(truncated to the u4 level included), we find a maximum
value of u2ð1 − 2uÞð1þ fACVðuÞÞ equal to 0.129 587
(reached for uHELR ¼ 0.413 696. This corresponds to a
ν-independent HE slope equal to

ds
dJ

¼ 2

G
dÊeff

dj
≈
HE 0.719 964

G
: ð9:10Þ

Let us recall that an extremely rotating (Kerr) black hole
has a total mass-energy satisfying

E2
extremeBH ¼ J

G
; ð9:11Þ

formally corresponding to a Regge slope equal to 1/G.
Our results above mean that if we form a binary system by

bringing together (in the c.m. frame) two high energy
particles so that they hold, under their mutual (conservative)
gravitational attraction, on an (unstable) circular orbit, they
will have a total angular momentum related to the squared
energy by a relation of the type

E2
real¼HEC

J
G
; ð9:12Þ

with a universal, ν-independent numerical constant C of
order one. [Seen from this perspective, the ν-independence
of C is natural because the rest-mass contributions of the
two objects become irrelevant in the HE limit.] The PM
perturbative estimates above suggest that C is smaller than 1
(though the fact (9.11) suggests that C might end up being
equal to 1).
Using Eqs. (7.6), (7.7), we also deduce from Eq. (9.12)

that the critical impact parameter (in absence of dissipation)
leading to collapse, rather than scattering, in a HE collision
(see Fig. 4) is equal to

bc¼HE
2GEreal

C
: ð9:13Þ

Several different lines of work have tried to estimate the
value of bc, see, e.g., [65–68]. The construction of Ref. [65]
yielded the inequality bc ≥ 3.219 GEreal

2
, corresponding, via

Eq. (9.13), to C ≤ 4
3.219 ≈ 1.243. The analytical estimate of

[68] corresponds to C ¼ 21/23−3/4 ≈ 0.6204.
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FIG. 4. 2PM-accurate, equal-mass (ν ¼ 1
4
) rescaled effective

Hamiltonian Ĥeff as a function of the inverse radial variable
u ¼ GM/R, for the rescaled angular momentum j ¼ 30. Note
that radial infinity is at u ¼ 0 on the left. The horizontal line
indicates the critical value of the effective energy for which the
two-body system would end up (in absence of dissipation) in an
infinite whirl motion.
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It would be interesting to perform simulations of high-
energy scattering of black holes to determine the value of
the constant C. We tried to use the few existing simulations
of high-energy scattering black hole encounters [69,70]
to determine the value of C. The idea is to focus on black
hole motions of the asymptotically zoom-whirl type,
corresponding (in the Hamiltonian EOB representation)
to an effective particle coming from infinity with a high
angular momentum j ≫ 1 whose energy is just equal to the
maximum of the Hamiltonian (for the given value of j)
so that the particle ends up, in the infinite future, on the
(unstable) top of the Hamiltonian. This is illustrated (for the
2PM-Hamiltonian) in Fig. 4.
The problem, however, is that numerical simulations

are studying dissipative motions. A cure for this problem
was indicated in Ref. [45], and was used (for slow black
hole encounters) in Ref. [71]: it consists in subtracting
the energy and angular momentum lost to gravitational
radiation during the incoming motion, and to consider that
the subtracted energy and angular momentum, Êin

eff − Êrad
eff ,

jin − jrad, estimate the energy and angular momentum of
the corresponding asymptotically-whirling motion of a
conservative binary motion. [There would also be the
issue of taking care of the mass-energy absorbed by the
black holes up to the moment of the first whirl.] Using
some data, given in Ref. [69] (and neglecting the effect
of the absorbed mass-energy) for their highest velocity
encounter (v ¼ 0.9c), we found the rough estimate
Cnum ∼ 0.9. This estimate is consistent with our conclu-
sions above. Clearly, new, higher-energy simulations,
including estimates of gravitational radiation losses dur-
ing the incoming motion, are needed to get any firm
conclusion about the numerical value of C.
Let us complete this section by discussing several other

consequences of the HE behavior of the PM-expanded
Hamiltonian studied above.
The first interesting consequence is the impossibility of

transforming, in an exact way, the 2PM Hamiltonian (5.13)
in a DJS-type gauge. We recall that Ref. [9] has shown that
it is possible, to all orders in the PN expansion, to find a
PN-expanded canonical transformation such that the post-
Schwarzschild term Q in the EOB effective mass-shell,
Eq. (4.1), depends on quartic and higher powers of
momenta only through the radial momentum PR. In this
DJS gauge the energetics of circular orbits is packed in the
sole EOB radial potential Āðū; νÞ≡ −geff00 ðR̄Þ. More pre-
cisely, the gauge-invariant energetics ÊeffðjÞ of circular
orbits in DJS gauge (with ū≡GM/ðc2R̄Þ) is obtained by
eliminating ū between the two equations

Ĥ2 circ
eff DJSðū; jÞ ¼ Āðū; νÞð1þ j2ū2Þ≡ Āðū; νÞ þ j2B̄ðū; νÞ;

ð9:14Þ

and

0 ¼ ∂Ĥ2 circ
eff DJSðū; j; νÞ

∂ū ¼ Ā0ðū; νÞ þ j2B̄0ðū; νÞ: ð9:15Þ

Here, we have introduced the notation B̄ðū; νÞ≡ ū2Āðū; νÞ
(which should not be confused with the use of the letter B to
denote geffRR), and used a prime to denote the ū derivative.
Henceforth we consider the sequence of circular orbits,

i.e. the solutions of the two equations (9.14), (9.15). In
principle, all quantities can be considered as functions of j,
or j2, along the latter sequence (modulo the consideration
of the two branches illustrated in Fig. 3). For brevity, we do
not add a superscript “circ” along the latter sequence. It is
easily seen, by differentiating (9.14), that along circular
orbits we have dÊ2

effðj2Þ ¼ B̄ðūðj2Þ; νÞdj2. Therefore,
given the gauge-invariant functional link ÊeffðjÞ, or
Ê2
effðj2Þ, we can recover the value of B̄ðūðj2Þ; νÞ along

the circular sequence via

B̄ðj2Þ ¼ dÊ2
effðj2Þ
dj2

: ð9:16Þ

Inserting this result in Eq. (9.14) allows one to get also the
value of Āðūðj2Þ; νÞ, namely

Āðj2Þ ¼ Ê2
effðj2Þ − j2

dÊ2
effðj2Þ
dj2

: ð9:17Þ

Finally, in view of the definition B̄≡ ū2Ā, we also get the
value of ū2ðj2Þ, namely

ū2ðj2Þ ¼ B̄ðj2Þ
Āðj2Þ ¼

dÊ2
effðj2Þ/dj2

Ê2
effðj2Þ − j2dÊ2

effðj2Þ/dj2
: ð9:18Þ

The above set of equations allows one to construct, in a
parametrized way, the value of the DJS-gauge function
ĀðūÞ from the sole knowledge of the gauge-invariant
function Ê2

effðj2Þ. At face value, it seems to give a non-
perturbative (i.e. non PN-expanded) proof of the fact that
one can always encode the full circular energetics in the
DJS-gauge function ĀðūÞ. However, this reconstruction is
meaningful only if the quantity ū2 defined by Eq. (9.18)
remains finite and positive along the sequence of circular
orbits. [One should additionally worry about monotonicity
issues.]
We have applied the above reconstruction procedure to the

energy curve defined by the 2PM-accurate Hamiltonian,
and represented above in Fig. 3. While a numerical calcu-
lation of B̄ðj2; νÞ from Eq. (9.16) (i.e. essentially a study of
the slope of the curve in Fig. 3) leads to an apparently
acceptable, and positive, result, the numerical calculation of
Āðj2; νÞ from Eq. (9.17) defines a quantity Ā which, for any
nonzero value of ν, changes sign near the LR (i.e. for large
enough values of j2 along the upper branch of the Ê2

effðj2Þ
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curve). For instance, when ν ¼ 1
4
, Ā vanishes around the

2PM-gaugeu-parameteru� ≈ 0.329 806 538, corresponding
to j� ≈ 14.8769. Correspondingly, the quantity ū2ðj2; ν ¼ 1

4
Þ

computed from Eq. (9.18), which was positive along the
stable branch and the beginning of the unstable branch
(j2 < j2�), becomes infinite at j2�, before becoming negative
when getting closer to the LR, i.e. when j2 > j2�. This result
shows that there does not exist an exact canonical trans-
formation allowing one to transform the 2PM-accurate
Hamiltonian into the DJS gauge. It also shows (in con-
firmation of the findings of Ref. [53]) that the obstruction to
the construction of a DJS gauge occurs, when seen in phase
space, only for largevalues of both the energy and the angular
momentum. More discussion about this below.
Finally, let us discuss the predictions made by the PM

Hamiltonians of the type (5.13) concerning the behavior of
Detweiler’s redshift function near the LR. We recall that
Detweiler [72] emphasized the usefulness of considering,
along the sequence of circular orbits of a two-body system,
the gauge-invariant function z1ðxÞ (to which one can add
z2ðxÞ), where za ¼ ½dsa/dt�reg (with a ¼ 1, 2) is the
regularized value of the redshift along the worldline of
the massma (withm1 < m2, and, in the SF case considered
by Detweiler, m1 ≪ m2). In our analytical PM estimates
below, we use the results of [58,59] to compute the redshift
variables (along circular orbits) by means of a partial
derivative with respect to the rest-masses

za ¼
∂Ecirc

realðJ;maÞ
∂ma

: ð9:19Þ

One generally uses as gauge-invariant argument of za the
dimensionless frequency parameter

x≡
�
GMΩ
c3

�
2/3
; ð9:20Þ

where

Ω ¼ ∂Ecirc
realðJ;maÞ
∂J ; ð9:21Þ

is the orbital frequency. [One often replaces, in SF studies,
x by y≡ ðGm2Ω/c3Þ2/3, but we prefer here to use the
1 ↔ 2-symmetric argument x.]
Our first result is that the parameter x is actually a bad

argument because it is not monotonic along the sequence
of circular orbits. This actually is already true at the
(improved) 1PM level, and is a direct consequence of
one of the basic building blocks of EOB theory. Indeed, the
EOB energy map (2.21) shows that the orbital frequency is
given by

Ω ¼ dEreal

dJ
¼ Ωeff

h
; ð9:22Þ

where we recall that

h≡ Ereal

M
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2νðÊeff − 1Þ

q
; ð9:23Þ

and where we defined

Ωeff ≡ dEeff

dJ
: ð9:24Þ

By definition, Êeff , and therefore h, tends to infinity as one
approaches the LR14 If we start by considering the 1PM
approximation, i.e. the effective Hamiltonian of a particle
of mass μ in a Schwarzschild metric of mass M, we have
the well-known result (see, e.g., [7,50]) that the parameter
u ¼ GM/R is a monotonic parameter along the sequence of
circular orbits (with 0 < u < 1

3
), in terms of which one has

GMΩ1PM
eff

c3
¼ u3/2; ð9:25Þ

and

Ê1PM
eff ¼ 1 − 2uffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 3u
p ; j1PM ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uð1 − 3uÞp : ð9:26Þ

If we (generally) define an “effective” frequency parameter
as

xeff ≡
�
GMΩeff

c3

�
2/3 ≡ h2/3x; ð9:27Þ

we have simply x1PMeff ¼ u and therefore

x1PM ¼ u

½1þ 2νðÊ1PM
eff − 1Þ�1/3 : ð9:28Þ

The latter result shows that x1PM tends to zero as one
approaches the LR. Therefore the curve x1PMðuÞ, which
starts at the origin as x1PMðuÞ ¼ uþOðνu2Þ for small u,
then turns back towards zero as u nears u ¼ 1

3
while ranging

over the interval 0 < u < 1
3
. This shows that the link x → za

does not define a function. It also shows that, even at the
1PM approximation, the SF expansion of the formal link
zaðxÞ will be necessarily singular at the LR.
We therefore propose to replace Detweiler’s original

reshift function zaðxÞ by the EOB-motivated functional
link xeff → za, which defines two good functions at the
1PM level. From numerical simulations, it seems that the
functions zaðxeff ; νÞ still define good functions at the 2PM
level. This is illustrated in Fig. 5 which compares (for the
2PM Hamiltonian, and for ν ¼ 0.2) the two functions

14Here, we consider the exact (conservative) two-body LR,
corresponding to an (unstable) ultrahigh-energy binary orbit.
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zaðxeff ; νÞ, to the parametric curves representing the links
zaðx; νÞ.
The two functions zaðxeff; νÞ are ordered as expected from

the large-mass-ratio limit, i.e. z1ðxeff ; νÞ ≤ z2ðxeff ; νÞ ≤ 1.
[We will comment later on the limiting values of z1, z2 at the
LR.] Let us emphasize that the value of xeff at the LR (i.e.
at infinite energy) is finite, and that the function xLReff ðνÞ
monotonically increases with ν from 1

3
when ν ¼ 0 to

xLReff ð14Þ ≈ 0.3617. This corresponds to a fractional increase
(when passing from ν ¼ 0 to ν ¼ 1

4
) in the effective orbital

frequency at the LR of ∼13%. Remember again that, by
contrast, the real orbital frequency (9.22) at the LR vanishes
for all nonzero values of ν.
It would be interesting to try to extend the existing direct

numerical estimates of the functions zaðxÞ, recently
obtained in Ref. [73] (which were limited to the range
GMΩ≲ 0.1, corresponding to x ≈ xeff ≲ 0.215), to the full
range considered here, i.e. up to the LR. This is, however, a
challenging task for several reasons. On the one hand, we
are discussing here the conservative dynamics while
numerical simulations give access to the dissipative dynam-
ics. [It was, however, indicated above how to correct for
that when discussing the energetics.] On the other hand, the
formal dynamical LR discussed here for two point particles
might be preceded, when realizing these particles as black
holes, by the coalescence of the two horizons. [Indeed, the
fact that the orbital frequency along the sequence of
conservative circular motions reaches a maximum before
the LR (where it formally vanishes) is reminiscent of the
EOB prescription (along low-energy, post-LSO plunging
motions) to define merger as the moment where the orbital
frequency reaches a maximum.]
Let us end this section by emphasizing the link between

the HE Regge behavior (9.12) and the LR behavior of
the redshifts za. First, we note that the leading-order HE

relation (9.12) predicts that Ereal is only a function of J,
without any dependence on the two massesma. This would
seem to imply, according to the first law (9.19), that the
redshifts za must tend to zero at the LR. However, one must
take into account the next-to-leading-order (NLO) contri-
bution to the Regge-type relation (9.12). A look at the
2PM Hamiltonian (5.13) (considered in the circular case,
pr ¼ 0), shows that the ratio Ĥ2

eff /j
2 tends, in the HE limit,

to a function of u modulo j-dependent fractional correc-
tions, namely

Ĥ2
eff

j2
¼ BHEðuÞ

�
1þO

�
1

ð2νjÞ1/2ðu2ð1 − 2uÞÞ1/4
��

;

ð9:29Þ

where

BHEðuÞ≡ u2ð1 − 2uÞð1þ fðuÞÞ: ð9:30Þ

Here, we have indicated only the leading-order fractional
corrections in inverse powers of j.
Extremizing the rhs of (9.29) with respect to u we

recover, at leading order the result (9.7). But we also get
the additional information that the fractional correction to
the slope (9.7) is (modulo numerical factors) of order
∼1/ðνjÞ1/2. Converting this information in terms of the
Regge-type relation (9.12), we see that the NLO version of
the HE Regge relation is

E2
real ¼ C

J
G

�
1þ βðm1 þm2Þ

ffiffiffiffi
G
J

r
þO

�
1

J

��
; ð9:31Þ

or, equivalently,

Ereal ¼
ffiffiffiffi
C

p ffiffiffiffi
J
G

r
þ 1

2
β

ffiffiffiffi
C

p
ðm1 þm2Þ þO

�
1ffiffiffi
J

p
�
: ð9:32Þ

Using (9.19), we then deduce that the (formal) LR limits of
the redshifts are finite and equal to

zLR1 ¼ zLR2 ¼ 1

2
β

ffiffiffiffi
C

p
: ð9:33Þ

When using, as is, the 2PM-accurate Hamiltonian, one
finds that the value of β is (small and) negative (as exhibited
in Fig. 5). Evidently, as was already the case for the
numerical value of the leading-order Regge slope C, we
expect that the numerical value of β will be significantly
modified by higher-order PM contributions. One would
have naively expected a vanishing value of za at the LR.
When evaluating za for black holes (rather than point
masses, which involve a regularization of za), the redhifts
are evaluated as a ratio of two (a priori positive) surface
gravitities [73]. We would then expect za never to become

0.0 0.1 0.2 0.3

0.0

0.2

0.4

0.6

0.8

1.0

x, xeff

z 1,
z 2

FIG. 5. Graphs of the relations (for ν ¼ 0.2 and the 2PM
Hamiltonian) between the two redshifts za and either the usual
frequency parameter x (leading to the two curves that turn back
towards the left) or the EOB-motivated effective frequency
parameter xeff. Only the latter choice defines functions zaðxeff ; νÞ.
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negative. Only future work (and a determination of the
higher PM versions of the Hamiltonian) will be able to
decide whether the correct value of β is positive (or zero). If
the analytical estimates of the type presented here continue
to produce a negative value of β this might signal that we
are trusting our analytical description (EOB, as well as the
first law) beyond its physical domain of applicability. [For
instance, one might have to stop using the description at
the threshold where the smallest redshift vanishes.]

X. TOWARDS TRANSLATING QUANTUM
GRAVITATIONAL SCATTERING
AMPLITUDES INTO CLASSICAL
DYNAMICAL INFORMATION

We have already shown above how to translate the HE
scattering results of Amati, Ciafaloni and Veneziano into
information about the structure of the EOB effective
Hamiltonian. But our task had been facilitated by the fact
that Amati, Ciafaloni and Veneziano had already translated
their quantum results in terms of a quasiclassical eikonal
approximation. In this section, we wish to discuss how to
relate the classical dynamical information contained in the
EOB Hamiltonian to the perturbative quantum 2-to-2
gravitational scattering amplitude, given by a Born-type,
coupling-constant expansion of the form

Mðs; tÞ ¼ MðGℏÞðs; tÞ þMðG2
ℏ2
Þðs; tÞ þ � � � ; ð10:1Þ

where s ¼ −ðp1 þ p2Þ2 and t ¼ −ðp0
1 − p1Þ2 are

Mandelstam variables15 and where each term is propor-
tional to a power of G/ℏ≡M−2

P . [Here, MP denotes the
Planck mass; we recall that we use c ¼ 1, while we keep G
and ℏ.]
The first Born approximation is (see, e.g., Ref. [33])

MðGℏÞðs; tÞ ¼ 16π
G
ℏ
2ðp1 · p2Þ2 − p2

1p
2
2

−t
: ð10:2Þ

Note that MðGℏÞðs; tÞ is positive for the real scattering
kinematics (with, notably, s > 0 and t < 0.] We use the
sign convention where the scattering matrix is

hp0
1p

0
2jSjp1p2i

¼ Identityþ ið2πÞ4δ4ðp1 þ p2 − p0
1 − p0

2Þ
M
N

; ð10:3Þ

with a dimensionless Lorentz-invariant amplitudeM and a
(state-normalization-related) positive numerical factor N,
given (when using the state normalization hp0jpi ¼
ð2πÞ3δ3ðp − p0Þ) by N¼ð2E1Þ1/2ð2E2Þ1/2ð2E0

1Þ1/2ð2E0
2Þ1/2.

With this sign convention,M is proportional, in the case of

potential scattering, to the usual nonrelativistic outgoing
scattering amplitude fðΩÞ measuring the coefficient of
the scattered, outgoing wave, ψ scatt ¼ fðΩÞeikr/r, where Ω
is the scattered direction on the sphere. The first Born
approximation of f is proportional to the matrix element of
minus the potential, so that f is positive for an attractive
interaction potential.
If we consider, for orientation, a case where s ∼ −t and

where the momenta are either comparable to or large with
respect to the rest masses, we have the order of magnitude
MðGℏÞðs; tÞ ∼ E2/M2

P. The second term in the Born-type

expansion (10.1) will then beMðG2
ℏ2
Þðs; tÞ ∼ E4/M4

P. We are
then talking about an expansion valid for E ≪ MP. Clearly,
we cannot directly apply this expansion to the physical case
of two black holes or two neutron stars. We shall see how to
bypass this problem by quantizing the EOB Hamiltonian.
As already mentioned in [21], and as is clear when

comparing Eqs. (10.2) to (2.16), there is a simple link
between the OðGÞ contribution to M and the 1PM
scattering angle. Our aim here is to relate theOðG2Þ scatter-
ing amplitude MðG2

ℏ2
Þðs; tÞ to the 2PM scattering angle, and

its corresponding 2PM Hamiltonian contribution (5.13).
An a priori stumbling block in this task is the well-known
fact that, a priori, the domain of validity of the Born expan-
sion is GE1E2/ðℏvÞ≪1 (where v is a characteristic relative
velocity), while the domain of validity of classical scatter-
ing is the reverse condition, namely GE1E2/ðℏvÞ ≫ 1 [74].
The link between the two different OðGÞ results then
appears to be accidental, and due to the fact that the Born
approximation for Coulomb scattering happens to yield the
exact differential cross section. To bypass this problem we
propose to consider the quantum scattering defined by
quantizing the EOB Hamiltonian dynamics.
For simplicity, we restrict ourselves here to the 2PM

dynamics [keeping only q2 in Eq. (5.13)]. If we use the
rescaled variables (4.25) the 2PM mass-shell condition
reads

gμν0 pμpν þ 1þ Q̂ ¼ 0; ð10:4Þ
where g0 is the Schwarzschild metric. Let us use isotropic
coordinates for g0, i.e.

ds20 ¼ −ĀðūÞdt2 þ B̄ðūÞðdr̄2 þ r̄2ðdθ2 þ sin2θdφ2ÞÞ;
ð10:5Þ

with ū≡ 1/r̄ and

ĀðūÞ ¼
�
1 − 1

2
ū

1þ 1
2
ū

�
2

; B̄ðūÞ ¼
�
1þ 1

2
ū

�
4

: ð10:6Þ

Using Cartesian coordinates xi ¼ x linked in the usual way
to r̄; θ;φ, and denoting the covariant momenta pi as p, the
2PM-accurate (rescaled) mass-shell condition reads (using
u ¼ ūþOðū2Þ, so that u2 ¼ ū2 þOðū3Þ)

15We consider the scattering of scalar particles of mass m1 and
m2, from the ingoing state jp1p2i to the outgoing state jp0

1p
0
2i.
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0 ¼ −
Ê2
eff

Ā
þ 1þ p2

B̄
þ ū2q2ðÊeffÞ þOðū3Þ; ð10:7Þ

or, equivalently, multiplying by B̄ and using ū2B̄ ¼
ū2 þOðū3Þ,

0 ¼ −
B̄
Ā
Ê2
eff þ B̄þ p2 þ ū2q2ðÊeffÞ þOðū3Þ: ð10:8Þ

This yields a 2PM-accurate mass-shell condition of the
form

p2 ¼ p2
∞ þ W̄ðūÞ ¼ p2

∞ þ w1ūþ w2ū2 þOðū3Þ; ð10:9Þ

with the following energy-dependent coefficients

p2
∞ ¼ Ê2

eff − 1;

w1 ¼ 2ð2Ê2
eff − 1Þ;

w2 ¼
3

2

5Ê2
eff − 1

hðÊeffÞ
: ð10:10Þ

In the last coefficient h denotes the rescaled real energy,
Eq. (1.3). Note that the Oðū2Þ term in the mass-shell
condition (10.9) has resulted from the sum of the original
2PM term ū2q2ðÊeffÞ ¼ ū2 3

2
ð5Ê2

eff − 1Þð1 − 1/hÞ and of a
term coming from the expansion in powers of ū of the
potential-like terms − B̄

Ā Ê
2
eff þ B̄ that have exactly cancelled

the term proportional to 1, instead of 1/h, in ū2q2ðÊeffÞ.
We can now straightforwardly quantize the PM-expanded

mass-shell condition (10.9). Remembering the rescalings of
x and p, their commutation relation reads

½xi; pj� ¼ iℏ̂δij where ℏ̂≡ ℏ
GMμ

¼ ℏ
Gm1m2

: ð10:11Þ

Note that ℏ̂ is dimensionless and is essentially equal,
when considering a mildly relativistic (v ∼ 1) scattering
with E1 ∼ E2 ∼m1 ∼m2, to the inverse of the expansion
parameter of the Born approximation.
Considering a fixed energy, we get the following time-

independent Schrödinger equation

−ℏ̂2ΔxψðxÞ ¼
�
p2
∞ þ w1

r̄
þ w2

r̄2
þO

�
1

r̄3

��
ψðxÞ:

ð10:12Þ

One should remember that 1
r̄ ¼ GM

R̄ is of order OðGÞ. We
then see that, finally, in the EOB formulation (in isotropic
coordinates), the quantum scattering of two (scalar) par-
ticles is described by the scattering of a (scalar) effective
particle on an energy-dependent potential which is the sum,
at the 2PM approximation, of a Newtonian GM/R̄ potential
and of a correcting ðGM/R̄Þ2 term.

It is interesting to note that though we are discussing
relativistic scattering, the EOB formulation has allowed us
to reduce the computation of the scattering amplitude to a
nonrelativisticlike potential scattering problem. Using stan-
dard results from quantum potential scattering [75], and
denoting the asymptotic plane waves as16

φa ¼ eika·x; φb ¼ eikb·x; ð10:13Þ

where the label a refers to the ingoing state and the label b
to the outgoing one, the stationary retarded-type solution of
the scattering equation (10.12), say ψþ

a , describing a state
jkai in the infinite past, has the following structure at large
distances (with r ¼ jxj)

ψþ
a ≈
r→∞

eika·x þ fþka
ðΩÞ e

ikr

r
: ð10:14Þ

In this formulation, the quantity fþka
ðΩbÞ (which differs

from Mðs; tÞ only by some positive normalization factor)
measures the c.m. scattering amplitude in the out-
going direction Ωb ¼ kb/k. The conserved norm of the
(rescaled) wave vector, k ¼ jkaj ¼ jkbj, is related to p∞,
Eq. (10.10), via

p∞ ¼ ℏ̂k: ð10:15Þ

The scattering amplitude is given by

fþka
ðΩbÞ ¼ þ 1

4πℏ̂2
hφbjW̄jψþ

a i; ð10:16Þ

where

W̄ ¼ þw1

r̄
þ w2

r̄2
þO

�
1

r̄3

�
; ð10:17Þ

is minus the potential in the Schrödinger equation (10.12).

In other words, we consider as HamiltonianH ¼ p2

2m þ V ¼
−ℏ̂2Δx − W̄ with m ¼ 1

2
, p ¼ ℏ̂

i
∂
∂x, and, asymptotically

pa ¼ ℏ̂ka and pb ¼ ℏ̂kb. [Our conventions maximize
the number of plus signs in the relevant equations.]
The first-order Born (B1) approximation is

fþB1
ka

ðΩbÞ ¼ þ 1

4πℏ̂2
hφbjW̄jφai

¼ þ 1

4πℏ̂2

Z
d3xe−iq·xW̄; ð10:18Þ

where

16Beware that k and x are rescaled versions of the usual wave
and position vectors.

HIGH-ENERGY GRAVITATIONAL SCATTERING AND THE … PHYS. REV. D 97, 044038 (2018)

044038-23



q ¼ kb − ka; q ¼ jqj ¼ 2k sin
θ

2
: ð10:19Þ

Here, θ denotes the angle between ka and kb, so that the
scattering amplitude fþ is a function of θ. The link between
the dimensionless quantity q and the physical c.m. momen-
tum transfer Qc:m: ¼ ffiffiffiffiffi

−t
p

will be discussed below.
When reinstating the gravitational constant, the potential

W̄ is a sum W̄ ¼ P
nwn/r̄n, with wn/r̄n ¼ OðGnÞ. The first-

order Born approximation, Eq. (10.18), is then obtained by
computing the Fourier transformof1/r̄n potentials. These are
obtained from the general formula (in space dimension d)

F ðdÞ
�
1

rn

�
≡

Z
ddxe−ik·x

1

rn
¼ CðdÞ

n

kd−n
; ð10:20Þ

where

CðdÞ
n ¼ π

d
2

2n̄Γð1
2
n̄Þ

Γð1
2
nÞ ; with n̄≡ d − n: ð10:21Þ

This general formula yields

F ð3Þ
�
1

r

�
¼ 4π

k2
; F ð3Þ

�
1

r2

�
¼ 2π2

k
; ð10:22Þ

so that

fþB1
ka

ðkbÞ ¼
1

ℏ̂2

�
w1

q2
þ π

2

w2

q

�
: ð10:23Þ

The second (w2) term in this result is already of order
OðG2Þ, while the first one isOðGÞ. To obtain the scattering
amplitude to the OðG2Þ accuracy, one a priori needs to
consider the second-order Born approximation. However,
only the Newtonianlike potential w1/r̄ contribution needs to
be iterated to second order. The latter, second Born iteration
is straightforwardly derived from considering the known,
exact Coulomb scattering amplitude [74]. This can be
embodied in a correcting factor FC ¼ eδC multiplying the
w1 contribution above. Finally, the OðG2Þ-accurate scatter-
ing amplitude derived by quantizing the EOB effective
Hamiltonian reads

fþB1
ka

ðkbÞ ¼
1

ℏ̂2

�
eδC

w1

q2
þ π

2

w2

q

�
; ð10:24Þ

where

δC ¼ i
w1

2kℏ̂2
ln

�
sin2

θ

2

�
þ 2i argΓ

�
1 − i

w1

2kℏ̂2

�
: ð10:25Þ

The exponent δC in the correcting factor FC ¼ eδC is
mainly imaginary, but has also a real part coming from
its second term.

The simplest way to use this result without worrying
about the issue of the relative normalization between M
and fþ is to consider the ratio of the contribution ∝ 1/q to
the one ∝ 1/q2, namely

fþð1/qÞ
fþð1/q2Þ

¼ π

2

w2

w1

e−δCq

¼ 3π

8

5Ê2
eff − 1

2Ê2
eff − 1

q

hðÊeffÞ
þOðG2Þ: ð10:26Þ

In order to express this result in terms of standard physical
quantities, we need to convert the rescaled EOBmomentum
transfer q ¼ jqj ¼ jkb − kaj in terms of the physical
momentum transfer Qc:m: ¼ ffiffiffiffiffi

−t
p

. This is achieved by first
using the relation [21]

ErealPc:m: ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp1:p2Þ2 − p2

1p
2
2

q
¼ m1m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ê2
eff − 1

q
¼ μMp∞ ð10:27Þ

Using the definition (10.10) of p∞, this yields

PEOB
∞ ≡ μp∞ ¼ Ereal

M
Pc:m: ¼ hðÊeffÞPc:m:: ð10:28Þ

As a second step, we use the link (10.15) between k and
p∞, together with Eq. (10.19), and the fact that the physical
c.m. scattering angle χ is equal to the EOB one θ [21].
This yields

q ¼ 2 sin
θ

2

p∞

ℏ̂
¼ 2 sin

χ

2

hðÊeffÞPc:m:

μℏ̂

¼ GM
ℏ

hðÊeffÞQc:m:; ð10:29Þ

where we used
ffiffiffiffiffi
−t

p ¼ Qc:m: ¼ 2 sin χ
2
Pc:m:, and ℏ̂ ¼

ℏ/ðGMμÞ. We finally get

fþð1/qÞ
fþð1/q2Þ

¼ 3π

8

5Ê2
eff − 1

2Ê2
eff − 1

Gðm1 þm2Þ
ffiffiffiffiffi
−t

p
ℏ

þOðG2Þ: ð10:30Þ

This ratio should be equal to the ratio Mð1/ ffiffiffiffi
−t

p Þ/
Mð1/ð−tÞÞ, with

Mð G
ℏð−tÞÞðs; tÞ ¼ 16π

Gm2
1m

2
2

ℏ
2Ê2

eff − 1

−t
: ð10:31Þ

There are several recent works which used modern ampli-
tude techniques to compute the full OðG2Þ, one-loop, two-
graviton exchange, contribution to gravitational scattering
amplitudes M. See notably [40–44]. MðG2Þðs; tÞ contains
several types of terms linked to various topologies of the
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reduced scalar diagrams associated withM. It is, however,
possible (as discussed in Refs. [40–44]) to extract from
MðG2Þðs; tÞ the pieces corresponding to the 1/ð−tÞ and
1/

ffiffiffiffiffi
−t

p
terms discussed above, which we have seen to be

directly connected with interaction terms in the classical
effective Hamiltonian. [Beware of some misprints in
Refs. [41,42]: the relative sign of MðG2Þðs; tÞ and
MðG1Þðs; tÞ should be changed.] However, Refs. [41,42]
consider limits where the two-body effects we are interested
in (with explicit dependence onm1 andm2) disappear, while
Ref. [43] only computes a 1PN-accurate amplitude. The
only published reference I am aware of that takes into
account both two-body effects, and (non PN-expanded)
relativistic effects, is the recent work [44]. It is easily
checked that the amplitude ratioMð1/ ffiffiffiffi

−t
p Þ/Mð1/ð−tÞÞ defined

by dividing the sum of Eq. (3.26) in [44], and of its b → a
counterpart, by the tree-level result, Eq. (3.8) there, agrees
[modulo an overall sign, apparently due to a misprinted sign
in the corresponding tree-level amplitude, Eq. (3.8) there]
with our result above, Eq. (10.30).
I hope that the present investigation will prompt further

work along these lines, and, notably a computation of
the OðG3Þ, two-loop quantum scattering amplitude.
Generalizing the calculations of this section, one should
be able to extract from MðG3Þðs; tÞ the 3PM contribution
u3q3ðÊeffÞ to the effective two-body Hamiltonian which
would significantly improve our knowledge of classical
high-energy gravitational interactions.

XI. CONCLUSIONS

Having in mind the needs of the upcoming era of high
signal-to-noise-ratio gravitational-wave observations, we
have derived the G2-accurate, second post-Minkowskian
(2PM) effective one-body (EOB) Hamiltonian description
of the conservative dynamics of two gravitationally inter-
acting bodies having an arbitrary (possibly relativistic)
relative velocity. This result, which generalizes our previous
1PMwork, was obtained from the 2PMc.m. scattering angle
derived long agobyWestpfahl and collaborators.We stressed
the similarity between the classical PM perturbative expan-
sion of the scattering angle and the Feynman perturbative
expansion of quantum scattering amplitudes (see Sec. II).
It would be interesting to study in more detail this similarity,
and to see whether it could allow one to translate some of

the improved, modern quantum amplitude techniques into
corresponding, improved classical scattering computations.
The effective 2PM EOB Hamiltonian, Eq. (5.13), was

found to have an interesting high-energy (HE) structure,
with many attendant physical consequences: (i) while
confirming a previous finding about a singular HE behavior
of the self-force expansion of the two-body dynamics, it
shows that the exact (non-self-force-expanded) two-body
Hamiltonian is regular in the HE limit; (ii) the HE regularity
of the two-body EOB Hamiltonian can only be obtained in
certain phase-space gauges, which necessarily differ from
the gauge standardly used in the current (low-energy)
versions of the EOB dynamics; (iii) in the HE limit, the
values of the two rest masses become unimportant and this
allowed us both to connect our results with, and exploit, the
HE scattering results of Amati, Ciafaloni and Veneziano,
and to make predictions about some 3PM and 4PM effects,
and about the energetics of HE circular (and zoom-whirl)
orbits. We notably found that high angular momenta, high
energy circular orbits exhibit, to leading order, a (rest-mass
independent) linear Regge trajectory behavior, Eq. (9.12).
Ways of testing these predictions by dedicated numerical
simulations were indicated. See also Eq. (9.31) for the next-
to-leading-order correction to the leading HE linear Regge
behavior (9.12).
Finally, we indicated away to connect our classical results

to the quantum gravitational scattering amplitude of two
particles. We urge amplitude experts to use the available,
efficient techniques to compute the 2-loop scattering ampli-
tude of scalar masses. Higher-loop generalizations of the
massless two-loop amplitude result of Amati, Ciafaloni and
Venezianowould also be quite interesting.We leave to future
work the use of the quantum dynamics defined by the EOB
Hamiltonian as a new handle on a quantum description of
gravitational collapse during two-body collisions.
In view of the effectiveness of the current formulations of

the EOB dynamics, which have played an important role in
the data analysis of the recent LIGO-Virgo observations,
there is no urgent need to reformulate the EOB Hamiltonian
along the lines suggested here. However, we think that the
upcoming era of high signal-to-noise-ratio might benefit
from studying whether a numerical-relativity completion
of the type of new, PM-suggested phase-space gauge
employed here leads to a more accurate description of
the last orbits of coalescing black holes.
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