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The potential conflict between torsion and gauge symmetry in the Riemann-Cartan curved spacetime
was noted by Kibble in his 1961 pioneering paper and has since been discussed by many authors. Kibble
suggested that, to preserve gauge symmetry, one should forgo the covariant derivative in favor of the
ordinary derivative in the definition of the field strength Fμν for massless gauge theories, while for massive
vector fields, covariant derivatives should be adopted. This view was further emphasized by Hehl et al. in
their influential 1976 review paper. We address the question of whether this deviation from normal
procedure by forgoing covariant derivatives in curved spacetime with torsion could give rise to
inconsistencies in the theory, such as the quantum renormalizability of a realistic interacting theory.
We demonstrate in this paper the one-loop renormalizability of a realistic gauge theory of gauge bosons
interacting with Dirac spinors, such as the SU(3) chromodynamics, for the case of a curved Riemann-
Cartan spacetime with totally antisymmetric torsion. This affirmative confirmation is one step toward
providing justification for the assertion that the flat-space definition of the gauge-field strength should be
adopted as the proper definition.
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I. INTRODUCTION

In the formulation of a physical theory in curved
spacetime, the normal procedure is to replace the ordi-
nary derivative with the corresponding covariant deriva-
tive. For a gauge theory in the Riemannian spacetime,
because the connection is symmetric, the normal pro-
cedure yields a field strength tensor Fμν in the form of its
flat-space expression, which is gauge symmetric. But in a
Riemann-Cartan spacetime with torsion, the connection
being nonsymmetric, this same procedure gives rise to an
additional torsion term in the gauge-field strength tensor
that violates gauge symmetry. Torsion naturally appears
in the Einstein-Cartan-Kibble-Sciama theory of gravita-
tion [1,2]. The potential conflict of torsion with gauge
symmetry was already noticed by Kibble [1] in his
original paper and has since been discussed by a number
of authors [3–12] with various alternatives. Kibble [1]
himself took the view that, to preserve gauge symmetry,
one should forgo the covariant derivative in favor of the
ordinary derivative in the definition of the field strength
Fμν for massless gauge theories, while for massive vector
fields, covariant derivatives should be adopted. This view
was adopted by Hehl et al. [3] in their influential 1976
review paper. Since all other alternatives suggested by
various authors did not seem to hold up, Kibble’s original
view has been tacitly accepted without further deliber-
ation, seemingly as consensus by default. The situation is

the following. We are facing two alternative choices of
Fμν, one with the torsion term and the other without. It is
uncertain whether the latter alternative, forcing gauge
symmetry by deviating from the normal procedure of
defining Fμν through covariant derivatives, would cause
inconsistency or noncovariant issues in a realistic quan-
tum gauge theory, such as the SU(3) quantum chromo-
dynamics, in a curved Riemann-Cartan spacetime, in
which all other operations, such as gauge fixing and the
ensuing ghost supplementation, follow normal covariant
procedures. This uncertainty, at least, needs a clarifica-
tion. We report in this paper our findings regarding
system consistency for the two alternative Fμν cases
within the framework of the Kibble-Sciama scheme as
well as the renormalizability question. We will first show
that the system of field equations, even at the classical
level, is inconsistent if the field strength Fμν takes the
gauge nonsymmetric form, while it is consistent with
the gauge symmetric Fμν. This clearly rules out the gauge
nonsymmetric version of Fμν. We will next demonstrate,
using the gauge-invariant background-field method
[13–17], in conjunction with the heat-kernel technique
and dimensional regularization, that the theory is renor-
malizable at the one-loop level in the case of the gauge-
symmetric field strength Fμν, in a Riemann-Cartan
spacetime with totally antisymmetric torsion. These
findings provide substantiation for the choice of the
gauge-symmetric version of Fμν and validate the view
of Kibble [1] and Hehl et al. [3].*nieh@tsinghua.edu.cn
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II. SCIAMA-KIBBLE SCHEME

The genesis of the Kibble-Sciama [1,2] theory can be
traced back to the formulation of the Dirac equation
in curved spacetime by Weyl [18] and Fock [19].
The vierbein fields eaμ were introduced by Weyl and
Fock to provide a local coordinate basis for defining the
Dirac spinor and the spin connection field ωab

μ as the
gauge potential for the SO(3,1) group of local Lorentz
transformations of the Dirac spinor. Utiyama [20] dem-
onstrated that Einstein’s Riemannian theory of gravita-
tion can be regarded as a gauge theory of the SO(3,1)
Lorentz group when the corresponding gauge potential,
the spin connection ωab

μ, is identified with the Ricci
coefficients of rotation [19] in terms of the vierbein fields
eaμ. Sciama and Kibble [1,2] took the step of treating the
spin connection field ωab

μ, in the spirit of a genuine
Lorentz group gauge theory, as an independent dynamic
variable to be determined by the theory, instead of being
identified with the Ricci coefficients. The coupling of the
spin connection to the Dirac spinors, for example, gives
rise to torsion.
The metric tensor gμν in the Kibble-Sciama scheme is

defined by

gμν ¼ ηabeaμebν; ð1Þ

where ηab ¼ ð1;−1;−1;−1Þ, and the covariant derivatives
with respect to both local Lorentz transformations and
general coordinate transformations, for generic χaλ and χaν,
are defined according to

∇μ χa
λ ¼ χa

λ
;μ − ωb

aμχb
λ þ Γλ

νμχa
ν; ð2Þ

∇μ χ
a
ν ¼ χaν;μ þ ωa

bμχ
b
ν − Γλ

νμχ
a
λ: ð3Þ

Kibble [1] chose the affine connection

Γλ
μν ¼ eaλðeaμ;ν þ ωa

bνebμÞ ð4Þ

so that it is metric compatible, meaning

∇λeaμ ¼ 0; ð5Þ

∇λeaμ ¼ 0; ð6Þ

and, consequently,

∇λgμν ¼ 0; ð7Þ

∇λgμν ¼ 0: ð8Þ

In the presence of torsion, which is defined as

Cλ
μν ¼ Γλ

μν − Γλ
νμ; ð9Þ

the metric compatibility relations (7) and (8) imply that the
connection is of the general form

Γλ
μν ¼

1

2
gλρðgρμ;ν þ gνρ;μ − gμν;ρÞ þ Yλ

μν; ð10Þ

where the contortion tensor Yλ
μν is given by

Yλ
μν ¼

1

2
ðCλ

μν þ Cμν
λ þ Cνμ

λÞ: ð11Þ

III. SYSTEM OF GLUONS INTERACTING WITH
QUARKS IN KIBBLE-SCIAMA SCHEME

For notational convenience of presentation, we shall
consider the specific case of the SU(3) chromodynamics, in
which the gauge gluons interact with a triplet of massless
spinor quarks. Let the gauge field be denoted by Aa

μ, where
the index a runs from 1 to 8. It is convenient to adopt the
group algebraic notation

Aμ ¼ Aa
μTa; ð12Þ

where Ta, for concreteness, are the familiar 3 × 3 1
2
λa

Gell-Mann matrices satisfying the algebra, with the
totally antisymmetric fabc being the SU(3) group structure
constants,

½Ta; Tb� ¼ ifabcTc: ð13Þ

In flat space, the field strength is given by

Fμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�: ð14Þ

In curved space, the natural definition for the field strength
is to follow the normal procedure of replacing the partial
derivative by the appropriate covariant derivative, like

∂μAν → ∂μAν − Γλ
νμAλ: ð15Þ

In the Riemannian space, the connection being symmetric,
the connection terms cancel when the replacement (14) is
made in (13), leaving the expression for Fμν unchanged. In
a Riemann-Cartan space, the connection is nonsymmetric,
and the field strength Fμν resulting from the replacement is
of the form

Fμν ¼ ∂μAν − ∂νAμ þ Cλ
μνAλ − ig½Aμ; Aν�: ð16Þ

The additional torsion term in (16) violates gauge invari-
ance. To preserve gauge symmetry, an alternative is to forgo
the torsion term in (16) and adopt the flat-space expression
(14) as the definition of the field strength Fμν. We now
consider the system of SU(3) gauge bosons interacting with
spinor quarks in the background of the curved Riemann-
Cartan space as described above in the Kibble-Sciama
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scheme. We first check the consistency of the system of
field equations with the two alternative versions of the field
strength Fμν, Eqs. (14) and (16). For convenience, we shall
consider a massless spinor quark, which is denoted by ψ.
The action for the system is of the form, with a trace over
the color index understood,

W ¼
Z

d4xh

�
−
1

4
FμνFμν

þ 1

2
ðψ̄iγaeaμDμψ − ψ̄D̄μiγaeaμψÞ

�
; ð17Þ

where h ¼ det eaμ, and

Dμ ¼ ∂μ −
i
4
σabω

ab
μ þ igAμ; ð18Þ

D̄μ ¼ ∂⃖μ − igAa
μTa þ i

4
σabω

ab
μ; ð19Þ

with σab ¼ i
2
½γa; γb� [21]. We note that Fμν ¼ gμλgνρFλρ.

For proper normalization of the FμνFμν term in the
Lagrangian, there should be a factor of 1

C2ðRÞ, which is

defined by

trðTaTbÞ ¼ C2ðRÞδab: ð20Þ

For convenience, we have omitted this normalization
factor, but it will be taken into account when we consider
renormalization counterterms. The Lagrangian in the action
(17) is invariant under local Lorentz transformations,
general coordinate transformations, and local scale trans-
formations, the latter being defined, with the proper scale
weights for the various fields, by

eaμ → e−ΛðxÞeaμ;

eaμ → eΛðxÞeaμ;

ψðxÞ → e−
3
2
ΛðxÞψðxÞ;

AμðxÞ → AμðxÞ;
ωab

μðxÞ → ωab
μðxÞ:

We note the scale invariance of the Dirac Lagrangian in
(17) without the explicit appearance of a Weyl scale
gauge field; even if such a gauge field were introduced
in the covariant derivative Dμ, it would drop out from
the Lagrangian, due to cancellation between the two
Hermitian conjugate terms, and would not appear in the
ensuing field equation for the Dirac field ψðxÞ. Regarding
the Maxwell-field strength Fμν, we consider separately
its two alternative versions, namely, Eqs. (14) and (16),
respectively.

IV. CASE (I) GAUGE NONSYMMETRIC Fμν

First, we consider the version with the field strength Fμν

containing the torsion term, namely,

Fμν ¼ ∂μAν − ∂νAμ þ Cλ
μνAλ − ig½Aμ; Aν�;

which is not gauge invariant. The Euler-Lagrange equation
for the Dirac field can be obtained straightforwardly from
(17). On account of the relation

h−1∂μh ¼ Γλ
λμ ¼ Γλ

μλ þ Cλ
λμ ð21Þ

and the commutation properties of the Dirac gamma
matrices [21], we obtain [22–24] the field equation for
the Dirac field ψ ,

iγaeμa

�
Dμ þ

1

2
Cλ

λμ

�
ψ ¼ 0; ð22Þ

where Dμ is given in (19). We know that the Lagrangian in
the action (17) is scale invariant. The Dirac equation (22) is
thus expected to be scale invariant. We have, by its
construction according to (8), that the connection Γλ

μν

has the scale transformation property

Γλ
μν → Γλ

μν þ δλμΛ;ν; ð23Þ

which implies

Cλ
λμ → Cλ

λμ þ 3Λ;μ: ð24Þ

We denote

Bμ ¼
1

3
Cλ

λμ: ð25Þ

It transforms as an effectiveWeyl gauge field for local scale
transformations [22–24]:

Bμ → Bμ þ Λ;μ: ð26Þ

The Dirac equation (22) is then expressed as

iγaeμa

�
Dμ þ

3

2
Bμ

�
ψ ¼ 0: ð27Þ

So, indeed, the massless Dirac equation written in this form
shows explicit scale invariance, with the proper scale
weight 3

2
for the Dirac field ψ . The Euler-Lagrange equation

for the gauge field is obtained straightforwardly. It is of
the form

ð∇ν þ 3BνÞFμν ¼ gJμ; ð28Þ

where the covariant derivative ∇ν is defined as in
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∇νFμν ¼ ∂νFμν þ Γμ
λνFλν þ Γν

λνFμλ − ig½Aν; Fμν� ð29Þ

and the current Jμ is given by

Jμ ¼ ψ̄γaeaμTaψTa: ð30Þ

In the presence of torsion, the field equation (28) is not
gauge invariant. We would like to check whether current
conservation is valid and whether the system of field
equations, namely, Eqs. (27) and (28), is mutually con-
sistent. As a consequence of the Dirac equation (27) and its
Hermitian conjugate equation for ψ̄, it is straightforward to
verify that the current Jμ given by Eq. (30) is indeed
conserved,

ð∇μ þ 3BμÞJμ ¼ 0: ð31Þ

Consistency of Eq. (28) with this current conservation
equation (31), which follows directly from the Dirac
equation (27), requires that

ð∇μ þ 3BμÞð∇ν þ 3BνÞFμν ¼ 0: ð32Þ

Making use of the antisymmetry of Fμν, it is straightfor-
ward, though tedious, to show that

ð∇μ þ 3BμÞð∇ν þ 3BνÞFμν ¼ −Rμ
ρμνFρν

þ 1

2
Cμ

ρν∇μFρν þ 3

2
Fμνð∇μBν −∇νBμÞ: ð33Þ

For the right-hand side of Eq. (33) to vanish, it is necessary,
due to its structure, that the second term vanishes. That is,
we have to set Cμ

ρν ¼ 0. This results in Bμ being equal to
0 and Rμ

ρμν being symmetric in ρ and ν because the
connection Γλ

μν now reduces to the Christoffel connection.
The three terms on the right-hand side of Eq. (29) then all
vanish. Consistency of the two field equations of the system
(24) and (25) is thus seen to require the vanishing of
torsion. The upshot is that the system of field equations is
inconsistent for the gauge nonsymmetric version (16)
of Fμν.

V. CASE (II) GAUGE SYMMETRIC Fμν

We next consider the case of gauge symmetric Fμν,

Fμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�;

which is the version with the torsion term removed. With
this expression for Fμν in the action (17), the field equation
for the Dirac field ψ remains the same as Eq. (27), resulting
in the same current conservation equation (31), while the
field equation for the Maxwell field (28) is replaced by

ð∇ν þ 3BνÞFμν −
1

2
Cμ

ρνFρν ¼ Jμ: ð34Þ

Consistency of Eq. (34) with Eq. (31) requires that
(∇μ þ 3Bμ) operating on the left-hand side of Eq. (34)
vanishes. The result of operating on the first term on the
left-hand side of Eq. (34) is already found and given by
Eq. (33). Operating on the second term yields the con-
tribution

−
1

2
Cμ

ρν∇μFρν −
1

2
∇μCμ

ρνFρν −
3

2
BμCμ

ρνFρν: ð35Þ

Summing the two contributions given in Eqs. (33) and (35)
yields

−Rμ
ρμνFρν þ 1

2
½3ðBν;μ − Bμ;νÞ −∇μCμ

ρν�Fμν: ð36Þ

In the presence of torsion, the antisymmetric part of Rμ
ρμν

does not vanish, and explicit evaluation gives the result

1

2
ðRμ

ρμν − Rμ
νμρÞ ¼

1

2
½3ðBν;ρ − Bρ;νÞ −∇μCμ

ρν�: ð37Þ

The two contributions from operating (∇μ þ 3Bμ) on the
two right-hand side terms of Eq. (34) miraculously cancel
each other out, and the final result is zero. Consistency of
the field equations is thus established. The unpleasing
Cμ

ρνFρν term in the field equation (34) looks formidable,
but it actually helped save consistency. We have thus seen
that the system of classical field equations of chromody-
namics in the curved Riemann-Cartan space is self-
consistent when the gauge-field strength is defined by
the gauge-symmetric expression (14), while it is not for the
gauge nonsymmetric version (16). The latter version is thus
ruled out, even at the classical level. We next check whether
the gauge-symmetric version (13) of the interacting gauge
theory, chromodynamics, is one-loop renormalizable.

VI. ONE-LOOP RENORMALIZATION BY
BACKGROUND-FIELD METHOD

The background-field method [13–17] is ideally suited
to the computation of effective interaction in curved spaces.
It has been used to study the renormalization property of
gauge theories in curved Riemannian spacetime by various
authors [25–28], establishing renormalizability at one-loop
level and beyond. In the case of Riemann-Cartan space-
time, there do not seem to exist investigations in the
literature of the renormalizability question of gauge theo-
ries. The question in focus is whether torsion could create
complications, a question we would like to study. Based on
the background-field method, there is the unified super-
space computation [27] of the one-loop renormalization
counterterms, treating both gauge bosons and Dirac fer-
mions within the framework of the Schwinger-DeWitt
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proper-time representation of the propagator functions
[13,29]. Rather than using this elegant framework for
evaluating the renormalization counterterms, we will
instead combine the normal treatment based on the heat-
kernel technique with ’t Hooft’s algorithm [15,26] for
extracting one-loop divergences. The one-loop renormal-
ization counterterms arise from four types of loops, the
boson gluon loop, the ghost loop, the spinor quark loop,
and the mixed gluon-quark loops (quark self-energy loop
and gluon-quark vertex loops). For the gluon, ghost, and
quark loops, we follow Toms’s treatment, which is based on
the heat-kernel method (a variant of the Schwinger-DeWitt
proper-time method) and dimensional regularization, while
for the mixed gluon-quark loops, we make use of the ’t
Hooft algorithms [15,26]. The divergent part of the one-
loop effective action is given by an integral of the
coefficient ½a2� of the heat-kernel expansion [13,30]. Its
explicit expression is given by DeWitt [13] and Gilkey [31],
in the case of Riemannian spacetime. In the case of
Riemann-Cartan spacetime, the presence of torsion makes
the evaluation of the corresponding ½a2� quite involved, and
there does not seem to exist a definitive result for a general
torsion. The special case of totally antisymmetric torsion
has been carefully studied by Yajima [32]. We will make
use of Yajima’s result, and we will thus restrict ourselves to
the special case of totally antisymmetric torsion, for which
the effective Weyl gauge field vanishes, namely, Bμ ¼ 0.
Let us denote the classical background fields by η and

Âμ, which satisfy the field equations (22) and (28),
respectively. We replace in the action (17) the field Aμ

by Aμ þ Âμ and ψ by ψ þ η. In the respective sums, Aμ and
ψ (and ψ̄) are regarded as quantum fields, while Âμ and ξ
are regarded as classical fields. We remind ourselves that in
the action (17) the gauge-field strength Fμν is defined by
the gauge-symmetric expression (14), namely,

Fμν ¼ ∂μAν − ∂νAμ − ig½Aμ; Aν�:

Wewill also need to add to the action the gauge-fixing term
and the corresponding Faddeev-Popov ghost term [33]. The
gauge-fixing term is chosen in accordance to the Landau-
DeWitt gauge condition and is given by [25]

WðGFÞ ¼
Z

d4xh

�
−
1

2
ð∇̂μAμÞ2

�
; ð38Þ

where

∇̂μAμ ¼ ∂μAμ þ Γμ
λμAλ − ig½Âμ; Aμ�: ð39Þ

The gauge-fixing action (38) brakes gauge symmetry if
only the quantum field Aμ undergoes gauge transformation
but can be made gauge covariant under suitably combined
gauge transformations of bothAμ and Âμ. The corresponding

Faddeev-Popov ghost term can be obtained by changing
the integration "variable" in the path integral and is given by

WðghostÞ ¼
Z

d4xhζ̄ð−∇̂μ∇̂μ − ∇̂μAμ − Aμ∇̂μÞζ; ð40Þ

where the ghost fields ζ̄ and ζ are Grassmann scalars and
carry the same color index as Aμ. The gauge-fixing action
WðGFÞ and Faddeev-Popov ghost action Wðghost are to be
added to the action W, given by Eq. (17), to form the total
action. Expand the action in powers of the quantum fields Aμ

and ψ . The coefficients of terms linear in quantum fields
vanish, as a result of the classical field equations (21) and
(28). The termsquadratic in the quantum fields (including the
ghost fields) give rise to the quark-loop and gluon-loop
contributions. They are also sufficient for evaluating the
mixed gluon-quark loops in accordance with the ’t Hooft’s
algorithm.The termsquadratic in quantumfields, up to a total
divergence term in the integrand, are exhibited in

Wð2Þ ¼
Z

d4xh

��
−
1

4
F̃μνF̃μν − 2iAμ½F̂μν; Aν�Þ

−
1

2
ð∇̂μAμÞ2 þ ψ̄iγμðD̂μÞψ þ ψ̄iγμiAμηþ η̄iγμiAμψ

−
1

2
ð∇̂μAμÞ2 þ ζ̄ð−∇̂μ∇̂μÞζ

�
; ð41Þ

where ∇̂μAμ is given in Eq. (39) and

F̃μν ¼ ∂μAν − ∂νAμ − ig½Âμ; Aν� þ ig½Âν; Aμ�; ð42Þ

γμ ¼ γaeμa; ð43Þ

D̂μ ¼ ∂μ −
i
4
σabω

ab
μ þ igÂμ: ð44Þ

VII. FERMION LOOP

The term in Wð2Þ that gives rise to the pure fermion loop
is quadratic in the quantum fermion fields, namely,

Z
d4xhψ̄iγμD̂μψ :

The effective action due to the fermion loop is given by
[25,30]

Γfermion−loop ¼ −i ln DetðiγμD̂μÞ: ð45Þ

To make use of the heat-kernel technique, while the heat
equation is of second order in the differential operator, we
need to reformulate Γfermion−loop so that the differential
operator in the determinant is of second order. This can be
accomplished by replacing in Eq. (45) the linear differential
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operator iγμD̂μ by its square ðiγμD̂μÞ2 and multiplying an
overall factor of 1

2
, namely,

Γfermion−loop ¼ −i
1

2
ln Det½ðiγμD̂μÞ2�: ð46Þ

The square in the determinant can be expressed as [22]

−
�
gμνD̂μD̂ν −

i
2
σμνCλ

μνD̂λ þ Z

�
; ð47Þ

where

Z ¼ 1

4
Rþ i

8
γ5R̃þ i

2
σμνðRμν þ iF̂μνÞ; ð48Þ

with

R ¼ Rμν
μν;

R̃ ¼ εμνλρRμνλρ;

Rμν ¼ Rλ
μλν:

We note that when torsion vanishes R̃ ¼ 0, Rμν ¼ Rνμ, and
Z in Eq. (48) reduces to 1

4
R, a well-recognized result for

Riemannian spacetime. The linear derivative term in
Eq. (47), which is proportional to the torsion tensor, can
be absorbed into the quadratic derivative term by redefining
the covariant derivative

ˆ̃Dμ ¼ D̂μ −
i
4
σλρCλρμ: ð49Þ

The fermion-loop effective action (46) thus becomes

Γfermion−loop ¼ −i
1

2
lnDet½gμν ˆ̃Dμ

ˆ̃Dν þ X�; ð50Þ

with

X ¼ Z −DμQμ −QμQμ; ð51Þ

where

Qμ ¼ −
i
4
σλρCλρμ: ð52Þ

The divergent part of the fermion-loop effective action (48)
is of the form [30]

DivΓfermion−loop ¼
1

ϵ

Z
d4xhtr½a2�ðxÞ; ð53Þ

where ϵ ¼ ð4πÞ2ðn − 4Þ and the corresponding kernel for

½a2� is gμν ˆ̃Dμ
ˆ̃Dν þ X in Eq. (50). For Riemann-Cartan

spacetime and in the case of the totally antisymmetric
torsion tensor, the ½a2� corresponding to the differential

operator in Eq. (47) has been obtained by Yajima [32]. It is
given by, as adopted with our metric,

½a2� ¼
1

12
W̃μνW̃μν þ

1

180
ðRðoÞμνλρRðoÞ

μνλρ − RðoÞμνRðoÞ
μν Þ

−
1

6
ˆ̃Dμ

ˆ̃D
μ
�
1

5
RðoÞ − X

�
þ 1

2

�
1

6
RðoÞ − X

�
2

; ð54Þ

where RðoÞ
μνλρ, etc., are the Riemannian curvature tensors and

W̃μν is defined [32] according to

½ ˆ̃Dμ;
ˆ̃Dν�ψ ¼ ðW̃μν þ Cλ

μν
ˆ̃DλÞψ : ð55Þ

We remark that the disentanglement with the definition of
W̃μν of the torsion term in (55) is crucial in assuring gauge
symmetry in the final result. With the definition in Eq. (47),
W̃μν is computed to be

W̃μν ¼ −
i
4
σαβ

h
RðoÞ
αβμν þ

3

2
ð∇̄μCαβν − ∇̄νCαβμ

− Cλ
αμCβλν þ Cα

λ
νCβλμÞ

i
þ iF̂μν; ð56Þ

where ∇̄μ is the Riemannian covariant derivative. We point
out that one important aspect of Eq. (53) is that the torsion
term in Eq. (53) is not involved in the definition of W̃μν.
This ensures the clean appearance of the gauge-invariant
F̂μν term in W̃μν without the involvement of the torsion
tensor. The trace over the spinor and quark indices of the
quark field ψ of the product W̃μνW̃μν term appearing in
Eq. (54) is given by

1

12
trW̃μνW̃μν ¼ −

1

8
ΣαβμνΣαβμν −

1

3
g2trF̂μνF̂μν; ð57Þ

where

Σαβμν ¼ RðoÞ
αβμν þ

3

2
ð∇̄μCαβν − ∇̄νCαβμ

− Cλ
αμCβλν þ Cλ

ανCβλμÞ: ð58Þ
As our main interest is in the renormalizabity of gauge
theory in the Riemann-Cartan spacetime, we will concen-
trate on the gauge-field terms in Eq. (53). Explicit evalu-
ation shows that these terms come from the first and last
terms on the right-hand side of Eq. (54). The contribution
from the first term is contained in Eq. (57). The contribu-
tion from the last term is in

tr
1

2
X2 ¼ g2trF̂μνF̂μν þ gravitational terms:

The renormalization counterterm for the gluon field due to
the fermion loop is the sum of the two contributions and is
given by
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DivΓfermion−loop ¼
1

ϵ

Z
d4xh

�
2

3
g2trF̂μν F̂μν

þ gravitational terms

�
: ð59Þ

VIII. GLUON AND GHOST LOOPS

The relevant terms for the gluon loop in Wð2Þ are

Wgluon−loop ¼
Z

d4xh

�
−
1

4
F̃μνF̃μν − 2iAμ½F̂μν; Aν�

−
1

2
ð∇̂μAμÞ2

�
: ð60Þ

while that for the ghost loop is

Wghost−loop ¼
Z

d4xhζ̄ð−∇̂μ∇̂μÞζ: ð61Þ

Up to a total derivative, Wgluon−loop can be expressed in the
form

Z
d4x

1

2
hAμðgμν∇̂λ∇̂λ − ∇̂ν∇̂μ þ ∇̂μ∇̂ν

þ 2Cμλν∇̂λ þ ∇̂λCμλν − CμλρC
λρ
ν þ gF̂μνÞAν; ð62Þ

where ∇̂μ is defined as in

∇̂μAν ¼ ∇μAν − i½Âμ; Aν�: ð63Þ

In Eq. (62), the AF̂A product term is understood to be the
product fabcAaF̂bAc. On account of

½∇̂μ; ∇̂ν�Aν ¼ RνμAν þ Cρ
μν∇ρAν − ig½F̂μν; Aν�; ð64Þ

we can express Eq. (62) in the form

1

2
hAμ½gμν∇̂λ∇̂λ þ Cμλν∇̂λ þ ∇̂λCμλν − CμλρC

λρ
ν

þ Rνμ þ 2gF̂μν�Aν; ð65Þ

The term linear in derivative in Eq. (64), which is brought
about by torsion, is to be absorbed into the quadratic
derivative term by defining a modified connection

Γ̂0λ
μν ¼ Γ̂λ

μν þ
1

2
Cλ
μν; ð66Þ

with the corresponding covariant derivative expressed as
∇̂0

μ. The gluon-loop action (62) can be written as

Wgluon−loop ¼
Z

d4x
1

2
hAμðgμν∇̂0

λ∇̂0λ þ XμνÞAν; ð67Þ

where

Xac
μν ¼ Rνμδ

ac þ 2gfabcF̂b
μν: ð68Þ

The gluon-loop effective action Γgluon−loop is then given by

Γgluon−loop ¼ i
1

2
ln Detðgμν∇̂0

λ∇̂0λ þ X0Þ: ð69Þ

Its divergent pole term is

DivΓgluon−loop ¼ −
1

ϵ

Z
d4xhtr½a02�ðxÞ; ð70Þ

where ½a02� is the asymptotic expansion coefficient corre-
sponding to the kernel appearing in Eq. (67), with a
structure similar to that for the fermion case, namely, as
in Eq. (54). Again, we will concentrate on the correspond-
ing first and last terms in Eq. (54) that give rise to gauge-
field terms. The corresponding W0

μν can be obtained from

calculating ½∇̂0
μ; ∇̂0

ν�Aλ, which can be neatly expressed as

½∇̂0
μ; ∇̂0

ν�Aλ ¼ R0ρ
λμνAρ − i½F̂μν; Aλ� þ C0ρ

μν∇̂0
ρAλ; ð71Þ

where R0ρ
λμν is the curvature tensor formed with Γ0λ

μν as the
connection. From Eq. (71), we obtain

ðW0
μνÞρacλ ¼ R0ρ

λμνδ
ac þ gfabcF̂b

μνδ
ρ
λ: ð72Þ

We then obtain contribution from the first term,

tr
�
1

12
W0

μνW0μν
�

¼ −
1

3
g2fabcfcdaF̂bμνF̂d

μν

þ gravitational terms: ð73Þ

Define C2ðGÞ by

fabcTaTc ¼ i
2
C2ðGÞTb: ð74Þ

We then have

tr

�
1

12
W0

μνW0μν
�

¼ −
1

3
g2

C2ðGÞ
C2ðRÞ

trF̂μνF̂μν

þ gravitational terms; ð75Þ

where C2ðRÞ is the normalization factor given by Eq. (20).
The contribution from the last term can be similarly
calculated and is given by
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tr
1

2
XμνXνμ ¼ 2g2

C2ðGÞ
C2ðRÞ

F̂μνF̂μν þ gravitational terms:

ð76Þ

The divergent pole term of the gluon loop is due to the sum
of the contributions in Eqs. (75) and (76) and given by

DivΓgluon−loop ¼ −
1

ϵ

Z
d4xh

�
5

3
g2

C2ðGÞ
C2ðRÞ

trF̂μνF̂μν

þ gravitational terms

�
: ð77Þ

The effective action due to the loop of the complex
Grassmann ghost field is given by

Γghost−loop ¼ −2i ln Detð−∇̂μ∇̂μÞ: ð78Þ

Its divergent part can be similarly calculated, taking into
account that the ghost field is a complex Grassmann scalar
and there is no spinor index to sum over, and is given by

DivΓghost−loop ¼
1

ϵ

Z
d4xh

�
−
1

6
g2

C2ðGÞ
C2ðRÞ

trF̂μνF̂μν

þ gravitational terms

�
: ð79Þ

The final result of the divergent parts due to the quark,
gluon, and ghost loops is the sum of Eqs. (59), (77),
and (79):

DivΓloops ¼
1

ϵ

Z
d4xh

�
g2

4C2ðRÞ − 11C2ðGÞ
6C2ðRÞ

trF̂μνF̂μν

þ gravitational terms

�
: ð80Þ

We recall that we have for convenience omitted the
normalization factor of 1

C2ðRÞ for the FμνFμν term in the

original Lagrangian in Eq. (17). Thus, when we consider
renormalization constants, this normalization factor should
be similarly omitted, namely, by dropping C2ðRÞ in the
denominator in the above equation. The result for the
gauge-field term, we note, is compatible with earlier results
[25,26] for the Riemannian spacetime. In our specific case
of quantum chromodynamics without additional flavor,
C2ðGÞ ¼ 3 and C2ðFÞ ¼ 1

2
.

IX. MIXED LOOPS

These are the gluon-quark vertex and quark self-energy
loops, which contain both internal quark and gluon lines.
We will use ’t Hooft’s algorithm [15,26] to find the
renormalization counterterms. Following ’t Hooft’s pro-
cedure, we make the substitutions in the actionWð2Þ in (41)

ψ̄ → ψ̄ ;

ψ → γμD́μξ;

where D́μ ¼ ∂μ − i
4
σabω

ab
μ , namely, the covariant deriva-

tive Dμ without the gauge-potential term. The fermion part
of the Lagrangian in Eq. (41) becomes

h½−gμνψ̄D́μD́νξþ
i
2
σμνCλ

μνD́λξ − ψ̄ Ź ξ

þ ψ̄iγμigÂμiγνD́νξ

þ ψ̄iγμigAμηþ η̄iγμigAμiγνD́νξ�: ð81Þ

Applying ’t Hooft’s algorithm to this fermion Lagrangian
and the gluon part of the Lagrangian as given in Eq. (67),
we have, in ’t Hooft’s notation,

ðαÞaλ ¼ iγλigTaη;

β̄λb ¼ η̄iγλiigTb;

ðNμÞρacλ ¼ gμνðΓ̂0ρ
λνδ

ac þ gfabcÂb
νg

ρ
λÞ;

where γμ ¼ eμaγa. According to the algorithm, the renorm-
alization counterterms due to the mixed loops are the sum
of the following four terms:

2

ϵ

1

2
β̄γμ∂μα; ð82Þ

2

ϵ

1

2

�
−β̄γμ

�
−
i
4
σabω

ab
μ −

i
4
σλρCλρμ

��
α; ð83Þ

2

ϵ

1

2
Nμ

1

2
β̄γμα; ð84Þ

2

ϵ

1

2
β̄γμ

1

2
iγνÂνγμiα: ð85Þ

With the help of the relations

γaω
ba
μ e ν

b ¼ i
4
ωbcμ½σbc; γν�; ð86Þ

∂μγ
ν ¼

�
i
4
σabω

ab
μ ; γν

�
− Γν

λμγ
λ; ð87Þ

∂μγν ¼
�
i
4
σabω

ab
μ ; γν

�
þ Γλ

νμγλ; ð88Þ

the sum of the four terms is given by

2

ϵ
½η̄g2ðTaTaÞiγμð∂μ −

i
4
σabω

ab
μ Þη

− η̄g3ðfabcTaTcÞÂb
ν iγνηþ η̄g3ðTaTbTaÞiÂb

μiγμη�: ð89Þ
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In addition to C2ðRÞ defined by Eq. (20) and C2ðGÞ defined
by Eq. (74), we further define C2ðFÞ by [34]

TaTa ¼ C2ðFÞI: ð90Þ

We note that C2ðFÞ and C2ðRÞ are related. In our specific
case here,C2ðFÞ ¼ 8

3
C2ðRÞ ¼ 4

3
. It can be easily shown that

fabcTaTc ¼ i
2
C2ðGÞTb;

TaTbTa ¼ −
1

2
C2ðGÞTb þ C2ðFÞTb:

The sum (89) becomes

2

ϵ
C2ðFÞg2η̄iγμ

�
∂μ −

i
4
σabω

ab
μ þ igÂμ

�
η: ð91Þ

This is the final result for the renormalization counterterms
due to the gluon-quark vertex and quark self-energy loops.
It is also compatible with the earlier result [25,26] for the
Riemannian spacetime.

X. CONCLUSIONS

We have in this paper deliberated the compatibility of
torsion with gauge symmetry in a realistic interacting
gauge theory, namely, quantum chromodynamics of
gluons interacting with quarks in Riemann-Cartan space-
time. We have demonstrated that the system of classical
field equations is consistent with the choice of the
gauge-invariant definition of Fμν, which is the flat-space
expression, while inconsistent with the choice of the
gauge-noninvariant version, which is the one with covar-
iant derivatives replacing the ordinary derivatives in the

flat-space expression. To further substantiate the choice
of the gauge-invariant version of Fμν, we have inves-
tigated the quantum renormalizability at one-loop level to
make sure that torsion does not somehow get entangled
with gauge symmetry at a level beyond the classical.
Since the heat-kernel technique is an essential method in
our treatment, we restrict ourselves to the special case of
totally antisymmetric torsion, as the general case is much
more complicated and there is lack of reliable research on
the corresponding heat kernel. We would like to note that
the results of Yajima et al. [32] on the heat kernel in the
presence of torsion are essential for our results.
With regard to the renormalization counterterms for the

gluon field and the quark field, our one-loop results are
contained in Eqs. (80) and (91). It is seen that the
counterterms are in the same gauge-invariant forms as
the original terms in the Lagrangian. Except for the
gravitational counterterms, which we have omitted, the
pattern of counterterms for the gluon and quark fields in
the present case of Riemann-Cartan spacetime is exactly
the same as in the previously studied case of Riemannian
spacetime [25,26]. We will hence not repeat here defining
the renormalized constants. The conclusion, of course, is
that the theory, with the choice of the gauge-invariant
version of Fμν, is renormalizable and gauge symmetry
preserved at the one-loop level.
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