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Einstein originally proposed a nonsymmetric tensor field, with its symmetric part associated with the
spacetime metric and its antisymmetric part associated with the electromagnetic field, as an approach to a
unified field theory. Here we interpret it more modestly as an alternative to Einstein-Maxwell theory,
approximating the coupling between the electromagnetic field and spacetime curvature in the macroscopic
classical regime. Previously it was shown that the Lorentz force can be derived from this theory, albeit with
deviation on the scale of a universal length constant l. Here we assume that l is of galactic scale and show
that the modified coupling of the electromagnetic field with charged particles allows a non-Maxwellian
equilibrium of non-neutral plasma. The resulting electromagnetic field is “dark” in the sense that its
modified Lorentz force on the plasma vanishes, yet through its modified coupling to the gravitational field
it engenders a nonvanishing, effective mass density. We obtain a solution for which this mass density
asymptotes approximately to that of the pseudoisothermal model of dark matter. The resulting gravitational
field produces radial acceleration, in the context of a post-Minkowskian approximation, which is negligible
at small radius but yields a flat rotation curve at large radius. We further exhibit a family of such solutions
which, like the pseudoisothermal model, has a free parameter to set the mass scale (in this case related to the
charge density) and a free parameter to set the length scale (in this case an integer multiple of l). Moreover,
these solutions are members of a larger family with more general angular and radial dependence. They thus
show promise as approximations of generalized pseudoisothermal models, which in turn are known to fit a
wide range of mass density profiles for galaxies and clusters.
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I. INTRODUCTION

The nature of dark matter has resisted scientific consensus
since its initial observation nearly a century ago [1–3]. To
date, no strong evidence has been found for weakly interact-
ingmassive particles, nor any other hypothesized constituent
of dark matter halos [3–7]. Meanwhile, alternatives to dark
matter involving modified theories of gravity have failed to
gain widespread acceptance, partly due to difficulties in
fitting all of the empirical data (e.g. [8,9]).
In view of this long-standing lack of a satisfying theory

for dark matter, consideration of less conventional explan-
ations may be warranted. As an alternative to new matter on
the one hand, and modified gravity on the other, we offer a
third alternative, that dark matter is actually conventional
matter behaving unconventionally on galactic scales,
within the context of a modified theory of gravity (and
electrodynamics). This explanation is also distinguished
from others in that it is not a phenomenological contriv-
ance, but rather emerges naturally from a theory proposed
by Einstein, also nearly a century ago.
Einstein first proposed his theory of a nonsymmetric

tensor field in 1925, intending it to unify the gravitational

and electromagnetic fields [10]. He returned to it in 1945
[11] and seemed to favor it until his passing ten years later.
Indeed, it is the subject of his final scientific publication
(Appendix II of [12,13]).
This theory received serious attention during Einstein’s

lifetime, including an independent derivation bySchrödinger
[14]. Subsequently, however, Einstein’s theory came to be
neglected by the physics community at large, for reasons we
will touch on below. Notable exceptions include the work of
Johnson, who beginning in 1971 explored the consistency of
Einstein’s nonsymmetric field theory with conventional
electrodynamics and gravitation [15–28], and the work of
Moffat and others who beginning in 1979 considered
Einstein’s nonsymmetric field without the electromagnetic
interpretation [29]. We will build upon the former.
Some immediate concerns may come to mind. First,

Einstein’s simplistic geometric approach to unification is
widely regarded as a failure, and misguided from the start,
due to its apparent disregard of all but the classical
gravitational and electromagnetic fields (at best). In the
present work we do not consider Einstein’s nonsymmetric
field theory as a unified theory. Rather, we only apply it to
macroscopic scales and in regimes expected to be well
approximated by classical physics.
It is after all an empirical fact that the electromagnetic

field couples to the gravitational field on scales well below*James.VanMeter@Colorado.edu
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that where unification is expected, as evidenced by
gravitational redshift and gravitational lensing. Einstein-
Maxwell theory, in which Einstein’s tensor is set propor-
tional to the Maxwell stress-energy tensor, adequately
explains these effects, and moreover is generally believed
applicable to astrophysical phenomena involving strong
spacetime curvature and in which the electromagnetic field
plays a significant role (e.g. [30]). Coupling as it does the
electromagnetic field with the gravitational field in a
manifestly, generally covariant manner, Einstein-Maxwell
theory seems well suited for these tasks. It is not, however,
unique in this regard. Einstein’s nonsymmetric field theory
is also generally covariant and, as it happens, can also be
put in a form approximating Einstein’s tensor coupled with
an electromagnetic source tensor. We argue that Einstein’s
nonsymmetric field theory be considered viable wherever
Einstein-Maxwell theory currently is.
But this suggestion may raise another concern. In 1953 it

was found by Callaway that, if charged particles are
modeled by a particular form of singularity analogous to
that of the Reissner-Nordström solution in Einstein-
Maxwell theory, then to leading post-Newtonian orders
such a particle in Einstein’s nonsymmetric field theory fails
to respond to an electromagnetic field in any way consistent
with the Lorentz force equation [31]. By contrast, the
contracted Bianchi identity applied to the Maxwell stress-
energy tensor, as mandated by Einstein-Maxwell theory,
implies to leading post-Minkowskian order the full
Lorentz-Dirac equation for a Reissner-Nordström particle
(i.e. the Lorentz force equation with radiative corrections)
(Sec. 20.6 of [32] and [33–35]).
This objection was answered straightforwardly by

Johnson, who showed that Callaway did not consider a
general enough solution with which to model a charged
particle [16]. Callaway identified one integration constant
of Einstein’s nonsymmetric field equations with mass, and
another with charge. However, Einstein’s third order field
equations allow for an additional integration constant
in a homogeneous monopole solution, which Callaway
neglected. Johnson showed that if this extra constant is
also assumed to be nonzero, and related to electric
charge, then the Lorentz-Dirac equation can be recovered
from Einstein’s nonsymmetric field theory, to good
approximation.
But Johnson’s particular identification of integration

constants with charge comes at the price of a length
parameter, necessarily finite, at which scale Coulomb’s
law breaks down. In the present work we assume this
parameter is of extrasolar scale (≳1011 m) and, following a
suggestion also made by Johnson that this may lead to an
explanation for dark matter [36], consider galactic scale
charge distributions. We then derive a family of post-
Minkowskian solutions which, we show, exhibit dark-
matter-like properties. The solutions are axially symmetric,
but at large radius yield flat rotation curves that asymptote
to spherical symmetry.

This paper is organized as follows. In Sec. II we discuss
Einstein’s original field equations as well as their leading
order post-Minkowskian expansion. In Sec. III A, we
derive the equation that a charge distribution needs to
satisfy in order to be in electrostatic equilibrium, in the
context of this theory, and obtain a general solution. In
Sec. III B, we solve for the gravitational field at large
radius, obtaining particular solutions that yield flat rotation
curves. In Sec. III C, we show that this family of solutions
is valid at all radii, and that it comes with a free parameter
that determines a “core radius” analogous to the length
scaling parameter common to phenomenological dark
matter models. In Sec. III D we show that its gravitational
and electric fields are negligible near the Galactic center
and thus consistent with observations of an uncharged
central black hole. Finally conclusions are given in Sec. IV.

II. BACKGROUND

Extremizing the Einstein-Hilbert action,

δ

Z
d4x

ffiffiffiffiffiffi
−g

p
gμνRμν ¼ 0; ð1Þ

by standard methods but allowing both gμν and Rμν to be
asymmetric results in the following equations [12,14]:

RðμνÞ ¼ 0; ð2Þ

R½μν;ρ� ¼ 0; ð3Þ

Γν
½μν� ¼ 0; ð4Þ

where Γλ
μν is defined by

gσνΓσ
μρ þ gμσΓσ

ρν ¼ gμν;ρ ð5Þ

and Rμν via

Rμν ¼ Γρ
μν;ρ − Γρ

μρ;ν − Γρ
μσΓσ

ρν þ Γρ
μνΓσ

ρσ: ð6Þ

Note that both Rμν and Γλ
½μν� transform as tensors even

though Γλ
μν does not. Clearly these equations reduce to

those of conventional general relativity when the antisym-
metric components vanish.
For the purpose of post-Minkowskian approximation it is

convenient to define

γμν ≡ ffiffiffiffiffiffi
−g

p
gμν − ημν: ð7Þ

Then using the identity [37]

γ½μν�;ν ¼
ffiffiffiffiffiffi
−g

p
gðμνÞΓρ

½νρ�; ð8Þ

choosing the harmonic gauge condition
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γðμνÞ;ν ¼ 0; ð9Þ

and further defining

γ�½μν� ¼
1

2
ϵμνρσγ

½ρσ�; ð10Þ

we obtain [15]

□jμ ¼ sμ; ð11Þ

j;μμ ¼ 0; ð12Þ

γ�;ν½μν� ¼ jμ; ð13Þ

γ�½μν;ρ� ¼ 0; ð14Þ

□γðμνÞ ¼ tμν; ð15Þ

where sμ ¼ − 1
3
ημρϵ

ρσκλGN
½κλ;σ�, jμ can be considered a

dummy variable introduced to write third order equations
as a second order system, tμν ¼ −2GN

ðμνÞ, and GN
μν is equal

to the nonlinear terms of Rμν − 1
2
ημνη

ρσRρσ. To leading
post-Minkowskian order [16],

tμν ¼
1

2
γ½ρσ�;μγ

½ρσ�
;ν þ γ;σ½μρ�γ

;ρ
½νσ� − γ½μρ�;σγ

ρ�;σ
½ν

−
1

4
ημνγ½ρσ�;κγ½ρσ�;κ −

1

2
ημνγ½ρσ�;κγ½ρκ�;σ

þ γ½ρσ�γ½μσ�;νρ þ γ½ρσ�γ½νσ�;μρ −
1

2
ημνγ

½ρσ�
□γ½ρσ�: ð16Þ

In [16] it was shown that we can write jμ ¼ Jμ þ Aμ,
where Jμ can be identified with the conventional Maxwell
current provided we introduce electromagnetic field tensors
FL
μν and FD

μν (labeled according to their “local” and
“diffuse” sources, respectively) defined such that

γ�½μν� ¼ c−2G1/2k−1ðFL
μν þ 2FD

μνÞ ð17Þ

and

FL
μν ¼ ∂μAν − ∂νAμ; ð18Þ

FL;ν
μν ¼ Jμ; ð19Þ

FD;ν
μν ¼ −k2Aμ; ð20Þ

where k ¼ ð ffiffiffi
2

p
lÞ−1 and l is a universal constant with

units of distance. (And unless otherwise noted we will
use Gaussian units.) In the Lorenz gauge, then, Aμ plays
the dual role of vector potential for FL

μν and source
for FD

μν. With the above identifications and conditions,
if Jμ includes a point source with mass m and charge q

then it was shown that it satisfies the Lorentz-Dirac
equation:

maμ ¼ qc−1uλðFLext
λμ þFDext

λμ Þþ2

3
q2c−3

�
d
dτ

aμþaρaρuμ

�
:

ð21Þ

Clearly if l is very large relative to the scale of spacetime
variation of FL

μν, and other length scales of a physical
system, so that k2 is relatively small, then Eqs. (18)–(21)
reduce to those of conventional electrodynamics.
It should be mentioned that in writing down the above

equationswe havemade particular choices in how to identify
certain physical quantities, e.g. electric charge, with quan-
tities in Einstein’s nonsymmetric field theory. We are
following, specifically, [16]. Other choices are explored in
[15–22,24–28], all of which are shown to approximate the
form of the Maxwell and Lorentz-Dirac equations given
above. We will not consider these other variations of our
theory here except to remark that resulting differences in
higher order corrections may yield slightly different physical
predictions, and thus may potentially be constrained by
observation.
Now we note that the above equations deviate from

conventional classical electrodynamics when k2 is non-
negligible, as Eqs. (18)–(20) imply that the electric field of
a static point charge is qðr−2 − k2Þr̂. At distances on the
scale of l from a source current, then, there is significant
violation of Coulomb’s law. Therefore some of the same
tests used to bound the length scale of the well-known
Coulomb-violating Yukawa potential can be used to con-
strain l. In addition to laboratory measurements of the
electrostatic force, satellite measurements of Earth’s mag-
netic field indicate l≳ 108 m [38], Pioneer 10’s measure-
ment of Jupiter’s magnetic field indicate l≳ 109 m [39],
and measurements of solar wind electrodynamics indicate
l≳ 1011 m [40]. (See [41] for a review of such Coulomb
tests.) We will assume this latter bound.
On the scale of l, our theory exhibits two remarkable

features that are relevant to our current purposes. The first is
that it allows equilibrium configurations of charges not
possible in Einstein-Maxwell theory. For example, two
identically charged particles at rest and separated by 2l
reside in the zeros of each other’s electrostatic fields. Such an
equilibrium may even be stable, as in that example. In
Einstein-Maxwell theory charged particles cannot be in stable
equilibrium because Laplace’s equation disallows the needed
extrema in the potential, a fact known as Earnshaw’s theorem.
But Einstein’s nonsymmetric field equations are third order
and thus not subject to Earnshaw’s theorem.
A second notable feature is the factor of 2 multiplying

the electromagnetic field tensor FD
ρσ in Eq. (17), which

determines its coupling to the gravitational field, which is
absent in the Lorentz force equation. This asymmetry
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between the electromagnetic field’s coupling to charged
particles vs its coupling to the gravitational field has an
unexpected result: the electromagnetic field FL þ FD can
cancel with itself and thus vanish in the Lorentz force
equation, while FL þ 2FD remains nonzero and still acts as
a source for the gravitational field. In this sense, the
electromagnetic field can become “dark.” In this case

γ½μν� ¼ c−2G1/2k−1ϵμνρσðFL
ρσ þ 2FD

ρσÞ
¼ c−2G1/2k−1ϵμνρσFD

ρσ: ð22Þ

III. “DARK MATTER” SOLUTIONS

A. Electromagnetic equilibrium

For charged matter to be in equilibrium, the force density
must vanish:

JνðFL
μν þ FD

μνÞ ¼ 0: ð23Þ
Now following [36] we derive the condition for electro-
static equilibrium. Neglecting magnetic fields, Eq. (23)
becomes

ρðEL þEDÞ ¼ 0; ð24Þ
where

∇ ·EL ¼ 4πρ; ð25Þ
∇ ·ED ¼ −k2φ; ð26Þ

and the Maxwell potential φ is defined such that
EL ¼ −∇φ. Wherever the charge density is nonvanishing
the equilibrium condition takes the form of the Helmholtz
equation:

∇2φþ k2φ ¼ 0: ð27Þ
If we assume the charge density has unbounded support but
vanishes at infinity then the general solution is

φðr;θ;ϕÞ¼ 4πρ0
k2

X∞
l¼0

Xl

m¼−l
½almjlðkrÞþblmylðkrÞ�Ylmðθ;ϕÞ;

ð28Þ

where ρ0 is a scaling constant with units of charge density.
Note the above equations imply ρ ¼ k2

4π φ. Solutions also
exist for a charge density with bounded support, which
might be more physical, but for now we will assume this
simpler case.
Of course in a more realistic model the charges will be in

motion and thus generate a magnetic field. We could for
example allow magnetic fields without altering the charge
distribution by requiring that the source currents respect the

symmetry of the distribution (as in a rotating, axially
symmetric case). In that case, since the distribution is such
that its electrostatic contribution to the Lorentz force
cancels, it is possible that there may be some cancellation
of the magnetic contribution as well (since it is similarly
modified on large scales [Eq. (21)]). Alternatively, we
could attempt to find more general solutions to the
equilibrium condition [Eq. (23)] by relaxing the assumption
of vanishing 3-current and magnetic field. We might
therefore obtain a magnetic field that is dark, or nearly
dark. But as this would require a considerably more
complicated model, and the electrostatic case of the present
work suffices as a “proof of principle,” we relegate the case
of nonvanishing magnetic field to a future work.
The above solution is stable to small, local perturbations

for the simple reason that any small displaced charge will
create an oppositely charged “hole” in the ambient equi-
librium distribution, to which it will be attracted provided
the displacement is much smaller than 2l. But it is not clear
under what conditions the above solution is stable to larger
perturbations. To thoroughly address this question, it may
be necessary to consider more realistic solutions with
nonzero magnetic fields.
If we wish to apply this solution to a galaxy there are two

additional caveats. The first is that ρ must be averaged over
lengths much larger than the Debye length. We are
interested in net charge density that survives when averaged
over scales closer to l. We expect this to be no greater than
the more localized (sub-Debye) plasma density, and per-
haps smaller due to Debye shielding of the latter.
Second, if we assume that r ¼ 0 corresponds to the

Galactic center, then observation suggests we further
assume an uncharged black hole there. (For relaxation of
this assumption, see the Appendix.) Thus the charge
density must be negligible near the origin. We therefore
take as a boundary condition that ρð0Þ ¼ 0, which implies

φðr; θ;ϕÞ ¼ 4π

k2
X∞
l¼1

Xl

m¼−l
almjlðkrÞYlmðθ;ϕÞ: ð29Þ

Wewill be interested in the resulting gravitational field.As
mentioned, when the electromagnetic fields are in equilib-
rium the gravitational field couples to FL

μν þ 2FD
μν ¼ FD

μν. In
the static case, the time-time component of the gravitational
field equation reduces to

∇2γ00 ¼ −t00; ð30Þ
where

t00 ¼ −
1

4
γ½ρσ�;κγ½ρσ�;κ −

1

2
γ½ρσ�;κγ½ρκ�;σ þ

1

2
γ½ρσ�∇2γ½ρσ�; ð31Þ

and for electrostatic equilibrium,

γ½μν� ¼ 2c−2G1/2k−1ϵμν0σ∂σφ: ð32Þ
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B. Fields at large radius

The asymptotic form of the lth spherical Bessel function
is [Eq. (10.52.3) of [42]]

jlðkrÞ ¼
sinðkr − lπ/2Þ

kr
þOðr−2Þ: ð33Þ

In [43] this is shown to be a valid approximation for kr > l.
With this approximation the potential becomes

φðr;θ;ϕÞ¼ 4π

k2
X
l>0

Xl

m¼−l
alm

sinðkr− lπ
2
Þ

kr
Ylmðθ;ϕÞþOðr−2Þ

¼ 4π

k2

�
j0ðkrÞ

X
l>0
even

Xl

m¼−l
a0lmYlmðθ;ϕÞ

þy0ðkrÞ
X
l>0
odd

Xl

m¼−l
b0lmYlmðθ;ϕÞ

�
þOðr−2Þ;

ð34Þ

where a0lm ≡ ð−1Þl/2alm and b0lm ≡ ð−1Þðl−1Þ/2alm. The
spherical harmonics form a complete set of functions on
the sphere, which implies that the sum on the left converges
to an even function (with respect to θ ¼ π/2, and with
vanishing spherical integral since we are missing the
constant spherical harmonic Y00), while the sum on the

right converges to an odd function (with respect to
θ ¼ π/2). Hence

φðr; θ;ϕÞ ¼ 4π

k2
½ j0ðkrÞfðθ;ϕÞ þ y0ðkrÞgðθ;ϕÞ� þOðr−2Þ;

ð35Þ
where fðθ;ϕÞ is any even square-integrable function on the
sphere such that

R
fdΩ ¼ 0, and gðθ;ϕÞ is any odd square

integrable function on the sphere.
Then the electric field is

γ½μν� ¼ −2G1/2 4π

c2k2
ϵμν0σ½ j1ðkrÞfðθ;ϕÞ

þ y1ðkrÞgðθ;ϕÞ�xσr−1 þOðr−2Þ: ð36Þ

Then using

∂i½ j1ðkrÞnj� ¼ k

�
1

3
½ j0ðkrÞ þ j2ðkrÞ�δij − j2ðkrÞ

xixj
r2

�
;

ð37Þ

∂i½y1ðkrÞnj� ¼ k

�
1

3
½y0ðkrÞ þ y2ðkrÞ�δij − y2ðkrÞ

xixj
r2

�
;

ð38Þ

the effective gravitational source is

t00 ¼ G

�
4πρ0
c2k

�
2
��

−
1

6
ðj0ðkrÞÞ2 − ðj1ðkrÞÞ2 þ

2

3
ðj2ðkrÞÞ2

�
f2ðθ;ϕÞ

þ
�
−
1

3
j0ðkrÞy0ðkrÞ − 2j1ðkrÞy1ðkrÞ þ

4

3
j2ðkrÞy2ðkrÞ

�
fðθ;ϕÞgðθ;ϕÞ

þ
�
−
1

6
ðy0ðkrÞÞ2 − ðy1ðkrÞÞ2 þ

2

3
ðy2ðkrÞÞ2

�
g2ðθ;ϕÞ

�
þOðr−3Þ: ð39Þ

Now we seek a solution with vanishing derivative at spatial infinity. We obtain, up to an integration constant that will not
affect the acceleration,

γ00 ¼ G

�
2πρ0
c2k2

�
2

f½lnð2krÞ − Cið2krÞ þ j0ð2krÞ − 2ðj1ðkrÞÞ2�f2ðθ;ϕÞ

þ ½−2Sið2krÞ − y0ð2krÞ − 4j1ðkrÞy1ðkrÞ�fðθ;ϕÞgðθ;ϕÞ
þ ½lnð2krÞ þ Cið2krÞ − j0ð2krÞ − 2ðy1ðkrÞÞ2�g2ðθ;ϕÞg þOðr−1Þ: ð40Þ

To calculate the resulting acceleration of a test mass (in a Newtonian approximation), first we note that to linear order the
densitized metric perturbation equals the trace-reversed metric perturbation,

γðμνÞ ¼ −hμν þ
1

2
ημνη

ρσhρσ; ð41Þ

where hμν ≡ gðμνÞ − ημν. In the harmonic gauge, the trace-reversed metric perturbation is in turn proportional to the
Newtonian potential. Following Wald (Sec. IV D of [44]), we find for the radial acceleration
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ar ¼
1

4
c2∂r

�
h00 −

1

2
η00η

ρσhρσ

�
¼ −

1

4
c2∂rγ00 ¼ −G

�
πρ0
ck2

�
2

f½1 − j0ð2krÞ − 4 sinðkrÞj1ðkrÞ þ 8j21ðkrÞ�f2ðθ;ϕÞ

þ ½3y0ð2krÞ − 8j0ðkrÞy0ðkrÞ þ 16j1ðkrÞy1ðkrÞ�fðθ;ϕÞgðθ;ϕÞ
þ ½1þ j0ð2krÞ þ 4 cosðxÞy1ðkrÞ þ 8ðy1ðkrÞÞ2�g2ðθ;ϕÞgr−1 þOðr−2Þ

¼ −G
�
πρ0
ck2

�
2

½f2ðθ;ϕÞ þ g2ðθ;ϕÞ�r−1 þOðr−2Þ: ð42Þ

The angular functions f and g must be determined
empirically. Aside from the constraint that f must average
to zero over a sphere, there is considerable freedom to choose
these functions. For example they can be chosen such that
isosurfaces of f2 þ g2 are approximately ellipsoidal.
Gravitational lensing observations of the Milky Way’s dark
matter halo [45], as well as the success of the pseudoiso-
thermal elliptic (PIE) mass distribution at modeling many
other galaxies and clusters [46], indicate that such symmetry
is relevant. On the other hand, if we choose

fðθ;ϕÞ ¼ sinðnθÞ; ð43Þ
gðθ;ϕÞ ¼ cosðnθÞ; ð44Þ

wheren > 1 is odd, thenwe achieve spherical symmetry. For
simplicity, and because it seems a good approximation for
many purposes, we will focus on this case.
The scaling factor ρ0 must also be determined empiri-

cally for each galaxy. Fitting each galactic rotation curve
requires that

G

�
πρ0
ck2

�
2

¼ v2; ð45Þ

where v is the constant speed that characterizes dark-
matter-dominated orbital dynamics. For example, using the
observed Milky Way value of v ≈ 240 km/s [47–49] we
obtain the formula

ρ0 ≈
�
9.6 × 109 km

l

�
2

e/cm3: ð46Þ

Note that Eq. (46) may result in a density considerably
smaller than that of plasmas that have been observed in and
around the Galaxy. For example, the warm ionized medium
has an ion density greater than 10−2 e/cm3, while the
galactic halo has been observed to have an ion density
greater than 10−4 e/cm3 [50]. By contrast, if we consider
the region where dark matter dominates the Milky Way,
r≳ 8 kpc, so that the asymptotic expression Eq. (35) is
approximately valid, and using our constraint that
l≳ 1011 m, we obtain ρ < 10−5 e/cm3. And ρ may be
orders of magnitude smaller still, since l may be corre-
spondingly larger (see Secs. VI C and VI D). One impli-
cation is that, in a more realistic model in which the charge
distribution consists of discrete particles, any observable

electromagnetic effects due to the resulting imperfect
cancellation of fields on small scales may be swamped
by that of more conventional plasmas.
Now revisiting the gravitational field, recall that Eq. (41)

and Wald (Sec. IV D of [44]) imply a Newtonian potential
approximately equal to 1

4
c2γ00. This implies an effective

mass density of

c2

16πG
∇2γ00 ¼ −

c2

16πG
t00: ð47Þ

Then using the effective source of Eq. (39) with the
asymptotic Bessel forms of Eq. (33) and the angular
functions of Eqs. (43) and (44), and assuming a sufficiently
large n, we obtain to good approximation an angle-
averaged mass density of v2

4πGr2. This expression is also
the asymptotic limit of the pseudoisothermal mass density
profile for dark matter [51,52]. The pseudoisothermal
model has in turn been found to be a good fit for the
rotation curves of many galaxies [53], as well as for the
mass density of some galaxy clusters as determined by
gravitational lensing and x-ray temperatures [54–56].
The pseudoisothermal model for dark matter, however, is

not always the best fit. We have already mentioned its
generalization, the PIE model for ellipsoidal symmetry,
which might be approximated by different choices for the
angular functions f and g above. We might also consider
truncating the charge distribution ρ so that it has bounded
support. In this case, we expect solutions of Eq. (24) to still
approximate those given above, within the support of ρ. But
the fields and thus effective mass density will fall off more
rapidly outside of that support, with a smooth transition in
between. Such behavior also characterizes a further gener-
alization of the pseudoisothermal model, called the “trun-
cated” or “dual” PIE model, which very successfully fits a
wide range of lensing and x-ray data [46,56–60]. Further
exploration of our dark-matter-like solution space might be
worthwhile, therefore. We will for now, however, content
ourselves to study our pseudoisothermal-like solution, the
structure of which is already quite rich.

C. Potential at all radii

1. Convergence

The asymptotically spherical solution found in the last
section is, in its exact form,
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φðnÞðr; θÞ ¼
4πρ0
k2

X∞
l¼1

alðnÞjlðkrÞPlðcosðθÞÞ; ð48Þ

where

alðnÞ ¼ 1

2
ð2l þ 1Þ

� ð−1Þðl−1Þ/2 R π
0 PlðcosðθÞÞ cosðnθÞ sinðθÞdθ; l odd

ð−1Þl/2 R π
0 Plðcos θÞ sinðnθÞ sinðθÞdθ; l even

: ð49Þ

We have established, by construction using the com-
pleteness of the Legendre polynomials along with the
square integrability of cosðnθÞ and sinðnθÞ, that asymp-
totically the above converges to a linear combination of
those functions. But this is not generally the case at other
radii, because the Bessel functions may not cancel the ð−1Þ
factors. Our next task, then, is to verify that the series still
converges at all radii.
Since the issue is the sign on the terms, it will suffice to

show that the series converges absolutely. First note that
since cosðnθÞ equals an nth order (Chebyshev) polynomial
in cosðθÞ, only a finite number of Legendre polynomials are
required in its expansion, and thus there are only a finite
number of alðnÞ with odd l values. So we need only show
the absolute convergence of the even terms.
To that end we have, using a Chebyshev identity and the

binomial theorem,

sinðnθÞ ¼ sinðθÞUn−1ðcosðθÞÞ
¼ 1 − cos2ðθÞÞ1/2Un−1ðcosðθÞÞ

¼
X∞
i¼0

ð−1Þi
�
1/2

i

�
cos2iðθÞUn−1ðcosðθÞÞ

¼
X∞
j¼0

cjcosjðθÞ; ð50Þ

whereUn−1 is the (n − 1)th order Chebyshev polynomial of
the second kind, and fcjg are real coefficients defined by
the expansion above. Since the binomial expansion

converges absolutely, and Un−1 equals only a finite number
of powers of cosðθÞ, the entire series converges absolutely.
Since, then,

P
jjcj cosjðθÞj converges on ½0; π�, it is square

integrable and thus admits a unique expansion in Legendre
polynomials. This expansion can be calculated by first
expressing each power of cosðθÞ in Legendre polynomials,
which have only positive coefficients in this case. It follows
that

P
l>0;evenjalðnÞPlðcosðθÞÞj¼

P
jjcjcosjðθÞj<∞. Since

furthermore the Bessel functions are bounded by 1, they do
not affect the absolute convergence. We conclude that φðnÞ
is a valid solution at all radii.

2. Core radius

As mentioned, the gravitational field of this solution
bears some resemblance to that of the pseudoisothermal
model of dark matter [51,52], in that at large radius it
results in a flat rotation curve (as shown in Sec. III B),
while at small radius it is negligible (as will be shown in
the next section). And like the pseudoisothermal model it
has a free parameter to set the effective mass scale and thus
fit the flat rotation curve of each galaxy. The pseudoiso-
thermal model also has a free parameter, known as the
core radius, which sets the length scale at which dark
matter transitions from having subdominant effect to
determining flat rotation dynamics. We claim that nl
plays a similar role, where n is the free, odd integer
parameter in φðnÞ above.
To justify this claim, first note that from various proper-

ties of Legendre and Chebyshev polynomials [61–64] it
follows that

(i) If l is even and l < n − 1 then alðnÞ ¼ 0.
(ii) If l is odd and l ≤ n then

alðnÞ ¼
ð−1Þðl−3Þ/222l−1nð2lþ 1Þ½ðnþ l − 2Þ/2�!½ðnþ lÞ/2�!ðn − lÞ!

ðn − l − 1Þ½ðn − lÞ/2Þ!�2ðnþ lþ 1Þ! : ð51Þ

(iii) If l is odd and l > n then alðnÞ ¼ 0.
And from (i) and (ii) above it follows that janðnÞj ≫ jalðnÞj for l < n − 1. This is shown numerically in Fig. 1, where we

also observe that janðnÞj ≫ jalðnÞj for l > nþ 1.
From the above results, we expect the potential φðnÞ may be dominated by the nth Bessel function [and its neighbors the

(n − 1)th and (nþ 1)th Bessel functions]. Such is clearly evident in the θ ¼ π/2 plane, since the odd polynomials in cosðθÞ
vanish and the first nonvanishing term is the (n − 1)th term. The situation is more complicated away from this plane, but the
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numerical results exemplified by Fig. 2 indicate that our
expectations are well founded for kr > 1 (and for kr < 1
we will see the potential is negligible).
In particular, Fig. 2 illustrates that the global extremum

of φðnÞðr; θÞ is near kr ≈ nþ 2 (we have numerically
found such to the be case for all values of θ). According
to Abramowitz and Stegun, for large n the location
of the global extremum of jnðkrÞ (which we shall call
rn) is [61]

krn ≈ nþ1

2
þ0.8086165

�
nþ1

2

�1
3

−0.236680

�
nþ1

2

�
−1
3

−0.20736

�
nþ1

2

�
−1
þ0.0233

�
nþ1

2

�
−5
3

: ð52Þ

In [65] it is further observed that this is a good
approximation for all n ≥ 5 (for which its relative error
is < 1%). This formula, in turn, is approximated by krn ≈
nþ 2 for all n ≥ 5 to within a relative error of 5%.
More to the point, Fig. 2 demonstrates that φðnÞ further

shares with jnðkrÞ the property that it is relatively small for
kr < n, or r < nl, at least for n > 5. The derivatives of φðnÞ
are also relatively small for r < nl, and thus so is the
resulting gravitational field. This supports our designation
of nl as the core radius.
We conclude this section with the following observation.

As noted in Sec. III B, the asymptotic form of the lth Bessel
function Eq. (33) is valid for kr > l. If as we have argued
φðnÞ is dominated by the nth Bessel function, then the
analysis of the previous section implies that the rotation
curve can be assumed flat for r ≫ nl.

D. Fields at small radius

We consider again the Milky Way, for a concrete
example. In order to be a viable model of dark matter in
the Milky Way, our solution must also be consistent with
observations of Sagittarius A* (Sgr A*). First, its gravita-
tional field should be negligible in the region around Sgr
A* where Keplerian stellar orbits have been observed. And
second, charge density of our equilibrium distribution

FIG. 1. Coeffecients alð5Þ (crosses), −alð15Þ (diamonds),
alð25Þ (squares), and −alð35Þ (circles) vs l. This shows that
jalðnÞj is largest when l ≈ n.

 0ϕ (
5)

 0ϕ (
15

)

 0ϕ (
25

)

 0  5  10  15  20  25  30  35  40  45  50

 0ϕ (
35

)

kr

FIG. 2. The potential φðnÞðr; θ ¼ π/6Þ for n ¼ 5, n ¼ 15, n ¼ 25, and n ¼ 35 (as calculated numerically) plotted together with an
approximation (dashed line) using only the l ¼ n − 1, l ¼ n, and l ¼ nþ 1 terms: 4πρ0k2

Pnþ1
l¼n−1 alðnÞjlðkrÞPlðcosðθÞÞ. This shows that

the potential is dominated by terms around l ≈ n. This is further made clear by the global extremum apparent near kr ≈ nþ 2, which
approximates the position of the global extremum of jnðkrÞ. And, like jnðkrÞ, the potential is relatively negligible for kr ≲ n.

J. R. VAN METER PHYS. REV. D 97, 044018 (2018)

044018-8



should be neglible in the immediate vicinity of the central
black hole.
Recall that we assume that l≳ 108 km > 107 km, the

Schwarzschild radius of Sgr A*. We will consider a region
where kr < 1 (107 km < r <

ffiffiffi
2

p
l), such that jlðkrÞ is well

approximated by the lowest order terms of a Taylor
expansion in kr. In this region the lower order Bessel
functions can be expected to dominate since [Eq. (10.52.1)
of [42]]

jlðkrÞ ¼ ðkrÞl/ð2lþ 1Þ!!þOððkrÞlþ2Þ: ð53Þ

It is also useful to note that the bound

jjlðkrÞj ≤ ðkrÞl/ð2lþ 1Þ!! ð54Þ

is valid everywhere [Eq. (10.14.4) of [42]].

1. Gravitational field

To third order in ðkrÞ the potential can be expressed

φðnÞ ¼
4πρ0
k2

½a1ðnÞj1ðkrÞP1ðcosðθÞÞ
þ a2ðnÞj2ðkrÞP2ðcosðθÞÞ
þ a3ðnÞj3ðkrÞP3ðcosðθÞÞ� þOðr4Þ; ð55Þ

where, assuming n > 3,

a1ðnÞ ¼ −
3

n2 − 4
; ð56Þ

a2ðnÞ ¼ 0; ð57Þ

a3ðnÞ ¼
7ðn2 − 1Þ

n4 − 20n2 þ 64
: ð58Þ

Taylor expanding the Legendre polynomials explicitly,

φðnÞ ¼
4πρ0
k2

�
a1ðnÞ

�
1

3
ðkrÞ − 1

30
ðkrÞ3

�
cosðθÞ þ a3ðnÞ

1

105
ðkrÞ3

�
5

2
cos3ðθÞ − 3

2
cosðθÞ

��
þOðr4Þ

¼ 4πρ0
k2

�
a1ðnÞ

�
1

3
kz −

1

30
k3r2z

�
þ a3ðnÞ

1

105
k3
�
5

2
z3 −

3

2
r2z

��
þOðr4Þ: ð59Þ

To calculate the leading order of t00, it will prove sufficient to calculate the z component of ED:

ED
z ¼ 4πρ0

k

�
a1ðnÞ

1

3

�
1 −

1

5
k2z2 −

1

10
k2r2

�
þ a3ðnÞ

1

70
k2ð3z2 − r2Þ

�
þOðr3Þ: ð60Þ

Then

t00 ¼
1

2
γ½ρσ�∇2γ½ρσ� þOðr1Þ

¼ G

�
4πρ0
k2c2

�
2
�
1

3
a1ðnÞk2∇2

�
−
1

3
a1ðnÞ

�
1

5
z2 þ 1

10
r2
�
þ 1

70
a3ðnÞð3z2 − r2Þ

��
þOðr1Þ: ð61Þ

So

γ00 ¼ G

�
4πρ0
k2c2

�
2
�
1

3
a1ðnÞk2

�
1

3
a1ðnÞ

�
1

5
z2 þ 1

10
r2
�
−

1

70
a3ðnÞð3z2 − r2Þ

��
þOðr3Þ: ð62Þ

Therefore

ar ¼ −
1

4
c2∂rγ00

¼ −4G
�
πρ0
k2c

�
2
�
1

3
a1ðnÞk2

�
1

3
a1ðnÞ

�
2

5
rcos2ðθÞ þ 1

5
r

�
−

1

35
a3ðnÞð3rcos2ðθÞ − rÞ

��
þOðr2Þ: ð63Þ
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Then using a1ðnÞ ≈ −3n−2 and a3ðnÞ ≈ 7n−2, and recall-
ing Gðπρ0k2cÞ ¼ v2, we obtain

ar ≈ −
2v2r
n4l2

cos2ðθÞ: ð64Þ

According to recent observations of the star cluster
around Sgr A*, a radial acceleration of

−
Gð4 × 106 M⊙Þ

r2
≈ −

5 × 1017 km3 s−2

r2
ð65Þ

due to the central black hole appears to dominate stellar
orbits up to about 1013 km [66]. In order to apply our small-
radius (r < l) approximation to the region r < 1013 km we
will assume that l≳ 1013 km. We then find the magnitude
of the acceleration ar is less than that due to the black hole
for r < 1013 km provided n2l ≳ 1013 km. This opens up
the possibility that l < 1013 km, but verification would
require a solution that is more accurate at intermediate
(r > l) radii. For now we note that l ¼ 1013 km suffices.
With that value, and assuming n ≥ 5, the acceleration jarj is
less than a millionth that due to the black hole at
r ¼ 3000 AU, just inside the region where the cleanest
Keplerian orbits have been observed [67,68].

2. Charge

We turn our attention now to the charge density in the
immediate vicinity of the central black hole. The danger
here is not that the black hole will acquire charge, as our
solution is such that the net charge within any centered,
spherical volume is zero. But within that volume, there is
separation of charge which generates an electric field that
contributes to the equilibrium of the surrounding distribu-
tion. If the black hole neutralizes these separated charges by
unseparating them, it could threaten that equilibrium. We
will show that the charge so endangered is negligible.
Because we are concerned with charge carriers regard-

less of sign, we will consider the absolute value of the
charge density:

jρj ¼ jρ0a1ðnÞj1ðkrÞ cosðθÞj þOðr3Þ

¼ 1

3
kjρ0a1ðnÞr cosðθÞj þOðr3Þ: ð66Þ

Volume integration within a radius R yields

Q ¼
Z
r<R

jρjd3r

¼ 2π

3
jρ0a1ðnÞjk

Z
R

0

Z
π

0

r3j cosðθÞj sinðθÞdθ þOðr6Þ

¼ π

2ðn2 − 4Þ jρ0jkR
4 þOðr6Þ: ð67Þ

Now we assume l ¼ 1013 km as suggested above.
Regarding n, if we further assume that nl is comparable
to the core radius of the pseudoisothermal model as
suggested in Sec. III C 2, then for the Milky Way nl≳
1 kpc [69] and thus n ≈ 3000. Then using the Sgr A*
Schwarzschild radius of ∼107 km for R and recalling jρ0j ≈
eð1010 km/lÞ2 cm−3 from the fit to the Milky Way’s flat
rotation curve, we find that Q ≈ 0.02 C. This seems
negligible as, for comparison, the net charge of the Sun
is 77 C [70].

IV. DISCUSSION

Einstein’s nonsymmetric field theory allows non-neutral
plasma to be in electromagnetic equilibrium on the scale of
a universal length constant. We have shown, in the context
of this theory, that the gravitational field generated by the
electrostatic field of a certain family of such equilibrium
solutions resembles that of the pseudoisothermal model for
darkmatter. As such it can be fit to themass density profile of
some galaxies and clusters, as determined by velocity,
lensing, and x-ray data. Further we have argued that
generalizations of these solutions may approximate gener-
alizations of the pseudoisothermal model—specifically the
truncated pseudoisothermal elliptic model. This is one of the
best phenomenologicalmodels for darkmatter, fitting awide
range of galaxies and clusters, and thus gives reason to hope
for similar success from these solutions.
However, some significant challenges remain in proving

the physical relevance of this theory and of these solutions
in particular. One is the question of the compatibility of
Einstein’s nonsymmetric field theory with inflationary
cosmology. This may need to be addressed in order to
understand its bearing on the cosmic microwave back-
ground power spectrum, baryon acoustic oscillations,
and structure formation, all of which are significantly
affected by dark matter according to the lambda–cold dark
matter paradigm. But these signatures of the early
Universe are well beyond the purview of the classical,
post-Minkowskian methods used in the present work.
Other open questions include the value of the universal

length constant l, for which our suggestion is far from
definitive, and which is not well constrained by the data
considered in this paper. And perhaps most crucially, the
stability of our solutions to large perturbations needs to be
established, up to and including the Bullet Cluster collision.
The intent of this paper is to make the case that these
inquiries are worthwhile, and to open up a new approach to
an old problem.
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APPENDIX: SPHERICALLY
SYMMETRIC SOLUTION

In this appendix we consider a spherically symmetric
solution originally found by Johnson [36]. The simplest
nontrivial solution to Eq. (27) is

φ ¼ 4π

k2
ρ0j0ðkrÞ: ðA1Þ

This yields the electric fields

EL ¼ −∇ϕ ¼ 4π

k
ρ0j1ðkrÞn; ðA2Þ

ED ¼ −EL ¼ −
4π

k
ρ0j1ðkrÞn: ðA3Þ

The effective gravitational source is therefore

t00 ¼ −
1

4
γ½ρσ�;κγ½ρσ�;κ −

1

2
γ½ρσ�;κγ½ρκ�;σ þ

1

2
γ½ρσ�∇2γ½ρσ�

¼ G

�
4πρ0
c2k

�
2
�
−
1

6
ðj0ðkrÞÞ2 − ðj1ðkrÞÞ2 þ

2

3
ðj2ðkrÞÞ2

�
:

ðA4Þ

Solving ∇γ00 ¼ −t00 with the condition that its deriva-
tive vanishes at spatial infinity we obtain

γ00¼G

�
2πρ0
c2k2

�
2

½lnð2krÞ−Cið2krÞþ j0ð2krÞ−2ðj1ðkrÞÞ2�:

ðA5Þ

This results in an acceleration of

a¼−G
�
πρ0
ck2

�
2

½1− j0ð2krÞ−4sinðkrÞj1ðkrÞþ8j21ðkrÞ�
n
r
:

ðA6Þ

Note that the log term in γ00 cancels with the cosine integral
at the origin to yield a finite result, and the acceleration
vanishes at the origin.
As before this can be fit to a flat galactic rotation curve

by requiring

G

�
πρ0
ck2

�
2

¼ v2: ðA7Þ

And as before we can check whether the acceleration is
negligible near the central black hole. This will depend on
l, but some analysis shows that ar is bounded by
2Gðπρ0ck2Þ2/r ¼ 2v2/r independently of l. This ensures that
jarj is less than 10% the acceleration due to Sgr A* for
r < 3000 AU in the Milky Way, for example.
A difficulty with this particular solution, however, is

its nonzero (in fact maximum) charge density at the
origin. Unlike the axially symmetric solution investigated
previously, this charge density does not vanish when
integrated over a spherical volume. A central black hole,
then, must either be allowed to acquire charge, or the
central charge must be removed. In either case the net
effect would be the addition of a large, monopole electric
field, which might destabilize the surrounding charge
distribution.
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