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We consider theories describing the dynamics of a four-dimensional metric, whose Lagrangian is
diffeomorphism invariant and depends at most on second derivatives of the metric. Imposing degeneracy
conditions we find a set of Lagrangians that, apart form the Einstein-Hilbert one, are either trivial or contain
more than 2 degrees of freedom. Among the partially degenerate theories, we recover Chern-Simons
gravity, endowed with constraints whose structure suggests the presence of instabilities. Then, we enlarge
the class of parity violating theories of gravity by introducing new “chiral scalar-tensor theories.” Although
they all raise the same concern as Chern-Simons gravity, they can nevertheless make sense as low energy
effective field theories or, by restricting them to the unitary gauge (where the scalar field is uniform), as
Lorentz breaking theories with a parity violating sector.
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I. INTRODUCTION

It is well known that the Einstein-Hilbert plus cosmo-
logical constant action is the unique diffeomorphism (diff)
invariant action for a four-dimensional metric, whose
equations of motion (EOM) are at most of second order
[1]. The metric field contains only 2 physical degrees of
freedom, corresponding to a massless spin-2 field. Any
other action leads to higher order EOM (or trivial ones).
According to Ostrogradsky’s analysis [2,3] higher order

EOMmay signal, under certain hypotheses, the presence of
instabilities which generically render the theory pathologi-
cal. However, recent examples of theories (breaking the
above hypotheses) show that having higher order EOM is
not equivalent to having ghost(s) propagating in the theory.
In other words, although it is clear that the presence of an
Ostrogradsky mode necessarily implies (by definition)
higher order Euler-Lagrange equations, the reverse is
not true.
A prime example is the one of scalar-tensor theories

beyond Horndeski which were introduced in [4,5] and also
studied in [6–9]. Later, these theories were further under-
stood and generalized under the degeneracy criterion [10].

Basically, a higher order scalar-tensor theory still propa-
gates 3 degrees of freedom (DOF) if, in addition to the
usual Hamiltonian and momentum constraints associated
with diff invariance, it admits another primary constraint.1

These theories, denoted as degenerate higher order scalar-
tensor (DHOST) theories [or also extended scalar-tensor
(EST) theories], were introduced in [10] and further
analyzed in [11,14–16]. A complete classification up to
cubic order in second derivatives of the scalar field is given
in [17]. Their cosmological perturbations, in the framework
of the effective theory of dark energy (see e.g., [18]), are
studied in [19]. Analogously, similar constructions for
vector interactions were introduced in [20] and a classi-
fication for degenerate vector-tensor theories up to quad-
ratic order was given in [21].
The Ostrogradsky problem and the notion of degeneracy

(necessary to avoid such a problem) were systematically
studied in the context of classical mechanics in [22,23] and
later in the context of higher order field theories without
gauge symmetries in [12]. A similarly rigorous analysis
however is still missing for field theories that possess gauge
symmetries, such as gravity theories enjoying diff invari-
ance. In this paper we attempt a first step in this direction.
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1Due to Lorentz invariance, this primary constraint usually
leads to a secondary constraint [11,12]. However this is not the
case for mimetic gravity [13], in which case the primary
constraint is first class and generates an extra symmetry.
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A. Ostrogradsky instabilities and constraints

Before presenting the content of our paper, let us briefly
discuss our present understanding concerning the presence
of Ostrogradsky modes in a field theory. We follow the
results of [12,22,23] and underline some difficulties to
extend them to diff invariant theories (see also [24] as an
alternative way to deal with Ostrogradsky modes).
In general there is a potential Ostrogradsky mode for
each field in the action appearing with second time
derivatives. In order to remove all of them, as a first
requirement, we need a set of primary constraints equal in
number to the fields that appear with second time
derivatives. In case we have fewer primary constraints,
then Ostrogradsky modes, at least as many as the number
of missing primary constraints, propagate in the theory.
Although these modes lead to instabilities in the absence

of extra symmetries, in the case of diff invariance for
instance, they can be healthy. A well-known example is
fðRÞ where the higher derivative mode described by the
trace of the three-dimensional metric is left unconstrained
and leads to a propagating extra degree of freedom. In this
case however this mode is perfectly healthy as can be seen
by reformulating the theory as a standard scalar-tensor one
with no higher order derivatives at all.
Having the primary constraints however is not enough;

each of them has to generate a secondary constraint, when
evolved over time, in order to remove the associated
Ostrogradsky mode (we do not discuss here the very
special case where the primary constraints are first class).
It is indeed upon exploiting the secondary constraint that
the linear momentum in the Hamiltonian—the character-
istic signature of Ostrogradsky instability—is removed.
When a primary constraint does not generate a secondary
one, then the Hamiltonian is still left unbounded from
below, rendering the theory unstable. Again, also this
point could have loopholes when applied to gauge
invariant theories, although we do not know any explicit
counterexample showing its failure.
Therefore, bearing in mind all these subtleties

that certainly deserve a deeper investigation, in this paper
we retain a conservative approach and also consider
theories with fewer primary constraints [as in the case of
fðRÞ] but, if there is not a secondary constraint generated
by each primary one, then the theory is potentially
unhealthy.

B. From degenerate metric theories
to “chiral scalar-tensor theories”

In this paper we begin exploring higher order, diff
invariant, pure metric theories in a four-dimensional
space-time which are degenerate, and we discuss whether
they appear to be free (or not) of Ostrogradsky modes. We
restrict ourselves to the case where the Lagrangian depends
at most on second derivatives of the metric. In this context
we recover Chern-Simons gravity [25] as a partially

degenerate theory2 and analyze its number of degrees of
freedom in full generality. Inspired by this parity violating
theory of gravity, we extend our analysis and construct new
scalar-tensor theories with the same feature. We dub these
theories ‘‘chiral scalar-tensor theories.” Although they
might be pathological in their covariant form, the
Ostrogradsky modes disappear in the unitary gauge (where
the scalar field depends on time only) and the restricted
version of these theories therefore makes sense as Lorentz
breaking theories similar to Hořava-Lifshitz.
The paper is organized as follows. In Sec. II, we study

four-dimensional diff invariant pure metric theories that are
degenerate. We start with fully degenerate Lagrangians and
continue with a large class of partially degenerate theories.
In Sec. III, we introduce the notion of chiral scalar-tensor
theories and find new classes of theories which violate
parity and propagate only three degrees of freedom in the
unitary gauge. We draw our conclusions in Sec. IV.

II. DEGENERATE METRIC THEORIES

A. Action and ADM decomposition

We consider the general action

S½gμν� ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
Lðgμν; ∂ρgμν; ∂ρ∂σgμνÞ; ð2:1Þ

governing the dynamics of the four-dimensional metric gμν.
This action is assumed to depend at most on the second
derivatives of the metric and, due to Thomas’s replacement
theorem [26] (see also [27] for a modern version), the
derivatives of the metric enter the Lagrangian through the
Riemann tensor Rμνρσ; this also guarantees diff invariance.
The action can thus be constructed by contracting the three
following building blocks: the Riemann tensor, the metric
and the Levi-Cività tensor3 εμνρσ.
In order to perform a Hamiltonian analysis of the system,

we need to separate space and time. We therefore foliate the
space-time manifold M as Σ × R and introduce the unit
timelike vector nμ orthogonal to Σ, thus satisfying the
normalization condition nμnμ ¼ −1. This induces a three-
dimensional metric on Σ defined by γμν ≡ gμν þ nμnν. Let
us then consider the time direction vector tμ∂=∂xμ ≡ ∂=∂t
[i.e., tμ ¼ ð1; 0; 0; 0Þ] associated with a time coordinate t
that labels the slicing of spacelike hypersurfaces. One can
always decompose such a vector as tμ ¼ Nnμ þ Nμ, thus
defining the lapse function N and the shift vector Nμ

orthogonal to nμ. The time derivative (indicated with a dot)
of spatial tensors is defined as the spatial projection of their
Lie derivative with respect to tμ. In the following we will

2The definition of partially degenerate higher order metric
theories is given below Eq. (2.7).

3Note that the Levi-Cività tensor is defined by εμνρσ ¼
ϵμνρσ=

ffiffiffiffiffiffi−gp
where ϵμνρσ is the fully antisymmetric symbol which

takes value in f−1; 0;þ1g.
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use latin indices (i; j; k; � � �) to denote three-dimensional
objects living on the hypersurface γμν.
The ADM decomposition of the metric gives

gμν ¼
�−N2 þ γijNiNj γijNj

γijNi γij

�
; ð2:2Þ

and the components of the Riemann tensor in terms of the
ADM variables are [see for instance [28] where a
Hamiltonian analysis of fðRiemannÞ was presented]
Rij ≡ nμnνRμiνj

¼ −
1

N
ð _Kij − LN⃗KijÞ þ KilKl

j þ
1

N
DiDjN; ð2:3Þ

nμRμijl ¼ DlKij −DjKli; ð2:4Þ
Rijlm ¼ KilKjm − KimKjl þ ð3ÞRijlm: ð2:5Þ

The components on the lhs of the above equations are
the bulk curvature components projected onto the sur-
face Σ. We have used the notation ð3ÞRijlm for the three-
dimensional Riemann tensor, LN⃗ for the Lie derivative
alongNi,Di for the covariant derivative compatible with γij
andKij for the components of the extrinsic curvature tensor
defined by

Kij ¼
1

2N
ð _γij −DiNj −DjNiÞ: ð2:6Þ

Second time derivatives appear only for the spatial
metric components γij, and only in Rij via the time
derivative of the extrinsic curvature _Kij. Notice that the
same term is also the only one which contains time
derivatives of the lapse and shift. Therefore, according to
the Ostrogradsky analysis, for a generic Lagrangian one
could expect as many Ostrogradsky modes as the number
of components of γij.
A necessary (but clearly not sufficient) condition to get

rid of all of them, or part of them, is that the theory has
constraints in addition to the usual constraints associated
with diff invariance. It means that the Hessian matrix of the
Lagrangian with respect to the second time derivatives of
the spatial metric

Aij;lmðx; yÞ≡ ∂2L

∂ _KijðxÞ∂ _KlmðyÞ

¼ 4NðxÞNðyÞ ∂2L
∂ ̈γijðxÞ∂ ̈γlmðyÞ ; ð2:7Þ

is degenerate.4 According to the rank of the above matrix
we will have a different number of primary constraints. In

this paper we study in detail only two cases: Lagrangians
associated with a Hessian matrix of rank 0 (fully degenerate
case) and of rank 1 (partially degenerate case). We will also
briefly discuss in Appendix B the case of larger ranks,
leaving the detailed analysis for future works. If, by
contrast, the Hessian matrix A is invertible, then the theory
propagates 8 degrees of freedom, with some of them
necessarily being ghosts (see [29] for the linear analysis).

B. Fully degenerate theories

In this section we study all the theories that satisfy
Aij;lm ¼ 0, which implies that their Lagrangian is linear in
̈γij. Requiring the Lagrangian to be linear in second time
derivatives means that the corresponding equations of
motion can be at most of third order.

1. Degenerate Lagrangians

In a pioneering paper [30], Lovelock already classified
all the possible Lagrangians satisfying this condition and
showed that there are only three independent terms in
addition to the usual Einstein-Hilbert Lagrangian R:

GB≡ ð⋆Rμν
αβÞð⋆Rαβ

μνÞ; P≡ ð⋆Rμν
αβÞRαβ

μν;

C≡ ð⋆Rμν
ρσÞð⋆Rρσ

αβÞð⋆Rαβ
μνÞ; ð2:8Þ

where ⋆ holds for the Hodge dual

⋆Rμν
ρσ ≡ εμναβRαβρσ: ð2:9Þ

The Ricci scalar (R) gives second order field equations; the
Gauss-Bonnet (GB) and the Pontryagin (P) terms are
topological invariants (in four dimensions) and their varia-
tion yields no term to the field equations [31]. The last
curvature invariant (C) is the only one whose equations of
motion are of third order.5

Linearity in ̈γij translates into linearity in Rij, given in
(2.3), and from this respect it is easy to understand
Lovelock’s result. Indeed the Ricci scalar is the only
density which is linear in the Riemann tensor while at
the quadratic and cubic levels we need to make use of the ε
tensor to avoid nonlinearities in Rij, which leads uniquely
to GB, P and C. Finally, even using the ε tensor, it is not
possible to avoid at least quadratic terms in Rij when one
considers more than three powers of the Riemann tensor.
Therefore, in addition to GR, there is only one other

nontrivial fully degenerate Lagrangian, namely C. Since
this term leads to third order EOM it has never attracted
much attention in the literature and a canonical analysis to
count its number of DOF, as well as evaluate their stability,
is still missing, to the best of our knowledge. In the rest of

4Note that the above matrix is local, i.e., Aij;lmðx; yÞ ∝
δðx − yÞ, because the Lagrangian contains at most second
derivatives.

5We thank Alex Vikman for bringing to our attention this
unique cubic term as well as the article [30].
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this section we partially fill this gap and perform the
Hamiltonian analysis of this theory.

2. Hamiltonian analysis of C

Using Eqs. (2.3)–(2.5), we can rewrite the action

SC ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
C ð2:10Þ

in the form

SC ¼
Z

d4xð _KijΠij − VÞ; ð2:11Þ

where the three-dimensional rank 2 density Πij is defined
by

Πij ≡ ffiffiffiffiffiffi
−g

p ∂C
∂ _Kij

; ð2:12Þ

and the “potential” V contains all the other terms from the
decomposition of (2.10) that do not involve _Kij. The
explicit form of V is quite long and we do not reproduce
it here, as only some of its general properties will be useful
in the following. An important property is that, after several
integrations by parts, we can rewrite the potential V as

V ¼ NV0 þ NiVi; ð2:13Þ

where V0 and Vi, like Πij, depend only on γij, ð3ÞRijlm, Kij

and their spatial derivatives and do not depend explicitly on
the lapse function and shift vector, which enter only
through the extrinsic curvature. This can be seen as a
consequence of the diff invariance of the action (2.10).
Since the action involves second time derivatives of the

spatial metric γij in _Kij, it is convenient to consider the
following equivalent form,

Seq ¼
Z

d4x½ _QijΠij − NV0 − NiVi þ 2NpijðKij −QijÞ�;

ð2:14Þ

where we have introduced the new three-dimensional
symmetric tensors Qij and pij in order to make the
Lagrangian depend explicitly on first time derivatives only.
The equations of motion for pij enforce the condition
Qij ¼ Kij, recovering therefore the original action (2.11).
Note that in (2.14), Πij, V0 and Vi now depend on Qij and
not on Kij. In this form, the action has a linear dependence
on the lapse and the shift, which clearly appear as Lagrange
multipliers in this reformulation. Indeed, expanding the last
term in (2.14) and integrating by parts, we get

Seq ¼
Z

d4xð _QijΠij þ _γijpij − NH0 − NiHiÞ; ð2:15Þ

where

H0 ≡ V0 þ 2pijQij; and Hi ≡ Vi − 2Djpij: ð2:16Þ

We are now ready to perform the Hamiltonian analysis
starting in a phase space endowed with the following 16
pairs of conjugate variables,

fγijðxÞ; pklðyÞg ¼ 1

2
ðδki δlj þ δkjδ

l
iÞδð3Þðx − yÞ;

fQijðxÞ; PklðyÞg ¼ 1

2
ðδki δlj þ δkjδ

l
iÞδð3Þðx − yÞ;

fNðxÞ; π0ðyÞg ¼ δð3Þðx − yÞ;
fNiðxÞ; πjðyÞg ¼ δijδ

ð3Þðx − yÞ; ð2:17Þ

where δð3Þðx − yÞ denotes the Dirac delta distribution on
the space hypersurface. The fact that γij and pij are
conjugate variables is manifest from (2.15).
As the action does not involve time derivatives of the

lapse and the shift, we recover the usual four primary
constraints

πμ ≈ 0 ðμ ¼ 0; 1; 2; 3Þ; ð2:18Þ

which, in analogy with the Hamiltonian formulation of GR,
are closely related to the diffeomorphism invariance of the
theory. Furthermore, since the Lagrangian is fully degen-
erate, computing the conjugate momenta Pij leads to six
additional primary constraints:

χij ≡ Pij − Πij ≈ 0: ð2:19Þ

Hence, the total Hamiltonian of the theory takes the form

HT ¼ HC þ
Z

d3xðξμπμ þ ξijχ
ijÞ;

HC ≡
Z

d3xðNH0 þ NiHiÞ; ð2:20Þ

where ξμ and ξij are Lagrange multipliers that enforce the
primary constraints (2.18) and (2.19).
Requiring the time conservation of (2.18) leads to the

following secondary constraints:

H0 ≈ 0; Hi ≈ 0: ð2:21Þ

These constraints are closely related to the usual
Hamiltonian and momentum constraints, which generate
space-time diffeomorphisms. More precisely, they are first
class up to the addition of the other second class
constraints.
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On the other hand, requiring the conservation in time of
(2.19) leads to the equation

fχijðxÞ; HCg þ
Z

d3yfχijðxÞ; χklðyÞgξklðyÞ ≈ 0: ð2:22Þ

Furthermore, the Dirac matrix between the constraints χij,
defined by

Δij;klðx; yÞ≡ fχijðxÞ; χklðyÞg ¼ ∂ΠklðyÞ
∂QijðxÞ −

∂ΠijðxÞ
∂QklðyÞ ;

ð2:23Þ

turns out to be invertible and therefore we can use
Eq. (2.22) to fix the Lagrange multipliers ξij in terms of
the phase space variables. As a consequence, there are no
secondary constraints associated with (2.19). Hence the
Dirac analysis closes with the eight first class constraints
(2.18) and (2.21) together with the six second class
constraints (2.19). This results in ½32 − ð8 × 2Þ − 6�=2 ¼
5 degrees of freedom. Note that adding the Einstein Hilbert
action to (2.10) does not change the conclusion of the
Hamiltonian analysis: we end up with 5 degrees of freedom
in total.
To conclude, let us notice that H0 and Hi in (2.16) are

linear in pij and therefore the Hamiltonian appears
unbounded from below. This is the characteristic feature
of Ostrogradsky instabilities, indicating that the extra 3
DOF are likely to be ghosts. These extra DOF could be
eliminated if secondary constraints were present, thereby
removing the linear dependence of the Hamiltonian on the
momenta associated with the higher derivative modes. In
the present case the absence of secondary constraints
suggests that the extra modes are not stable. In
Appendix A, we confirm the instability of (2.10) at linear
order in perturbation theory.

C. Partially degenerate theories

In this section, we study theories with a Hessian matrix
(2.7) of rank 1. A straightforward method to construct
models of this type simply consists in considering generic
functions of the fully degenerate Lagrangians6 studied in
the former section:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðYÞ; Y ¼ R;GB;P: ð2:24Þ

Indeed, the linearity argument concerning ̈γij ensures that,
when f00 ≠ 0, the kernel of A is of codimension 1, which
means that the theory admits (6 − 1) primary constraints.

Since we have already discussed the potential problems of
the C term, we will not consider fðCÞ theories here and we
will concentrate our attention on fðGBÞ and fðPÞ, given
that the case of fðRÞ is already well known. In Appendix B
we also give a short discussion about theories with a
Hessian matrix (2.7) of rank higher than 1.

1. General discussion

The Lagrangians fðRÞ and fðGBÞ are well known to
define theories that propagate 3 DOF and are equivalent7 to
scalar-tensor theories within the class of Horndeski. This
fact has been known for a long time for fðRÞ [see e.g.,
[32,33] for reviews on fðRÞ theories]: the action can be
rewritten as a Brans-Dicke-like theory. The equivalence of
fðGBÞ with Horndeski is more recent and was established
only at the level of the equations of motion8 [34].
Finally, the last theory, fðPÞ, can be related to Chern-

Simons gravity [25], which has been much studied in the
literature (see [35] for a review). Indeed, repeating the same
procedure that transforms fðRÞ into a scalar-tensor theory
(see for example [32,33]), action (2.24) can be rewritten as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ϕY −UðϕÞ�; ð2:25Þ

where UðϕÞ is a potential given by

UðϕÞ ¼ ψðϕÞϕ − fðψðϕÞÞ; ϕ≡ fψðψÞ: ð2:26Þ
The reformulation (2.25) will be useful for our analysis of
the various cases considered below.

2. f ðGBÞ theory
In order to exploit our previous analysis of fully

degenerate theories, it is convenient to study fðGBÞ in
the equivalent form (2.25), i.e.,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p ½ϕGB −UðϕÞ�; ð2:27Þ

where the potentialU will be ignored in the following, as its
presence does not modify the conclusion.
Using the ADM decomposition of Sec. II A, we can

apply the same strategy used for studying the C term in
Sec. II B 2. All we need to do is to construct, for the Gauss-
Bonnet action, the analogs of Πij and V defined previously,
and introduce an extra pair of conjugate variables to
account for the scalar field ϕ, i.e.,

6One can suspect that all partially degenerate Lagrangians for a
metric with a rank 1 Hessian matrix are of the form (2.24),
although we have no formal proof for this.

7By equivalent we mean that they have identical classical
equations of motion in vacuum.

8However, the Horndeski form of fðGBÞ involves a logarith-
mic function of X (where X is the kinetic term for the scalar field,
X ≡ ∂μϕ∂μϕ), signaling a nonanalyticity issue when X → 0,
something that is not very evident in fðGBÞ. We will clarify the
origin of this singular point in the next subsection.
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fϕðxÞ; πϕðyÞg ¼ δð3Þðx − yÞ: ð2:28Þ

For the action (2.27) the total Hamiltonian takes the form

HT ¼ HC þ
Z

d3xðξμπμ þ ξijχ
ij þ λπϕÞ;

HC ≡
Z

d3xðNH0 þ NiHiÞ; ð2:29Þ

where

H0 ≡ V0 þ 2pijQij; and Hi ≡ Vi − 2Djpij; ð2:30Þ

and now V0, Vi involve also the scalar field ϕ and its space
derivatives. We avoid reporting their explicit form here;
they are however straightforward to compute. We have also
introduced in the total Hamiltonian the Lagrange multi-
plier λ to enforce the new primary constraint πϕ ≈ 0, since
the action (2.27) does not contain any kinetic term for the
scalar field. Notice that it is the linearity in pij of the
Hamiltonian (2.30) which is potentially dangerous.
Concerning the study of the stability under time evolu-

tion of the primary constraints πμ ≈ 0, the same arguments
of Sec. II B 2 apply, and they generate the secondary
constraints Hμ ≈ 0. They are first class (up to adding
second class constraints).
The degeneracy of the Hessian matrix leads to six

primary constraints χij given by

χij ≡ Pij − ϕΠij ≈ 0; ð2:31Þ

where Πij are obtained from the GB term

Πij ¼ 4
ffiffiffi
γ

p ½2ðQikQj
k − ð3ÞRij −QQijÞ

þ γijðð3ÞRþQ2 −QklQklÞ�: ð2:32Þ

Making use of the explicit form ofΠij in (2.32), it is easy to
compute the Dirac matrix between the constraints χij and
show that it identically vanishes:

fχijðxÞ; χklðyÞg ¼ ϕðyÞ ∂Π
klðyÞ

∂QijðxÞ − ϕðxÞ ∂Π
ijðxÞ

∂QklðyÞ ¼ 0:

ð2:33Þ

Let us now see whether secondary constraints arise.
First, requiring the stability under the time evolution of
(2.31) leads to

fχij; HCg − λΠij ≈ 0: ð2:34Þ

Taking the trace of (2.34) enables one to determine the
Lagrange multiplier λ in terms of the phase space variables.
The traceless part gives five secondary constraints. We then
consider the constraint πϕ ≈ 0 whose time evolution yields

fπϕ; HCg þ Πijξij ≈ 0; ð2:35Þ

which can be solved to write the trace of ξij in terms of the
canonical variables and the remaining five components of
the traceless part of ξij.
Finally, the evolution of the five secondary constraints

given by the traceless part of (2.34) determines the traceless
component of ξij and the analysis stops.
Therefore, starting with 32 (metric) þ2 (scalar) canoni-

cal variables, and having 8 first class and 12 (7 primaryþ
5 secondary) second class constraints, we end up with a
total of 3 DOF, which is compatible with the equivalence of
fðGBÞ with a scalar-tensor theory. However, here, the six
primary constraints (2.31) coming from the higher deriva-
tive modes in the action generate only five secondary
constraints and the Hamiltonian still remains linear in the
trace of the momentum pij. This seems to indicate that the
theory possesses one Ostrogradsky mode. Note that this
Ostrogradsky mode could be removed by adding to the
action (2.27) a kinetic term for the scalar field so that the
primary constraint πϕ ≈ 0 disappears from the total
Hamiltonian and the six primary constraints (2.31) generate
six secondary constraints. This does not change the total
number of DOF, but makes the theory Ostrogradsky free by
removing any linear momentum dependence. This suggests
that only fðGBÞ supplemented with an explicit kinetic term
for the scalar field is classically equivalent to some
Horndeski theory.9

Notice that the same argument a priori seems to apply to
fðRÞ too, suggesting the (erroneous) conclusion that fðRÞ
needs an explicit kinetic term for the scalar field in order to
be ghost free. This is obviously not the case and we believe
the reason lies in the very special structure of this theory.
Indeed a conformal transformation, performed on the
equivalent formulation (2.25) of the theory, removes the
coupling between the metric and the scalar field which
acquires its own kinetic term. A similar transformation does
not seem to exist for fðGBÞ.

3. f ðPÞ: Chern-Simons gravity

The reformulation (2.25) shows that fðPÞ is related, up
to a potential term, to nondynamical Chern-Simons, whose
action reads

SCS ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
ϕP: ð2:36Þ

Chern-Simons modification of gravity is usually seen as an
effective field theory (EFT), truncated at quadratic order in
the curvature, in a low-energy expansion of a more

9This may explain the origin of the singular X → 0 limit of the
Horndeski formulation of fðGBÞ (shortly reported in footnote 8):
the theory does not allow a vanishing kinetic term for the scalar
field.
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fundamental theory [35]. Indeed, since it leads to equations
of motion with higher-order derivatives, it is expected to
contain Ostrogradsky modes if treated as a complete theory
(i.e., not as a perturbative expansion). For the so-called
dynamical Chern-Simons gravity (where also an explicit
kinetic term for ϕ is present), the authors of [36] showed
that there is at least a ghost instability above a certain
momentum cutoff and the authors of [37] provided evi-
dence that the theory does not admit a well-posed initial
value formulation (see also [38] for numerical simulations
using the perturbative approach). However, to the best of
our knowledge, a proper canonical analysis of this theory
has never been performed in order to count the number of
DOF at the nonlinear level. In the following, we present a
canonical analysis of nondynamical Chern-Simons gravity
(2.36); then we add a potential U to study fðPÞ. Finally, we
also add explicitly a kinetic term for ϕ in order to analyze
the dynamical Chern-Simons gravity.

Nondynamical Chern-Simons gravity.—Using the decom-
position of the Riemann tensor given in (2.3)–(2.5), and the
equivalent first-order formulation of the action, the
Pontryagin tensor gives

Πij ¼ 8ðϵiklDlQ
j
k þ ϵjklDlQi

kÞ; ð2:37Þ

and

V ¼ 8ϵijk½2ðLN⃗Qil þDiDlNÞDkQl
j

þ Nð2QilQlmDkQjm

− 2QilQm
j DmQl

k − ð3ÞRjkl
mDmQl

i Þ�; ð2:38Þ

where we have used εijk ¼ ϵijk=
ffiffiffi
γ

p
.

The above Πij and V satisfy two important properties
related to the invariance of the action (2.36) under con-
formal transformations. First Πij is traceless, meaning that
the action does not contain time derivatives of the trace of
Qij, Q≡ γijQij. Second, one can check that the depend-
ence of the potential V on Q is at most linear, meaning that
Q effectively plays the role of a Lagrange multiplier,
similarly to the lapse and shift. It is therefore useful to
explicitly decompose any tensor into its trace and traceless
components: we drop the indices to indicate the trace and
use a tilde to denote the traceless part.
The total Hamiltonian takes the form

HT ¼ HC þ
Z

d3xðξμπμ þ ξPþ ξ̃ijχ̃
ij þ λπϕÞ; ð2:39Þ

HC ≡
Z

d3xðNH0 þ NiHi þ NQHcÞ; ð2:40Þ

where

H0 ≡ V0 þ 2p̃ijQ̃ij; Hi ≡ Vi − 2

�
Djp̃

j
i þ

Dip
3

�
;

ð2:41Þ

Hc ≡ 2

�
8ϕϵjklQ̃ijDlQ̃

i
k þ

p
3

�
: ð2:42Þ

The six primary constraints χij ≈ 0 (2.31) can be divided
into trace and traceless parts:

P ≈ 0; χ̃ij ≡ P̃ij − ϕΠ̃ij ≈ 0: ð2:43Þ

The time evolution of the primary constraint P ≈ 0 leads
to the secondary constraint

Hc ≈ 0: ð2:44Þ

The evolution of the constraints πμ ≈ 0, yields, as usual, the
secondary constraints

H0 ≈ 0; Hi ≈ 0: ð2:45Þ

Before investigating the time evolution of χ̃ij ≈ 0, it is
useful to compute the Dirac matrix associated with these
constraints, which is given by

Δ̃ij;klðx; yÞ≡ fχ̃ijðxÞ; χ̃klðyÞg
¼ 4ðϵikmγjl þ ϵjkmγil þ ϵilmγjk

þ ϵjlmγikÞϕmδ
ð3Þðx − yÞ; ð2:46Þ

where ϕm ≡Dmϕ. Assuming that ϕi is nonzero, one sees
that the symmetric matrix ðϕkϕlÞ is a null eigenvector of
the Dirac matrix, i.e.,

Δ̃ij;klϕkϕl ¼ 0: ð2:47Þ

At this stage, it is useful to introduce the projector
orthogonal to ϕi

γ̂ij ≡ γij −
ϕiϕj

ϕkϕ
k ; ð2:48Þ

the projection orthogonal to ϕi of any three-dimensional
tensor will be denoted with a hat in the following.
Let us now return to the constraint analysis. Evolving the

five primary constraints χ̃ij and taking the projection along
the direction ðϕiϕjÞ, one gets

fχ̃ij; HCgϕiϕj − λΠ̃ijϕiϕj ≈ 0; ð2:49Þ

which can be solved in general to determine the Lagrange
multiplier λ. The projection along γ̂ij determines the four
Lagrange multipliers ξ̂ij in terms of the canonical variables
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as the matrix Δ̂ij;kl is invertible. Finally, the time evolution
of the constraint πϕ ≈ 0 yields the component ξ̃ijϕiϕj of the
Lagrange multipliers ξ̃ij as

ξ̃ijϕ
iϕj ¼ −

fπϕ; HCg þ Π̂ijξ̂ij
Π̃ijϕiϕj

: ð2:50Þ

At this point we are left with the secondary constraints
H0, Hi and Hc and the Lagrange multipliers ξμ and ξ are
still undetermined. It is easy to see that the primary
constraints πμ ≈ 0 and P ≈ 0 have vanishing Poisson
brackets with all the other constraints; i.e., they are first
class. By contrast, it is a nontrivial task to show that their
associated secondary constraints H0, Hi and Hc are also
first class (up to the addition of second class constraints)
and that the algebra closes. However, it is natural to expect
that this is indeed the case since these constraints are
associated with symmetries, namely the diffeomorphism
and the conformal invariance of the action (2.36), and we
will assume so in the following.10 In summary, we thus
have 32 (metric) þ2 (scalar) canonical variables con-
strained by 10 first class and 6 second class constraints,
leading to ½34 − ð10 × 2Þ − 6�=2 ¼ 4 degrees of freedom.
This counting applies only to the action (2.36). If one

adds a potential UðϕÞ, as is necessary for fðPÞ, or the
standard Einstein-Hilbert (EH) term, as in the case of
Chern-Simons modified gravity, the total Lagrangian is no
longer conformally invariant. As a consequence, the con-
straints P and Hc become second class. This gives
one extra DOF in comparison with the above analysis,
leading to a total of 5 degrees of freedom for fðPÞ or for
Chern-Simons modified gravity.
As in the case of the fully degenerate theory (2.10), the

primary constraints χ̃ij, associated with the higher deriva-
tive modes in the Lagrangian, do not generate secondary
constraints, leaving therefore the Hamiltonian linear in the
momenta p̃ij. According to our discussion in the intro-
duction, this potentially signals that the extra 2 or 3 DOF
(depending on whether there is a conformal invariance or
not) are Ostrogradsky modes and the theory is likely to be
unstable. Note however that these modes could be ignored
if one considers the Chern-Simons term as a perturbative
correction to general relativity in the EFT spirit.
The absence of secondary constraints generated by χ̃ij

comes from the nonvanishing of the Dirac matrix (2.46),
due to the presence of the spatial derivatives of Qij in
(2.37). In the so-called unitary gauge, i.e., where the scalar
field is by construction uniform, the Dirac matrix (2.46)
vanishes and the evolution of the five primary constraints

χ̃ij leads to five extra secondary constraints, removing all
the Ostrogradsky modes. Considering therefore the unitary
gauge expression of CS as a Lorentz breaking (different)
theory, saves the day and represent a healthy parity
violating extension of Hořava-Lifshitz involving also _Kij.

Dynamical Chern-Simons gravity.—To conclude our
analysis of CS gravity, let us briefly discuss the case of
dynamical CS gravity, defined by the action (2.36) sup-
plemented with a kinetic term for the scalar field ϕ of the k-
essence form for instance

Sϕ;kin ≡
Z

d4x
ffiffiffiffiffiffi
−g

p
Fðϕ; XÞ; ð2:51Þ

where F is an arbitrary function with a nontrivial depend-
ency on X (i.e., FX ≠ 0). In that case, the primary constraint
πϕ ≈ 0 disappears from the Hamiltonian analysis; as a
consequence we set λ ¼ 0 in the total Hamiltonian (2.39)
and Eq. (2.49) now becomes a secondary constraint:

fχ̃ij; HCgϕiϕj ≈ 0: ð2:52Þ

Remarkably, the Poisson brackets of this new constraint
(2.52) with P and Hc do not vanish in general, making
these latter second class and no longer first class con-
straints. This is not surprising since the kinetic term of ϕ
breaks in general the invariance under conformal trans-
formations of the original action (2.36). From the evolution
of Hc and the evolution of (2.52) it is now possible to fix
the component ξ̃ijϕiϕj of the multipliers ξ̃ij and the last
multiplier ξ that remained undetermined in the nondynam-
ical case.
The analysis therefore ends up with 6 (primary) þ2

(secondary) second class constraints, in addition to the 8
first class constraints due to the diff invariance, resulting in
a total of ½34 − 8 × 2 − 8�=2 ¼ 5 DOF. We thus obtain in
the dynamical case as many DOF as in nondynamical
Chern-Simons gravity plus the EH term.11 In the present
case, some of the primary constraints associated with the
higher derivative modes in the Lagrangian do not lead to
secondary constraints. This implies that the Hamiltonian is
left linear in the components p̂ij of the momentum pij,
making the theory likely to be unstable.

10Notice that a similar result has been shown for the Weyl
squared term in [39], where Hc has been proven to be the
generator of conformal transformations under which the theory is
invariant.

11If the EH term is not included, in the very special case of a
conformally invariant kinetic term Fðϕ; XÞ ¼ fðϕÞX2 in (2.51),
we still lose the primary constraint πϕ ≈ 0, but the constraints
P ≈ 0 and Hc ≈ 0 remain first class due to the preserved
conformal invariance of the action. In addition we have the five
primary constraints χ̃ij and the secondary constraints (2.52) that
are second class. As a consequence, the total number of DOF is
½34 − ð10 × 2Þ − 6�=2 ¼ 4.
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III. CHIRAL SCALAR-TENSOR THEORIES

Inspired by the analysis of fðPÞ and Chern-Simons
gravity, in this last section we entertain the possibility of
constructing healthy scalar-tensor theories, i.e., without
Ostrogradsky modes, featuring parity violating effects. For
this purpose it is essential that the action involve an odd
number of Levi-Cività tensors εμνρσ and, for simplicity, we
will restrict our attention to the cases where there is
only one.
The CS action (2.36) is the simplest scalar-tensor theory

of this kind one can write down, but, given the structure of
constraints revealed in the previous section, it is potentially
unstable. It is possible however to generalize this action by
including first and second derivatives of the scalar field:
ϕμ ≡ ∂μϕ and ϕμν ≡∇μϕν. We will explore two types of
extensions. In the first case, we consider Lagrangians
involving only first order derivatives of ϕ, which implies
that the Lagrangians must be at least quadratic in the
Riemann tensor. In the second case, we consider terms that
are linear in the Riemann tensor while linear or quadratic in
second derivatives of ϕ.

A. First derivatives of the scalar field only

With only first derivatives of the scalar field, one cannot
construct a Lagrangian that depends linearly on the
Riemann tensor (and on the Levi-Cività tensor). With
two Riemann tensors, one finds four independent terms
of this type:

L1 ≡ εμναβRαβρσRμν
ρ
λϕ

σϕλ;

L2 ≡ εμναβRαβρσRμλ
ρσϕνϕ

λ;

L3 ≡ εμναβRαβρσRσ
νϕ

ρϕμ;

L4 ≡ XP; ð3:1Þ

where we recall that X ≡ ϕμϕ
μ and P≡ εμνρσRρσαβRαβ

μν is
the Pontryagin term. In the following, we will analyze the
linear combination

S ¼
X4
A¼1

Z
d4x

ffiffiffiffiffiffi
−g

p
aALA; ð3:2Þ

where aAðϕ; XÞ are a priori arbitrary functions of ϕ and X.

1. Brief Hamiltonian analysis

To perform the Hamiltonian analysis of the action (3.2)
we can rely on the same tools used in the previous sections,
i.e., the ADM decomposition of Eqs. (2.3)–(2.5) together
with the first order reformulation of the action. The only
new ingredient we need is the decomposition of ϕμ, namely

ϕμ ¼
1

N
ðLN⃗ϕ − _ϕÞnμ þDμϕ: ð3:3Þ

One must now take into account two velocity terms, i.e.,
_Qij and _ϕ. Whereas the presence of the ε tensor prevents

terms quadratic in _Qij, it allows mixed terms in _Qij and _ϕ.
Therefore, in order to have the six primary constraints of
the form (2.19) that are the first necessary (but not
sufficient) condition to remove the Ostrogradsky modes,
the functions aA need to be tuned to avoid this coupling.
This requirement leads to the conditions that the aA depend
on ϕ only, and

a1 ¼ a3 ¼ 0 and a2 þ 4a4 ¼ 0: ð3:4Þ

One is left with only one free function, say a2 ≡ fðϕÞ, and
the action (3.2) becomes

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
fðϕÞεμναβRαβρσ

�
Rμλ

ρσϕνϕ
λ −

1

4
XRμν

ρσ

�
:

ð3:5Þ

Thus, by construction, we get the primary constraints of the
form χij ¼ Pij − Πij ≈ 0 with

Πij ¼ −2fðϕÞfϕmϕ
mðϵiklDlQ

j
k þ ϵjklDlQi

kÞ
− ϕkϵ

klmðϕjDmQi
l þ ϕiDmQ

j
lÞ

þ ϕkϕl½ϵjlmðDkQi
m −DmQi

kÞ
þ ϵilmðDkQ

j
m −DmQ

j
kÞ�g: ð3:6Þ

Notice that Πij in the above expression turns out to be
traceless and it is therefore useful to decompose these six
primary constraints into trace and traceless parts,

P ≈ 0; χ̃ij ¼ P̃ij − Π̃ij ≈ 0; ð3:7Þ

where we used the same notations as in (2.43).
Remarkably, the tuning (3.4) not only leaves the action

linear in _Qij, but also in _ϕ. Therefore, we get one additional
primary constraint:

πϕ − φ ≈ 0; φ≡ ∂S
∂ _ϕ

; ð3:8Þ

where S is the action (3.5). In other words, φ contains all
the terms proportional to _ϕ in the action and its explicit
form is not needed.
Using the expression (3.6) one can compute the Dirac

matrix Δ̃ij;klðx; yÞ ¼ fχ̃ijðxÞ; χ̃klðyÞg between the primary
constraints χ̃ij and find out that it is not completely
degenerate. This means that not all the five primary
constraints χ̃ij, associated to the higher derivative modes
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in the Lagrangian, lead to secondary constraints. Hence, the
action (3.5) is expected to contain Ostrogradsky modes.
In this case, even considering the restriction to the

unitary gauge, where the scalar field is assumed to depend
on time only, does not help since the action (3.5) identically
vanishes. However, one can go back to the full action (3.2)
and study it in the unitary gauge, as we do just below.

2. Unitary gauge

Let us analyze the action (3.2) in the unitary gauge. We
express it in a first order formulation, and we still get
primary constraints of the form (3.7) with now the
following expression for the (traceless) Πij tensor,

Πij ¼ Π̃ij ¼ −ð4a1 þ 2a2 þ a3 þ 8a4Þ

×
_ϕ2

N2
ðϵiklDlQ

j
k þ ϵjklDlQi

kÞ: ð3:9Þ

In contrast with the CS term in the unitary gauge, the five
primary constraints χ̃ij ≈ 0 do not generate five secondary
constraints, because of the presence of the lapse function in
the denominator of (3.9).
As a consequence, the only way out is to tune the

functions aA in order to eliminate the Πij tensor (3.9) itself,
namely removing any higher order derivative in the action.
This requirement gives the condition

4a1 þ 2a2 þ a3 þ 8a4 ¼ 0: ð3:10Þ

Solving for instance for the function a3, we obtain the
following action,

SUG ¼ 2 _ϕ2ϵijl

N
½2ð2a1 þ a2 þ 4a4ÞðKKmiDlKm

j

þ ð3ÞRmiDlKm
j − KmiKmnDlKjnÞ

− ða2 þ 4a4Þð2KmiKn
jDnKm

l þ ð3ÞRjlm
nDnKm

i Þ�:
ð3:11Þ

The action (3.11) does not involve any higher order
time derivative of the metric and in this form represents a
parity breaking extension of Hořava-Lifshitz gravity. It is
indeed clear that it propagates ½20 − ð6 × 2Þ − 2�=2 ¼ 3
DOF, exactly as does the Einstein-Hilbert action aug-
mented with the CS term in the unitary gauge. However,
its phenomenology should be completely different since,
in the action (3.11), we do not have any higher order time
derivative of the metric, but only higher order space
derivatives.

B. Including second derivatives of the scalar field

In this final part, we enlarge the scope of our exploration
to include theories with second derivatives of the scalar
field in the action. There is only a single Lagrangian that is

linear in both the Riemann tensor and the second derivative
of the scalar field ϕ, namely

L1 ¼ εμναβRαβρσϕ
ρϕμϕ

σ
ν : ð3:12Þ

At the next level, i.e., still linear in the Riemann tensor but
quadratically in the second derivative of ϕ (up to quadratic
order in first derivatives of ϕ), we find six independent
Lagrangians:

L2 ¼ εμναβRαβρσϕ
ρ
μϕσ

ν ; L3 ¼ εμναβRαβρσϕ
σϕρ

μϕλ
νϕλ;

L4 ¼ εμναβRαβρσϕνϕ
ρ
μϕσ

λϕ
λ; L5 ¼ εμναβRαρσλϕ

ρϕβϕ
σ
μϕ

λ
ν;

L6 ¼ εμναβRβγϕαϕ
γ
μϕλ

νϕλ; L7 ¼ ð□ϕÞL1: ð3:13Þ
We will not investigate here terms of higher order and thus
simply consider the general linear combination of the above
terms

S ¼
X7
A¼1

Z
d4x

ffiffiffiffiffiffi
−g

p
bALA; ð3:14Þ

where bAðϕ; XÞ are functions of the scalar field and its
kinetic term.

1. Brief Hamiltonian analysis

The action (3.14) now involves second time derivatives
of the scalar field, in addition to the second time derivative
of the spatial metric γij. As a consequence, it is useful to
perform a first order reformulation of the action also for
taking into account ϕ̈, in the same way as we do for ̈γij (see
Sec. II B 2). For this purpose, let us introduce a one-form
Aμ that will replace ϕμ in the Lagrangians (3.12)–(3.13) and
add to the action (3.14) the following constraint through a
Lagrangian multiplier [10],

Aμ − ϕμ ¼ 0: ð3:15Þ
The one-form Aμ decomposes in its time (A�) and spatial
(Âμ) projections

Aμ ¼ −A�nμ þ Âμ; ð3:16Þ
and using the fact that ∇μAν ¼ ∇νAμ, we get the following
ADM decomposition for the derivative of Aμ [10],

∇μAν ¼
nμnν
N

ð _A� − LN⃗A� − ÂρDρNÞ − A�Kμν

þ 2nðμKνÞρÂ
ρ − 2nðμDνÞA� þDðμÂνÞ: ð3:17Þ

Substituting this decomposition into the action (3.14), one
obtains the first order form that is needed to start the
Hamiltonian analysis.
At this stage we have a priori six Ostrogradsky modes

described by the Qij variables and one additional

CRISOSTOMI, NOUI, CHARMOUSIS, and LANGLOIS PHYS. REV. D 97, 044034 (2018)

044034-10



Ostrogradsky mode described by A�. In order to get rid of
all of them, the generalization of the Hessian matrix (2.7)
that includes _A� must be fully degenerate, which means that
the action must not contain terms quadratic in _Qij or _A�.
Because of the ε tensor, the action is automatically devoid
of terms quadratic in _A�, but it does contain mixed terms
_A� _Qij in general. The latter disappear if one imposes the
conditions

b7 ¼ 0 and b6 ¼ 2ðb4 þ b5Þ; ð3:18Þ

which we now assume. In this case, one gets seven primary
constraints of the form

πA� − α ≈ 0; χij ¼ Pij − Πij ≈ 0; ð3:19Þ

where α contains all the terms proportional to _A� in the
action.
The Dirac matrix Δij;klðx; yÞ ¼ fχijðxÞ; χklðyÞg

between the constraints χij turns out to be nondegenerate
and no choice of functions, except the trivial one, can make
it vanish. Therefore, the time evolution of the six primary
constraints χij determines the Lagrange multipliers ξij and
no secondary constraint is generated. In conclusion, the
action (3.14) with conditions (3.18) contains three
Ostrogradsky modes in the metric sector.

2. Unitary gauge

Let us now examine the restriction to the unitary gauge
of the action (3.14) with the conditions (3.18). In the
unitary gauge, the scalar field depends only on time and
therefore the components of Aμ reduce to

A� ¼
_ϕðtÞ
N

; Âi ¼ 0; ð3:20Þ

while the free functions bA depend now on t and N only.
The Πij tensor becomes traceless and the Dirac matrix
Δ̃ij;klðx; yÞ simplifies to

fχ̃ijðxÞ; χ̃klðyÞg ¼ −
_ϕ2

N5
½2b2N2 þ _ϕ2ðb3 − b4Þ�

× ðϵikmγjl þ ϵjkmγil þ ϵilmγjk

þ ϵjlmγikÞ∂mNðxÞδðx − yÞ; ð3:21Þ

which vanishes if

b2 ¼ −
A2�
2
ðb3 − b4Þ: ð3:22Þ

However, the above condition also removes all the _Qij

terms in the action, which then reduces, in the unitary
gauge, to

SUG ¼
_ϕ3

N4
ϵijlf2N½b1NKmiDlKm

j

þ ðb4 þ b5 − b3Þ _ϕKmiKn
jDnKm

l �
þ _ϕ½b3ð3ÞRjlm

nKm
i DnN

− 2ðb4 þ b5Þð3ÞRmlKm
j DiN�g: ð3:23Þ

The theory defined by (3.23) propagates only ½20−ð6×2Þ−
2�=2¼3 DOF. This is the same number of degrees of
freedom as found for (3.11) but one can note that the
present action involves also space derivatives of the lapse
function, due to the higher order derivatives of the scalar
field.
In principle, one could apply the same type of analysis

for more complicated Lagrangians. Our results for the
“simplest” Lagrangians do not lead us to believe that one
would find a theory devoid of Ostrogradsky ghosts in its
fully covariant version. So far, one can conclude from our
exploration that the theories we already studied should be
considered as low energy EFT or as Lorentz breaking ones,
on the same footing as Chern-Simons or Hořava-Lifshitz
gravity respectively. In that respect, we leave the phenom-
enological study of both the actions (3.11) and (3.23) for
future work.

IV. CONCLUSIONS

In this paper, we have studied fully and partially
degenerate metric theories in four dimensions whose action
is invariant under diffeomorphisms and that contain at most
second derivatives of the metric. Apart from the Einstein-
Hilbert action which propagates 2 physical degrees of
freedom, fully degenerate theories are either trivial (which
correspond to the Gauss-Bonnet and the Pontryagyn
Lagrangians) with no degree of freedom or contain
Ostrogradsky modes (which is the case for the cubic C
Lagrangian). We have performed a complete Hamiltonian
analysis of the C Lagrangian which shows that the theory
indeed contains five DOF, three of them being
Ostrogradsky ghosts, as confirmed by the analysis of linear
perturbations.
We have also considered partially degenerate theories

whose Lagrangian is given by an arbitrary (nonlinear)
function of one of the fully degenerate Lagrangians, i.e.,
fðYÞ Lagrangians, with Y ¼ R;GB;P. More general par-
tially degenerate Lagrangians (depending on several of the
Y’s) are discussed in an appendix. Following the
conservative criterion we set in the Introduction, i.e., that
each (second class) primary constraint needs to generate a
secondary constraint in order to remove the Ostrogradsky
ghost, we conclude that, apart from fðRÞ, partially degen-
erate theories seem to contain Ostrogradsky modes. fðGBÞ,
after being reformulated as a scalar-tensor theory, can easily
be cured by adding a kinetic term for the scalar field. fðPÞ
instead, which can be reformulated as nondynamical
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Chern-Simons plus a potential, contains three extra modes,
equally for the dynamical case. However, when one
restricts Chern-Simons modified gravity to the unitary
gauge where the scalar field is a function of time only,
one obtains a Lorentz breaking theory where all the
Ostrogradsky modes are removed.
Finally, we considered new parity breaking scalar-tensor

theories constructed by combining the Riemann tensor and
the (first or second) derivatives of the scalar field. Even
though they contain Ostrogradsky modes in their covariant
version, we have classified new classes of chiral scalar-
tensor theories which propagate only 3 degrees of freedom
in the unitary gauge. In this sense, they have to be
considered as generalizations of Chern-Simons modified
gravity, i.e., as low energy EFTs, or as Lorentz breaking
theories with a parity violating sector.
Various phenomenological developments in these new

theories are worth exploring: in particular the propagation
of gravitational waves and black hole solutions. A pre-
liminary study shows that it is only when we introduce
metrics that break parity, such as rotating axisymmetric
geometries, that these terms kick in modifying GR sol-
utions, while admitting certain GR solutions, notably
Schwarzschild in the other cases (see [40] for similar
behavior in CS gravity).
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APPENDIX A: INSTABILITY OF LINEAR
PERTURBATIONS FOR C

To illustrate the instability of the theory defined by
(2.10), we make a linear perturbation analysis of the theory
and we show that the perturbations are indeed unstable.
Let us consider a background metric ḡμν, solution to the

equations of motion, and a small perturbation hμν around
this background. Plugging gμν ¼ ḡμν þ hμν into the action
leads generically to a quadratic action for the perturbation
of the form

Squad½hij� ¼
Z

dtd3xfḧijðAijklhkl þ Bijkl _hkl

þ Cijklm∇̄mhkl þDijklm∇̄m
_hklÞ þ Eg ðA1Þ

where the tensors A, B, C and D are evaluated in the
background, ∇̄ denotes the covariant derivative compatible
with the background metric ḡμν and we have included in E

all terms which do not involve a second time derivative of
the perturbation.
Integration by parts allows us to simplify the term in the

action which is linear in ḧij as follows:

Squad½hij� ¼
Z

dtd3xfḧijðBijkl _hkl þDijklm∇̄m
_hklÞ þ Eg

ðA2Þ
with a redefinition of E. Now, if we make a Fourier
transform in the space coordinates, we find that the
dynamics of the Fourier components φij of hij is governed
by an action of the type

Ŝquad½φij� ¼
Z

dtd3kfφ̈ijKijkl _φkl þ Êg ðA3Þ

where Kijkl is evaluated in the background but could
depend on wave number and Ê is the spatial Fourier
transform of E. Only the skew symmetric component of
K is relevant for us because the symmetric component leads
(after an integration by parts) to a term which involves only
first time derivatives. Hence, without loss of generality, we
assume that K is skew symmetric. It is well known that any
skew symmetric matrix can be brought to a block diagonal
form by a special orthogonal transformation. As K is a
6 × 6 matrix, its block diagonal form is

0
BBBBBBBB@

0 κ1 0 0 0 0

−κ1 0 0 0 0 0

0 0 0 κ3 0 0

0 0 −κ3 0 0 0

0 0 0 0 0 κ5

0 0 0 0 −κ5 0

1
CCCCCCCCA
; ðA4Þ

where κA depend on the explicit form of K. Therefore, a
change of variable ðφijÞ ↦ ðφ1;…;φ6Þ allows us to
decouple the different components of hij in such a way
that the action reduces to

Z
dtd3kfκ1φ̈1 _φ2 þκ3φ̈3 _φ4þκ5φ̈5 _φ6Þ þ Êg: ðA5Þ

To study the stability of the perturbation, we proceed as
usual and we replace this action by the following equivalent
one,

Z
dtd3kfκ1 _Φ1 _φ2 þ κ3 _Φ3 _φ4 þ κ5 _Φ5 _φ6 þ Ê

þ π1ð _φ1 −Φ1Þ þ π3ð _φ3 −Φ3Þ þ π5ð _φ5 −Φ5Þg; ðA6Þ

which is clearly not degenerate (when κA are not vanishing,
which is generically the case). Hence, one expects that it
contains Ostrogradsky ghosts.
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APPENDIX B: THEORIES WITH KINETIC
MATRIX OF HIGHER RANK

In this appendix we briefly discuss theories of gravity
whose kinetic matrix (2.7) is degenerate with a rank higher
than 1. One can suspect that all partially degenerate
Lagrangians for a metric (whose Hessian matrix has a
rank r ≥ 1) are of the form

Z
d4x

ffiffiffiffiffiffi
−g

p
LðR;GB;P;CÞ; ðB1Þ

where the Lagrangian L is a function of the four fully
degenerate Lagrangians (2.8). However, we have no formal
proof for showing this. We have studied in detail the case
whereL is a function of a single variable in Sec. II C, which
corresponds to r ¼ 1. Here we are going to discuss the case
where L is a function of more than one variable, which
corresponds to degenerate theories with a kinetic matrix
whose rank is r > 1.

1. Kinetic matrix

To show that these theories (B1) are indeed degenerate,
let us compute the rank of its kinetic matrix. First, we recall
that each fully degenerate Lagrangian (denoted generically
X) can be written in the form

ffiffiffiffiffiffi
−g

p
X ¼ _KijΠ

ij
X − VX; ðB2Þ

where the explicit form of Πij
X has been given for GB (2.32)

and P (2.37) only. The other two expressions can easily be
obtained but their explicit forms are not needed. Hence, the
kinetic matrix is easily computed and gives

Aij;klðx; yÞ ¼
�X
X;Y

HXYΠij
XðxÞΠkl

Y ðxÞ
�
δ3ðx − yÞ;

HXY ≡ ∂2L
∂X∂Y ; ðB3Þ

where the sum runs over the set fR;GB;P;Cg of all
degenerate Lagrangians, and H is a real and symmetric
four-dimensional matrix. Thus, H can be diagonalized
according to

H ¼ Λ½diagðλ1; λ2; λ3; λ4Þ�TΛ; ðB4Þ

where Λ is orthogonal and diagðλ1; λ2; λ3; λ4Þ is the
diagonal matrix of eigenvalues λA. As a consequence,
the kinetic matrix (B3) can be viewed as a quadratic form
which can be diagonalized itself as follows:

Aij;kl ¼
X4
A¼1

λAΓ
ij
AΓkl

A ; Γij
A ≡X

X

HAXΠij
X : ðB5Þ

For simplicity, we omitted writing the explicit space
dependency. Thus, when H is invertible, the kernel of
Aij;kl is of dimension 2, corresponding to the two direc-
tions orthogonal to the four (six-dimensional) vectors ΓA:
in that case, rankðAÞ ¼ 4. In general, it is easy to see that

rankðAÞ ¼ 4 − corankðHÞ ¼ rankðHÞ; ðB6Þ
and, as expected, the theory (B1) is always (partially)
degenerate. In particular, we recover the result of the
previous subsection, namely rankðAÞ ¼ 1 when L is a
nonlinear function of a single variable.

2. Constraint analysis

To count the number of DOF, we make a Hamiltonian
analysis. We proceed as in Sec. II C, and we replace (B1) by
the equivalent first order actionZ

d4x
ffiffiffiffiffiffi
−g

p fLð _QijΠ
ij
X − VXÞ þ 2NpijðKij −QijÞg; ðB7Þ

whose Lagrangian does not involve anymore second
derivatives of the metric. The corresponding phase space
is defined by the same Poisson structure as in (2.17).
Computing the momenta Pij gives

Pij ¼
X
X

LXΠ
ij
X ; LX ≡ ∂L

∂X : ðB8Þ

This relation immediately shows that the momenta are
constrained. Indeed, when fX ≠ 0, one can use four out of
the six equations (B8) to express the four functions fX in
terms of the phase space variables, and the remaining two
equations are constraints. If only r functions fX are
different from zero, we only need r equations to solve
them in terms of the phase space variables, and we get
c ¼ 6 − r constraints denoted χc ≈ 0. This result is com-
patible with the formula (B6) as rankðAÞ ¼ 6 − c ¼ r
and rankðHÞ ¼ r.
Hence, we start with c primary constraints χc ≈ 0 in

addition to the usual four constraints πμ ≈ 0. The latter lead
to the usual four Hamiltonian and vectorial constraints
which form with πμ ≈ 0 a set of first class constraints (up to
the addition of second class constraints). The analysis of the
stability under time evolution of the constraints χc ≈ 0 is
subtler. Even though we do not perform a complete analysis
(which goes beyond the scope of this paper) here, let us
quickly describe generic cases.
When L is a function of R and GB only, one obtains c

secondary constraints, and there are no tertiary constraints.
Except if L depends on P only (in which case the theory
admits a conformal invariance in addition to the diff
invariance, as it was shown in the previous section), all
these (2 × c) constraints are second class. Thus, the theory
propagates ½32 − ð2 × 8Þ − ð2 × cÞ�=2 ¼ ð8 − cÞ DOF. We
recover the fact that fðRÞ and fðGBÞ propagate 3 DOF,
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whereas fðR;GBÞ propagates 4 DOF. See [41] for an
interesting class of fðR;GBÞ theory.
When the Lagrangian L depends on P and/or C, the

analysis is more complicated. The time evolution of the c
primary constraints does not produce generically secondary
constraints.However, this is true onlywhenc is even, inwhich
case the theory propagates ½32−ð2×8Þ−c�=2¼ð8−c=2Þ

DOF. When c is odd, the Dirac matrix of the primary
constraints is necessarily degenerate, which implies that there
is (generically) one secondary constraint. In that case, the
theory propagates ½8 − ðcþ 1Þ=2� DOF. There might also be
particular cases where there is more than one second class
constraint. We leave a precise Hamiltonian analysis of such
theories for the future.
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