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The identification of a suitable gravitational energy in theories of gravity has a long history, and it is well
known that a unique answer cannot be given. In the first part of this paper we present a streamlined version
of the derivation of Freud’s superpotential in general relativity. It is found if we once integrate the
gravitational field equation by parts. This allows us to extend these results directly to the Einstein-Cartan
theory. Interestingly, Freud’s original expression, first stated in 1939, remains valid even when considering
gravitational theories in Riemann-Cartan or, more generally, in metric-affine spacetimes.
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I. INTRODUCTION

A. Gravity and energy

General Relativity (GR) does not lend itself naturally to
the definition of gravitational energy. This led to the
formulation of energy via pseudotensors or an energy-
momentum density complex; see Chen, Nester, and Tung
[1] for a brief historical account; earlier contributions,
chronologically ordered, include [2–10]. These objects
appear more or less naturally when studying gravitational
field equations, depending on one’s approach. In the
present paper we proceed by revisiting the Einstein field
equation written in exterior calculus. This has the great
advantage that a single integration by parts allows us to
define a conserved quantity, which can be related directly
with Freud’s superpotential [11]. Within the context of
general relativity, most of these results are known and can
be found in the literature.
Our approach allows us to extend these results smoothly

to other gravitational theories. First, it will be applied to
Einstein-Cartan theory where we will derive the analogue
superpotential in the presence of torsion. Second, we show
how the formalism naturally includes all metric-affine
gravity theories. It is particularly noteworthy that Freud’s
original “affine tensor density” applies to all such theories
despite Freud’s proof being given only in the case of
general relativity.

B. Notation and conventions

For exterior calculus and its application to field theory,
we recommend, as examples, Bamberg and Sternberg [12],

Agricola and Friedrich [13], and Scheck [14]. We take our
corresponding conventions from [15] (see also [16]). For
tensor calculus, see Schouten [17,18] and, for the gener-
alized Kronecker symbols and the ϵ-system, in particular
Sokolnikoff [19].
The coframe one-form is denoted by ϑα, with Greek

(anholonomic) indices α; β; γ;… ¼ 0, 1, 2, 3. The vector
frame eβ is dual to the coframe, that is, the interior product
of the frame as applied to the coframe reads eβ⌋ϑα ¼ δαβ .
(Holonomic) coordinate indices are written in Latin,
namely i; j; k;… ¼ 0, 1, 2, 3. A p-form Ψ expanded with
respect to the anholonomic basis is given by

Ψ ¼ 1

p!
Ψα1…αpϑ

α1 ∧ � � � ∧ ϑαp : ð1Þ

The η-basis is defined in the conventional way; see [15].
If we take the interior product ⌋ of an arbitrary frame
eα with the metric volume element 4-form η ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij det gμνj
p

ϑ0 ∧ ϑ1 ∧ ϑ2 ∧ ϑ3, then we find a 3-form ηα;
if we contract again, we find a 2-form ηαβ, etc.:

ηα ≔ eα⌋η ¼
1

3!
ηαβγδϑ

β ∧ ϑγ ∧ ϑδ ¼ ⋆ϑα; ð2Þ

ηαβ ≔ eβ⌋ηα ¼
1

2!
ηαβγδϑ

γ ∧ ϑδ ¼ ⋆ðϑα ∧ ϑβÞ; ð3Þ

ηαβγ ≔ eγ⌋ηαβ ¼
1

1!
ηαβγδϑ

δ ¼ ⋆ðϑα ∧ ϑβ ∧ ϑγÞ; ð4Þ

ηαβγδ ≔ eδ⌋ηαβγ ¼ eδ⌋eγ⌋eβ⌋eα⌋η

¼ ⋆ðϑα ∧ ϑβ ∧ ϑγ ∧ ϑδÞ: ð5Þ
Similar formulas are valid for the ϵ-system, where ϵαβγδ ¼
�1; 0 is the Levi-Citita symbol; see [15,20]. The Hodge
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star ⋆ is then substituted by the diamond star ⋄. This system
will be used in metric-affine spacetimes.
In Riemannian geometry a tilde above an expression M̃

is used. This means such quantities are based on the
Christoffel symbol components without torsion or non-
metricity. In Riemann-Cartan space the corresponding
quantities are denoted without a tilde. The torsion 2-form
and the curvature 2-forms read, respectively, as

Tα ≔ Dϑα ¼ dϑa þ Γβ
α ∧ ϑβ;

Rα
β ¼ dΓα

β − Γα
γ ∧ Γγ

β: ð6Þ

Einstein’s gravitational constant and the speed of light
are put to one: κ ¼ 1, c ¼ 1.

II. FREUD’S SUPERPOTENTIAL IN GENERAL
RELATIVITY

A. General relativity in exterior calculus

It is possible to express Einstein’s field equation [21] in
the framework of the calculus of exterior differential forms;
see Misner, Thorne, and Wheeler [22], Trautman [23],
Thirring and Wallner [10,24], and Kopczyński [25]. Let
R̃α

β be the curvature 2-form of the (pseudo)Riemannian
spacetime,

R̃α
β ¼ dΓ̃α

β − Γ̃α
γ ∧ Γ̃γ

β; ð7Þ

with Γ̃α
β as the Levi-Civita connection 1-form. We call the

Einstein 3-form G̃α. Then the Einstein equation reads [23]

G̃α ≔
1

2
ηαβγ ∧ R̃βγ ¼ T α: ð8Þ

Here the source term T α represents the symmetric Hilbert
energy-momentum 3-form of matter. The usual symmetric
energy-momentum tensor of rank 2 is given by

Tαβ ¼ ⋆ðϑβ ∧ T αÞ: ð9Þ

To recover the standard form of the Einstein field
equations, where the Einstein tensor has the form of a
trace-reversed Ricci tensor, one can isolate the components
of the Einstein 3-form using (1) and (4). Finally, one can
apply the Hodge dual to obtain the 1-form whose compo-
nents will be the usual Einstein tensor components.
If one desires to introduce a superpotential à la Freud

[11], then one has to isolate in (8) a leading term of the
general form ∼dðη:: ∧ Γ̃Þ. In exterior calculus, it is
straightforward to see how to achieve this. We substitute
(7) into (8):

1

2
ηαβγ ∧ ðdΓ̃βγ − Γ̃βδ ∧ Γ̃δ

γÞ ¼ T α: ð10Þ

The next step is now particularly simple; we use the Leibniz
rule and find immediately

d

�
−
1

2
ηαβγ ∧ Γ̃βγ

�
þ 1

2
ðdηαβγÞ ∧ Γ̃βγ −

1

2
ηαβγ ∧ Γ̃βδ ∧ Γ̃δ

γ

¼ T α: ð11Þ

It is possible to manipulate the second term on the left-hand
side of this equation: We recall that in a Riemannian space
D̃ηαβγ ¼ 0. Thus,

0 ¼ dηαβγ − Γ̃α
δ ∧ ηδβγ − Γ̃β

δ ∧ ηαδγ − Γ̃γ
δ ∧ ηαβδ

¼ dηαβγ − 3Γ̃½αδ ∧ ηβγ�δ; ð12Þ

which implies

dηαβγ ¼ 3Γ̃½αδ ∧ ηβγ�δ: ð13Þ

We substitute (13) into (11) and find, after some algebra,

d

�
−
1

2
ηαβγ ∧ Γ̃βγ

�
− ηβγ½α ∧ Γ̃δ�β ∧ Γ̃δγ ¼ T α: ð14Þ

One is now led to define the Freud 2-form [11]1

F̃ α ≔ −
1

2
ηαβγ ∧ Γ̃βγ ð15Þ

and the gravitational energy-momentum, the Trautman–
Sparling 3-form [27],

t̃α ≔ ηβγ½α ∧ Γ̃δ�β ∧ Γ̃δγ: ð16Þ

Then we can rewrite (14) simply as

dF̃ α ¼ t̃α þ T α: ð17Þ

Equation (17) has been derived earlier also by
Frauendiener [3], for example. However, he finds it “some-
what startling to see the Einstein tensor to show up in this
connection” [8c]. In our deduction, the relation to the
Einstein 3-form is apparent and quite natural. A similar
observation can be found in [1] where it was pointed out
that this derivation of the superpotential is in “remarkable
constrast” to the tensor calculus approach.

1According to Kopczyński [26], Trautman, around 1975,
taught about gravitational radiation at Warsaw University. There
Kopczyński learned from him about the forms F̃ α and t̃α.
Nurowski remembers that Kopczyński lectured about these forms
in the early 1980s. Later Trautman spoke about them in Erice and,
probably, from Erice it went somehow to Vienna. These forms
then appeared in papers of Thirring. Incidentally, Trautman called
F̃α Freud’s superpotential.
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Our main result is respresented by Eq. (17), together with
definitions (15) and (16). Clearly, because of Poincaré’s
lemma, ddF̃ α ¼ 0. Accordingly, we find the conservation
law

dðt̃α þ T αÞ ¼ 0: ð18Þ
This demonstrates that the nontensorial 3-form t̃α repre-
sents an energy complex of the gravitational field; see also
Schrödinger [28].
It turns out that the Freud 2-form F̃ α is not exactly the

object used by Freud in the derivation of the energy
complex but rather its Hodge dual. This is addressed in
the following.

B. Hodge dual of the Freud two-form

In subsequent parts we will need the Hodge dual of the
Freud two-form. By applying the standard formulas for the
Hodge star, we find

⋆F α ¼
⋆�

−
1

2
ηαβγ ∧ Γ̃βγ

�
¼ −

1

2
⋆ðηαβγδϑδ ∧ Γ̃βγÞ

¼ −
1

2
ηαβγδ

⋆ðϑδ ∧ Γ̃βγÞ ¼ −
1

2
ηαβγδ

⋆ðϑδ ∧ ϑεΓ̃ε
βγÞ

¼ −
1

2
ηαβγδΓ̃ε

βγ⋆ðϑδ ∧ ϑεÞ: ð19Þ

Accordingly, we find the relatively compact formula
(ηδζ ¼ −ηζδ)

⋆F α ¼
1

2
ηαβγδgβεΓ̃ζε

γηζδ: ð20Þ

The components of this expression are given implicitly
by ⋆F α ¼ 1

2
⋆F μνα ϑμ ∧ ϑν or explicitly by ⋆F μνα ¼

eν⌋eμ⌋⋆F α. Thus, Eq. (20) yields

⋆F μνα ¼ eν⌋eμ⌋

�
1

2
ηαβγδgβεΓ̃ζε

γηζδ
�

¼ 1

2
ηαβγδgβεΓ̃ζε

γeν⌋eμ⌋ηζδ

¼ 1

2
ηαβγδgβεΓ̃ζε

γηζδμν ¼
1

2
ðηαβγδημνζδÞgβεΓ̃ζε

γ: ð21Þ

It appears that the last expression becomes more trans-
parent if we raise the indices μ and ν:

⋆F μν
α ¼

1

2
ðηαβγδημνζδÞgβεΓ̃ζε

γ ¼ 1

2
δμνζαβγg

βεΓ̃ζε
γ: ð22Þ

In the last transformation, we used the rules for the
η-system; see [[19] Eq. (40.5)] together with the general-
ized Kronecker deltas.2 The object δμνζαβγ can be written as a
determinant:

δμνζαβγ ¼

��������
δμα δνα δζα

δμβ δνβ δζβ

δμγ δνγ δζγ

��������
: ð23Þ

If we substitute this into (22), we find eventually

⋆F μν
α ¼

1

2

��������
δμα δνα δζα

gμε gνε gζε

Γ̃ζε
μ Γ̃ζε

ν Γ̃ζε
ζ

��������
: ð24Þ

This result is analogous to the one found by Freud in
holonomic coordinates, as we will see.
Using the notation gik ≔

ffiffiffiffiffijgjp
gik Freud wrote the

expression of the superpotential in a compact form by
using the determinant

Ain
k ¼

1

2

��������
δik δnk δmk
gir gnr gmr

Γ̃mr
i Γ̃mr

n Γ̃mr
m

��������
¼ −Ani

k: ð25Þ

Clearly, ⋆F μν
α and Ain

k/
ffiffiffiffiffijgjp

are the same mathematical
object. The former is expressed in arbitrary (anholonomic)
frames, whereas the latter is expressed in terms of curvi-
linear (holonomic) coordinates.

III. EINSTEIN-CARTAN AND METRIC-AFFINE
GRAVITY

A. Freud in Einstein-Cartan theory (EC)

The field equations of EC, see, e.g., Trautman [23,29],
Blagojević and Hehl [30], or Obukhov [31,32], are alge-
braic in Rαβ and Tα, respectively. In spite of this, we want to
try to put them in a form that is reminiscent of the field
equations of Yang-Mills type:

Gα|{z}
Einstein 3-form

≔
1

2
ηαβγ ∧ Rβγ ¼ Tα ⇒ dF α − tα ¼ Tα;

ð26Þ

Pαβ|{z}
Palatini 3-form

≔
1

2
ηαβγ ∧ Tγ ¼ Sαβ ⇒ dð� � �Þ − sαβ ¼ Sαβ:

ð27Þ

The sources on the right-hand sides of the two field
equations are the canonical 3-forms of energy-momentum
and spin angular momentum of matter, respectively.
Our deduction of a Freud 2-form will proceed in strict

analogy to the one in general relativity.We only have to drop
the tildes. There is, however, one difference: In a Riemann-
Cartan space, the covariant exterior derivatives of the η-forms
do not vanish any longer. We rather have (see [15])

2The generalized Kroneckers and the related ϵ-system are also
discussed in [[20] Ch.A.1].
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Dηα ¼ Tδ ∧ ηαδ; ð28Þ

Dηαβ ¼ Tδ ∧ ηαβδ; ð29Þ

Dηαβγ ¼ Tδ ∧ ηαβγδ; ð30Þ

Dηαβγδ ¼ 0: ð31Þ

As a consequence of (30), we now find, instead of the
Riemannian result (13), the corresponding relation in a
Riemann-Cartan space as

dηαβγ ¼ 3Γ½αδ ∧ ηβγ�δ þ Tδ ∧ ηαβγδ: ð32Þ
This newly emerging torsion term is the basic difference
between both deductions. Interestingly, the torsion term will
not enter the Freud superpotential explicitly.
Analogous to that above, we substitute the gravitational

field strengths curvature Rβγ and the torsion Tγ into the two
field equations:

1

2
ηαβγ ∧ ðdΓβγ − Γβδ ∧ Γδ

γÞ ¼ Tα; ð33Þ

1

2
Dηαβ ¼ d

�
1

2
ηαβ

�
þ Γ½αγ ∧ ηβ�γ ¼ Sαβ: ð34Þ

We partially integrate the first term of (33) and find
immediately

d

�
−
1

2
ηαβγ ∧ Γβγ

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�

F α

þ 1

2
ðdηαβγÞ ∧ Γβγ −

1

2
ηαβγ ∧ Γβδ ∧ Γδ

γ

¼ Tα: ð35Þ
Now we substitute (32) into (35) and collect the terms
containing the Γ’s quadratically:

d

�
−
1

2
ηαβγ ∧ Γβγ

�
− ηβγ½α ∧ Γδ�β ∧ Γδγ þ 1

2
ηαβγδΓβγ ∧ Tδ

¼ Tα: ð36Þ

Following the GR calculation closely, we define the first
term as the Freud 2-form

F α ≔ −
1

2
ηαβγ ∧ Γβγ ð37Þ

and, enriched by a torsion term, the gravitational energy-
momentum 3-form

tα ≔ ηβγ½α ∧ Γδ�β ∧ Γδγ −
1

2
ηαβγδΓβγ ∧ Tδ: ð38Þ

Thus, the first field equation of EC can simply be written as

dF α − tα ¼ Tα: ð39Þ

The second field equation is already in its final form.
However, for compactness we introduce the gravitational
spin 3-form

sαβ ≔ −Γ½αγ ∧ ηβ�γ: ð40Þ

Then the second field equation of EC reads as follows:

d
�
1

2
ηαβ

�
− sαβ ¼ Sαβ: ð41Þ

If we define the energy-momentum and spin complexes

Ťα ≔ tα þTα; Šαβ ≔ sαβ þSαβ; ð42Þ

the field equations and the energy-momentum and spin
laws look even simpler:

dF α ¼ Ťα; d

�
1

2
ηαβ

�
¼ Šαβ with dŤα ¼ 0;

dŠαβ ¼ 0: ð43Þ

The conservation equations are again implied by the
Poincaré lemma. This was previously studied by
Obukhov et al. [33,34]; see also Shimizu [35].

B. Hodge dual of the Freud two-form
in Einstein-Cartan theory

As we saw in the definition of the Freud 2-form in a
Riemann-Cartan space in (37), the formula looks exactly
like its Riemannian equivalent; only the tilde got lost.
Accordingly, the computation of the Hodge dual in
Einstein-Cartan exactly parallels the one in a
Rieamannian space. We find again the compact formula

⋆F α ¼
1

2
ηαβγδgβεΓζε

γηζδ; ð44Þ

the tilde is now missing. In turn, the components of (44)
read

⋆F μν
α ¼

1

2
ðηαβγδημνζδÞgβεΓζε

γ ¼ 1

2
δμνζαβγg

βεΓζε
γ: ð45Þ

If we use again the determinant representation (23) of
Kronecker, we find

⋆F μν
α ¼

1

2

��������
δμα δνα δζα

gμε gνε gζε

Γζε
μ Γζε

ν Γζε
ζ

��������
: ð46Þ

This is the generalization of Freud’s result to a Riemann-
Cartan spacetime.
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C. Freud in metric-affine gravity

Let us finally turn to metric-affine gravity; see [15]. We
will denote densities by Gothic letters. The Freud 2-form
density and its diamond dual are then defined as

Fα ≔
1

2
gγδϵαβγ ∧ Γδ

β; ð47Þ

Aα ≔ ⋄Fα ¼
1

2
gγδ⋄ðϵαβγ ∧ Γδ

βÞ ¼ 1

2
gγδϵαβγε⋄ðϑε ∧ Γδ

βÞ

¼ 1

2
ϵαβγεgγδΓζδ

β⋄ðϑε ∧ ϑζÞ ¼ 1

2
ϵαβγεgγδΓζδ

β ϵεζ|{z}
2-form

:

ð48Þ

Let us now determine the components of the 2-form Aα.
For the 2-form ϵεζ, we have ϵεζ ¼ 1

2
ϵεζμνϑμ ∧ ϑν, with

ϑμ ≔ gμκϑκ. Thus, we have Aα ¼ 1
2
Aμν

αϑμ ∧ ϑν or

Aμν
α ¼

1

2
ϵαβγεϵ

εζμνgγδΓζδ
β ¼ 1

2
δμζναβγg

γδΓζδ
β: ð49Þ

Our final result,

Aμν
α ¼

1

2
δμνζαβγg

βδΓζδ
γ ¼ 1

2

��������
δμα δνα δζα

gμε gνε gζε

Γζε
μ Γζε

ν Γζε
ζ

��������
; ð50Þ

coincides with the corresponding Riemannian result in
(22). Observe, however, that here we are in the most general
metric-affine space. It seems very likely to us that Freud
was aware of this generalization. Recall that he even called
his 2-form A affine tensor density (“Affintensordichte”).3

If we take the connection in a metric-affine space and
decompose it, we find Schouten [17]; see also [[15]
Sec. 3.10] and [[39] Eq. (2.132)],

Γαβ ¼
1

2
dgαβ þ ðe½α⌋dgβ�γÞϑγ þ e½α⌋Cβ�

−
1

2
ðeα⌋eβ⌋CγÞϑγ ðRiemannÞ

− e½α⌋Tβ� þ
1

2
ðeα⌋eβ⌋TγÞϑγ ðRie-CartanÞ

þ 1

2
Qαβ þ ðe½α⌋Qβ�γÞϑγ ðmetric-affineÞ: ð51Þ

Here Cα is the object of the anholonomity 2-form and Qαβ

the nonmetricity 1-form. By substituting (51) into (47)
and (48), we can find the expressions F α and Aα for the
corresponding geometries. Of course, Freud’s result is
exactly recovered in the case of Riemannian geometry.

IV. CONCLUSIONS AND DISCUSSION

We revisited some well-known results on the super-
potential originally introduced by Freud. By approaching
this subject using exterior calculus, the definition of the
superpotential becomes natural and straightforward, while
the usual tensor calculus approach lacks clarity. In doing so,
we were able to extend these results to the most general
case of metric-affine theories of gravity which may also
contain torsion and nonmetricity.
When rewriting the gravitational field equation using the

superpotential, the equations take the form of a Yang-Mills
type theory. This statement holds for all metric-affine
theories and hence includes general relativity. The only
drawback of this formulation is that it is based on pseudo-
tensors rather than tensors. While the complete field equa-
tions transform correctly under coordinate transformations,
the individual parts do not. A similar issue is encountered
when considering the teleparallel formulation of general
relativity. There the theory is invariant under local Lorentz
transformation; however, many of the individual terms
appearing in the theory are not. It would be interesting to
apply our result within the teleparallel framework.
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