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We consider quasinormal modes of the massive Dirac field in the background of a Schwarzschild-
Tangherlini black hole. Different dimensions of the spacetime are considered, from d ¼ 4 to d ¼ 9. The
quasinormal modes are calculated using two independent methods: WKB and continued fraction. We
obtain the spectrum of quasinormal modes for different values of the overtone number and angular quantum
number. An analytical approximation of the spectrum valid in the case of large values of the angular
quantum number and mass is calculated. Although we do not find unstable modes in the spectrum, we show
that for large values of the mass, the quasinormal modes can become very slowly damped, giving rise to
quasistationary perturbations.

DOI: 10.1103/PhysRevD.97.044020

I. INTRODUCTION

The properties of higher dimensional black holes have
attracted much interest since several quantum gravity
theories, such as string theory, brane world models, and
the AdS/CFT correspondence, proposed the existence of
more than four spacetime dimensions [1,2]. Of special
interest in this context is the interaction of the black holes
with several types of matter fields, in particular with test
fields such as scalars and fermionic fields (Dirac spinors).
The interaction of such test fields in the background of a

black hole has been widely investigated in the literature.
In particular, the quasinormal mode decomposition of a
field perturbation. This analysis allows us to calculate the
resonant frequencies and damping times that govern the
emission of radiation in a curved spacetime. In particular
during the ringdown phase of a time-dependent field
perturbation. The quasinormal mode analysis allows to test
the mode stability of the solutions of the Einstein equations
under small perturbations. In addition the spectrum has
applications in the AdS/CFT correspondence, since the
modes are related with the poles of the correlation functions.
For a comprehensive review see for example [3–5].
Focusing on the fermionic fields, the analysis of the

Dirac equation benefits from the fact that it is known to be
separable into radial and angular parts in a number of
geometries describing rotating black holes. The separability
has been related to hidden symmetries of the metric
background [6,7], and introduces an angular operator with
its corresponding quantum number. This is well known for
the Kerr black hole [8,9], and it also holds in the presence

of charge [10] and cosmological constant [11]. In higher
dimensions, the separability has been studied for the 5D
Myers-Perry black hole [12] and in the more general case of
the higher dimensional Kerr-NUT-dS black hole [13].
Regarding hidden symmetries, the Killing-Yano tensors

for the most general charged rotating geometries was
constructed in [14]. The separation of the Maxwell equa-
tions in the Myers-Perry geometry using Killing-Yano
tensors was recently achieved in [15].
Naively one may be tempted to think that a Dirac spinor

couldbe excited to form a stable configuration around a black
hole. Such a configuration would mimic an atom, with the
event horizon surrounded by a stationary fermionic field
[16]. However it has been shown that, under some generic
assumptions, there do not exist stable solutions to the
Einstein-Dirac equations with fermionic hair, even when
supplementing the system with other fields as well [17–20].
The spinor field either falls into the black hole or vanishes at
infinity (being radiated away from the horizon). To further
cement this point, there are various proofs for the nonexist-
ence of purely real frequencies in the spectrum of quasi-
normal modes of the Dirac field. For the Schwarzschild
spacetime see [21,22] and for the five dimensional Myers-
Perry spacetime see [23].However there are knownexamples
of exotic stable configurations, which have been proposed as
dark matter contributors [24,25]. Let us note here that,
recently, Dirac stars (the fermionic equivalent of boson
and Proca stars, with no horizon) have been constructed,
using a pair of fermionic fields instead of a single field [26].
The nonexistence of stable solutions to the Einstein-

Dirac equations with fermionic hair and the lack of
superradiance for spinors [27–29] indicates that, in terms
of the quasinormal mode analysis, the perturbations in the
Dirac field will decay with time. The massless quasinormal
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mode spectrum of Dirac spinors in the geometry of the
Schwarzschild black hole was investigated in [30] using the
continued fraction and Hill-determinant methods. They
found that the fundamental quasinormal modes become
evenly spaced for large angular quantum number. The
quasinormal modes also become evenly spaced as the
overtone number is increased. It was also shown that
the angular quantum number affected the real part of the
frequencies but had almost no influence on the imaginary
part. The massive modes were investigated in [31] using a
WKB approach, although only small mass values of the
field were studied. It was observed that when the mass is
increased, the real part of the quasinormal frequencies
increases as well, but interestingly the absolute value of the
imaginary part decreases. This indicates that massive Dirac
fields decay slower in time than in the massless case.
The massless modes in the higher dimensional

Schwarzschild/Tangherlini spacetime were investigated in
[32] using aWKB approach. In this study it is shown that for
higher dimensions the damping time increases. Using the
Pöschl-Teller potential approximation the modes of the
massless field were also studied in the Reissner-Nordström
de-Sitter black hole [33] and in the Schwarzschild-de Sitter
black hole [34] (here also theWKBapproximation up to sixth
orderwas used). In both cases an increase in the cosmological
constant led to a decrease in the absolute value of the
imaginary part of the quasinormal frequencies, making the
modes more slowly damped. For Schwarzschild-de Sitter it
was mentioned that an increase in the cosmological constant
also led to a decrease of the real part of the frequencies. For the
Reissner-Nordström-de-Sitter black hole the absolute value
of the frequency decreased when increasing the angular
quantum number, but became larger when increasing the
charge of the black hole and the overtone number. An
analytical investigation in the asymptotic spectrum (meaning
high overtone number) of a Dirac field in the geometry of the
Schwarzschild-AdS spacetime with numerical checking of
the results was done in [35]. The quasinormal modes ofWeyl
spinors in the Bañados-Teitelboim-Zanelli black hole were
calculated in [36].
Investigation of the quasinormal modes for the massive

field in the geometry of theKerr black holewas carried out in
[37]. One of the interesting results is that in the rapidly
rotating case the decay rate of low frequency corotating
quasinormal modes are suppressed in the (bosonic) super-
radiant regime. The scattering of massive Dirac fields in
the Schwarzschild black hole was investigated in [38].
Analytical expressions for the phase shift in the scattering
of massive fermions can be found for the Schwarzschild
black hole in [39] and for theReissner-Nordströmblack hole
in [40]. Recently, analytical solutions were obtained in [41]
describing quasinormal modes in the near-horizon regime.
As we mentioned above, it has been generally noted that

increasing the mass of a field leads to longer lived modes.
In particular, for scalar fields this was noted in [42–44] and
for vector fields in [45]. In the case of vector fields, some

quasinormal modes show the curious behavior of decreas-
ing the frequency as the mass increases, eventually becom-
ing a pulse. For large enough values of the vector field mass
the modes can cease existing.
In this paper we will investigate the quasinormal modes

of the Dirac field in the geometry of the d-dimensional
Tangherlini spacetime. The focus will be on the behavior of
the field for large masses. We will see that indeed, the field
follows this general behavior, with longer lived modes for
larger values of the mass.
The structure of the paper will be as follows. In Sec. II,

first we will introduce the conventions we use in the paper,
and then we will derive the differential equations governing
the radial part of the field, with a study of the asymptotic
behavior of the perturbation. In order to generate the
quasinormal modes, we will use two independent methods:
the method of continued fractions (CF) with the Nollert
improvement [46,47] and the WKB method up to third
order [48], presenting in both cases all the necessary
equations in Sec. III. In Sec. IV we present the results,
where we start with the analysis for large angular quantum
number. Here we combine the numerical methods with
analytical results obtained in the limit of large angular
quantum number and large fermionic mass. We also present
results for l ¼ 0, studying the fundamental state and the
first excitation. In Sec. V we finish with some conclusions
and an outlook.

II. DIRAC EQUATION IN TANGHERLINI
SPACETIME

Let us begin with a short note on conventions. Our sign
convention for the metric of special relativity is
η¼� diag½1;−1;…;−1�. We will use the Einstein summation
convention, always summing over the whole possible range
for the indices when not otherwise stated. We will use greek
letters for coordinate components of tensors and latin letters
for components in the orthonormal frame, for example
g ¼ gμνdxμ ⊗ dxν ¼ ηabωa ⊗ ωb. To distinguish between
components in the coordinates and in the orthonormal
frame we will give components in the frame a hat, so vi is
the i-th component of v in the coordinates and vî is the i-th
component of v in the orthonormal frame.
The metric of the d-dimensional Schwarzschild-

Tangherlini spacetime is

ds2 ¼ fðrÞdt2 − 1

fðrÞ dr
2 − r2dΩ2

d−2; ð1Þ

with fðrÞ ¼ 1 − ðμ/rÞd−3, μ being related to the mass of the
black hole and dΩ2

d−2 being the line element of the d − 2

dimensional sphere. We use the vielbein

ω0̂ ¼
ffiffiffiffiffiffiffiffiffi
fðrÞ

p
dt; ω1̂ ¼ 1ffiffiffiffiffiffiffiffiffi

fðrÞp dr; ωciþ1 ¼ rωî
d−2;

ð2Þ
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with ωî
d−2 being a vielbein of the d − 2 dimensional sphere

and i ranging from 1 to d − 2. This allows us to write the
Dirac equation

DΨ ¼
�

iffiffiffi
f

p γ0̂∂t þ i
ffiffiffi
f

p
γ1̂
�
∂r þ

d
dr

ln rðd/2Þ−1fðrÞ1/4
�

þ i
r
γ0̂γ1̂Kd−2 −mE

�
Ψ ¼ 0; ð3Þ

with m being the mass of the Dirac field, Kd−2 being the
angular operator and E being the unit operator.
It is true that ½D;Kd−2� ¼ 0, so that one can split the

spinor as follows

Ψ ¼ r
rd/2fðrÞ1/4 e

−iωtϕðrÞ ⊗ Θκ; ð4Þ

with [49]

Kd−2Θκ ¼ κΘκ ¼ �
�
lþ d − 2

2

�
Θκ; ð5Þ

and l ∈ N0 being the angular quantum number. It is worth
mentioning that, for a given value of l, κ can be positive or
negative, and we will see that in the case of massive fields,
each sign results in a branch of modes that possess different
properties.
In addition, from Eq. (4) we can see that we are focusing

on a mode decomposition of the time dependent perturba-
tion by introducing the eigenfrequency ω. With this Ansatz
the resulting differential equation for the radial part ϕ is�

ωffiffiffi
f

p γ0̂ þ i
ffiffiffi
f

p
γ1̂

d
dr

þ iκ
r
γ0̂γ1̂ −mE

�
ϕ ¼ 0: ð6Þ

It is convenient to work with normalized quantities such
as

x ¼ r/μ; Ω ¼ μω; η ¼ μm; ð7Þ
which simplifies Eq. (6) to�

Ωffiffiffi
f

p γ0̂ þ i
ffiffiffi
f

p
γ1̂

d
dx

þ iκ
x
γ0̂γ1̂ − ηE

�
ϕ ¼ 0: ð8Þ

In addition, it can be convenient to change variables to the
tortoise coordinate z, defined by the relation

d
dz

¼ f
d
dx

; ð9Þ

which transforms Eq. (8) to�
Ωγ0̂ þ iγ1̂

d
dz

þ iκ
ffiffiffi
f

p
x

γ0̂γ1̂ − η
ffiffiffi
f

p
E

�
ϕ ¼ 0: ð10Þ

In order to study the quasinormal modes of this system,
we need to set a number of physically relevant boundary
conditions at the horizon and at spatial infinity. It is

convenient to express these conditions in terms of the
probability current j, which has to be conserved, d � j ¼ 0.
Let us choose as four dimensional volume V the spatial
hypersurface VðtÞ orthogonal to the Killing vector ∂t
outside the horizon H of the black hole, an ϵ-distance
away from the horizon, translated for a time Δt from an
initial time t0. Then we can express the conservation law as

0 ¼
Z
V
d � j ¼

Z
∂V

�j ¼
�Z

Vðt¼t0þΔtÞ
−
Z
Vðt¼t0Þ

�
� j

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
<0

þ
Z
S∞d−2×Δt

�j −
Z
Hϵ×Δt

�j; ð11Þ

where S∞d−2 is a d − 2-sphere at spatial infinity and Hϵ is a
d − 2-sphere at r ¼ μþ ϵ. We know that the first summand
is smaller than zero, because we will have a decaying field.
Thus the second and third terms together must be greater
than zero. To achieve this, one possibility is to require the
following conditions to the probability current:

Z
Hϵ×Δt

�j ¼
Z
Δt
dtjrjr¼μþϵ

Z
Hϵ

dΣr < 0;

Z
S∞d−2×Δt

�j ¼
Z
Δt
dtjrjr→∞

Z
S∞d−2

dΣr > 0: ð12Þ

The integration surfaces are intrinsic geometric objects
being generated by the orbits of Killing vectors. The
requirements to the current at the boundaries (12) imply
that the field flows into the black hole at the horizon
(r → μ ⇒ x → 1 ⇒ z → −∞), meaning that jr < 0 there
(we have taken the limit ϵ → 0 here). At spatial infinity
(r → ∞ ⇒ x → ∞ ⇒ z → ∞) the field should flow out-
ward, so jr > 0 there.
Let us now choose the following representation for the

Clifford algebra and the spinor

γ0̂ ¼
�
0 1

1 0

�
; γ1̂ ¼

�
0 1

−1 0

�
; ϕ ¼

�
ϕ1

ϕ2

�
;

ð13Þ

which is appropriate in order to simplify several expres-
sions, in particular later in Sec. III. For instance, with this
choice the radial probability current j1̂ ¼ jr̂ ∝ jr is just
proportional to jϕ2j2 − jϕ1j2. This allow us to rewrite the
requirements from Eq. (12) as a set of boundary conditions
for the radial part of the spinor, which constrains the
behavior of the leading terms at the boundaries.
At the horizon, from Eqs. (12) and (13) we obtain that

jϕ2j2 − jϕ1j2 < 0, which implies that the radial part of the
spinor has to behave like
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�
ϕ1

ϕ2

�
≈
�

1
2i

ffiffiffiffiffiffi
d−3

p
4iΩ−dþ3

e
d−3
2
z

�
e−iΩz

≈
�

1
2i

ffiffiffiffiffiffi
d−3

p
4iΩ−dþ3

ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p
�
ðx − 1Þ− iΩ

d−3: ð14Þ

Similarly, at infinity, Eqs. (12) and (13) implies that
jϕ2j2 − jϕ1j2 > 0, which results in the following behavior
of the radial part of the spinor

�
ϕ1

ϕ2

�
≈
�Ω� χ

η

�
z∓αze∓iχz

≈
�Ω� χ

η

�
x∓αxe∓iχx; ð15Þ

with χ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ω2 − η2

p
, the upper sign for ℜðΩÞ < 0, the

lower sign for ℜðΩÞ > 0 and the constants αz and αx are
defined such that

αz ¼
� i

2
η2

χ ; for d ¼ 4

0 ; otherwise
;

αx ¼
�
αz þ iχ ¼ i

2
2Ω2−η2

χ ; for d ¼ 4

0 ; otherwise
: ð16Þ

Note that d ¼ 4 presents a distinct behavior asymptoti-
cally. When the representation given in Eq. (13) is used
with the differential equation (10), it results in the following
second order differential equation for the functions ϕ1;2

ðiκ ∓ xηÞx2 d2

dz2
ϕ1;2 þ xF∓

d
dz

ϕ1;2 þ fðiκ ∓ xηÞx2Ω2

� iΩxF∓ − ðiκ ∓ ηxÞðκ2 þ η2x2Þfgϕ1;2 ¼ 0; ð17Þ

with

F∓ðzÞ ¼ iκf −
xðiκ ∓ ηxÞ

2f
df
dz

; ð18Þ

the upper sign for ϕ1 and the lower sign for ϕ2. Note that
since we are working with another representation, this
differential equation is different from the one obtained
in [31].

III. NUMERICAL METHODS

Because of the lack of analytical solutions to the Eq. (17)
subject to the boundary conditions (14) and (15), we need
to employ numerical methods in order to obtain the
spectrum of quasinormal modes of the massive Dirac field.
We will employ two independent techniques in our

calculations: the continued fraction method with the
Nollert improvement, and a third order WKB method.

A. Continued fraction method

From the asymptotic behavior of the spinor that we have
obtained in Eq. (15), we can factorize the behavior of the
Ansatz functions at infinity

�
ϕ1

ϕ2

�
¼ xαxðx − 1Þ− iΩ

d−3eiχx
�

ψ1ffiffiffiffiffiffiffiffiffiffiffi
x − 1

p
ψ2

�
; ð19Þ

with ψ1 and ψ2 unknown functions of x, and where we have
assumed the ℜðΩÞ > 0 behavior in the various exponents
[i.e. the lower sign in Eq. (15)]. In addition, it is convenient
to change variables to the compactified coordinate y ≔
1 − 1

x with y ∈ ½0; 1�. Then the second order differential
equation (17) gives as a result the following system of
equations for ψ1 and ψ2:

K∓ð1 − yÞ4f2 d2

dy2
ψ1;2

þ fGK∓ ∓ iκð1 − yÞ2fgð1 − yÞ2f d
dy

ψ1;2

þ
�
ðCf2 þ Ω2 ∓ iΩ

2
ð1 − yÞ2 df

dy
− fK−Kþ

þ 1

2
B

�
1 − yÞ2f df

dy

�
K∓

þ ðΩ ∓ iBfÞκð1 − yÞ2f
	
ψ1;2 ¼ 0; ð20Þ

with the upper sign for ψ1, the lower sign for ψ2 and for
simplicity we have defined the following functions

K� ¼ η� iκð1 − yÞ; A ¼ ðx − 1Þα̃xαxeiχx;

B ¼ d
dx

lnA ¼ −
iΩ

d − 3

1 − y
y

þ αxð1 − yÞ þ iχ;

C ¼ 1

A
d2

dx2
A

¼
��

α̃

y
þ αx

�
ð1 − yÞ þ iχ

�
2

−
�
α̃

y2
þ αx

�
ð1 − yÞ2;

G ¼ 2fðBþ y − 1Þ þ 1

2
ð1 − yÞ2 df

dy

α̃ ¼
�− iΩ

d−3 ; for ψ1

− iΩ
d−3 þ 1

2
; for ψ2

: ð21Þ

Note that the zeros of the coefficient of d2ψ1;2/dy2 for
4 ≤ d ≤ 9 are either at y ¼ 0 or outside the unit circle jyj<1
in the complex y-plane. However, for d > 9 the zeros of the
function fðyÞ ¼ 1 − ð1 − yÞd−3will lie inside the unit circle.
Thus one can expand the functions ψ1;2 in a power series in
y, convergent on thewhole range y ∈ ½0; 1� of interest on the
real axis only for 4 ≤ d ≤ 9. For d ≥ 10 one has to
analytically continue the functions through midpoints
[50]. We will not do this here, hence in the following we

BLÁZQUEZ-SALCEDO and KNOLL PHYS. REV. D 97, 044020 (2018)

044020-4



will restrict to the cases 4 ≤ d ≤ 9. All coefficient functions
of these differential equations are just polynomials in y.
Thus the resulting recurrence relations for the coefficients of
the expansion will be of finite order, namely 2d − 3.
We will use the continued fraction method to determine

the complex frequenciesΩ which lead to physical solutions
of the system (20) [46]. The method with the Nollert
improvement is described in [47]. Given a recurrence
relation of order N for the coefficients fn

XminfN;ng

k¼0

aðNÞ
k ðnÞfn−k ¼ 0; ð22Þ

one can calculate the coefficients of the recurrence relation
of order N − 1. These coefficients for n < N, 0 ≤ k ≤ n are

given by aðN−1Þ
k ðnÞ ¼ aðNÞ

k ðnÞ, and for n ≥ N by

2
6666666666664

aðN−1Þ
0 ðnÞ

aðN−1Þ
1 ðnÞ

aðN−1Þ
2 ðnÞ

..

.

aðN−1Þ
N−2 ðnÞ

aðN−1Þ
N−1 ðnÞ

3
7777777777775
¼

2
6666666666664

0 0 0 � � � 0 aðNÞ
0 ðnÞ

−aðNÞ
N ðnÞ 0 0 � � � 0 aðNÞ

1 ðnÞ
0 −aðNÞ

N ðnÞ 0 � � � 0 aðNÞ
2 ðnÞ

..

. . .
. ..

. ..
.

0 � � � 0 −aðNÞ
N ðnÞ 0 aðNÞ

N−2ðnÞ
0 � � � 0 0 −aðNÞ

N ðnÞ aðNÞ
N−1ðnÞ

3
7777777777775

2
6666666666664

aðN−1Þ
0 ðn − 1Þ

aðN−1Þ
1 ðn − 1Þ

aðN−1Þ
2 ðn − 1Þ

..

.

aðN−1Þ
N−2 ðn − 1Þ

aðN−1Þ
N−1 ðn − 1Þ

3
7777777777775
: ð23Þ

To avoid large numbers in the numerics one can normal-
ize after each step by dividing for example with

aðN−1Þ
N−1 ðn − 1Þ, provided that aðN−1Þ

N−1 ðn − 1Þ ≠ 0.
Thus it is possible to reduce the recurrence relation to a

relation of order two

að2Þ0 ð1Þf1 þ að2Þ1 ð1Þf0 ¼ 0;

að2Þ0 ðnÞfn þ að2Þ1 ðnÞfn−1 þ að2Þ2 ðnÞfn−2 ¼ 0: ð24Þ
with n ≥ 2. Reexpressing this with Δn ≔ fn/fn−1 gives

að2Þ0 ð1ÞΔ1 þ að2Þ1 ð1Þ ¼ 0; ð25Þ

Δn−1 ¼
−að2Þ2 ðnÞ

að2Þ1 ðnÞ þ að2Þ0 ðnÞΔn

; ð26Þ

with n ≥ 2. Using Eq. (26) in Eq. (25) results in the
following continued fraction equation

að2Þ1 ð1Þ − að2Þ0 ð1Það2Þ2 ð2Þ
að2Þ2 ð2Þ − að2Þ

0
ð2Það2Þ

2
ð3Þ

að2Þ
1
ð3Þ− . .

. a
ð2Þ
0

ðn−1Það2Þ
2

ðnÞ

a
ð2Þ
1

ðnÞ− . .
.

¼ 0: ð27Þ

The coefficients að2Þk ðnÞ will depend on Ω. Thus one can
approximate the above continued fraction up to a certain
depth and try to minimize the above difference by changing
Ω. Let the depth of the approximation be K − 1. Then the
last fraction will be given by

. .
. að2Þ0 ðK − 1Það2Þ2 ðKÞ

að2Þ1 ðKÞ þ að2Þ0 ðKÞΔK

: ð28Þ

Instead of approximating ΔK by zero, the Nollert improve-
ment uses the original recurrence relation to give an
asymptotic approximation of ΔK in K ≫ 1.

The coefficients að2d−1Þk ðKÞ and ΔK are expanded in
powers of 1/

ffiffiffiffi
K

p
and K − k ≈ K for 0 ≤ k ≤ 2d − 1 ≪ K is

used. Let the expansion of ΔK be

ΔK ¼ C0 þ
C1ffiffiffiffi
K

p þO
�
1

K

�
: ð29Þ

Following Nollert [47] we choose C0 ¼ −1 and
ℜðC1Þ > 0. The other coefficients are then uniquely
determined by the resulting equations.
By using this approach with Eq. (20), we obtain two

continued fraction relations. Unless stated otherwise, to
generate the quasinormal mode frequencies Ω, we search
with both equations separately, due to the lack of an
obvious supersymmetry between the two equations when
the fermionic mass is not zero [32].
The method is implemented in MAPLE. The initial mass

value is η ¼ 10−6. The initial guess for the initial mass
value in the complex Ω-plane is chosen close to the large κ
analytic approximation for massless modes from [32]. The
ratio of the left-hand side of Eq. (27) at a resonance to the
surrounding area in the complex Ω-plane is Oð10−4Þ.

B. WKB method

In addition to the continued fraction approach, we will
use a third order WKB method. In this case it is convenient
to factorize the spinor as

ϕ1;2 ¼ eg∓ν1;2; ð30Þ
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with

d
dz

g∓ ¼ −
F∓

2xðiκ ∓ xηÞ ; ð31Þ

the upper sign for ϕ1 and the lower sign for ϕ2. Equ-
ation (17) is then reduced to the second order differential
equation

d2

dz2
ν1;2 þ ðΩ2 − Veff;∓Þν1;2 ¼ 0; ð32Þ

with the effective potential

Veff;∓ ¼∓ iΩ
xðiκ ∓ xηÞF∓ þ 1

2

�
F∓

2xðiκ ∓ xηÞ
�

2

þ 1

2

d
dz

�
F∓

2xðiκ ∓ xηÞ
�
þ κ2 þ η2x2

x2
f ð33Þ

where again the upper sign is for ν1 and the lower sign is for
ν2. This second order equation is in the gestalt of a
Schrödinger-like equation. The boundary conditions are
outgoingwaves at z → �∞. This problemwas solved semi-
analytically in [48] with a WKB approach up to third order.
The equation for the complex frequencies Ω is [43,51]

Ω2 ¼ ½V0 þ ð−2Vð2Þ
0 Þ1/2Λ� − iλð−2Vð2Þ

0 Þ1/2ð1þ ΣÞ; ð34Þ
where we have defined the following functions:

Λ ¼ 1

ð−2Vð2Þ
0 Þ1/2

�
1

8

�
Vð4Þ
0

Vð2Þ
0

��
1

4
þ λ2

�

−
1

288

�
Vð3Þ
0

Vð2Þ
0

�2

ð7þ 60λ2Þ
	
;

Σ ¼ −1

2Vð2Þ
0

�
5

6912

�
Vð3Þ
0

Vð2Þ
0

�4

ð77þ 188λ2Þ

−
1

384

�
Vð3Þ2
0 Vð4Þ

0

Vð2Þ3
0

�
ð51þ 100λ2Þ

þ 1

2304

�
Vð4Þ
0

Vð2Þ
0

�2

ð67þ 68λ2Þ

þ 1

288

�
Vð3Þ
0 Vð5Þ

0

Vð2Þ2
0

�
ð19þ 28λ2Þ

−
1

288

�
Vð6Þ
0

Vð2Þ
0

�
ð5þ 4λ2Þ

	
; ð35Þ

λ ¼ nþ 1/2 and VðkÞ
0 being the kth derivative of Veff;∓

evaluated at the point where the extremum d/dzVeff;∓ ¼ 0 is
found. It should be noted, that the WKB method had been
improved up to 6th order in [52] and recently modified and
improved up to 13th order in [53].

The potential Veff;∓ is complex, thus one cannot expect
to find a point with d/dzVeff;∓ ¼ 0 on the real z-axis. We
will thus make an analytical continuation of z to the
complex plane. We will also search using x instead of z,
because it is not possible to give an analytically closed
expression for x ¼ xðzÞ for all dimensions d.
This method is also implemented in MAPLE. For each

given set of parameters we first numerically calculate the
location of the extremum x0 in the complex x-plane. From
the set of values x0 for whichℜðx0Þ > 1 we choose the one
with the smallest jℑðx0Þj. After the extremum is found, the
left- and righthand sides of Eq. (34) are evaluated and the
absolute value of the difference of these is calculated. The
search in the complex Ω-plane aims to minimize this
difference. The initial mass value is η ¼ 0. The initial
guess for the initial mass value in the complex Ω-plane is
chosen according to the large κ analytic approximation for
massless modes from [32]. The ratio of the difference of the
left- and right-hand side of Eq. (34) at a resonance to the
surrounding area in the complex Ω-plane is Oð10−9Þ.
We only report on results that we cross checked with the

continued fraction method. We have calculated some parts
of the spectrum using a shooting method, where the
differential equations (17) are solved with the proper
boundary conditions (14) and (15). Although we have
been able to reproduce the general behavior of the spectrum
with the mass, the precision obtained with this approach
was not as good as the precision obtained with the
continued fraction method and the third order WKB.
Hence in the following figures we will only display results
from these last two methods.

IV. RESULTS

A. An analytical approximation for large angular
quantum number and mass

Before presenting the numerical results obtained by
applying the methods we have described, let us comment
on an analytical result that can be derived from the WKB
approach. In the limit of large mass and angular quantum
number (η ≫ 1 and jκj ≫ 1), the second order equation (32)
for ν1;2 becomes

d2

dz2
ν1;2 þ

�
Ω2 −

κ2 þ η2x2

x2
f
�
ν1;2 ¼ 0: ð36Þ

We can define an effective potential

VeffðxÞ ¼
κ2 þ η2x2

x2
fðxÞ ¼

�
η2 þ κ2

x2

�
fðxÞ: ð37Þ

Note that this approximation to the effective potential is
quadratic in κ and thus unaffected by the sign of κ. This
means that for large values of the angular number l, the two
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branches of modes that result from Eq. (5) will become very
close to each other.
The effective potential possesses an extremum deter-

mined by the equation

η2ðd − 3Þx2 þ κ2ðd − 1 − 2xd−3Þ ¼ 0: ð38Þ

Hence following the standard procedure we can obtain a
first order WKB approximation for the eigenvalue Ω in
terms of the extremum of the potential, given by

Ω2 ¼ V0 − i

�
nþ 1

2

�
ð−2Vð2Þ

0 Þ1/2; ð39Þ

where n is the overtone number. This formula allow us to
obtain an analytical approximation of Ω for large values of
η and jκj. However, the relation has some limitations. For
instance, when η ≫ 1 and jκj ≪ η, the potential of equa-
tion (36) does not have an extremum for finite x > 1. Thus
the above approximation (39) breaks down when jκj is
small and η is large.
However, for η ¼ 0 the Eq. (39) becomes the eikonal

jκj ≫ 1 limit of the massless Dirac modes, described before
in [32]. Even more, in practice equation (39) is a reasonable
approximation to the frequencyΩ for all η as long as jκj≫1
and the extremum (38) is not found at infinity. Note that
because of the particular dependence of equation (38) on
the dimension d, it can be solved analytically only for
4 ≤ d ≤ 7 and d ¼ 9. For d ¼ 8 the extremum has to be
determined numerically.
We will now argue that the effective potential using the

first order WKB approximation indicates the existence of
frequencies with arbitrary small imaginary part for finite
mass values η in d ¼ 4 and 5. If the second derivative of
the potential vanishes in Eq. (39) and V0 > 0, then the
resulting frequency will be real. These conditions can be
cast in the form

0 ¼ ðd − 5Þxd þ ðd − 1Þx3
xdþ3

;

η2 ¼ κ2
6xd þ ð1 − dÞdx3
ð3 − dÞð2 − dÞx5 : ð40Þ

For d ¼ 4 these result in a finite xd¼4
00 ¼ 3 and

ηd¼4
00 ¼ jκj/ ffiffiffi

3
p

, where x00 and η00 are the zeros of the
Eqs. (40) for the given value of d. For d ≥ 5 the first
equation does not have a finite solution x00 > 1. Still
xd≥500 → ∞ is a formal solution to the first equation. This
results in a finite ηd¼5

00 ¼ jκj only for d ¼ 5. For d ≥ 6 also
ηd≥600 → ∞ for the formal solution xd≥500 → ∞.
The value of the potential at these points is in four

dimensions Vd¼4
eff ðxd¼4

00 ; ηd¼4
00 Þ ¼ 8κ2/27 > 0 and in five

dimensions Vd¼5
eff ðxd¼5

00 ; ηd¼5
00 Þ ¼ κ2 > 0. Thus in four and

five dimensions one can find frequencies with vanishing

imaginary part at finite mass η in the first order WKB
approximation. Of course in five dimensions the WKB
method must break down close to these frequencies due to
x0 → ∞ there. Although in the four dimensional case
we do not see indications of a breakdown of the WKB
method close to xd¼4

00 < ∞, we will see that in practice
both numerical schemes become troublesome close to
ηd¼4
00 ¼ jκj/ ffiffiffi

3
p

. However, as one approaches these points,
in principle one should be able to generate frequencies with
imaginary parts as small as desired for finite mass values.
Note that the above behavior is independent of the overtone
number n in the first order WKB approximation.
Observe also that one can construct the effective poten-

tial given in Eq. (37) from the geodesic equations of a
massive particle of mass m. The Lagrangian L for a
massive particle in the Schwarzschild-Tangherlini space-
time is given by

L ¼ 1 ¼ fðrÞ_t2 − 1

fðrÞ _r
2 − r2 _Ω2; ð41Þ

where _Ω encodes all the angular dependencies. Of course
one can choose a plane for the orbit and one has the
constants of motion l ¼ r2 _Ω and e ¼ fðxÞ_t. Substituting
these in the above Lagrangian, multiplying with m2μ2,
changing to the normalized quantities η ¼ mμ, L ¼ ml,
x ¼ r/μ and rearranging gives

μ2η2 _x2 þ
�
η2 þ L2

x2

�
fðxÞ ¼ η2e2: ð42Þ

We can thus define the effective potential of geodesic
motion

Vgeo
eff ðxÞ ¼

�
η2 þ L2

x2

�
fðxÞ ¼L↔κVeffðxÞ: ð43Þ

This should be expected, considering that to lowest order in
ℏ a WKB approximation for the Dirac equation results in
the equations for geodesic motion [54,55].

B. The case with large angular quantum number:
Numerical results for l = 10

In this section we present results for l ¼ 10, and different
values of the spacetime dimension and fermionic mass. This
can be seen as an example of the behavior of the quasinormal
modes for large values of the angular quantum number,
since as we will see below, the previous analytical result
already describes very accurately the spectrum of modes.
The calculated quasinormal modes in the complex plane

can be seen in Fig. 1, where we show the imaginary part
versus the real part of Ω. All these modes correspond to the
fundamental state, for different values of the dimension d
and mass η. In different colors we show different spacetime
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dimensions d, (d ¼ 4 in purple, d ¼ 5 in blue, d ¼ 6 in
green, d ¼ 7 in orange, d ¼ 8 in brown and d ¼ 9 in red).
Each point represents a mode with a different value of the
fermionic mass η, with the case η ¼ 0 (marked with a
triangle) corresponding to the value with lowest frequency
ℜðΩÞ, and largest jℑðΩÞj. Note that all these modes have
ℑðΩÞ < 0, so the Dirac field perturbation decays with time.
The crosses and points represent numerical values calcu-
lated using the third order WKB method with sgnðκÞ ¼ þ1
and sgnðκÞ ¼ −1, respectively. The solid lines represent the
analytical results obtained from the large κ limit to the
potential (37) in the approximation (39). We can see that
even though in the approximation we assumed Dirac fields
with η ≫ 1, in practice the massless case is very well
approximated, and the analytical approximation works very
well for all values of the mass η: the relation (39) works as
an eikonal approximation for the Dirac quasinormal modes,
even for small and intermediate values of the mass.
In Fig. 1 we can see that increasing the mass of the Dirac

field has the effect of increasing the frequency of the mode
ℜðΩÞ, while the absolute value of the imaginary part ℑðΩÞ
decreases (meaning that the damping time of the perturba-
tion increases). Also we can appreciate how increasing the
dimension has the generic effect of increasing the value of
ℜðΩÞ and jℑðΩÞj. With regards to the sign of κ, in this

figure one can observe that for a fixed value of the mass
η > 0 the analytical approximation lies always in between
the full numerical values obtained for each one of the
branches. This means that ℜðΩsgnðκÞ¼þ1Þ < ℜðΩanaÞ <
ℜðΩsgnðκÞ¼−1Þ and jℑðΩsgnðκÞ¼þ1Þj < jℑðΩanaÞj <
jℑðΩsgnðκÞ¼−1Þj, where Ωana are the quasinormal modes
from the large κ approximation using first order WKB. In
any case, as it was expected in the previous section, for
l ¼ 10 both signs of κ are always close to the analytical
approximation.
Note that the cases with d ¼ 4 and d ¼ 5 possess a

different behavior from the rest of dimensions considered.
In d ¼ 4, 5, the numerical analysis indicates that there
exists a value ofℜðΩÞ for which the ℑðΩÞ reaches a critical
value, as was indicated by the argument made in Sec. IVA.
However, the numerical methods break down in this region
and we mark these values with a red circle in Fig. 1. This is
not the case in d ≥ 6, where jℑðΩÞj decreases smoothly as
the frequency increases.
In Figure 2 we present the scaled value of ℑðΩÞ

[normalized to the massless value of the imaginary part
ℑðΩ0Þ]. Here we can appreciate the critical behavior for
d ¼ 4, 5. In d ¼ 4 for a critical value of the fermionic mass
ηc, the imaginary part of Ω goes to zero in the analytical
approximation. The numerical results show that the branch
of modes disappears at a finite η, which is slightly smaller
than the critical fermionic mass predicted by the analytical
approximation. In d ¼ 5 however, the numerical analysis
coincides very well with the analytical approximation,
showing that the ℑðΩÞ can become arbitrarily small as
we reach the critical value of the fermionic mass. However
the numerical analysis becomes problematic very close to

FIG. 1. The fundamental quasinormal modes in the complexΩ-
plane for l ¼ 10. The crosses and dots are the results from the 3rd
order WKB method with sgnðκÞ ¼ þ1 and sgnðκÞ ¼ −1, re-
spectively. The difference in mass value between two adjacent
points is Δη ¼ 0.5. The solid lines are the analytical results from
the large κ approximation using the first order WKB approxi-
mation. From left to right in different colors d ¼ 4, 5, 6, 7, 8, 9.
Marked with grey triangles are the quasinormal modes for η ¼ 0.
With increasing η, the value of the jℑðΩÞj becomes smaller and
the real part becomes larger. Around the red circles, for d ¼ 4, 5
the imaginary part becomes very close to zero, and the numerical
methods break down.

FIG. 2. Similar figure to the previous one, showing the
imaginary part of Ω over the mass parameter η for the funda-
mental l ¼ 10 mode. We normalize with respect to the imaginary
part of the frequency for η ¼ 0.
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the critical value, indicating that this branch of modes also
disappears before reaching this value.
We want to comment here that the existence of this

critical value of the fermionic mass in the spectrum of the
d ¼ 4 case was already noted in [31] by analysing the
shape of the potential. Also it was observed that more
massive fields lead to more slowly damped modes. Our
results are compatible with these observations.
In the cases with d ≥ 6 the behavior changes, and we can

see that the modes exist for arbitrary values of the fermionic
mass. The imaginary part decreases monotonically to zero
as the mass becomes larger and larger. Hence the damping
time of these modes can be increased without limit for very
large values of the mass η.
Some insight into the particular behavior of the cases

with d ¼ 4, 5 can be obtained by studying the dependence
ofℜðΩÞ on the mass η. In Fig. 3 we show the real part of Ω
as a function of η for these two values of the spacetime
dimension for positive κ. Here we show the modes
computed using both the WKB method (circle points)
and the continued fraction method (solid line). The dashed
lines represent the analytical approximation (37) and (39),
and the green line marks the limit in which ℜðΩÞ ¼ η.
The numerical methods break down precisely when this

line is approached (red circles), and we cannot trust results
obtained beyond this point. Although the analytical
approximation can be extended to generate some modes
beyond ℜðΩÞ ¼ η, in this case it is probably an artifact of
the approximation.

In order to show this singular behavior, in Fig. 4 we
present the real part of the point x0 satisfying V 0

effðx0Þ ¼ 0,
as a function of η for sgnðκÞ ¼ þ1. The black (d ¼ 4) and
blue (d ¼ 5) lines correspond to the analytical approxima-
tion (37), while the circle points correspond to values
calculated using the complete effective potential from
Eq. (33). We can see in this figure that the real part of
x0 diverges for d ¼ 5 as we approach the critical value of
the mass ηd¼5

00 ¼ κ (marked with vertical red line). One can
also see that although the values for ℜðx0Þ stay finite in
d ¼ 4, there is a transition to another branch of zeros of the
potential. However the numerical methods cannot obtain
results with good enough precision once this second branch
of zeros is reached.
Hence, since both numerical methods cannot generate

modes with good precision close to ℜðΩÞ ¼ η, and the
analytical approximation breaks down in d ¼ 5 when this
limit is crossed, we conjecture that this branch of funda-
mental l ¼ 10 modes ceases to exist in d ¼ 4, 5 when the
mass of the Dirac field is large enough and the ℜðΩÞ ¼ η
limit is reached.
In a summary, from the results we have presented in this

section we can learn the following:
For d ≥ 6, as the mass of the fermionic field is increased,

the imaginary part of the l ¼ 10 fundamental mode
decreases. The mode seems to exist for arbitrary large values
of the mass η, and ℑðΩÞ can become arbitrarily small. Hence
it is possible to find massive modes with arbitrary large
damping times (which we can interpret as quasistationary

FIG. 3. Real part of the fundamental modes for d ¼ 4, 5 and l ¼
10 (sgnðκÞ ¼ þ1), as a function of themass η. The dotted green line
marksℜðΩÞ ¼ η. The dash-dotted curves are the analytical approxi-
mation in the large κ limit using the first orderWKB approximation.
The circle points are the results from the 3rd orderWKBmethod and
the solid orange curves are the results from the continued fraction
method. The red circles mark the region where theWKB, continued
fraction method and analytical approximation break down.

FIG. 4. Real part of the point x0 for which V 0
effðx0Þ ¼ 0 over the

mass η for l ¼ 10 (sgnðκÞ ¼ þ1). The black and blue solid curves
are the large κ approximation for d ¼ 4, 5 respectively. The circle
points were obtained using the full effective potential. The
vertical solid red line marks the values of the mass for which
x0 diverges in five dimensions at ηd¼5

00 ¼ κ. The orange vertical
line marks the value of ηd¼4

00 ¼ κ/
ffiffiffi
3

p
.
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states for large fermionic mass). The analytical approxima-
tion of the spectrum gives very reasonable results for all
values of the mass. Since in this regime the frequency
increases linearly with the mass, the slowly damped field
will oscillate very rapidly with ℜðΩÞ ≃ η ≫ 1.
For d ¼ 4, 5, the behavior is different from the higher

dimensional case, since the branch of modes originating
from the massless fundamental mode seems to disappear at
a finite value of the fermionic mass. However, both the
approximation and the numerics indicate that this limit is
singular, and the mode is lost before reaching the critical
mass.
In d ¼ 4, although the analytical approximation predicts

that arbitrary small values of ℑðΩÞ can be obtained at a
finite critical η, the branch of modes in the numerical
approach is lost before this point is reached.
In d ¼ 5 surprisingly, the analytical approximation of the

spectrummatches very well with the numerics for all values
of the mass lower than the critical η. For mass values
arbitrarily close to this critical point, in principle very small
values of ℑðΩÞ can be generated. These can be interpreted
as quasistationary states with intermediate values of the
fermionic mass. In this regime the field oscillates with a
frequency ℜðΩÞ ≃ η.
Note that for larger values of l, the full numerical results

are in fact closer to the spectrum predicted by the analytical
formula (for l ¼ 10 the numerics only deviate from the
analytical formula less than a 5%, for all values of the mass
and dimension considered). So the analytical approxima-
tion gives very reasonable results for l ≥ 10.
As a final note in this section we would like to point that

the results we have presented here coincide, within the
expected precision, with the results obtained in the recent
work [56]. Here the authors study the massive Dirac modes
in the background of the Kerr black hole, and obtain similar
results for the spectrum of the Dirac field in the background
of a Schwarzchild black hole in the static limit.

C. The behavior for different overtone number n:
Numerical results for l = 10 in five dimensions

As we commented in the previous Sec. IVA, in the
lowest order approximation and independently of the
overtone number, one can see that Ω → κ þ i · 0 for
η → ηd¼5

00 ¼ jκj, with n < l. However it is not clear if this
feature is retained for all overtone numbers when one goes
beyond the analytical approximation. To investigate this
issue, in this section we explore how the overtone number n
affects the critical behavior of the l ¼ 10 quasinormal
modes in d ¼ 5 for sgnðκÞ ¼ þ1.
In Fig. 5 we present the imaginary part vs. the real part of

the frequency for different overtone numbers n. The circles
are the numerical results using the third order WKB
approximation (34) using the full effective potential (33),
and cross-checked with the CF method. The solid lines are
the analytical values in the large κ approximation of the

effective potential (37) also using the third order WKB
approximation (34). The analytical approximation is shown
for the whole range of its validity. However, for n ≥ 1, the
branches of modes calculated from the numerics do not
reach the ℑðΩÞ ¼ 0 value.
In Fig. 6 we make a similar plot, showing the imaginary

part of the frequency vs. the mass η for different overtone
numbers n. Again it can be seen that for n ≥ 1, the branches
of modes calculated from the numerics stop at a value of η
always below the critical value of η predicted from the
analytical approximation.
In the analytical approximation, for all displayed over-

tone numbers, the frequencies develop arbitrary small
imaginary parts for finite mass η. For the analytical
approximation we can thus define a critical mass ηcðnÞ
for which ℑðΩÞ → 0. One can observe that for all displayed
overtone numbers ηcðnÞ < ηd¼5

00 ¼ κ ¼ 11.5.
However the numerical analysis using WKB and CF

methods indicates that in fact the branch of quasinormal
modes disappears before reaching this particular value of
ηcðnÞ. Beyond this value of the fermionic mass, our current
methods are not able to produce quasinormal modes with
good enough precision.
Thus the indicated universal behavior for the frequency

is not completely retained by higher order WKB methods.
In fact, as we have seen, the critical mass value depends
on the overtone number, ηcðnÞ, being smaller than the

FIG. 5. Imaginary part of Ω over the real part of Ω for different
overtone numbers n for the five dimensional case with l ¼ 10 and
sgnðκÞ ¼ þ1. From bottom to top n ¼ 0, 1, 2 and 3. The circles
are the numerical results using the third order WKB approxi-
mation using the full effective potential. The solid lines are the
analytical values in the large κ approximation of the effective
potential also using the third order WKB approximation. For the
full potential the numerical values are displayed up to the point
the WKB and continued fraction method begin to diverge.
Marked with grey triangles are the points with η ¼ 0.
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predicted value from the lower order WKB method, ηd¼5
00 .

Even more, the full numerical approach indicates that the
branch of modes disappears at even lower values of the
fermionic mass [57].

D. Numerical results for l = 0

In this section we present the spectrum for angular
quantum number l ¼ 0. We calculate the fundamental and
first excited modes for 4 ≤ d ≤ 9 with the continued
fraction method.
In Figure 7 we present ℑðΩÞ vs ℜðΩÞ for the funda-

mental mode. Note that all the modes calculated have
negative imaginary part, meaning they also decay in time.
Marked with black triangles are the quasinormal modes for
η ¼ 0. Two branches of modes bifurcate from these points:
one for sgnðκÞ ¼ þ1, shown with continuous lines, and one
for sgnðκÞ ¼ −1, shown with dashed lines. For fixed values
of η, the branch with sgnðκÞ ¼ þ1 presents always smaller
values of the real and imaginary parts of Ω than the branch
with sgnðκÞ ¼ −1. Also one can see that as the dimension d
increased, the fundamental mode increases both in ℜðΩÞ
and in jℑðΩÞj, and approximately by the same amount for a
fixed value of the mass η.
When η is increased, the absolute value of the imaginary

part of the frequency jℑðΩÞj becomes generally smaller.
For 6 < d ≤ 9, this seems to lead to modes that approach
the real axis asymptotically, independently of the sign of κ.
However, in four and five dimensions our results indicate
that the modes stop existing at a certain value of η, right
before hitting the real axis. These features are qualitatively
very similar to the behavior obtained in the large l limit, and
in particular for l ¼ 10 in the previous section (see Fig. 1)
and to the generic features of the ground state of a scalar

field [44]. Interestingly, in Fig. 7 we can observe that the
branch of modes in d dimensions with negative κ seems to
approach the branch of modes in dþ 1 dimensions with
positive κ.
Here again the numerical methods we employ break

down for very small values of jℑðΩÞj, and in practice we
cannot generate arbitrary small values of the imaginary part
(specially in the positive κ branches). As the mass
approaches the critical value, the results produced from
the equation for ψ1 in relation (20) deviates more and more
from the results for ψ2, and the depth of the continuous
fraction method has to be increased in order stabilize the
computed frequencies. We only show results that we are
able to cross-check using both equations, with less than a
0.5% of difference in the calculated Ω (except close to the
critical points of the d ¼ 4, 5 cases with positive κ, where
we relax it to a 2% of difference).
In Fig. 8 we show the real part of the frequency as a

function of the mass. In this figure we can clearly see that
for large η, the branch of negative κ of a given dimension d
approaches the branch of positive κ in dþ 1 dimensions.
This is thus also true for the imaginary part. Another feature
we can observe in this figure is that, in the sgnðκÞ ¼ þ1
branch, the minimum value of the frequency no longer
resides at the massless case, but at some configuration with
nonzero fermionic mass. Interestingly, for d ¼ 4, 5, and for
d ¼ 6 with sgnðκÞ ¼ þ1, the real part of the frequency can
become smaller than the mass of the field, crossing the line

FIG. 7. Fundamental modes in the complex Ω-plane for l ¼ 0,
using the continued fraction method. From the left to the right we
have d ¼ 4, 5, 6, 7, 8 and 9. Shown in continuous lines are the
values for sgnðκÞ ¼ þ1 and in dashed lines the values for
sgnðκÞ ¼ −1. Marked with black triangles are the quasinormal
modes for η ¼ 0. We only show modes with a relative error of
0.5%, except in d ¼ 4 and 5 close to the real axis, where the
numerical method breaks down, and we relax the condition to a
relative error of 2%.

FIG. 6. Similar figure to the previous one, here presenting the
imaginary part ofΩ over themass η for different overtone numbers
n for the five dimensional case with l ¼ 10 and sgnðκÞ ¼ þ1.
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ℜðΩÞ ¼ η. This is different from what we observed for
l ¼ 10 in Fig. 3. Thus in some cases the Dirac field can be
trapped in the gravitational field of the black hole.
As in the previous section, we would like to point out

here that the results we have presented for the d ¼ 4 case
coincide with the results obtained in the recent work [56]
within the required precision.

To conclude this section, we present some results
regarding the first excitation (n ¼ 1) of the l ¼ 0 modes,
although for large values of the mass the continued fraction
method does not allow us to obtain the same precision as
with the fundamental mode. In Fig. 9 we show ℑðΩÞ vs
ℜðΩÞ for the first excited mode, and in Fig. 10 we show the
real part ofΩ as a function of the mass for these modes. It is
worth noting that some of the branches of the first excited
mode of the spinor field possesses the generic behavior of a
vector field mode, see for example [45]. In the positive κ
branches of the d ¼ 4…8, increasing η decreases the real
part of the frequency ℜðΩÞ, while the imaginary part does
not change much. In the negative κ branches however, the
real part increases, and only starts to decrease for relatively
large values of the mass in the d ¼ 4…7 cases.
Interestingly, the d ¼ 8 branch with negative κ, and both
branches with d ¼ 9 seems to avoid the imaginary axis, so
the similarity with the vector field modes is lost in these
particular cases.

V. CONCLUSION

In this paper we have calculated the quasinormal modes
of the massive Dirac field in the Schwarzschild-Tangherlini
black hole in d ¼ 4 to 9. We have implemented the
calculation of the modes with two independent methods:
the continued fraction method, and the third order WKB
method. In addition, we have obtained an analytical
approximation of the spectrum, which formally applies
to the case of large fermionic mass and large angular
quantum number. However in practice, we have seen that
the approximation works rather well for arbitrary values of
the mass, provided the angular quantum number is large
enough.

FIG. 8. A similar figure to the previous one, showing the real
part of the fundamental mode as a function of the mass for l ¼ 0,
and different values of the spacetime dimension d. In grey we
include the line ℜðΩÞ ¼ η.

FIG. 10. Similar figure to the previous one, showing the real
part of the quasinormal modes for the first excited modes for
l ¼ 0. In grey we mark the line ℜðΩÞ ¼ η.

FIG. 9. First excited quasinormal modes in the complex Ω-
plane for l ¼ 0, using the continued fraction method. From the
bottom left to the upper right d ¼ 4, 5, 6, 7, 8 and 9. Shown in
continuous lines are the values for sgnðκÞ ¼ þ1 and in dashed
lines the values for sgnðκÞ ¼ −1. Marked with black triangles are
the quasinormal modes for η ¼ 0. We show modes with relative
error smaller than 0.5%.
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As an example, we have investigated carefully the
particular case of the l ¼ 10 fundamental mode. The
frequency and the damping time of the mode increases
to arbitrarily large values as the mass of the Dirac field
increases. This is a feature that has been observed in other
massive fields. Interestingly, for d ¼ 4, 5, the mode seems
to disappear as the damping time of the mode rises at a
critical value of the mass with η ¼ ℜðΩÞ. While for d ¼ 4,
the mode seems to disappear at a finite value of ℑðΩÞ, while
for d ¼ 5 the damping time seems to grow arbitrarily as the
critical value of the fermionic mass is reached. For d ≥ 6
however, the mode seems to exist for arbitrary values of the
mass. These results, together with the analytical approxi-
mation obtained from the limit of large mass and angular
quantum number, indicate that quasistationary perturba-
tions for intermediate values of the mass and frequencies
can be found for d ¼ 4, 5 for large values of the angular
quantum number, while quasistationary perturbations with
very large values of the mass can be found for d ≥ 6 with
also large values of the frequency.
In addition, the effect of the overtone number has been

explored for the particular case of d ¼ 5 and l ¼ 10.
Interestingly, the full numerical analysis deviates signifi-
cantly from the eikonal approximation as the mass is
increased, and indicates that the branches of excited modes
reach a critical value of the fermionic mass where they
cease to exist. This critical value of the mass decreases with
the overtone number.

We also present results for l ¼ 0 and the first two
overtone numbers, n ¼ 0, 1. The behavior of the Dirac
field was analogous to a scalar field for the fundamental
mode, and similar to a vector field for the first excitation for
d < 8 and d ¼ 8 with positive κ. Also there exist gravi-
tationally trapped modes with the real part of the frequency
smaller than the mass ℜðΩÞ < η.
We were also able to observe, that the spectrum for the

massive spinor depended on the sign of κ. In general the
inequality ℜðΩsgnðκÞ¼þ1Þ < ℜðΩsgnðκÞ¼−1Þ for a fixed value
of mass η > 0 seems to hold.
The disappearance of the modes when the mass reaches a

critical value may indicate the starting of another branch of
modes for higher values of the mass. This branch of modes
could have very small values of the imaginary part.
However, another numerical approach is probably neces-
sary, sincewith our current methods we are not able to study
such values of the eigenmodes with large values of the
fermionic mass. For instance, it may be more appropriate to
change to another representation of the Dirac spinor.
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