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The potential conflict between torsion and gauge symmetry in the Riemann-Cartan curved spacetime
was noted by Kibble in his 1961 pioneering paper and has since been discussed by many authors. Kibble
suggested that, to preserve gauge symmetry, one should forgo the covariant derivative in favor of the
ordinary derivative in the definition of the field strength F,, for massless gauge theories, while for massive
vector fields, covariant derivatives should be adopted. This view was further emphasized by Hehl et al. in
their influential 1976 review paper. We address the question of whether this deviation from normal
procedure by forgoing covariant derivatives in curved spacetime with torsion could give rise to
inconsistencies in the theory, such as the quantum renormalizability of a realistic interacting theory.
We demonstrate in this paper the one-loop renormalizability of a realistic gauge theory of gauge bosons
interacting with Dirac spinors, such as the SU(3) chromodynamics, for the case of a curved Riemann-
Cartan spacetime with totally antisymmetric torsion. This affirmative confirmation is one step toward
providing justification for the assertion that the flat-space definition of the gauge-field strength should be

adopted as the proper definition.
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I. INTRODUCTION

In the formulation of a physical theory in curved
spacetime, the normal procedure is to replace the ordi-
nary derivative with the corresponding covariant deriva-
tive. For a gauge theory in the Riemannian spacetime,
because the connection is symmetric, the normal pro-
cedure yields a field strength tensor F,, in the form of its
flat-space expression, which is gauge symmetric. But in a
Riemann-Cartan spacetime with torsion, the connection
being nonsymmetric, this same procedure gives rise to an
additional torsion term in the gauge-field strength tensor
that violates gauge symmetry. Torsion naturally appears
in the Einstein-Cartan-Kibble-Sciama theory of gravita-
tion [1,2]. The potential conflict of torsion with gauge
symmetry was already noticed by Kibble [I] in his
original paper and has since been discussed by a number
of authors [3—12] with various alternatives. Kibble [1]
himself took the view that, to preserve gauge symmetry,
one should forgo the covariant derivative in favor of the
ordinary derivative in the definition of the field strength
F,, for massless gauge theories, while for massive vector
fields, covariant derivatives should be adopted. This view
was adopted by Hehl et al. [3] in their influential 1976
review paper. Since all other alternatives suggested by
various authors did not seem to hold up, Kibble’s original
view has been tacitly accepted without further deliber-
ation, seemingly as consensus by default. The situation is
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the following. We are facing two alternative choices of
F,,, one with the torsion term and the other without. It is
uncertain whether the latter alternative, forcing gauge
symmetry by deviating from the normal procedure of
defining F,, through covariant derivatives, would cause
inconsistency or noncovariant issues in a realistic quan-
tum gauge theory, such as the SU(3) quantum chromo-
dynamics, in a curved Riemann-Cartan spacetime, in
which all other operations, such as gauge fixing and the
ensuing ghost supplementation, follow normal covariant
procedures. This uncertainty, at least, needs a clarifica-
tion. We report in this paper our findings regarding
system consistency for the two alternative F,, cases
within the framework of the Kibble-Sciama scheme as
well as the renormalizability question. We will first show
that the system of field equations, even at the classical
level, is inconsistent if the field strength F,, takes the
gauge nonsymmetric form, while it is consistent with
the gauge symmetric F,, . This clearly rules out the gauge
nonsymmetric version of F,,. We will next demonstrate,
using the gauge-invariant background-field method
[13—-17], in conjunction with the heat-kernel technique
and dimensional regularization, that the theory is renor-
malizable at the one-loop level in the case of the gauge-
symmetric field strength F,,, in a Riemann-Cartan
spacetime with totally antisymmetric torsion. These
findings provide substantiation for the choice of the
gauge-symmetric version of F,, and validate the view
of Kibble [1] and Hehl et al. [3].
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II. SCIAMA-KIBBLE SCHEME

The genesis of the Kibble-Sciama [1,2] theory can be
traced back to the formulation of the Dirac equation
in curved spacetime by Weyl [18] and Fock [19].
The vierbein fields e, were introduced by Weyl and
Fock to provide a local coordinate basis for defining the
Dirac spinor and the spin connection field w‘”’” as the
gauge potential for the SO(3,1) group of local Lorentz
transformations of the Dirac spinor. Utiyama [20] dem-
onstrated that Einstein’s Riemannian theory of gravita-
tion can be regarded as a gauge theory of the SO(3,1)
Lorentz group when the corresponding gauge potential,
the spin connection w“bﬂ, is identified with the Ricci
coefficients of rotation [19] in terms of the vierbein fields
e“,. Sciama and Kibble [1,2] took the step of treating the
spin connection field a)a"”, in the spirit of a genuine
Lorentz group gauge theory, as an independent dynamic
variable to be determined by the theory, instead of being
identified with the Ricci coefficients. The coupling of the
spin connection to the Dirac spinors, for example, gives
rise to torsion.

The metric tensor g, in the Kibble-Sciama scheme is
defined by

G = rlabeuﬂehw (1)

where #,;, = (1,—1,—1,—1), and the covariant derivatives
with respect to both local Lorentz transformations and
general coordinate transformations, for generic y,,* and y¢,,
are defined according to

vu)(all :)(aﬁ.ﬂ - a)ba;l)(b/1 + Fluy)(al/’ (2)

vy)(au :Zav,/t + a)aby)(hu _Flup)(a/l' (3)
Kibble [1] chose the affine connection

r%ﬂzz = eai(eau,y + wabbeb”) (4)

so that it is metric compatible, meaning

Ve, =0, (5)

Vet =0, (6)
and, consequently,

Vg =0, (7)

v/lg/w =0. (8)

In the presence of torsion, which is defined as

Cl;w = F/l/,w - Flly/u (9)

the metric compatibility relations (7) and (8) imply that the
connection is of the general form

1
Fﬂpw = Eglp (g/m,v + gl//),/l - gﬂv,p) + Yi/w’ (10)

where the contortion tensor Y’ ’1”” is given by

1
Yl{yu = 5 (Cllw + C/,w]L + Cuyl)' (11)

III. SYSTEM OF GLUONS INTERACTING WITH
QUARKS IN KIBBLE-SCIAMA SCHEME

For notational convenience of presentation, we shall
consider the specific case of the SU(3) chromodynamics, in
which the gauge gluons interact with a triplet of massless
spinor quarks. Let the gauge field be denoted by A,%, where
the index a runs from 1 to 8. It is convenient to adopt the
group algebraic notation

A, = AuTS, (12)

where 7%, for concreteness, are the familiar 3 x 3 %/12
Gell-Mann matrices satisfying the algebra, with the
totally antisymmetric f%2¢ being the SU(3) group structure
constants,

[T¢, TE] = ifabeTe, (13)
In flat space, the field strength is given by
F,, =0,A,—-0,A,—iglA,.A,). (14)

In curved space, the natural definition for the field strength
is to follow the normal procedure of replacing the partial
derivative by the appropriate covariant derivative, like

9,A, — 9,A, T, A, (15)

In the Riemannian space, the connection being symmetric,
the connection terms cancel when the replacement (14) is
made in (13), leaving the expression for F,, unchanged. In
a Riemann-Cartan space, the connection is nonsymmetric,
and the field strength F,, resulting from the replacement is
of the form

F,=0,A,-0,A,+C",A, —iglA,.A]. (16)

The additional torsion term in (16) violates gauge invari-
ance. To preserve gauge symmetry, an alternative is to forgo
the torsion term in (16) and adopt the flat-space expression
(14) as the definition of the field strength F,,. We now
consider the system of SU(3) gauge bosons interacting with
spinor quarks in the background of the curved Riemann-
Cartan space as described above in the Kibble-Sciama
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scheme. We first check the consistency of the system of
field equations with the two alternative versions of the field
strength F,, Eqs. (14) and (16). For convenience, we shall
consider a massless spinor quark, which is denoted by .
The action for the system is of the form, with a trace over

the color index understood,
W= [ d*xh lF””F
— X —1 v
+5 Wirte Dy —wDyirtew) |, (17)

where h = dete”,, and

i .
D,=0,- Zoaba)“b,, +igA,, (18)
N 5 r o AdTa i a
DI" = 8/4 - lgAﬁT— + Zﬁabw b”, (19)

with 6., = £[y,.75] [21]. We note that F* = g“* ¢’ F, .
For proper normalization of the F*F,, term in the
Lagrangian, there should be a factor of ﬁ, which is
defined by

tr(T4TL) = C,(R)5%%. (20)

For convenience, we have omitted this normalization
factor, but it will be taken into account when we consider
renormalization counterterms. The Lagrangian in the action
(17) is invariant under local Lorentz transformations,
general coordinate transformations, and local scale trans-
formations, the latter being defined, with the proper scale
weights for the various fields, by
A(x)

et = e Me H,

We note the scale invariance of the Dirac Lagrangian in
(17) without the explicit appearance of a Weyl scale
gauge field; even if such a gauge field were introduced
in the covariant derivative D,, it would drop out from
the Lagrangian, due to cancellation between the two
Hermitian conjugate terms, and would not appear in the
ensuing field equation for the Dirac field y/(x). Regarding
the Maxwell-field strength F,,, we consider separately
its two alternative versions, namely, Egs. (14) and (16),
respectively.

IV. CASE (I) GAUGE NONSYMMETRIC F,,

First, we consider the version with the field strength F,,
containing the torsion term, namely,
F,=0,A,-0,A,+C" A, —iglA,.A)
which is not gauge invariant. The Euler-Lagrange equation

for the Dirac field can be obtained straightforwardly from
(17). On account of the relation

h'o,h =T%, =T, + C*), (21)

and the commutation properties of the Dirac gamma
matrices [21], we obtain [22-24] the field equation for
the Dirac field y,

1
iy’els (Dﬂ + 5 ct W) w =0, (22)

where D), is given in (19). We know that the Lagrangian in
the action (17) is scale invariant. The Dirac equation (22) is
thus expected to be scale invariant. We have, by its
construction according to (8), that the connection I“fw
has the scale transformation property

I, —->Tt, +8,A, (23)
which implies
Chy = Chy +3A,. (24)
We denote
B, ZECQ”. (25)
3

It transforms as an effective Weyl gauge field for local scale
transformations [22-24]:

B,—> B, +A,. (26)

The Dirac equation (22) is then expressed as

iy'ey <Dﬂ + %Bﬂ>1// =0. (27)
So, indeed, the massless Dirac equation written in this form
shows explicit scale invariance, with the proper scale
weight % for the Dirac field . The Euler-Lagrange equation
for the gauge field is obtained straightforwardly. It is of
the form

(V, +3B,)F" = g, (28)

where the covariant derivative V, is defined as in
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V,F¥ = 9, F* + T+, F* + T?, F** —iglA,, F*]  (29)
and the current J, is given by
JE=pyle Ty T (30)

In the presence of torsion, the field equation (28) is not
gauge invariant. We would like to check whether current
conservation is valid and whether the system of field
equations, namely, Eqs. (27) and (28), is mutually con-
sistent. As a consequence of the Dirac equation (27) and its
Hermitian conjugate equation for v, it is straightforward to
verify that the current J# given by Eq. (30) is indeed
conserved,

(V, +3B,)J* = 0. (31)

Consistency of Eq. (28) with this current conservation
equation (31), which follows directly from the Dirac
equation (27), requires that

(V, +3B,)(V, + 3B,)F* =0, (32)

Making use of the antisymmetry of F*, it is straightfor-
ward, though tedious, to show that

(vﬂ + 3BM)(VU + 3Bu)FW = _Rﬂpﬂpry

1 v 3 12
+ EC”pDVMFf’ + EF# (V,B,-V,B,). (33)

For the right-hand side of Eq. (33) to vanish, it is necessary,
due to its structure, that the second term vanishes. That is,
we have to set C*,, = 0. This results in B, being equal to
0 and R”,, being symmetric in p and v because the
connection F’lﬂ,, now reduces to the Christoffel connection.
The three terms on the right-hand side of Eq. (29) then all
vanish. Consistency of the two field equations of the system
(24) and (25) is thus seen to require the vanishing of
torsion. The upshot is that the system of field equations is
inconsistent for the gauge nonsymmetric version (16)
of Fy,.

V. CASE (I) GAUGE SYMMETRIC F,,

We next consider the case of gauge symmetric F,,,

F,=0A

uv v T 81/‘4;4 - ig[A;nAu]’

which is the version with the torsion term removed. With
this expression for F,, in the action (17), the field equation
for the Dirac field y remains the same as Eq. (27), resulting
in the same current conservation equation (31), while the
field equation for the Maxwell field (28) is replaced by

1
(Vo +3B,) P == Oy P = IV, (34)

pv
Consistency of Eq. (34) with Eq. (31) requires that
(Vﬂ +3B,) operating on the left-hand side of Eq. (34)
vanishes. The result of operating on the first term on the
left-hand side of Eq. (34) is already found and given by
Eq. (33). Operating on the second term yields the con-
tribution

1 1 3 .
~5 O F = 2V, O B~ B, Oy Y. (35)

Summing the two contributions given in Egs. (33) and (35)
yields

U 1
~R P + 5 [3(B,y = B) = V,.C"

F*. (36)

pv ]

In the presence of torsion, the antisymmetric part of R* ,,,
does not vanish, and explicit evaluation gives the result

1
puv R#wp) =5 [3 (Bz/,p - Bp,b) - vﬂcﬂpv]' (37)

RH
( 2

N =

The two contributions from operating (V, +3B,) on the
two right-hand side terms of Eq. (34) miraculously cancel
each other out, and the final result is zero. Consistency of
the field equations is thus established. The unpleasing
", F* term in the field equation (34) looks formidable,
but it actually helped save consistency. We have thus seen
that the system of classical field equations of chromody-
namics in the curved Riemann-Cartan space is self-
consistent when the gauge-field strength is defined by
the gauge-symmetric expression (14), while it is not for the
gauge nonsymmetric version (16). The latter version is thus
ruled out, even at the classical level. We next check whether
the gauge-symmetric version (13) of the interacting gauge
theory, chromodynamics, is one-loop renormalizable.

VI. ONE-LOOP RENORMALIZATION BY
BACKGROUND-FIELD METHOD

The background-field method [13-17] is ideally suited
to the computation of effective interaction in curved spaces.
It has been used to study the renormalization property of
gauge theories in curved Riemannian spacetime by various
authors [25-28], establishing renormalizability at one-loop
level and beyond. In the case of Riemann-Cartan space-
time, there do not seem to exist investigations in the
literature of the renormalizability question of gauge theo-
ries. The question in focus is whether torsion could create
complications, a question we would like to study. Based on
the background-field method, there is the unified super-
space computation [27] of the one-loop renormalization
counterterms, treating both gauge bosons and Dirac fer-
mions within the framework of the Schwinger-DeWitt
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proper-time representation of the propagator functions
[13,29]. Rather than using this elegant framework for
evaluating the renormalization counterterms, we will
instead combine the normal treatment based on the heat-
kernel technique with 't Hooft’s algorithm [15,26] for
extracting one-loop divergences. The one-loop renormal-
ization counterterms arise from four types of loops, the
boson gluon loop, the ghost loop, the spinor quark loop,
and the mixed gluon-quark loops (quark self-energy loop
and gluon-quark vertex loops). For the gluon, ghost, and
quark loops, we follow Toms’s treatment, which is based on
the heat-kernel method (a variant of the Schwinger-DeWitt
proper-time method) and dimensional regularization, while
for the mixed gluon-quark loops, we make use of the ’t
Hooft algorithms [15,26]. The divergent part of the one-
loop effective action is given by an integral of the
coefficient [a,] of the heat-kernel expansion [13,30]. Its
explicit expression is given by DeWitt [13] and Gilkey [31],
in the case of Riemannian spacetime. In the case of
Riemann-Cartan spacetime, the presence of torsion makes
the evaluation of the corresponding [a,] quite involved, and
there does not seem to exist a definitive result for a general
torsion. The special case of totally antisymmetric torsion
has been carefully studied by Yajima [32]. We will make
use of Yajima’s result, and we will thus restrict ourselves to
the special case of totally antisymmetric torsion, for which
the effective Weyl gauge field vanishes, namely, B, = 0.

Let us denote the classical background fields by # and
AM, which satisfy the field equations (22) and (28),
respectively. We replace in the action (17) the field A,

by A, + Aﬂ and y by w + 7. In the respective sums, A, and
y (and ) are regarded as quantum fields, while Aﬂ and &
are regarded as classical fields. We remind ourselves that in
the action (17) the gauge-field strength F,, is defined by
the gauge-symmetric expression (14), namely,

F,=0A

uv v T 8I./A}4 - ig[AwAu]'

We will also need to add to the action the gauge-fixing term
and the corresponding Faddeev-Popov ghost term [33]. The
gauge-fixing term is chosen in accordance to the Landau-
DeWitt gauge condition and is given by [25]

1 -
Wigr = / dxh [—E(VﬂA”)z}, (38)
where
VAR = 0,AF + T, A — iglA,, AM]. (39)
The gauge-fixing action (38) brakes gauge symmetry if
only the quantum field A# undergoes gauge transformation

but can be made gauge covariant under suitably combined
gauge transformations of both A# and A 4~ The corresponding

Faddeev-Popov ghost term can be obtained by changing
the integration "variable" in the path integral and is given by

W (ghost) = / d*xhl(~V,V* =V, A — A*V,)C,  (40)

where the ghost fields ¢ and ¢ are Grassmann scalars and
carry the same color index as A,. The gauge-fixing action
W cr) and Faddeev-Popov ghost action W g, are to be
added to the action W, given by Eq. (17), to form the total
action. Expand the action in powers of the quantum fields A,
and . The coefficients of terms linear in quantum fields
vanish, as a result of the classical field equations (21) and
(28). The terms quadratic in the quantum fields (including the
ghost fields) give rise to the quark-loop and gluon-loop
contributions. They are also sufficient for evaluating the
mixed gluon-quark loops in accordance with the ’t Hooft’s
algorithm. The terms quadratic in quantum fields, up to a total
divergence term in the integrand, are exhibited in

P o
W = / d4xh{ <—ZF””FMD - 2iA,[F"™,A))
l A . .
=5 (VW) @iy (D )y + wiy"idn + iy iA
1 -~ _ Ao
-5 (02 + H-9, 97 . (@)

where V,A* is given in Eq. (39) and

F;w = aﬂAl/ - 81/A/4 - ig[AwAv] + ig[AwA/J’ (42)
" =rea, (43)

o i LA
D,=0,- Zaaha)‘”’ﬂ +igA,. (44)

VII. FERMION LOOP

The term in W) that gives rise to the pure fermion loop
is quadratic in the quantum fermion fields, namely,

dops ey
/d xhyiy D,y

The effective action due to the fermion loop is given by
[25,30]

l—‘fermion—loop =—iln Det(iyﬂbu)' (45)

To make use of the heat-kernel technique, while the heat
equation is of second order in the differential operator, we
need to reformulate I'tpmion_ioop SO that the differential
operator in the determinant is of second order. This can be
accomplished by replacing in Eq. (45) the linear differential
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operator iy"lA)ﬂ by its square (i}/”lA)M)2 and multiplying an
overall factor of % namely,

.1 A
1—‘fermion—loop =1 E In Det[(zy”Dﬂ)z] . (46)

The square in the determinant can be expressed as [22]

_<gwb,,by Loncb, + z>, (7)
where
1 i - 1 w s
Z:ZR+§7/5R+§6 (Rﬂy+lFﬂv)’ (48)
with
R=R",,
R = E”MLPR#DAP,
R/w = R/I/Mz/-

We note that when torsion vanishes R = 0, R,, = R,,, and

Z in Eq. (48) reduces to iR, a well-recognized result for
Riemannian spacetime. The linear derivative term in
Eq. (47), which is proportional to the torsion tensor, can
be absorbed into the quadratic derivative term by redefining
the covariant derivative

A

2 o i
D/l = D/l - ZGMCAW' (49)
The fermion-loop effective action (46) thus becomes
1 2 2
Ffermion—loop = —liln Det[g"”DﬂDy + X], (50)
with
X=72-D,0"-0Q,0", (51)
where
_ ! o C 52
Q/,{ — _ZG Apu+ ( )

The divergent part of the fermion-loop effective action (48)
is of the form [30]

) 1
DlVFfermion—loop - 2/ d4Xhtr[a2](x)’ (53)

where € = (47)?(n — 4) and the corresponding kernel for
[ay] is g’”’f)ﬂf)D+X in Eq. (50). For Riemann-Cartan
spacetime and in the case of the totally antisymmetric
torsion tensor, the [a,] corresponding to the differential

operator in Eq. (47) has been obtained by Yajima [32]. It is
given by, as adopted with our metric,

1
180
1

12 2, 1/1 2
——D,D'(ZRV —X |4+ (=R —X ), (54
6 " <5 >+2<6 (54)

(R(o);ty/lpR<0)

o)y p(0)
wilp R( s RMV )

lay) = = W, +
eERT e

(0)
" wip?
W, is defined [32] according to

where R etc., are the Riemannian curvature tensors and

[Dw Dv]l// = (Wﬂl/ + C/I;w[)ﬂ)l//' (55)

We remark that the disentanglement with the definition of
W,w of the torsion term in (55) is crucial in assuring gauge
symmetry in the final result. With the definition in Eq. (47),
W,w is computed to be
Hy apuv

v L appo) 35 Y,
W = —ZO' B |:R + 5 (V”Caﬂb - v,,caﬂ”

= ChyCpu + CtuCpy)| + 1B, (56)

where V,, is the Riemannian covariant derivative. We point
out that one important aspect of Eq. (53) is that the torsion
term in Eq. (53) is not involved in the definition of WW.
This ensures the clean appearance of the gauge-invariant
F ,w term in Wﬂy without the involvement of the torsion
tensor. The trace over the spinor and quark indices of the
quark field y of the product VV“”VV”,, term appearing in
Eq. (54) is given by

LI 1 | N
oUW W,, = —2x Py, -3 GuF*F,,. (57

afuv
where
Zop = RS}L» + % (VuCop = V,.Cp
— ChuCpi + ChCpiy)- (58)

As our main interest is in the renormalizabity of gauge
theory in the Riemann-Cartan spacetime, we will concen-
trate on the gauge-field terms in Eq. (53). Explicit evalu-
ation shows that these terms come from the first and last
terms on the right-hand side of Eq. (54). The contribution
from the first term is contained in Eq. (57). The contribu-
tion from the last term is in

1 PN o
trEX2 = g*wF"™F,, + gravitational terms.
The renormalization counterterm for the gluon field due to

the fermion loop is the sum of the two contributions and is
given by
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. 1 2 A A
Dlvrfermion—loop = E/ d*xh <§ gztrF’“’ Fﬂy

-+ gravitational terms) . (59)

VIII. GLUON AND GHOST LOOPS

The relevant terms for the gluon loop in W) are
4 1 U T : fouy
nguon—loop = d*xh _Z F/w - 21Ay [F s Au]
L&
_E(VMA ) p. (60)
while that for the ghost loop is

Wghost—loop _/d4Xhz(_©ﬂ©ﬂ)(:‘ (61)

Up to a total derivative, W g on—100p Can be expressed in the
form
1 PPN A
/ d4x§hA”(g,wV,1V -V,V,+V,V,
+2C,, V' +V'C,y — C CF 4 gF,)AY,  (62)

where Vﬂ is defined as in

VA, =V,A, —ilA,A) (63)

In Eq. (62), the AFA product term is understood to be the
product f2<A2fPAc On account of

V.V, )4 = R, A + C?, N A — ig[F,,, A"],  (64)

pv

we can express Eq. (62) in the form

I 5 e S e :
5 ha 9, V.V + C, V + VA, — €y CF

+R,, +2gF,, A", (65)

The term linear in derivative in Eq. (64), which is brought
about by torsion, is to be absorbed into the quadratic
derivative term by defining a modified connection

. . 1
0 =1, + 3 Ci,, (66)

with the corresponding covariant derivative expressed as
V'ﬂ. The gluon-loop action (62) can be written as

1 A, o
nguon—loop = /d4x§hA” (.g/u/v/ﬂv//I + qu)Avv (67)
where

X = R,,6% + 2gfabefy,. (68)

The gluon-loop effective action I'gjyon_ioop 18 then given by
. 1 vAwi /
Fgluon—loop = liln Det(gﬂl,viv + X ) (69)

Its divergent pole term is

. 1
Dlvrg]uon—loop = _6/ d4Xhtr[a/2](x)’ (70)

where [d5] is the asymptotic expansion coefficient corre-
sponding to the kernel appearing in Eq. (67), with a
structure similar to that for the fermion case, namely, as
in Eq. (54). Again, we will concentrate on the correspond-
ing first and last terms in Eq. (54) that give rise to gauge-
field terms. The corresponding W), can be obtained from

calculating [V”, @'D]A ,» Which can be neatly expressed as

V'V JA =R A, —i[F,, A+ ChV' A, (T1)

where R:{;]w is the curvature tensor formed with F;fv as the
connection. From Eq. (71), we obtain

(W/;w )ﬁ’ﬂ — R/P

ac abc b
L+ gf e ELS, (72)

We then obtain contribution from the first term,
1 ! Tuy 1 2 rabc reda fobuy o4
tr EWIWW =—§gf—f—F Fﬁu
+ gravitational terms. (73)

Define C,(G) by
fabeTaTe — %CZ(G)TQ. (74)

We then have
tr 1 W W) = — lg2 wtrﬁ"‘”f:
12" 37 Cy(R) e
+ gravitational terms, (75)
where C,(R) is the normalization factor given by Eq. (20).

The contribution from the last term can be similarly
calculated and is given by
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G(6) ;

F"”F , -+ gravitational terms.
G (R)

1
tr= X, X =2¢°

2
(76)

The divergent pole term of the gluon loop is due to the sum
of the contributions in Eqgs. (75) and (76) and given by

. 1 5,C(G) ..
DivT giuon-toop = = / d*x h< i c. (R)tF" F,

-+ gravitational terms> : (77)

The effective action due to the loop of the complex
Grassmann ghost field is given by

r = —2ilnDet(-V,V*). (78)

ghost—loop
Its divergent part can be similarly calculated, taking into
account that the ghost field is a complex Grassmann scalar
and there is no spinor index to sum over, and is given by

1 1 ,GC(G
Divrghost—loop = g/ d4Xh< _QZL

F””F
6° Cy(R)

+ gravitational terms) . (79)

The final result of the divergent parts due to the quark,
gluon, and ghost loops is the sum of Egs. (59), (77),
and (79):

1 4CH(R) = 11C5(G) o, =
Divljgops = E/d“xh <92 2 6)C2(R) 2( )trF””FW
+ gravitational terms). (80)

We recall that we have for convenience omitted the
normalization factor of ( ) for the F*F,, term in the

original Lagrangian in Eq. (17). Thus, when we consider
renormalization constants, this normalization factor should
be similarly omitted, namely, by dropping C,(R) in the
denominator in the above equation. The result for the
gauge-field term, we note, is compatible with earlier results
[25,26] for the Riemannian spacetime. In our specific case
of quantum chromodynamics without additional flavor,
Cz(G) =3 and Cz(F) = %

IX. MIXED LOOPS

These are the gluon-quark vertex and quark self-energy
loops, which contain both internal quark and gluon lines.
We will use ’t Hooft’s algorithm [15,26] to find the
renormalization counterterms. Following ’t Hooft S pro-
cedure, we make the substitutions in the action W2 in (41)

vy,
w — y"D,¢&,
where D =0, — 10,0}, b namely, the covariant deriva-

tive D, w1th0ut the gauge-potential term. The fermion part
of the Lagrangian in Eq. (41) becomes

h[=g"pD,D,& + 6””6” DiE—pZ¢
+ wy"tgAW”Ducf
+ wirtigA,n + fliyigA,ir* D,é). (81)
Applying 't Hooft’s algorithm to this fermion Lagrangian
and the gluon part of the Lagrangian as given in Eq. (67),
we have, in 't Hooft’s notation,
(a); = ir,igTen.
P = piytiigT?,
(N#Y2E = (T 52 + gfebedie)),
where y# = ejy%. According to the algorithm, the renorm-

alization counterterms due to the mixed loops are the sum
of the following four terms:

21
E Eﬂyﬂaﬂa’ (82)

21 1 J
o (e e o

21

N 84
i ,,2/3701 (84)
21 1 .
S Byt iAoy ia.

P i Ayda (85)

With the help of the relations

raoltey = Jonlo™. 1, (86)
i
aﬂyl/ = |:4 Uabwlzjh9 }'D:| - Fyﬂﬂyﬂv (87)
— i ab A
8/47/1/ - |:Zoabw/4 ’ yu:| +I mer (88)

the sum of the four terms is given by

2 ) i
g [’IQZ(TETQ) l)/”(a# - Zaabwzb)n

— TG (feLeTaT) AL iy"n + fig? (TETETL)iALiy"y]. (89)
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In addition to C,(R) defined by Eq. (20) and C,(G) defined
by Eq. (74), we further define C,(F) by [34]

TeTe = C,(F)I. (90)

We note that C,(F) and C,(R) are related. In our specific
case here, C5(F) = § C,(R) = %. It can be easily shown that

FETATE = 2 C(O)T,

1
TaThTe = —Ecz(G)Té + C*(F)T%.

The sum (89) becomes

2 . i ; oA

E CZ(F>9277L7M (au - Zaabwub + lgA/l) . (91)
This is the final result for the renormalization counterterms
due to the gluon-quark vertex and quark self-energy loops.
It is also compatible with the earlier result [25,26] for the

Riemannian spacetime.

X. CONCLUSIONS

We have in this paper deliberated the compatibility of
torsion with gauge symmetry in a realistic interacting
gauge theory, namely, quantum chromodynamics of
gluons interacting with quarks in Riemann-Cartan space-
time. We have demonstrated that the system of classical
field equations is consistent with the choice of the
gauge-invariant definition of F,,, which is the flat-space
expression, while inconsistent with the choice of the
gauge-noninvariant version, which is the one with covar-
iant derivatives replacing the ordinary derivatives in the

flat-space expression. To further substantiate the choice
of the gauge-invariant version of F,,, we have inves-
tigated the quantum renormalizability at one-loop level to
make sure that torsion does not somehow get entangled
with gauge symmetry at a level beyond the classical.
Since the heat-kernel technique is an essential method in
our treatment, we restrict ourselves to the special case of
totally antisymmetric torsion, as the general case is much
more complicated and there is lack of reliable research on
the corresponding heat kernel. We would like to note that
the results of Yajima et al. [32] on the heat kernel in the
presence of torsion are essential for our results.

With regard to the renormalization counterterms for the
gluon field and the quark field, our one-loop results are
contained in Egs. (80) and (91). It is seen that the
counterterms are in the same gauge-invariant forms as
the original terms in the Lagrangian. Except for the
gravitational counterterms, which we have omitted, the
pattern of counterterms for the gluon and quark fields in
the present case of Riemann-Cartan spacetime is exactly
the same as in the previously studied case of Riemannian
spacetime [25,26]. We will hence not repeat here defining
the renormalized constants. The conclusion, of course, is
that the theory, with the choice of the gauge-invariant
version of F,, is renormalizable and gauge symmetry

%
preserved at the one-loop level.
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