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We present the first complete (i.e., ambiguity-free) derivation of the equations of motion of two
nonspinning compact objects up to the 4PN (post-Newtonian) order, based on the Fokker action of point
particles in harmonic coordinates. The last ambiguity parameter is determined from first principle, by
resorting to a matching between the near-zone and far-zone fields, and a consistent computation of the 4PN
tail effect in d dimensions. Dimensional regularization is used throughout for treating IR divergences
appearing at 4PN order, as well as UV divergences due to the modeling of the compact objects as point
particles.
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I. INTRODUCTION

The recent detection of gravitational waves (GW)
generated by inspiralling and merging black-hole or neu-
tron-star binaries [1,2] highlights the importance of the
problems of motion and radiation for systems of compact
objects in general relativity. Analytical relativity, based on
the post-Newtonian (PN) approximation, i.e., a formal
expansion when the speed of light c → ∞, plays a key
role in the development of high-accuracy GW templates to
be used in the signal analysis of detectors. The templates
are cross-correlated with the detector’s output, and the
correlation builds up when a good match occurs between a
particular template and the real signal [3,4]. This technique
is highly sensitive to the phase evolution of the signal,
which, in PN templates of compact binary coalescence, is
computed from the energy balance between the decay of
the binary’s energy and the GW flux. For isolated binary
systems, the orbit will have circularized by radiation
reaction at the time when the signal enters the detectors’
bandwidth, so we expect that for the current generation of
detectors, there is no need to invoke the balance of orbital
angular momentum.
For low mass compact binaries, such as double neutron-

star systems [2], the detectors are mostly sensitive to the
inspiral phase prior to the final coalescence; in that case the
currently known analytical PN templates are accurate

enough for detection (at least for moderate spins). For higher
masses, like in black-hole binary systems, one must some-
how connect the PN templates to the numerical relativity
(NR) results describing the final merger and ringdown
phases. The hybrid inspiral-merger-ringdown (IMR) wave-
forms [5] are constructed by matching the PN and NR
waveforms in an overlapping time interval; the effective-
one-body (EOB) waveforms [6] are based on resummation
techniques extending the domain of validity of the PN
approximation. The IMR and EOB waveforms constitute
key techniques in the data analysis (both on-line and off-line)
of the recent black-hole events [1].
The two basic ingredients in the theoretical PN analysis

correspond to the two sides of the energy balance equation
obeyed by the binary’s orbital frequency and phase. The
GW flux on the right-hand side is obtained by solving the
wave generation problem; the state of the art is the 3.5PN
approximation beyond the quadrupole formula (i.e., formal
order ∼c−7; see [7] for a review), the 4.5PN coefficient
being also known [8]. The energy function on the left-hand
side follows from the conservative dynamics or equations
of motion; after one century of works on the problem of
motion (see for instance [9–18] and references therein) and
the completion of the 3PN dynamics [19–25], the state of the
art is the 4PN approximation beyond the Newtonian force.
Calculations at the 4PN order have been undertaken by

means of three methods: (i) the Arnowitt-Deser-Misner
(ADM) Hamiltonian formalism [26–29], which led to
complete results but for the appearance of one “ambiguity”
parameter; (ii) the Fokker Lagrangian in harmonic coor-
dinates [30–33], which is complete at the exception, until
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recently, of one equivalent ambiguity parameter1; (iii) the
effective field theory (EFT) [34–37], which yielded partial
results up to now (the terms ∝ G4 still being uncomputed)
and is expected to be free of ambiguities [38].
The ambiguity parameters in the ADM formalism and in

the Fokker action have been computed by resorting to
perturbative gravitational self-force (GSF) determinations
of the so-called redshift variable [39,40]. An analytic GSF
calculation provided the 4PN coefficient in the redshift [41];
then, the first law of compact binary mechanics [42–44]
enabled one to deduce the corresponding 4PN coefficients
in the conserved energy and periastron advance for circular
orbits, in the small mass-ratio limit, which was sufficient to
fix the ambiguities. The final result for the 4PN Fokker
Lagrangian is given in Sec. V of [30] with some G4 terms
corrected in Appendix A of [31].2 It is fully equivalent to the
final result of the ADM Hamiltonian given in Appendix A
of [28].
In this article—a companion paper of Ref. [32]—we detail

the resolution of the important issue of the remaining (“last”)
ambiguity parameter in the 4PN Lagrangian [30–32]. The
ambiguity is due to the presence of IR divergences in the
Fokker action, which are in turn associated with GW tails
propagating at infinity. The tails are secondary nonlinear
waves caused by the backscattering of linear waves onto the
space-time curvature generated by the total mass of the
source. As we shall see, the solution of the problem of
ambiguities lies in performing the proper matching between
the near-zone field described by the PN approximation and
the far-zone radiation field. As a result of the matching, a
contribution due to tails arises precisely at the 4PN order
[45,46] in the particle’s action and the conservative dynam-
ics. Due to this tail effect, the dynamics is nonlocal in time;
this entails subtleties in the derivation of the invariants of
motion and periastron advance, which have been dealt with
in Refs. [28,29,31,44].
Another crucial ingredient in our approach, as well as in

the EFT, is dimensional regularization, as it cures both IR
divergences and concomitant UV divergences due to the
point-particles model adopted to describe the compact
objects. Dimensional regularization was introduced as a
mean to preserve the gauge invariance of quantum gauge
field theories [47–49]. Here, we use it in the problem of
classical interaction of point masses, as a way to preserve
the diffeomorphism invariance of general relativity [23,25].

We argue that dimensional regularization is the only known
method to successfully solve the problem at the 4PN order.

II. OVERVIEW OF THE CALCULATION

We start from the complete gravitation-plus-matter action
S ¼ Sg þ Sm, where the gravitational (Einstein-Hilbert) part
Sg is written in the Landau-Lifshitz form with the usual
harmonic gauge-fixing term, and where Sm is the matter part
appropriate for two point particles without spin or internal
structure [see Eqs. (2.1)–(2.2) in Ref. [30]]. The gauge-fixed
Einstein field equations (GFEE) deriving from S read

□hμν ¼ 16πG
c4

τμν; ð2:1Þ

where □ is the flat d’Alembertian operator and where

τμν ¼ jgjTμν þ c4

16πG
Λμν: ð2:2Þ

The field variable hμν ¼ jgj1=2gμν − ημν is the gothic metric
deviation from the (inverse) Minkowski metric ημν, with gμν

standing for the inverse metric and g for the metric deter-
minant, while Tμν is the stress-energy tensor of the particles
and Λμν the nonlinear gravitational source term, at least
quadratic in hμν or its space-time derivatives. The constantG
is related to theusualNewton constantGN in 3 dimensions by
G ¼ GNld−3

0 where d is the space dimension and l0 an
arbitrary scale.
We shall denote by h̄μν the PN field constructed by

standard PN iteration of the GFEE (2.1); such PN solution
is a functional of the particle’s worldlines yA (withA ¼ 1, 2).
The Fokker action for the binary is obtained by replacing the
PN solution h̄μν½yA� back into the original action S, thus
defining SF½yA� ¼ SðyA; h̄½yA�Þ. This action describes the
purely gravitational dynamics of the compact binary system;
it is equivalent, in the “tree-level” approximation, to the
effective action used by the EFT approach [50,51].
The PN-expanded field h̄μν is physically valid in the

near zone of the matter system, which is of small extent
with respect to the radiation wavelength. On the other hand,
the multipole expansion, denoted MðhμνÞ, holds all over
the exterior of the system including the far (or wave) zone.
As the multipole expansion is a solution of the GFEE (2.1),
it is also a functional of the particle’s worldlines. Our
approach is based on the matching between the two expan-
sions in the overlapping region where both approximations
are valid, namely the exterior part of the near zone, which
always exists for PN sources, i.e., slowlymoving andweakly
stressed sources.
The matching is achieved using a variant of the general

method of matched asymptotic expansions [52–54]. More
precisely, we impose the matching equation which states
that the PN (or near-zone) expansion of the multipolar field
should be identical to the multipole (or far-zone) expansion
of the PN field:

1Two ambiguity parameters were introduced in Ref. [31]. In a
first version of Ref. [32], one combination of these ambiguity
parameters could be determined, but an incomplete implementa-
tion of the εη regularization (see below) did not permit to
conclude on the “last” ambiguity parameter. We have updated
the work [32] to take into account the new results presented in the
present article.

2See also Ref. [33] for the Lagrangian and equations of motion
in the frame of the center of mass and for a recapitulation of our
result.
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MðhμνÞ ¼ Mðh̄μνÞ: ð2:3Þ

The general solution of the GFEE satisfying the above
relation is known: The multipolar field in the exterior
region is determined as a functional of the source param-
eters through the explicit expressions of the multipole
moments [25,55]; the PN-expanded field in the near zone
reads (generalizing results from [56,57] to d dimensions)

h̄μν ¼ 16πG
c4

□−1
ret ½rητ̄μν� þHμν: ð2:4Þ

The second term, Hμν, is a homogeneous solution of the
wave equation and will be discussed later. The first term is a
particular retarded solution of the GFEE (2.1) when PN
expanded in the near zone. It is defined from the retarded
Green’s function of the wave operator in dþ 1 space-time
dimensions as [32]

□
−1
ret ½rητ̄μν� ¼ −

~k
4π

Z
ddx0jx0jη

×
Z þ∞

1

dz γ1−d
2
ðzÞ τ̄

μνðx0; t − zjx − x0j=cÞ
jx − x0jd−2 ;

ð2:5Þ

where the overbar refers to the PN expansion (see, notably,

Appendix A in [32]), ~k ¼ Γðd
2
−1Þ

π
d
2
−1

(Γ being the Eulerian

function) and

γ1−d
2
ðzÞ ¼ 2

ffiffiffi
π

p
Γð3−d

2
ÞΓðd

2
− 1Þ ðz

2 − 1Þ1−d2 ; ð2:6Þ

with the normalization condition
Rþ∞
1 dz γ1−d

2
ðzÞ ¼ 1.

We have introduced in (2.5) a factor rη multiplying the PN
source term. Such a factor is similar to the regulator rB

entering the general solution of the matching equation in 3
dimensions [55–57]. However, an important difference is
that, here, we do not need to take a “finite part” after
integration (as we do in 3 dimensions). Indeed, the regulator
rη is inserted into the solution in d ¼ 3þ ε dimensions
so that it acts “on the top” of dimensional regularization.
Our prescription is thus simply thatwemust consider first the
limit η → 0 for any generic dimension d (i.e., avoiding
integral values of d) and check that, although divergences
∝ 1=η can occur in individual terms, this limit is finite for
the sum of terms we consider. Only afterwards do we apply
the limit ε → 0 and look for the presence of poles 1=ε.
This regularization will be called the “εη” regularization.
The contribution of the particular solution [i.e., the first

term in (2.4)] to the Fokker Lagrangian has been computed
in Ref. [30]. The PN order to which one must truncate the
metric to be inserted so as to control the Lagrangian up to a
given nPN order is determined by the method “nþ 2”

(see Sec. IVA in [30]): Focusing on the conservative
dynamics, i.e., neglecting dissipative odd PN contributions,
the various metric components, in the guise h̄ ¼ ðh̄00ii;
h̄0i; h̄ijÞ with the notation

h̄00ii ¼ 2

d − 1
½ðd − 2Þh̄00 þ h̄ii�; ð2:7Þ

are to be inserted into the action up to the orders
ðc−n−2; c−n−1; c−n−2Þ inclusively when n is even, and up
to the orders ðc−n−1; c−n−2; c−n−1Þ inclusively when n is
odd. At the 4PN order, this means that the metric
components are required up to the orders ðc−6; c−5; c−6Þ.
We parametrize the metric with the help of certain
potentials defined in d dimensions; the most important
are V, Vi and Ŵij, which enter at lowest order:

h̄00ii ¼ −
4

c2
V þOðc−4Þ; ð2:8aÞ

h̄0i ¼ −
4

c3
Vi þOðc−5Þ; ð2:8bÞ

h̄ij ¼ −
4

c4

�
Ŵij −

1

2
δijŴkk

�
þOðc−6Þ: ð2:8cÞ

[See Eq. (4.14) in [30] for the complete parametrization to
the desired accuracy ðc−6; c−5; c−6Þ.] The PN potentials
obey a sequence of iterated flat space-time wave equations
in d dimensions. Defining the particles’ mass, current and
stress densities as σ¼ 2

d−1 ½ðd−2ÞT00þTii�=c2, σi ¼ T0i=c,
and σij ¼ Tij, we have

□V ¼ −4πGσ; □Vi ¼ −4πGσi; ð2:9Þ

together with the more complicated nonlinear potential

□Ŵij ¼ −4πG
�
σij − δij

σkk
d − 2

�
−

d − 1

2ðd − 2Þ ∂iV∂jV:

ð2:10Þ

In the conservative dynamics, these potentials are gen-
erated by the standard symmetric propagator; this corre-
sponds to the first term in Eq. (2.4), with the retarded
inverse d’Alembertian operator □−1

ret replaced by the sym-
metric one. The resulting conservative dynamics is char-
acterized by an equal amount of incoming and outgoing
radiation. In the language of EFT, where the perturbative
expansion is achieved with Feynman diagrams, the
conservative sector is defined by diagrams that have no
external graviton lines—the so-called “radiative” gravitons
[51]. At the 4PN order, in the conservative sector, a process
appears in which the graviton is emitted and then reab-
sorbed by the particles, and interacts with the total
particles’ mass through a “potential” graviton. This is
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the tail effect, which has been computed in the context of
EFT in Refs. [35,36].

III. THE LAST AMBIGUITY PARAMETER

In our formalism, the computation of the last ambiguity
parameter is achieved by means of a consistent derivation
of the tail effect at the 4PN order in d dimensions, following
the rules of the εη regularization. This effect is described
by the second term in Eq. (2.4), which—as a consequence
of the matching equation (2.3)—is a specific homogeneous
solution of the wave equation, regular when r → 0. Hence
it is of the form

Hμνðx; tÞ ¼
Xþ∞

l¼0

Xþ∞

j¼0

1

c2j
Δ−jx̂Lf

ð2jÞμν
L ðtÞ; ð3:1Þ

where the superscript ð2jÞ refers to time derivatives, L ¼
i1 � � � il is a multi-index made of l spatial indices, x̂L is the
symmetric trace-free (STF) product of l spatial vectors xi,
and the l summations on the dummy spatial indices L are
omitted. The jth iterated inverse Poisson operator Δ−j acts
on x̂L as

Δ−jx̂L ¼ Γðlþ d
2
Þ

Γðlþ jþ d
2
Þ
r2jx̂L
22jj!

: ð3:2Þ

Most importantly, the function fμνL ðtÞ depends on the
multipole expansion MðΛμνÞ of the gravitational source
term in the GFEE (2.1). This reflects the fact that the
PN-expanded solution in the near zone is sensitive, via
the matching equation (2.3), to the boundary conditions
obeyed by the radiation field, in particular the no-incoming
radiation condition at past null infinity. We have shown
that [32]

fμνL ðtÞ ¼ ð−Þlþ1 ~k
4πl!

Z þ∞

1

dz γ1−d
2
ðzÞ

×
Z

ddx0jx0jη∂̂ 0
L

�
MðΛμνÞðy; t − zr0=cÞ

r0d−2

�
y¼x0

;

ð3:3Þ

where ∂̂ 0
L denotes the STF projection of a product of l

partial derivatives ∂=∂x0i, being understood that the vector
yi is to be treated as a constant when differentiating and
replaced by x0i only afterwards. Observe that Eq. (3.3) is
also defined with the εη regularization.
In practice, the multipolar field MðhμνÞ is computed by

means of the so-called multipolar-post-Minkowskian
(MPM) algorithm [55,58],

MðhμνÞ ¼ hμνMPM: ð3:4Þ

The MPM field represents the most general solution of the
vacuum GFEE outside the matter source. It consists of a
formal post-Minkowskian (or post-linear) expansion

hμνMPM ¼
Xþ∞

n¼1

Gnhμνn ; ð3:5Þ

with each post-Minkowskian coefficient hμνn given in the
form of a multipole expansion. The MPM algorithm starts
from the most general multipolar solution of the linearized
GFEE [59],

h001 ¼ −
4G
c2

Xþ∞

l¼0

ð−Þl
l!

∂L
~IL; ð3:6aÞ

h0i1 ¼ 4G
c3

Xþ∞

l¼1

ð−Þl
l!

∂L−1~I
ð1Þ
iL−1; ð3:6bÞ

hij1 ¼ −
4G
c4

Xþ∞

l¼2

ð−Þl
l!

∂L−2~I
ð2Þ
ijL−2; ð3:6cÞ

where the mass-type multipole moments are denoted ILðtÞ
with, in particular, for the monopole case l ¼ 0, I ¼ M
representing the constant ADM mass; moreover, the tilde
over the moments means

~ILðt; rÞ ¼
~k

rd−2

Z þ∞

1

dz γ1−d
2
ðzÞILðt − zr=cÞ; ð3:7Þ

which, in the monopole case, reduces to ~MðrÞ ¼ ~kMr2−d.
For our purpose, we ignore the corresponding current-type
multipole moments, which could be defined in d dimen-
sions by means of “mixed Young tableaux” (see [60] for a
discussion).
In order to determine the dominant tail effect at the 4PN

order, we shall consider the quadratic interaction between
the ADM mass M and the varying mass quadrupole
moment IijðtÞ. Thus, we shall focus on the source term
of the vacuum GFEE corresponding to that interaction:
M × Iij. Now, the full source term reads in general

Nμν
MPM ¼ MðΛμνÞ ¼

Xþ∞

n¼2

GnNμν
n ; ð3:8Þ

with MðΛμνÞ ¼ 16πG
c4 MðτμνÞ, since the multipole expan-

sion is a formal vacuum solution of the GFEE. Each MPM
coefficient in (3.8) admits the decomposition

Nμν
n ðx; tÞ ¼

Xþ∞

l¼0

n̂LN
μν
nLðr; tÞ; ð3:9Þ

where n̂L is the STF product of l unit vectors ni ¼ xi=r.
Plugging (3.9) into (3.3), we obtain a related post-
Minkowskian expansion fμνL ¼ P

nG
nfμνnL with [32]
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fμνnL ¼ −
1

dþ 2l − 2

Z þ∞

1

dz γ1−d
2
−lðzÞ

×
Z þ∞

0

dr0 r0−lþ1þηNμν
nLðr0; t − zr0=cÞ: ð3:10Þ

To order n ¼ 2, for the interactionM × Iij, the source term
is a sum of the type

Nμν
2;L ¼

X
r−k−2ε

Z þ∞

1

dy ypγ−1−ε
2
ðyÞFμν

L ðt − yr=cÞ;

ð3:11Þ

where the sum ranges over integers k, p, and the function
Fμν
L is made of the product ofM and components of Iij; we

have posed ε ¼ d − 3. In that case, the expression (3.10)
becomes

fμν2;L ¼
X ð−ÞlþkCp;k

l

2lþ 1þ ε

Γð2ε − ηÞ
Γðlþ k − 1þ 2ε − ηÞ

×
Z þ∞

0

dτ τ−2εþηFðlþk−1Þμν
L ðt − τÞ: ð3:12Þ

Interestingly, we could factorize out two of the three
independent integrations in (3.10)–(3.11) into a single
(though nontrivial looking) dimensionless coefficient

Cp;k
l ¼

Z þ∞

1

dy ypγ−1−ε
2
ðyÞ

×
Z þ∞

1

dz ðyþ zÞlþk−2þ2ε−ηγ−l−1−ε
2
ðzÞ: ð3:13Þ

The computation of this coefficient in analytic closed form
is described in the Appendix D of [32].
We have applied the formulas (3.12)–(3.13) to obtain the

dominant tail effect in the metric at the 4PN order, which is
given, according to the matching procedure, by the homo-
geneous (regular at r ¼ 0) solution (3.1). The result can be
expressed in terms of a logarithmic kernel involving the
combination

LðτÞ≡ ln

�
c

ffiffiffī
q

p
τ

2l0

�
−

1

2ε
; ð3:14Þ

where q̄ ¼ 4πeγE , with γE being the Euler constant, and l0

the dimensional regularization scale. Note the appearance
of a pole∝ 1=ε, which originates from the lower integration
bound τ → 0 in (3.12) and is thus a UV pole. Applying the
latter precepts along with the εη regularization and expand-
ing the result at the 4PN order, we arrive at [with H00ii ¼
2

d−1 ½ðd − 2ÞH00 þHii�]:

H00ii ¼ 8G2
NM

15c10
xij

Z þ∞

0

dτ

�
LðτÞ þ 61

60

�
Ið7Þij ðt − τÞ

þOðc−12Þ; ð3:15aÞ

H0i ¼ −
8G2

NM
3c9

xj
Z þ∞

0

dτ

�
LðτÞ þ 107

120

�
Ið6Þij ðt − τÞ

þOðc−11Þ; ð3:15bÞ

Hij ¼ 8G2
NM
c8

Z þ∞

0

dτ

�
LðτÞ þ 4

5

�
Ið5Þij ðt − τÞ

þOðc−10Þ: ð3:15cÞ

We have made the important verification that the homo-
geneous solution (3.15) is divergenceless up to the required
order, i.e., ∂νH0ν ¼ Oðc−13Þ and ∂νHiν ¼ Oðc−12Þ. We
have also verified that the first term in (2.4) is separately
divergenceless (using the matching equation for the consid-
ered interaction M × Iij). Thus, the complete PN solution
satisfies the harmonic gauge condition up to that order:
∂νh̄μν ¼ 0.
Finally, we insert these results into the Fokker action in

order to compute the tail contribution therein. The quadratic
interactions yield compact-support expressions depending
on the values of the homogeneous solution (3.15) at the
locations of the particles. However, a cubic term with
noncompact support also needs to be consistently included
in the action at the 4PN order, so that [30]

StailF ¼
X
A

mAc2
Z

dt

�
−
1

8
H00ii

A þ 1

2c
H0i

A v
i
A−

1

4c2
Hij

Av
i
Av

j
A

�

−
1

32πG
d − 1

d − 2

Z
dt
Z

ddxHij∂iV∂jV: ð3:16Þ

This cubic term has a twofold origin: it comes from (i) a
direct cubic term ∼h∂h∂h in the action, and (ii) the
quadratic nonlinearity in the source of the potential Ŵij

[see Eq. (2.10)]. Inserting Eqs. (3.15) into (3.16), we
observe that the noncompact support piece elegantly
combines with the other terms to give a simple expression
quadratic in the time derivatives of the quadrupole moment
Iij. In the end, we get the tail contribution to the action:

StailF ¼ 2G2
NM

5c8

Z þ∞

−∞
dt Ið3Þij ðtÞ

×
Z þ∞

0

dτ

�
LðτÞ þ 41

60

�
Ið4Þij ðt − τÞ; ð3:17Þ

which can be rewritten in a manifestly time-symmetric way
(under time reversal) by means of a Hadamard partie finie
(Pf) integral as
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StailF ¼ G2
NM
5c8

Pfτ0

ZZ
dtdt0

jt − t0j I
ð3Þ
ij ðtÞIð3Þij ðt0Þ; ð3:18Þ

where τ0 denotes the usual cutoff scale, here given
by τ0 ¼ 2l0

c
ffiffī
q

p exp½ 1
2ε −

41
60
�.

Equations (3.17)–(3.18) describe the conservative part of
the tail effect at the 4PN order. It is shown in [32] that,
modulo an unphysical shift of the particle’s worldlines,
the UV pole present in (3.17)–(3.18) cancels out the
corresponding IR pole entering the gravitational part of
the Fokker action computed with the method nþ 2;
furthermore, the associated dimensional regularization
scale l0 cleanly disappears from the final Lagrangian.
The result (3.17)–(3.18) closes our ambiguity-free der-

ivation of the 4PN equations of motion. Indeed, we found
in [32] that the “last” ambiguity parameter, say κ, which is
equivalent to the ambiguity parameter of the Hamiltonian
formalism [28], is precisely given by the numerical con-
stant entering the tail term when evaluated in 3þ ε
dimensions, beyond the pole 1=ε. Now, the value we
obtain for this constant in (3.17), i.e., κ ¼ 41

60
, is in perfect

agreement with that determined in [31,32] so as to recover
GSF calculations of the conserved energy and periastron
advance for circular orbits in the small mass-ratio limit.
Let us point out (as remarked in [32]) that the latter value

of κ is exactly the one found in the computation of the tail

effect through EFT methods [see Eq. (3.3) in [36]]. This
confirms that the EFT Lagrangian, when it is completed by
all the instantaneous (nontail) terms up to the 4PN order,
will be ambiguity-free like ours, and in agreement with
GSF calculations.
We also want to stress the nice correspondence between

the EFT approach and our formalism. In the EFT, the tail
effect is computed as a Feynman diagram with one graviton
emitted and absorbed by the particles, and one “potential”
graviton responsible for the interaction with the total
mass M. In our work, the tail effect is the consequence of
the second term in Eq. (2.4), which represents a crucial
additional homogeneous solution imposed by the matching
between the near and far zones. In this respect, it seems that
the lack of a consistent matching between the near and far
zones in the ADM Hamiltonian formalism [26–29], i.e.,
an analogue of our Eqs. (2.3)–(2.4), forces this formalism
to be still plagued by one ambiguity parameter (denoted C
in [28]).
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