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We consider 5D brane world models with broken global 4D Poincaré invariance (4D part of the
spacetime metric is not conformal to the Minkowski spacetime). The bulk is filled with the negative
cosmological constant and may contain a perfect fluid. In the case of empty bulk (the perfect fluid is
absent), it is shown that one brane solution always has either a physical or a coordinate singularity in the
bulk. We cut off these singularities in the case of compact two brane model and obtain regular exact
solutions for both 4D Poincaré broken and restored invariance. When the perfect fluid is present in the bulk,
we get the master equation for the metric coefficients in the case of arbitrary bulk perfect fluid equation of
state (EoS) parameters. In two particular cases of EoS, we obtain the analytic solutions for thin and thick
branes. First one generalizes the well known Randall-Sundrum model with one brane to the case of the bulk
anisotropic perfect fluid. In the second solution, the 4D Poincaré invariance is restored. Here, the spacetime
goes asymptotically to the anti-de Sitter one far from the thick brane.
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I. INTRODUCTION

The idea on multidimensionality of our spacetime has
more than hundred years of history starting from the
pioneering paper by Nordström [1] published in 1914 just
before the Einstein’s general relativity came to light. A brief
historical retrospective of the main ideas and papers as well
as introduction and review papers and books can be found
in the recent article [2]. The modern turn of the history is
connected with the so called brane world models. Here, it is
supposed that our visible world is localized on 4D hyper-
surface (brane) embedded in multidimensional spacetime
(bulk). The progress of these models was largely due to the
papers by Lisa Randall and Raman Sundrum [3,4] who
proposed a nonfactorizable warped geometry for solving
the gauge hierarchy problem. This idea caused an ongoing
flood of articles devoted to the study of properties and
various modifications of this geometry (see, e.g., reviews
pointed out in [2]).
In original papers by Randall and Sundrum as well as in

most subsequent articles, it was proposed that metric is
Poincaré invariant. This means that 4D part/section of metric
is conformal to the Minkowski spacetime (see, e.g., [5,6]).

The common conformal prefactor in front of the 4D
Minkowski metric depends on the extra dimension (and
time in the case of cosmological implementation). However,
what new properties will brane world models exhibit if
we violate such global conformal connection and suppose
that the temporal and 3D spatial parts have different
prefactors? In this case the global 4D Poincaré invariance
is broken.1 This is the main subject of our studies in the
present paper.
We consider the static 5D metric with the broken global

4D Poincaré invariance. In general, we do not require the
reflection Z2 symmetry for the metric coefficients. Such
asymmetric brane solutions were investigated, e.g., in the
papers [7–10] where the metric ansatz was taken in the form
of the five-dimensional analogue of the Schwarzschild-
anti-de Sitter spacetime [7–9].We consider a different metric
ansatz. We also fill bulk with the negative cosmological
constant and perfect fluid with anisotropic equations of
state (EoS).
The results of our investigations are twofold. First, we

demonstrate that the behavior of models with broken and
restored invariance is significantly different from each
other. Second, this setting of the problem enables us to
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1Obviously, for each 4D section we can restore the local
Poincaré invariance with the help of redefinition of the time
coordinate. However, for different sections this redefinition will
be different.
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obtain new classes of solutions. For example, in the case of
the empty bulk (the perfect fluid is absent) the solution
always has the singularity (naked or coordinate) in contrast
to the usual Poincaré invariant models (e.g., [3,4]). Such
type of naked singularities is known for the models with
the bulk scalar field and restored Poincaré invariance
[5,6,11–13]. In these papers, the singularities are treated
as big bang or big crunch and they are taken to effectively
cut off space. However, we prefer to construct completely
regular solutions. Therefore, we introduce a second brane
which cuts off the singular points where the metric
coefficients either are infinite or equal to zero. We find
the range of parameters which ensures such regular
solutions defined on the compact space.
In the presence of the perfect fluid in bulk, the system of

equations is reduced to one master equation for the metric
coefficients. In the case of arbitrary EoS, this equation does
not allow to get analytic expressions for the metric
coefficients. However, this equation is useful for numerical
studies of the considered brane world models. We present
two physically interesting particular analytic solutions for
the metric coefficients. The first one generalizes the
Randall-Sundrum solution with one brane (RSII) [4] to
the case of broken Poincaré invariance and bulk anisotropic
perfect fluid. The second analytic solution describes the
thick brane with the anisotropic bulk perfect fluid and
restored Poincaré invariance. This solution is of interest
since far from the thick brane it goes asymptotically to the
anti-de Sitter one. As far as we are aware, the thick brane
solutions were constructed mainly for the brane world
models with the bulk scalar field [2,14]. The only known
for us thick brane solution with a perfect fluid is presented
in the paper [15]. However, the exact analytic expressions
for the metric coefficients are not given in this article.
The paper is structured as follows. In Sec. II, the general

setting of the model is given. In Sec. III, we consider the
empty bulk model. Here, in subsections III A and III B, we
consider one- and two-brane models, respectively. Sec. IV
devoted to the models with perfect fluids in bulk. The case
of arbitrary perfect fluid equations of state (except for a
couple of special cases) is considered in subsection IVA.
Here, we obtain a master equation for the metric coef-
ficients. In subsections IV B and IV C, we obtain analytic
expressions for the metric coefficients in some particular
cases of EoS parameters. For example, the case of
subsection IV C describes the thick brane solution. The
main results are summarized in concluding Sec. V.

II. THE MODEL

We consider the static 5D metric in the form

ds2 ¼ AðξÞdt2 þ BðξÞðdx2 þ dy2 þ dz2Þ þ EðξÞdξ2: ð1Þ

Obviously, without loss of generality, we can putEðξÞ≡ −1.
In the case AðξÞ ¼ −BðξÞ, 4D sections (e.g., branes)

ξ ¼ const are Poincaré invariant. However, in our work
we do not require such invariance letting functions AðξÞ
and BðξÞ to be arbitrary. The bulk is filled with the negative
cosmological constant2 Λ5 < 0 and a perfect fluid with
mixed energy-momentum tensor components

T0
0 ¼ ε; T1

1 ¼ T2
2 ¼ T3

3 ¼ −p0; T4
4 ¼ −p1: ð2Þ

For such a model, 5D Einstein field equations are reduced to
the system of three equations:

−
3B00

2B
− κΛ5 ¼ κε; ð3Þ

B00

B
þ A0B0

2AB
−
ðB0Þ2
4B2

þ A00

2A
−
ðA0Þ2
4A2

þ κΛ5 ¼ κp0 ¼ κω0ε;

ð4Þ

3ðB0Þ2
4B2

þ 3A0B0

4AB
þ κΛ5 ¼ κp1 ¼ κω1ε; ð5Þ

where κ ≡ 2π2G5/c4 withG5 being thegravitational constant
in the 5-dimensional spacetime, 0 stands for the derivative
with respect to ξ andwe assumed that the EoS are of the form
p0 ¼ ω0ε and p1 ¼ ω1ε.

III. EMPTY BULK

A. One-brane model

Let us study first the case of empty bulk: ε≡ 0. In this
case, Eqs. (3), (4), and (5) read

B00

B
¼ −

2

3
Λ5; ð6Þ

−
B00

B
−
1

2

A00

A
þ 1

4

B02

B2
−
1

2

A0B0

AB
þ 1

4

A02

A2
¼ Λ5; ð7Þ

B02

B2
þ A0B0

AB
¼ −

4

3
Λ5; ð8Þ

where we put for a moment κ ≡ 1. It can be easily seen that
if Eqs. (6) and (8) are satisfied, then Eq. (7) is satisfied
automatically. Therefore, it is sufficient to solve only (6)
and (8) together. The general solution of these equations is

BðξÞ ¼ B1emξ þ B2e−mξ; m2 ≡ −
2

3
Λ5 > 0; ð9Þ

2In the present paper we consider the case Λ5 < 0 since the
negative bulk cosmological constant is a natural feature of
the string theory or M-theory, e.g., in this case we can introduce
the AdS/CFT correspondence [16]. However, the case Λ5 > 0
is not forbidden in our model and can be studied in the
similar way.
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AðξÞ ¼ A1

½B0ðξÞ�2
BðξÞ ; ð10Þ

where B1, B2, and A1 are arbitrary constants of integration.
We can now put a brane, e.g., at the point ξ ¼ 0 requiring

the S1/Z2 symmetry with respect to this point. The well
known Randall-Sundrum solution (RSII) [4] corresponds
to the additional condition AðξÞ ¼ −BðξÞ which restores
the 4D Poincaré invariance. This condition results in either
B1 ¼ 0 or B2 ¼ 0 (in the case of the original solution [4]
we should substitute B1 ¼ 0 for a positive value of m) and
A1 ¼ −1/m. In this case we obtain a regular solution at any
point ξ ∈ ½0;�∞Þ. However, in general case AðξÞ ≠ −BðξÞ
there are singular points where BðξÞ ¼ 0. For example, the
Kretschmann invariant for the metric (1) is

K ¼ RMNKLRMNKL ¼ A002

A2
þ 3A02B02

4A2B2

þ A04

4A4
−
A02A00

A3
þ 3B002

B2
þ 3B04

2B4
−
3B02B00

B3
; ð11Þ

and for the solutions (9) and (10) it reduces to

K ¼ m4

2

�ð12B1B2Þ2
½BðξÞ�4 þ 5

�
: ð12Þ

Therefore, it diverges when BðξÞ ¼ 0. Hence, physical
singularities are localized at the points where BðξÞ ¼ 0,
while at the points where AðξÞ ¼ 0 the Kretschmann
invariant shows regular behavior. In the next section [see
the text after Eq. (19)], we demonstrate that in the case of
the 4D Poincaré invariance violation the singular points
with the physical singularity [where BðξÞ ¼ 0 and we have
the curvature singularity] or the coordinate singularity
[where AðξÞ ¼ 0] always exist. Therefore, the empty
one-brane model with the broken the 4D Poincaré invari-
ance necessarily contains singular points.3 It is worth
noting that the coordinate singularities, which deserve a
special consideration as a separate paper, can be removed

with a proper coordinate transformations. As it follows
from our consideration below, these singularities appear
only in a particular narrow range of parameters. Therefore,
the Poincaré invariance results in the curvature singularity
except for a very narrow range of parameters. In our work,
to avoid all singularities (physical as well as coordinate),
we construct a regular solution by introducing a second
brane in such a way that all singular points (both BðξÞ ¼ 0
and AðξÞ ¼ 0) do not lie between the branes. Obviously,
this will be a generalization of the Randall-Sundrum
solution (RSI) with two branes [3].

B. Two-brane model

We assume that there is one more brane in addition to the
brane at the point ξ ¼ 0. In general, we do not require the
Z2 symmetry with respect to the brane at ξ ¼ 0 and allow
the fifth coordinate ξ to run from −L to R: ξ ∈ ½−L; R�,
with L > 0, R > 0 and L ≠ R. The points ξ ¼ −L and
ξ ¼ R are identified with each other (see Fig. 1), thus, ξ
parameterizes a topological torus S1. We also assume that
the bulk cosmological constant has its own values in each
sector of the bulk: ΛL and ΛR with ΛL, ΛR < 0. Obviously,
the Z2 symmetry will be restored for ΛL ¼ ΛR. Then,
according to Eqs. (9) and (10), the metric coefficients in
such a model can be written as follows:

BLðξÞ ¼ β1eμξ þ β2e−μξ; μ2 ≡ −
2

3
ΛL > 0;

ALðξÞ ¼ α1
½B0

LðξÞ�2
BLðξÞ

; ξ ∈ ½−L; 0�; ð13Þ

and

BRðξÞ ¼ b1emξ þ b2e−mξ; m2 ≡ −
2

3
ΛR > 0;

ARðξÞ ¼ a1
½B0

RðξÞ�2
BRðξÞ

; ξ ∈ ½0; R�: ð14Þ

As we have mentioned above, in general, ΛL ≠ ΛR, and,
therefore, μ ≠ m.
These expressions are parameterized by four dimen-

sional parameters (μ, L, m, R) and six dimensionless
parameters (α1, β1;2, a1, b1;2). On the other hand, the
actual number of parameters in the model can be reduced.
Indeed, the metric tensor is supposed to be well-defined and
continuous at ξ ¼ 0 and at ðξ ¼ −LÞ ↔ ðξ ¼ RÞ:

FIG. 1. The schematic plot of the two-brane model. The red/
upper left-right arrow indicates the points of identification. The
black arrows show directions of normal vectors to the branes.

3In the paper [17] it has been proved the no-go theorem which
states that it is impossible to shield the singularity (where
BðξÞ ¼ 0) from the brane by a horizon (where AðξÞ ¼ 0), unless
the positive energy condition is violated in the bulk or on the
brane. This statement is based on Eq. (7) of the paper [17] in the
case of the Z2 symmetry (although, this symmetry condition is
not a crucial point). Our solution with the restored Z2 symmetry
(see the paragraph after our Eq. (10)) coincides with the first
example of the paper [17] (where in Eq. (8) we should keep only
the potential of the scalar field playing the role of the bulk
cosmological constant). Similarly to their result, we obtained
AðξÞ ¼ −BðξÞ, and the only horizon is possible at ξ → ∞ where
both AðξÞ and BðξÞ tend to zero. The authors of [17] demon-
strated that the no-go theorem can be evaded if three-brane has a
positive spatial curvature. We choose another way to solve this
problem and introduce a second brane which cuts off all singular
points.
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BLð0Þ ¼ BRð0Þ; ALð0Þ ¼ ARð0Þ; ð15Þ

BLð−LÞ ¼ BRðRÞ; ALð−LÞ ¼ ARðRÞ: ð16Þ

Without loss of generality we can also demand that

BLð0Þ ¼ BRð0Þ ¼ −1; ALð0Þ ¼ ARð0Þ ¼ 1: ð17Þ
Then, using these conditions (17), we obtain

β1 ¼ −ð1þ β2Þ; b1 ¼ −ð1þ b2Þ; ð18Þ

α1 ¼ −μ−2ð1þ 2β2Þ−2; a1 ¼ −m−2ð1þ 2b2Þ−2:
ð19Þ

With the help of Eqs. (18), it can be easily seen that the one-
brane solution always has the singular points. For example,
BLðξÞ, given by (13), always has zero for the range of
parameters β2 < −1 and β2 > 0. For β2 ∈ ð−1; 0Þ, zero of
BLðξÞ is absent. However, exactly for this interval of β2 [i.e.
for β2 ∈ ð−1; 0Þ], the metric coefficient ALðξÞ always has
zero. Similar situation takes place for BRðξÞ and ARðξÞ.
The condition BLð−LÞ ¼ BRðRÞ gives:

−ð1þ β2Þe−μL þ β2eμL ¼ −ð1þ b2ÞemR þ b2e−mR; ð20Þ

leading to

β2 ¼ ½−ð1þ b2ÞemR þ b2e−mR þ e−μL�ðeμL − e−μLÞ−1:
ð21Þ

From the equation ALð−LÞ ¼ ARðRÞ after cumbersome
calculations we obtain:

4ðemR − e−mRÞðe−μL − e−mR − emR þ eμLÞ
× ½emR þ 2b2emR þ b22ðemR − e−mRÞ�
× ½emR þ b2ðe−μL þ eμL þ 2emRÞ
þ b22ðe−μL þ e−mR þ emR þ eμLÞ�
× ½b2ðemR − e−mRÞ þ emR�−1
× feμL þ e−μL − 2½b2ðemR − e−mRÞ þ emR�g−2
× ð1þ 2b2Þ−2 ¼ 0: ð22Þ

This equation is well defined for all values of b2, except for
the following ones:

b2 ¼ −
1

2
; b2 ¼

1

e−2mR − 1
;

b2 ¼
eμL þ e−μL − 2emR

2ðemR − e−mRÞ : ð23Þ

Taking into account that b2, μ, m, L, R are all real-valued,
Eq. (22) is satisfied if at least one of the following equations
is satisfied:

e−μL − e−mR − emR þ eμL ¼ 0; ð24Þ

emR þ 2b2emR þ b22ðemR − e−mRÞ ¼ 0; ð25Þ

emR þ b2ðe−μL þ eμL þ 2emRÞ
þ b22ðe−μL þ e−mR þ emR þ eμLÞ ¼ 0: ð26Þ

In what follows we investigate these equations; namely, the
first Eq. (24) in a subsection and then Eqs. (25) and (26) in
a separate subsection.

1. Equation (24)

It can be easily seen that Eq. (24) is satisfied only if

mR ¼ μL ⇒ R ¼ μ

m
L: ð27Þ

Obviously, in the case μ ¼ m the Z2 symmetry is restored.
We note that this relation (27) reduces the number of free
parameters. Then, from Eq. (20) we obtain:

β1 ¼ b2; β2 ¼ b1 ¼ −ð1þ b2Þ;

α1 ¼ −
1

μ2ð1þ 2b2Þ2
; a1 ¼ −

1

m2ð1þ 2b2Þ2
: ð28Þ

Consequently, the metric coefficients read

ALðξÞ ¼
½b2eμξ þ ð1þ b2Þe−μξ�2

ð1þ 2b2Þ2½ð1þ b2Þe−μξ − b2eμξ�
;

ξ ∈ ½−L; 0�; ð29Þ

ARðξÞ ¼
½ð1þ b2Þemξ þ b2e−mξ�2

ð1þ 2b2Þ2½ð1þ b2Þemξ − b2e−mξ� ;

ξ ∈
�
0;

μ

m
L

�
; ð30Þ

and

BLðξÞ ¼ b2eμξ − ð1þ b2Þe−μξ; ξ ∈ ½−L; 0�; ð31Þ

BRðξÞ ¼ −ð1þ b2Þemξ þ b2e−mξ; ξ ∈
�
0;

μ

m
L

�
:

ð32Þ
Equations (29)–(32) clearly show that two values of the
parameter b2: b2 ¼ 0, −1 are special. For these values of
b2, the metric coefficients ALðξÞ ¼ −BLðξÞ and ARðξÞ ¼
−BRðξÞ, and the 4D Poincaré invariance is restored. This
solution is well defined over the entire interval ξ ∈ ½−L;R�
(see Fig. 2) and, in the case μ ¼ m, is reduced to the RSI
solution [3]. However, for other values of b2 solutions can
be singular in some points of this interval. Now, we will
define the allowed values of b2 for which both AL;R and
BL;R are not equal to zero at any point of ξ ∈ ½−L;R�.
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As it follows from Eq. (31), BLðξÞ is equal to zero at

ξBL ¼ 1

2μ
ln

�
1þ b2
b2

�
; b2 ∈ ð−∞;−1Þ ∪ ð0;þ∞Þ:

ð33Þ
We require that the function BLðξÞ is nonzero in the interval
½−L; 0�. This is possible either if b2 ∈ ½−1; 0�, or if ξBL > 0,
or if ξBL < −L. The condition ξBL > 0 is equivalent to

ln

�
1þ b2
b2

�
> 0 ⇔ b2 ∈ ð0;þ∞Þ; ð34Þ

while the condition ξBL < −L results in the condition

ln

�
1þ b2
b2

�
< −2μL ⇔ b2 ∈

�
1

e−2μL − 1
;−1

�
; ð35Þ

where we have taken into account the condition that
μL > 0. Hence, in order for BLðξÞ to be nonzero at
½−L; 0�, the parameter b2 must belong to the interval I1:

b2 ∈ I1 ¼
�

1

e−2μL − 1
;þ∞

�
: ð36Þ

Following the similar steps by taking the condition
mR ¼ μL into account in this case, we can demonstrate
that BRðξÞ is not equal to zero at ½0; R�, if the parameter b2
also lies within the interval I1.
A similar analysis shows that the metric coefficients

ALðξÞ and ARðξÞ are nonzero between branes (e.g., for
ξ ∈ ½−L;R�) if the parameter b2 belongs to the interval I2:

b2 ∈ I2 ¼
�
−∞;−

1

1þ e−2μL

�
∪ ð−1/2;þ∞Þ: ð37Þ

Here, we also excluded the value b2 ¼ −1/2 at which
AL;RðξÞ becomes singular.
Finally, for all metric coefficients in our model to be

nonsingular and nonzero, the parameter b2 must belong to
the interval I:

b2 ∈ I ¼ I1 ∩ I2

¼
�

1

e−2μL − 1
;−

1

e−2μL þ 1

�
∪ ð−1/2;þ∞Þ: ð38Þ

In what follows, b2 is assumed to belong to this range of
parameters. It is also worth noting here that none of the
prohibited values (23) lies within this interval.
Therefore, we have constructed a class of nonsingular

solutions (29)–(32) that are well-defined, continuous and
nonzero over the whole domain S1 parametrized by
ξ ∈ ½−L; ðμ/mÞL�. The free parameters μ, m, L are strictly
positive and b2 can take any values from the set I given
in (38).
The metric coefficients (29)–(32) are continuous at ξ ¼ 0

and ðξ ¼ −LÞ ↔ ðξ ¼ RÞ. However, their derivatives are
not. The “jumps” of the derivatives are interpreted as
the presence of branes filled with some matter content.
The energy-momentum tensor (EMT) of the matter on the
branes is defined via Israel junction conditions:

ðKmn − gmnKÞ�ξ¼þ0
ξ¼−0 ¼ κτmnðξ ¼ 0Þ;

ðKmn − gmnKÞ�ξ¼−Lþ0
ξ¼R−0 ¼ κτmnðξ ¼ −LÞ; ð39Þ

where the extrinsic curvature tensor in the chosen
coordinates reads Kmn ¼ −ð1/2Þg0mn. The tensor τmn is
interpreted as the EMT of matter localized on two branes
(“1” at ξ ¼ 0 and “2” at ξ ¼ −L). We assume that each
brane is filled with a perfect fluid. Therefore:

τ00ðξ ¼ 0;−LÞ ¼ ϵð1;2ÞAðξ ¼ 0;−LÞ; ð40Þ

τiiðξ ¼ 0;−LÞ ¼ −πð1;2ÞBðξ ¼ 0;−LÞ; i ¼ 1; 2; 3;

ð41Þ

where the quantities ϵðkÞ and πðkÞ, k ¼ 1, 2, are interpreted
as energy density and pressure of the fluids on the branes
“1” and “2,” respectively. We also introduce an EoS
parameter for each fluid:

FIG. 2. Models with restored 4D Poincaré invariance. Orange/top and blue/bottom lines represent AðξÞ and BðξÞ metric coefficients,
respectively. Left graph: μL ¼ 1, μ/m ¼ 2, b2 ¼ 0: ðκ/μÞϵð1Þ ¼ −ðκ/μÞϵð2Þ ¼ 2.25,Ωð1Þ ¼ Ωð2Þ ¼ −1. Right graph: μL ¼ 1, μ/m ¼ 1/3,
b2 ¼ −1: ðκ/μÞϵð1Þ ¼ −ðκ/μÞϵð2Þ ¼ −6, Ωð1Þ ¼ Ωð2Þ ¼ −1.
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πðkÞ ¼ ΩðkÞϵðkÞ; k ¼ 1; 2: ð42Þ

For the metric coefficients (29)–(32) we obtain

ϵð1Þ ¼
3

2κ
ð1þ 2b2Þðmþ μÞ; ð43Þ

Ωð1Þ ¼ −1þ 8

3

b2ð1þ b2Þ
ð1þ 2b2Þ2

; ð44Þ

and

ϵð2Þ ¼
3

2κ

b2e−μL þ ð1þ b2ÞeμL
b2e−μL − ð1þ b2ÞeμL

ðmþ μÞ; ð45Þ

Ωð2Þ ¼ −1 −
8

3

b2ð1þ b2Þ
½b2e−μL þ ð1þ b2ÞeμL�2

: ð46Þ

Clearly, the quantities ϵðkÞ, πðkÞ, ΩðkÞ, k ¼ 1, 2, are well
defined and nonzero for all the allowed values of the free
parameters.
It is noteworthy that although ϵð1Þ andΩð1Þ that define the

matter on the brane “1” do not depend on L, the
corresponding quantities ϵð2Þ and Ωð2Þ on the brane “2”
do. This dependence means that, generally, not only the
value of the energy density on the second brane is fine
tuned to the distances between branes, but also the EoS
parameter of this matter depends on L (or, taking into
account the relation μL ¼ mR, on R). Obviously, in the
particular cases of the restored 4D Poincaré invariance
b2 ¼ 0, −1, we reproduce the results of the RSI model.
Here, we have the vacuum EoS on both branes:
Ωð1Þ ¼ Ωð2Þ ¼ −1. It is well known that RSI model requires
one of the branes to be filled with negative energy density.
This situation holds also for the general case of the broken
Poincaré invariance. Here, for the allowed set of param-
eters: signðϵð1ÞÞ ¼ −signðϵð2ÞÞ. To demonstrate it, we can
mention that according to Eq. (43)

ϵð1Þ > 0 ⇔ b2 > −1/2 ⇔ b2 ∈ I3; ð47Þ

ϵð1Þ < 0 ⇔ b2 < −1/2 ⇔ b2 ∈ I4; ð48Þ

where

I3 ¼
�
−
1

2
;þ∞

�
; I4 ¼

�
1

e−2μL − 1
;−

1

e−2μL þ 1

�
:

ð49Þ

To define the interval I4 we took into account that the
parameter b2 should belong to the allowed regions (38).
Then, I4 ¼ Inð−1/2;þ∞Þ. The similar analysis of Eq. (45)
demonstrates that

ϵð2Þ < 0 ⇔ b2 ∈ I3; ð50Þ

ϵð2Þ > 0 ⇔ b2 ∈ I4: ð51Þ

Hence, ϵð1Þ and ϵð2Þ always have opposite signs.4 It is
worth noting that the null-energy condition (NEC)
ϵðkÞ þ πðkÞ ¼ ϵðkÞ½1þΩðkÞ� ≥ 0, k ¼ 1, 2, can be fulfilled
for both branes. To demonstrate it, we consider first the
brane “1” with the energy density and the EoS parameter
given by Eqs. (43) and (44). In this case the NEC reads

ϵð1Þ½1þ Ωð1Þ� ≥ 0 ⇒
b2ð1þ b2Þ
1þ 2b2

≥ 0: ð52Þ

This inequality is satisfied for b2 ∈ ½−1;−1/2Þ ∪ ½0;þ∞Þ.
Now, let us turn to the brane “2” with the energy density
and the EoS parameter given by Eqs. (45) and (46). Here,
the NEC is reduced to the following inequality:

b2ð1þ b2Þ
½b2ðe−μL − eμLÞ − eμL�½b2ðe−μL þ eμLÞ þ eμL� ≤ 0; ð53Þ

which admits the solution b2 ∈ ð−∞; 1
e−2μL−1Þ ∪ ½−1;

− 1
e−2μLþ1

Þ ∪ ½0;þ∞Þ.
Taking into account the interval (38) for the allowed

values of b2, we see that both branes “1” and “2” satisfy the
NEC for the values

b2 ∈
�
−1;−

1

e−2μL þ 1

�
∪ ½0;þ∞Þ: ð54Þ

In Fig. 2 and Fig. 3, we present examples of the metric
coefficients AðξÞ and BðξÞ in the case of restored
(Fig. 2) and broken (Fig. 3) 4D Poincaré invariance.
Here, the values of the parameter b2 are taken from the
interval I (38).

4In the paper [18] it was shown that in the projective approach
the sign of the effective four-dimensional gravitational constant
is defined by the sign of the vacuum energy density in the brane.
To arrive at this conclusion, the authors supposed that there is the
vacuum energy in the brane with the EoS parameter Ω ¼ −1. So,
the Newton’s gravitational constant has the wrong sign if the
vacuum energy density is negative. In our model, the energy
densities of matter in the branes are defined by ϵ1;2. We did not
postulate the form of the matter in the branes but defined it from
the Israel junction condition and found that, similarly to the RSI
model, one of the branes always has negative sign of the energy
density. However, the EoS parameters differ from the vacuum-
like value −1 [see Eqs. (44), (46)]. Therefore, we cannot apply
directly the results of the paper [18]. To conclude about the form
of gravitational interaction in the branes, we need to study the
linearized perturbations of the considered model [19]. However,
this investigation is out of the scope of the present paper.
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2. Equations (25) and (26)

To conclude this section, we consider Eqs. (25) and (26)
and briefly show that there are no any new nonsingular
solutions for the metric coefficients in these cases. We start
from Eq. (25) which we consider as a quadratic equation
with respect to b2. Then, this equation has the following
solutions:

b2 ¼
emR

1 − emR ; b2 ¼ −
emR

1þ emR : ð55Þ

First, it can be easily seen that if we consider μL ¼ mR, as
it took place in the previous subsection, then these values of
b2 do not belong to the allowed interval I given in (38). So,
we consider the case μL ≠ mR. Taking into account
Eqs. (18) and (20), we obtain for the first root in (55):

β2 ¼
1

eμL − 1
; β1 ¼ −

eμL

eμL − 1
: ð56Þ

Then

BLðξÞ ¼ β1eμξ þ β2e−μξ ¼
e−μξ − eμðξþLÞ

eμL − 1
; ξ ∈ ½−L; 0�:

ð57Þ

This function equals zero at the point ξ ¼ −L/2, irrespec-
tively of the choice of the value of L. Hence, for this choice
of b2 regular solutions do not exist.
If we consider the second root for b2 in Eq. (55), we get

for β2 and β1:

β2 ¼ −
1

eμL þ 1
; β1 ¼ −

eμL

eμL þ 1
; ð58Þ

and, hence, the functions BLðξÞ and ALðξÞ read

BLðξÞ ¼ −
e−μξ þ eμðξþLÞ

eμL þ 1
; ð59Þ

ALðξÞ ¼ −α1
μ2

eμL þ 1

½e−μξ − eμðξþLÞ�2
e−μξ þ eμðξþLÞ ; ð60Þ

where ξ ∈ ½−L; 0�. These equations show that the function
BLðξÞ does not go to zero anywhere in this interval.
However, ALðξÞ is equal to zero at ξ ¼ −L/2. Thus, both
of the solutions of Eq. (25) result in zero metric coefficients
in the bulk between the branes.
Let us now turn our attention to Eq. (26). It also has two

solutions:

b2 ¼ −
emR

eμL þ emR ; b2 ¼ −
eμLþmR

eμLþmR þ 1
: ð61Þ

It is not difficult to check that if we set μL ¼ mR, these
values of b2 again belong to the prohibited region: b2∈I,
where the interval I is given by (38). Therefore, we will
again assume that the free parameters m, μ, L, R do not
obey the fine tuning condition μL ¼ mR, and try to
determine whether any regular geometries exist for the
roots (61).
In the case of the first root in (61), Eqs. (21) and (18) give

β2 ¼ −
emR

eμL þ emR ¼ b2; b1 ¼ −
eμL

eμL þ emR ¼ β1:

ð62Þ

It is clear that signðβ1Þ ¼ signðβ2Þ and signðb1Þ ¼ signðb2Þ
and therefore BLðξÞ and BRðξÞ are nowhere zero. Due to the
same reason ALðξÞ and ARðξÞ can be zero:

ALðξÞ ∼ ½−eμLeμξ þ emRe−μξ�2; ξ ∈ ½−L; 0�; ð63Þ

ARðξÞ∼½−eμLemξ þ emRe−mξ�2; ξ ∈ ½0; R�: ð64Þ

ALðξÞ is zero at ξL ¼ ðmR − μLÞ/ð2μÞ, while ARðξÞ is
zero at ξR ¼ ðmR − μLÞ/ð2mÞ.
ALðξÞmay be nonzero over ½−L; 0� if ξL > 0 or ξL < −L.

The first inequality is equivalent to R > ðμ/mÞL, while the

FIG. 3. Models with broken 4D Poincaré invariance. Orange/top and blue/bottom lines represent AðξÞ and BðξÞ metric coefficients,
respectively. Left graph: μL ¼ 1, μ/m ¼ 2 and b2 ¼ −1/3: ðκ/μÞϵð1Þ ¼ 0.75, ðκ/μÞϵð2Þ ≈ −1.96, Ωð1Þ ≈ −6.33, Ωð2Þ ≈ −1.21.
Right graph: μL ¼ 1, μ/m ¼ 1/2 and b2 ¼ 1: ðκ/μÞϵð1Þ ¼ 13.5, ðκ/μÞϵð2Þ ≈ −5.15, Ωð1Þ ≈ −0.41, Ωð2Þ ≈ −0.84.
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second one is equivalent toR < −ðμ/mÞL, and, indeed, is not
valid for any reasonable values of the free parameters.
ARðξÞ may be nonzero over ½0; R� if ξR < 0 or ξL > R.

The first inequality is equivalent to R < ðμ/mÞL, while the
second one is again equivalent to R < −ðμ/mÞL (with
empty solution set).
Therefore, the only possibility for AðξÞ to be nonzero

everywhere over ½−L; R� is when ξL > 0 and ξR < 0
simultaneously. However, this requires R to satisfy both
inequalities R > ðμ/mÞL and R < ðμ/mÞL, which is impos-
sible. Hence, the first root of b2 in (61) is unsatisfactory.
Similar analysis for the second root results in the same
conclusion.
Hence, the only possible regular, continuous and

nowhere zero solutions for the metric coefficients are
given by Eqs. (29)–(32) where parameter b belongs to
the interval I (38).

IV. BULK WITH PERFECT FLUID

Now, we assume that bulk is filled with the perfect fluid
with EMTof the form (2). This EMT can be also written as

TM
N ¼ ε

�
δM0 δ

0
N − ω0

X3
μ̃¼1

δMμ̃ δ
μ̃
N − ω1δ

M
4 δ

4
N

�
;

M;N ¼ 0; 1; 2; 3; 4: ð65Þ

Then the conservation equation ∇MTM
N ¼ 0 is reduced to a

system of equations

∂0ε ¼ 0; ð66Þ

ω0∂ ν̃ε ¼ 0; ν̃ ¼ 1; 2; 3; ð67Þ

ω1ε
0 þ ω1ε

�
A0

2A
þ 3

2

B0

B

�
þ ε

�
A0

2A
− ω0

3

2

B0

B

�
¼ 0; ð68Þ

where we took into account our metric ansatz (1). From
(66) we find that ε must be static. If ω0 ≠ 0, then (67)
results in a conclusion that the energy density may depend
only on ξ: ε ¼ εðξÞ. However, it is not necessary to suppose
that ω0 ≠ 0 to arrive at this conclusion. The similar result
follows from Eq. (3) for our metric ansatz (1).
It is convenient to introduce new functions bðξÞ≡ B0/B

and aðξÞ≡ A0/A. Then, Eqs. (3)–(5) and (68) take the form,
respectively:

b0 þ b2 ¼ −
2

3
ðΛ5 þ εÞ; ð69Þ

−ðb0 þ b2Þ − 1

2
ða0 þ a2Þ þ 1

4
ðb − aÞ2 ¼ Λ5 − ω0ε; ð70Þ

bðbþ aÞ ¼ −
4

3
ðΛ5 − ω1εÞ; ð71Þ

ω1ε
0 þ ε

�
1

2
ð1þ ω1Þaþ 3

2
ðω1 − ω0Þb

�
¼ 0: ð72Þ

From (69) we get:

ε ¼ −
3

2
ðb0 þ b2Þ − Λ5; ε0 ¼ −

3

2
ðb00 þ 2bb0Þ: ð73Þ

A. ω1 ≠ − 1, 0
Simple analysis of Eqs. (71)–(73) demonstrates that the

function b satisfies the following equation:

2ω1

1þ ω1

b00 þ 2bb0

b0 þ b2 þ ð2/3ÞΛ5

¼ 2

b

�
2

3
Λ5ð1þ ω1Þ þ ω1b0

�
þ
�
1þ 2ω1 þ

3ðω0 − ω1Þ
1þ ω1

�
b;

ð74Þ

which can be resolved with respect to b00:

b00 ¼ −
1

ω1

�
−
1

2
þ ω1 − 2ω2

1 −
3

2
ω0

�
b0b

þ 1

ω1

�
1

2
þ ω2

1 þ
3

2
ω0

�
b3

þ 2

3ω1

Λ5ð1þ 3ω1 þ 2ω2
1Þ
b0

b
þ ð1þ ω1Þ

�
b0

b

�
2

b

þ 4

9ω1

Λ2
5ð1þ ω1Þ2

1

b

þ b
ω1

�
4

3
Λ5ω1ð1þ ω1Þ þ Λ5ð1þ ω0Þ

�
: ð75Þ

It is not difficult to show that the system of Eqs. (70), (71),
and (73) results in the same equation for b. Therefore, two
of equations of the system (69)–(72) are equivalent.
Equation (75) is an autonomous second order equation of

the form

b00 ¼ α1b0bþ α2b3 þ α3
b0

b
þ α4

ðb0Þ2
b

þ α5
1

b
þ α6b; ð76Þ

where the values of the constants α are obvious. Via
introduction of a new variable uðbÞ≡ b0 ⇒ b00 ¼ ̇uu
(where the dots denote derivatives with respect to b) we
reduce its order:

̇u ¼ α4
b
uþ

�
α1bþ α3

b

�
þ
�
α2b3 þ α6bþ α5

1

b

�
1

u
;

ð77Þ

which is an equation of the form y0 ¼ f1ðxÞyþ f0ðxÞ þ
f−1ðxÞy−1. Generally, it cannot be solved by quadrature.
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The special cases f0 ≡ 0 and f−1 ≡ 0 reduce this equation
to the Bernoulli equation and the linear equation,
respectively.
In our case, the condition f0 ≡ 0 corresponds to α1 ¼ 0,

α3 ¼ 0, and we get the system:

α1 ∼ −
1

2
þ ω1 − 2ω2

1 −
3

2
ω0 ¼ 0;

α3 ∼ 1þ 3ω1 þ 2ω2
1 ¼ 0: ð78Þ

These equations are compatible only if ω0 ¼ −1, ω1 ¼ − 1
2
.

On the other hand, the condition f−1 ¼ 0 is equivalent to
the system:

α2 ∼
1

2
þ ω2

1 þ
3

2
ω0 ¼ 0;

α5 ∼ 1þ ω1 ¼ 0;

α6 ∼
4

3
Λ5ω1ð1þ ω1Þ þ Λ5ð1þ ω0Þ ¼ 0 ð79Þ

with the only solution ω0 ¼ ω1 ¼ −1, which is prohibited
by our requirement ω1 ≠ −1. Therefore, we can solve
(69)–(72) by quadrature in the case of anisotropic fluid
ω0 ¼ −1, ω1 ¼ −1/2 (vacuum in 4D and tension along the
extra coordinate). However, the obtained expression for
uðbÞ does not allow to solve b0ðξÞ ¼ uðbðξÞÞ analytically.5
Therefore, Eq. (76) [or, equivalently, (77)] should be
considered as a master equation for numerical studies of
the considered brane world models for arbitrary bulk
perfect fluid EoS parameters except ω1 ≠ −1, 0.
Nevertheless, there are also analytical solutions for par-
ticular values of the EoS parameters which are of physical
interest. Below, we consider two such solutions.

B. ω1 = 0, ω0 ≠ − 1
3

Now, we consider the special case ω1 ¼ 0. Eq. (74)
(which is valid for such value of ω1) results in the following
relation:

b2 ¼ −
4

3

Λ5

ð1þ 3ω0Þ
¼ const; ð80Þ

which is physically meaningful for Λ5 ≠ 0 and ω0 ≠ −1/3.
Then, the system of Eqs. (69)–(73) results in the following

fine-tuning condition for the energy density of the perfect
fluid:

ε ¼ Λ5

1 − 3ω0

1þ 3ω0

; ω0 ≠ −
1

3
; ð81Þ

and solutions for the metric coefficients:

BðξÞ ¼ B0 exp

 
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
4

3

Λ5

ð1þ 3ω0Þ

s
ξ

!
;

AðξÞ ¼ A0½BðξÞ�3ω0 : ð82Þ

These functions are real-valued only if Λ5ð1þ 3ω0Þ < 0.
Therefore, if Λ5 < 0, the energy density ε can be both
negative ε < 0 (it happens for −1/3 < ω0 < 1/3) and
positive ε > 0 (for ω0 > 1/3). However, if Λ5 > 0, the
energy density can be only negative ε < 0 (for ω0 < −1/3).
It is worth noting that the case ω0 ¼ 1/3 coincides formally
with the RSII solution.
To restore the Minkowski metric on the section ξ ¼ 0,

we normalize solutions (82) as follows: Að0Þ ¼ 1 and
Bð0Þ ¼ −1 which immediately yields: B0 ¼ −1 and A0 ¼
ð−1Þ−3ω0 . Let us choose solutions decaying at ξ → þ∞.
This corresponds to the minus in the exponent (82). Then,
AðξÞ reads

AðξÞ ¼ exp

 
−3ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
4

3

Λ5

ð1þ 3ω0Þ

s
ξ

!
: ð83Þ

Obviously, the decaying solution will take place only for
ω0 > 0. In this case the bulk cosmological constant can be
only negative Λ5 < 0. Since the scalar curvature of this
model is R ¼ 2Λ5ð2þ 3ω0 þ 3ω2

0Þ/ð1þ 3ω0Þ, only the
spaces with R < 0 are described by the considered model.
Now we follow the standard procedure to construct a

one-brane model. The bulk is taken to be infinite and
parameterized by ξ ∈ R. For the sake of mathematical
generality, we again break the mirror symmetry ξ ↦ −ξ via
introduction of two bulk regions, ξ > 0 and ξ < 0, each
being characterized by its own set of free parameters Λ, ω0:

ωR ≡ ω0;R; ΛR ≡ Λ5;R; m≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2

3
ΛR

r
> 0;

ξ > 0; ð84Þ

ωL ≡ ω0;L; ΛL ≡ Λ5;L; μ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
2

3
ΛL

r
> 0;

ξ < 0: ð85Þ

In general, we suppose that ωL ≠ ωR, μ ≠ m. The Z2-
symmetry of the bulk is restored only if these inequalities
become equalities.

5Quite similar situation takes place in the case ω1 ¼ −1. As it
can be easily seen from Eqs. (70), (71) and (73), here Eq. (75)
should be replaced with the following one: b00 ¼ −b½ð1þ ω0Þ
ð2Λ5 þ 3b2Þ þ ð7þ 3ω0Þb0�/2. This equation is solvable, e.g., in
the cases ω0 ¼ −1 and ω0 ¼ −7/3. The first case is trivially
reduced to the RSII case with renormalized bulk cosmological
constant. In the second case, we can introduce a new variable
uðbÞ≡ b0 and solve the first order differential equation with
respect to uðbÞ. However, we cannot invert the equation b0ðξÞ ¼
uðbðξÞÞ and solve it analytically with respect to BðξÞ.
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The metric coefficients of two regions are continuously
glued together along the Minkowski brane located at ξ ¼ 0.
The matter content on the brane can be determined from
the Israel junction conditions similar to Eqs. (39)–(42).
Therefore, for the energy density and pressure/tension on
the brane we get:

ϵ ¼ −
3ffiffiffi
2

p
κ

�
mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3ωR
p þ μffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 3ωL
p

�
; ð86Þ

π ¼ 1ffiffiffi
2

p
κ

�
2þ 3ωRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ωR

p mþ 2þ 3ωLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ωL

p μ

�
: ð87Þ

Since ωL;R > 0, both the energy density ϵ and the equation
of state parameter Ω ¼ π/ϵ are negative. These equations
show that the matter on the brane is fine-tuned not only to
the “cosmological constants” μ, m but also to the param-
eters of EoS of bulk matter ωL;R. In the case of restored Z2-
symmetry (μ ¼ m and ωL ¼ ωR ¼ ω0) the expressions are
simplified as follows:

ϵ ¼ −
3
ffiffiffi
2

p
m

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ω0

p ; π ¼
ffiffiffi
2

p
m

2þ 3ω0

κ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3ω0

p ; ð88Þ

Ω ¼ −
2

3
− ω0: ð89Þ

It can be easily seen that the NEC condition ϵþ π ≥ 0 is
satisfied for ω0 ≥ 1/3. As we already mentioned above, the
case ω0 ¼ 1/3 formally coincides with the RSII solution.
The characteristic behaviour of the metric coefficients

AðξÞ and BðξÞ in the case of restored Z2-symmetry is
depicted in Fig. 4.

C. Thick brane: a= b, ω1 ≠ 0, − 1, ω0 = − 1
Now, let us restore the 4D Poincaré invariance: a ¼ b.

We also exclude the value ω1 ¼ 0 since, as it easily follows
from Eqs. (69) and (71), this case is trivially reduced to the

RSII solution. Then, Eqs. (71) and (73) result in the
equation

2Λ5ð1þ ω1Þ þ 3ð1þ ω1Þb2 þ 3ω1b0 ¼ 0; ð90Þ

with the solution

bðξÞ¼
ffiffiffiffiffiffiffiffiffi
2

3
Λ5

r
tan

�
1

3ω1

�
−

ffiffiffiffiffiffiffiffi
6Λ5

p
ð1þω1Þξþ3

ffiffiffiffiffiffiffiffi
6Λ5

p
C0

��
ð91Þ

where C0 is the constant of integration. Here again the case
ω1 ¼ −1 is reduced to the [4] solution with the renormal-
ized bulk cosmological constant. Therefore, we exclude
this case. From this equation we obtain the form of the
metric coefficient as

BðξÞ ¼ −
	
cosh

�
m
1þ ω1

ω1

ξ

�
 ω1
1þω1 ; ð92Þ

where we, first, took into account the negativeness of the
bulk cosmological constant: ð2/3ÞΛ5 ≡ −m2 < 0, second,
restored the Z2-symmetry with respect to the section ξ ¼ 0
setting C0 ¼ 0 and, third, normalized BðξÞ in such a way
that Bð0Þ ¼ −1. Obviously, the normalization condition for
AðξÞ should be as follows: AðξÞ ¼ −BðξÞ. It is worth noting
that, up to trivial numerical prefactor, the metric coefficient
has the following asymptotic behavior:

BðξÞ → − exp

�
sign

�
ω1

1þ ω1

�
mjξj

�
; jξj → þ∞:

ð93Þ
Therefore, our spacetime is asymptotically anti-de Sitter
with the cosmological constant Λ5 < 0. The asymptotically
decreasing (in absolute value of ξ) solution corresponds
to −1 < ω1 < 0.
Let us check other equations from the system (69)–(73).

Taking into account a ¼ b and (73) [or, equivalently, (69)],
we reduce (70) to

ð1þ ω0Þð2Λ5 þ 3b2 þ 3b0Þ ¼ 0: ð94Þ

If we assume ω0 ≠ −1, then its solution is

bðξÞ ¼
ffiffiffiffiffiffiffiffiffi
2

3
Λ5

r
tan

� ffiffiffiffiffiffiffiffi
6Λ5

p
3

ðC2 − ξÞ
�
: ð95Þ

This solution cannot be set equal to (91) by adjusting the
integration constant. Hence, the only way to make the
system of field equations consistent is to put ω0 ¼ −1.
Then, we can check that Eq. (72) is automatically satisfied
in this case [if bðξÞ satisfies (90)].
Finally, from (73) we find that the perfect fluid energy

density εðξÞ has the form

FIG. 4. The plot of the metric coefficients AðξÞ (orange/top
line) and BðξÞ (blue/bottom line) in the case ω1 ¼ 0 and
ω0 ¼ 4/3. Here, ðκ/mÞϵ ¼ −3

ffiffiffiffiffiffiffi
2/5

p
and Ω ¼ −2. 4D Poincaré

invariance is broken.
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εðξÞ ¼ Λ5

ω1

�
sech

�
m
1þ ω1

ω1

ξ

��
2

: ð96Þ

Obviously, in order to restore the dimensionality, we must
replace Λ5 by κΛ5. Therefore, this energy density is
localized near ξ ¼ 0 and positive for negative values of
Λ5 and ω1. Hence, we have constructed the thick brane
model in the case of the bulk perfect fluid. It is quite
reasonable that far from the brane (i.e. jξj → þ∞) we
restore the anti-de Sitter spacetime. An example of such
thick brane is plotted in Fig. 5 for the parameter
ω1 ¼ −0.75. Here, the blue/bottom and green/top lines
depict the metric coefficient BðξÞ and the perfect fluid
energy density εðξÞ, respectively.

V. CONCLUSION

In our paper we considered the static 5D metric with the
broken global 4D Poincaré invariance. Bulk was filled with
the negative cosmological constant and perfect fluid with
anisotropic EoS.
The results of our investigations are twofold. First, we

demonstrated that the behavior of models with broken and
restored Poincaré invariance is significantly different from
each other. Second, our setting of the problem enabled us to
obtain new classes of solutions. For example, we have
shown that in the case of the empty bulk (the perfect fluid is
absent) the solution always has the singularity (naked or
coordinate) in contrast to the usual Poincaré invariant
models (e.g., [3,4]). Such type of naked singularities is
known for the models with a bulk scalar field and restored
Poincaré invariance [5,6,11–13]. In these papers, the
singularities are treated as big bang or big crunch and

they are taken to effectively cut off space. However, we
preferred to construct completely regular solutions.
Therefore, we introduced the second brane which cuts
off all singular points where the metric coefficients either
are infinite or equal to zero. We found the range of
parameters which ensure such regular solutions defined
on the compact space.
Then, we turned our attention to the model with the

perfect fluid in bulk and obtained the master equation for
the metric coefficients in the case of arbitrary EoS (except
for a couple of special cases). In general case of EoS, this
equation does not allow to obtain analytic expressions for
the metric coefficients. This equation is useful for numeri-
cal studies of the considered brane world models. We
presented two physically interesting particular analytic
solutions for the metric coefficients. The first one general-
izes the Randall-Sundrum solution with one brane (RSII) to
the case of broken Poincaré invariance and bulk perfect
fluid. Here, the perfect fluid has the dustlike EoS parameter
ω1 ¼ 0 in the direction of the fifth coordinate and arbitrary
EoS parameter ω0 (except −1/3) in three transverse
directions. The second analytic solution describes the thick
brane with the restored Poincaré invariance. For this model,
the perfect fluid has the vacuum-like EoS ω0 ¼ −1 in the
transverse directions and ω1 ≠ 0, −1 in the fifth direction.
This solution is of interest since far from the thick brane it
goes asymptotically to the anti-de Sitter one.
To conclude our paper, we would like to mention the

following. It is clear that the conclusion whether the
obtained solutions can be a realistic model of our
Universe or not depends on the localizability of the zero
mode on the brane which recovers the 4D gravity. Clearly,
to perform such analysis, we should investigate the linear-
ized perturbations (including Kaluza-Klein modes) of
the considered model. This will be the content of the next
paper.
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FIG. 5. The plot of the metric coefficient BðξÞ ¼ −AðξÞ (blue/
bottom line) and the dimensionless perfect fluid energy density
ðκ/m2ÞεðξÞ (green/top line) in the case of the thick brane.
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