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We study the greybody factors of the scalar fields in spherically symmetric Einstein-Gauss-Bonnet–de
Sitter black holes in higher dimensions. We derive the greybody factors analytically for both minimally and
nonminimally coupled scalar fields. Moreover, we discuss the dependence of the greybody factor on
various parameters including the angular momentum number, the nonminimally coupling constant, the
spacetime dimension, the cosmological constant, and the Gauss-Bonnet coefficient in detail. We find that
the nonminimal coupling may suppress the greybody factor and the Gauss-Bonnet coupling could enhance
it, but they both suppress the energy emission rate of Hawking radiation.
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I. INTRODUCTION

The black holes obey the laws of thermodynamics [1].
This inspires Hawking’s pioneering works on the thermal
radiation of the black hole, the so-called Hawking radiation
[2,3]. Though in the vicinity of the black hole event
horizon, the Hawking radiation is a blackbody radiation,
determined by the temperature of the black hole, it becomes
a greybody radiation at the asymptotic region since the
radiation has to transverse an effective potential barrier.
This effective potential barrier is highly sensitive to the
structure of the black hole background. As a result, the
Hawking radiation encodes important information about
the black hole, including its mass, its charge, and its angular
momentum. In general, the Hawking radiation of macro-
scopic black holes is too small to be detected. However, the
Hawking radiation of the microscopic black holes could be
detectable [4]. Especially the existence of extra spacelike
dimensions [5–8] indicates that the tiny black hole may be
created at the particle colliders [9–13] or in high energy
cosmic-ray interactions [14–17]. Thus the associated
Hawking radiation maybe observed at the TeV scale. As
a result, significant number of works about the Hawking

radiation in higher dimensional spacetime have been done.
For more extensive references one may consult the reviews
[18–21].
In the asymptotic flat spacetimes, it has been found that

the greybody factors for the waves of arbitrary spin and
angular quantum number l in any dimensions vanish in the
zero-frequency limit [22–24], even for the nonminimally
coupled scalar [25]. In the presence of a positive cosmo-
logical constant, the picture is different. The greybody
factors of the Schwarzschild-de Sitter (SdS) black holes
were studied both analytically and numerically in d
dimensions in [26], and it was found that the l ¼ 0
greybody factor was not vanishing even in the zero-
frequency limit for a minimally coupled massless scalar
(see also [27]). This implies that the cosmological constant
has an important effect on the greybody factor as it leads to
the fully delocalization of the zero-modes such that there is
a finite probability for the zero-modes to transverse the
region between the event horizon and the cosmological
horizon [26]. The mass of the scalar or a nonminimally
coupling constant breaks this relation, hence the greybody
factors for arbitrary nonminimally coupled scalar partial
modes in 4-dimensional spacetime tend to zero in the
infrared limit [28].
In this paper, we consider the spherically symmetric dS

black hole in the Einstein-Gauss-Bonnet (EGB) gravity.1

The EGB gravity is a special case of the Lovelock gravity
which is the natural generalization of general relativity in
higher dimensions [29]. As the most general metric theory
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1In the following, we simply call such solution the EGB-dS
black hole.
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of the gravity whose equations of motion are only the
second order differential equations, the Lovelock gravity is
ghost free and thus is especially attractive in the higher-
derivative gravity theories. Among the Lovelock gravity
theories, the simplest one is the EGB gravity, which adds a
fourth-derivative Gauss-Bonnet (GB) term to the Einstein-
Hilbert action

SG ¼ 1

16πG

Z
ddx

ffiffiffiffiffiffi
−g

p ½Rþ αðRμνρσRμνρσ

− 4RμνRμν þ R2Þ�: ð1:1Þ

Here α is the Gauss-Bonnet coupling constant of dimension
ðlengthÞ2 and R is the Ricci scalar. The Gauss-Bonnet
coupling term appears in the low energy effective action of
the heterotic string theory [30], where the coupling constant
α is positive definite and inversely proportional to the string
tension. Hence in this work we consider the case that α ≥ 0.
G is the d-dimensional Newton’s constant. The Gauss-
Bonnet term is jut a topological term in d ¼ 4 spacetime
and becomes nontrivial in d > 4 spacetimes. It has been
pointed out that if the Planck scale is of order TeV, as
suggested in some extra-dimension models, the coupling
constant α could be measured by LHC through the
detection of the spectrum of the Hawking radiation of
the black hole [31]. Thus it is worth studying the greybody
factor of the Hawking radiation of the GB black hole in
higher dimensions, from both theoretical viewpoint and
phenomenological purposes. For scalar and graviton emis-
sions, the numerical studies of the GB black hole in an
asymptotic flat spacetime were carried out in [32,33]. As
mentioned in the last paragraph, the positive cosmological
constant has significant effect on the greybody factor. In
this paper we would like to compute the greybody factor of
the Hawking radiation of the EGB-dS black hole analyti-
cally and discuss the effects of various parameters, espe-
cially the GB coupling constant, on the radiation.
The analytical study of the greybody factor in the SdS

black hole has been well-developed. The analytical study in
[26] was limited to the case of the lowest partial mode
(l ¼ 0) and the low energy part (ω → 0) of the spectrum.
A general expression for the greybody factor for arbitrary
partial modes of a minimally or nonminimally coupled
scalar in higher-dimensional SdS black hole was derived in
[34]. The authors in [34] found an appropriate radial
coordinate that allows them to integrate the field equations
analytically and avoid the approximations on the metric
tensor used in [20,28]. The comparison of the analytical
result with the numerical result was done in [35]. For more
studies, see [36–48]. Adopting a similar radial coordinate,
we are able to derive the analytical results for the greybody
factors for arbitrary partial modes of a scalar field in the
EGB-dS black hole spacetime as well.
In Sec. II, we give the general background of the EGB-

dS black hole and the corresponding equation of motion for

the scalar field. In Sec. III, we derive the analytical
expression of the greybody factor using the matching
method and discuss its low energy limit. We analyze the
effects of various parameters on the greybody factor in
Sec. IV and the energy emission of Hawking radiation in
Sec. V. We end with the conclusion and discussion
in Sec. VI.

II. BACKGROUND

The metric for a spherically symmetric Einstein-Gauss-
Bonnet–de Sitter black hole in d-dimensional spacetime is
given by [30]

ds2¼−hdt2þdr2

h
þ r2dΩ2

d−2;

h¼ 1þ r2

2~α

 
1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4~αm

rd−1
þ 8~αΛ
ðd−1Þðd−2Þ

s !
: ð2:1Þ

The parameter m is related to the mass of the black hole M
bym ¼ 16πGM

ðd−2ÞΩd−2
. In terms of the horizon radius rh,m can be

expressed as

m ¼ rd−3h

�
1þ ~α

r2h
−

2Λr2h
ðd − 1Þðd − 2Þ

�
: ð2:2Þ

Here ~α is related to the GB coupling constant α by
~α ¼ αðd − 3Þðd − 4Þ. In the limit ~α → 0, the metric returns
to that of the SdS black hole. GB constant has significant
effect on the stability of GB black holes. Through pertur-
bation analysis, it was found that the EGB-dS black holes
are unstable in certain parameter region. In our discussions,
the parameters are restricted to the stable region given in
[49–51] and will be chosen such that the spacetime always
has two horizons, the black hole horizon rh and the
cosmological horizon rc.
We consider a general scalar field coupled to the gravity

nonminimally

SΦ ¼ −
1

2

Z
ddx

ffiffiffiffiffiffi
−g

p ½ξΦ2Rþ ∂μΦ∂μΦ�: ð2:3Þ

Here ξ is the nonminimally coupling constant with ξ ¼ 0
corresponding to the minimally coupled case. The equation
of motion of the scalar field has the form

∇μ∇μΦ ¼ ξRΦ: ð2:4Þ
In a spherically symmetric background, we may make
ansatz

Φ ¼ e−iωtϕðrÞYl
ðd−2ÞðΩÞ; ð2:5Þ

where Yl
ðd−2ÞðΩÞ are spherical harmonics on Sd−2. Then the

angular part and the radial part are decoupled such that the
radial equation becomes
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1

rd−2
d
dr

�
hrd−2

dϕ
dr

�
þ
�
ω2

h
−
lðlþ d − 3Þ

r2
− ξR

�
ϕ ¼ 0:

ð2:6Þ

Introducing uðrÞ ¼ r
d−2
2 ϕðrÞ, we get

d2u
dr2⋆

þ ðω2 − Vðr⋆ÞÞu ¼ 0; ð2:7Þ

where r⋆ is the tortoise coordinate defined by
dr⋆ ¼ dr=hðrÞ. The effective potential reads

Vðr⋆Þ¼ h

�
lðlþd−3Þ

r2
þξRþd−2

2r
h0 þ ðd−2Þðd−4Þ

4r2
h

�
:

ð2:8Þ

It is obvious that the effective potential vanishes at the two
horizons. Its height increases with the angular momentum
number l. Fixing the black hole horizon rh ¼ 1, we can
study the dependence of the profile of the effective potential
on the angular momentum number l, the spacetime dimen-
sion d, the scalar coupling constant ξ, the cosmological
constant Λ and the GB coupling constant α.

III. GREYBODY FACTOR

The radial equation (2.6) cannot be solved analytically
over the whole space region. However, to read the greybody
factor, it is not necessary to solve the equation exactly.
Instead, one can solve the equation in two regions sepa-
rately, namely near the black hole horizon and the cosmo-
logical horizon regions, and then paste the solutions in the
intermediate region. In this procedure, the effect of the
cosmological constant should be put under control in order
to make the result as accurate as possible [34].

A. Near the event horizon

In the near event horizon region r ∼ rh, similar to the
case of SdS, we perform the following transformation

r → fðrÞ ¼ h

1 − ~Λr2
;

~Λ ¼ −
1

2~α

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8~αΛ

ðd − 1Þðd − 2Þ

s !
: ð3:1Þ

The new variable f ranges from 0 to 1 as r runs from rh to
the region r ≫ rh. Its derivative satisfies

df
dr

¼ 1 − f
r

AðrÞ
1 − ~Λr2

; ð3:2Þ

with

AðrÞ ¼ −2þ d − 1

2

 
1þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4~αm
ð1þ2~α ~ΛÞ2

1
rd−1

q
!
ð1 − ~Λr2Þ;

ð3:3Þ

in which the mass can be expressed as

m ¼ rd−3h ð1 − ~Λr2hÞ
�
1þ ~αð1þ ~Λr2hÞ

r2h

�
: ð3:4Þ

When ~α → 0, it returns to the case of the SdS black hole,
namely ASdS ¼ −2þ ðd − 1Þð1 − ~Λr2Þ.
Using the new variable, the radial equation near the even

horizon becomes

fð1 − fÞ d
2ϕ

df2
þ ð1 − BhfÞ

dϕ
df

þ
�
−
ðωrhÞ2
A2
h

þ ðωrhÞ2
A2
hf

−
λhð1 − ~Λr2hÞ
A2
hð1 − fÞ

�
ϕ ¼ 0: ð3:5Þ

in which

Bh ¼ 2 −
1 − ~Λr2h

A2
h

½ðd − 3ÞAh þ rA0ðrhÞ�;

λh ¼ lðlþ d − 3Þ þ ξRðhÞr2h; ð3:6Þ

where Ah¼AðrhÞ and RðhÞ¼−h00þðd−2Þ−2rh0þðd−3Þð1−hÞ
r2 jrh

is the Ricci scalar on the event horizon. In the derivation of
this equation we have used the approximation

ðωrhÞ2
A2
hfð1−fÞ∼

ðωrhÞ2ð1−fÞ
A2
hf

¼−
ðωrhÞ2
A2
h

þðωrhÞ2
A2
hf

; ð3:7Þ

near the event horizon f ∼ 0. The reason is that the solution
of the original radial equation has cusps due to the poles of
Gamma function, the unphysical behavior can be avoided by
using this approximation.2

This is in fact a Fuchsian equation with three singular-
ities f ¼ 0; 1;∞. To be clearer, make a redefinition
ϕ ¼ fα1ð1 − fÞβ1WðfÞ, Eq. (3.5) becomes

fð1−fÞd
2W
df2

þ½1þ2α1− ð2α1þ2β1þBhÞf�
dW
df

−
ω2r2hþA2

hðα1þβ1ÞðBhþα1þβ1−1Þ
A2
h

W¼ 0: ð3:8Þ

in which the coefficients are given by

2We thank Pappas and Kanti for their correspondences on this
point.
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α1 ¼ �i
ωrh
Ah

;

β1 ¼
1

2

�
2 − Bh �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − BhÞ2 þ

4λhð1 − ~Λr2hÞ
A2
h

s �
: ð3:9Þ

The solution of the differential equation (3.8) is the
standard hypergeometric function Fða1; b1; c1; fÞ with
parameters a1, b1, c1 being

a1 ¼ α1 þ β1 þ
1

2

 
Bh − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − BhÞ2 −

4ω2r2h
A2
h

s !
;

b1 ¼ α1 þ β1 þ
1

2

 
Bh − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − BhÞ2 −

4ω2r2h
A2
h

s !
;

c1 ¼ 1þ 2α1: ð3:10Þ

Considering the relation between ϕðfÞ and WðfÞ, near the
event horizon the radial function ϕðfÞ has the following
form

ϕH ¼A1fα1ð1−fÞβ1Fða1;b1;c1;fÞ
þA2f−α1ð1−fÞβ1Fð1þa1−c1;1þb1−c1;2−c1;fÞ:

where A1;2 are the constant coefficients. Near the event
horizon,

ϕH ≃ A1fα1 þ A2f−α1 ; and f ∝ eAhr⋆=rh : ð3:11Þ

Imposing the ingoing boundary condition near the event
horizon and choosing α1 ¼ −i ωrhAh

, we should set A2 ¼ 0.
Furthermore, the convergence of the hypergeometric func-
tion requires the real part Reðc1 − a1 − b1Þ > 0. Thus we
have to take the “−” branch of β1. In the end, the solution
near the event horizon is of the form

ϕH ¼ A1fα1ð1 − fÞβ1Fða1; b1; c1; fÞ: ð3:12Þ

B. Near the cosmological horizon

The solution in the near cosmological horizon region can
be solved similarly. The function h in the metric can be
approximated by [20,28,34]

hðrÞ ¼ 1 − ~Λr2 −
�rh
r

�
d−3ð1 − ~Λr2hÞ ∼ ~h ¼ 1 − ~Λr2:

ð3:13Þ

~h ranges from 0, at r ¼ rc, to 1 as r ≪ rc. In the above
approximation, the larger rc or the smaller ~Λ leads to more
accurate results. The approximation also becomes more
accurate for a larger spacetime dimension d.

Making the change of variable r → ~hðrÞ, near the
cosmological horizon, we have

~hð1 − ~hÞ d
2ϕ

d ~h2
þ
�
1 −

dþ 1

2
~h

�
dϕ

d ~h

þ
�ðωrcÞ2

4~h
−
lðlþ d − 3Þ
4ð1 − ~hÞ −

ξRðcÞr2c
4

�
ϕ ¼ 0; ð3:14Þ

where RðcÞ ¼ − ~h00 þ ðd − 2Þ −2r ~h0þðd−3Þð1− ~hÞ
r2 jrc is the Ricci

scalar at rc. After a replacement ϕð ~hÞ ¼ ~hα2ð1 − ~hÞβ2Xð ~hÞ,
we get

ð1 − ~hÞ ~h d
2X

d ~h2
þ
�
1þ 2α2 −

�
2α2 þ 2β2 þ

dþ 1

2

�
~h

�
dX

d ~h

−
2ðα2 þ β2Þðα2 þ β2 þ d − 1Þ þ ξRðcÞr2c

4
X ¼ 0;

ð3:15Þ

in which

α2 ¼ �i
ωrc
2

; β2 ¼ −
dþ l − 3

2
or

l
2
: ð3:16Þ

The solution of the differential equation (3.14) could be
written in terms of the hypergeometric functions as well.
Therefore, around the cosmological horizon, the radial
equation can be solved by

ϕC ¼B1
~hα2ð1− ~hÞβ2Fða2;b2;c2; ~hÞ

þB2
~h−α2ð1− ~hÞβ2Fð1þa2−c2;1þb2−c2;2−c2; ~hÞ;

ð3:17Þ

with the parameters

a2 ¼ α2 þ β2 þ
d − 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ2 − 4ξRðcÞr2c

q
4

;

b2 ¼ α2 þ β2 þ
d − 1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ2 − 4ξRðcÞr2c

q
4

;

c2 ¼ 1þ 2α2: ð3:18Þ
Here B1;2 are constant coefficients. The convergence of the
hypergeometric function requires Reðc2 − a2 − b2Þ > 0

such that we have to take β2 ¼ − dþl−3
2

.
Since the effective potential vanishes at rc, the solution is

expected to be comprised of the plane waves. Indeed, we
have

ϕC ¼ B1e−iωr⋆ þ B2eiωr⋆ ð3:19Þ
where r⋆ ¼ 1

2
rc ln

r=rcþ1
r=rc−1

is the tortoise coordinate near rc.
The first and second parts correspond to the ingoing and
outgoing waves, respectively. The sign in α2 just
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interchanges the ingoing and outgoing waves. We take α2 ¼
i ωrc

2
here. In contrast to what happens at the black hole

horizon, both the ingoing and outgoing waves are now
allowed. It is in fact their amplitudes that define the greybody
factor for the emission of the scalar fields by the back hole.
The greybody factor is given by

jγωlj2 ¼ 1 −
				B2

B1

				
2

: ð3:20Þ

C. Matching the solutions in the intermediate region

Now we have the asymptotic solutions in the near event
horizon region and the near cosmological horizon region.
In order to complete the solution, we must ensure that the
two asymptotic solutions, ϕH and ϕC can be smoothly
pasted at the intermediate region.

1. Black hole horizon

First let us consider the near black hole horizon solution.
Due to the fact that in the intermediate region r ≫ rh, the
variable f → 1, we can use the following relation for the
hypergeometric function

Fða; b; c; fÞ ¼ ΓðcÞΓðc − a − bÞ
Γðc − aÞΓðc − bÞ
× Fða; b; aþ b − cþ 1; 1 − fÞ

þ ð1 − fÞc−a−b ΓðcÞΓðaþ b − cÞ
ΓðaÞΓðbÞ

× Fðc − a; c − b; c − a − bþ 1; 1 − fÞ
ð3:21Þ

to shift the argument from f to 1 − f. For simplicity we
consider the case Λr2h ≪ 1. Then in the region where
r ≫ rh, we have Ah ≃ d − 3. This is reasonable only if
Λr2 ≃ r2=r2c ≪ 1. For r ≫ rh, from (3.1) we have

h → 1 − ~Λr2 þO
�
rd−3h

rd−3

�
: ð3:22Þ

Then the Ricci scalar RðhÞ → 2dΛ
d−2. Thus if ξ is not too big,

the term ξRðhÞr2h → ξ
2dΛr2h
d−2 ≪ 1 and can be omitted.

Therefore, we have Bh ≃ 1, β1 ≃ − l
d−3.

Now we have

1 − f ≃
�
1þ ~α

r2h

��
rh
r

�
d−3

β1 þ c1 − a1 − b1 ≃ lþ d − 3

d − 3
: ð3:23Þ

In the intermediate region r ≫ rh, the solution (3.12) can
be expanded into the form

ϕH ≃ Σ2rl þ Σ1r−l−dþ3 ð3:24Þ

where

Σ1 ¼ A1

Γðc1ÞΓða1 þ b1 − c1Þ
Γða1ÞΓðb1Þ

�
1þ ~α

r2h

�lþd−3
d−3

rlþd−3
h ;

Σ2 ¼ A1

Γðc1ÞΓðc1 − a1 − b1Þ
Γðc1 − a1ÞΓðc1 − b1Þ

�
1þ ~α

r2h

� −l
d−3
r−lh : ð3:25Þ

Note that the aforementioned approximations are appli-
cable only for the expressions involving the factor (1 − f)
and not for the parameters in the Gamma function to
increase the validity of the analytical results [34].

2. Cosmological horizon

Now let us turn to the solution near the cosmological
horizon. Similar to the treatment above, we may shift the
argument of the hypergeometric function from ~h to 1 − ~h
since for the intermediate region ~h → 1. We still work with
a small cosmological constant. In the region where r ≪ rc,
we have

1 − ~h≃
�
r
rc

�
2

ð3:26Þ

and β2 ≃ − lþd−3
2

, β2 þ c2 − a2 − b2 ≃ l=2. Following the
similar procedure, we get

ϕC≃ ðΣ3B1þΣ4B2Þr−ðlþd−3Þ þðΣ5B1þΣ6B2Þrl ð3:27Þ

where

Σ3 ¼
Γðc2ÞΓðc2 − a2 − b2Þ
Γðc2 − a2ÞΓðc2 − b2Þ

rlþd−3
c ;

Σ4 ¼
Γð2 − c2ÞΓðc2 − a2 − b2Þ

Γð1 − a2ÞΓð1 − b2Þ
rlþd−3
c ;

Σ5 ¼
Γðc2ÞΓða2 þ b2 − c2Þ

Γða2ÞΓðb2Þ
r−lc ;

Σ6 ¼
Γð2 − c2ÞΓða2 þ b2 − c2Þ

Γða2 − c2 þ 1ÞΓðb2 − c2 þ 1Þ r
−l
c : ð3:28Þ

It is obvious that solutions (3.24) and (3.27) have the same
power-law. Identifying the coefficients of the same powers
of r in (3.24) and (3.27), we get the relations

Σ3B1 þ Σ4B2 ¼ Σ1; Σ5B1 þ Σ6B2 ¼ Σ2: ð3:29Þ

Solving the constraints and plugging them into the expres-
sion for the greybody factor for the emission of scalar fields
by a higher dimensional EGB-dS black hole, we get

jγωlj2 ¼ 1 −
				Σ2Σ3 − Σ1Σ5

Σ1Σ6 − Σ2Σ4

				
2

: ð3:30Þ

This expression takes the same form as that for the Einstein
gravity [34]. But due to the differences among the explicit
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expressions of Σs, it depends not only on the cosmological
constant Λ and the non-minimal coupling ξ, but also on the
GB coupling constant α.
As mentioned in [34], the greybody factor (3.30) is more

accurate for a smaller cosmological constant and a larger
distance between rh and rc. On the other hand, in contrast
with all the previous similar matching procedures herewe do
not make any assumption on the energy ω in the approxi-
mation, thus it might be possible that our analytical result can
be valid beyond the low energy region. However, as we will
see in the following section there are obvious deviations in
the high energy region from the reasonable expected results,
which means that the matching procedure only applies to the
low energy region. This is because that the continuations of
the asymptotic solutions near the event/cosmological horizon
deviate from the exact solution in the intermediate region so
the higher energy modes lead to larger deviations. Instead,
one can numerically integrate the radial equation (2.6) in the
intermediate region to get the more exact greybody factors
for high energy modes. We leave this to future work.

D. Low energy limit

As we mentioned above, the analytical result of the
greybody factor is only valid for low energy modes,
therefor before analyzing the effects of various parameters
on the greybody factor, we derive the low energy limit of
the greybody factor in this subsection.

1. Minimal coupling ξ = 0 and dominant mode l = 0

Let us consider the minimally coupling ξ ¼ 0 case and
the dominant mode l ¼ 0 first. In this case, we obtain

Σ1 ∼ A1

iω
2 − Bh0

�
1þ ~α

r2h

�
1

Ah0
rd−2h þOðω2Þ;

Σ2 ∼ A1 þOðωÞ; Σ3 ∼
iω

d − 3
rd−2c þOðω2Þ;

Σ4 ∼
−iω
d − 3

rd−2c þOðω2Þ; Σ5;6 ∼ 1þOðωÞ ð3:31Þ

where

Ah0 ¼
ðd − 3Þr2h þ ðd − 5Þ ~α

r2h þ 2~α
;

Bh0 ¼
ðd − 3Þr2h − 4~α

ðd − 3Þr2h þ ðd − 5Þ ~α ;

λh0 ¼ lðlþ d − 3Þ þ ðd − 1Þ ~αξ

×
ð2 − dÞr4h þ 4r2h ~αþ 2ðdþ 1Þ ~α2

ðr2h þ 2~αÞ3 : ð3:32Þ

Then the greybody factor becomes

jγωlj2¼
4ðd−3ÞAh0ð2−Bh0Þ

�
1þ ~α

r2h

�
ðrhrcÞd−2h

ðd−3Þ
�
1þ ~α

r2h

�
rd−2h þAh0ð2−Bh0Þrd−2c

i
2
þOðωÞ:

ð3:33Þ

Thus the scalar particle with very low energy has a non-
vanishing probability of being emitted by a higher dimen-
sional EGB-dS black hole. This is in fact a characteristic
feature of the propagation of free massless scalar in the dS
spacetime. However, the GB term changes the value of the
greybody factor. For instance, for a small ~α, up to the first
order of ~α,

jγωlj2 ¼
4ðrhrcÞd−2

ðrd−2h þ rd−2c Þ2 þ
4rd−2c rd−2h ðrd−2c − rd−2h Þ

ðrd−2c þ rd−2h Þ3
~α

r2h
þOðω; ~α2Þ: ð3:34Þ

Wesee that ~α increases thegreybody factor ofmassless scalar
in the EGB-dS black hole background. When ~α → 0, we
reproduce the low energy greybody factor for the mode
l ¼ 0, in accordance to the previous higher dimensional
analysis [20,26,34].

2. Nonminimally coupling case ξ ≠ 0

Now we calculate the low energy greybody factor for a
nonminimally coupled scalar. In this case, we can expand
the combinations in the low energy limit as

Σ2Σ3 ¼ Eþ iΣ231ωþ Σ232ω
2;

Σ1Σ5 ¼ K þ iΣ151ωþ Σ152ω
2;

Σ2Σ4 ¼ Eþ iΣ241ωþ Σ242ω
2;

Σ1Σ6 ¼ K þ iΣ161ωþ Σ162ω
2: ð3:35Þ

in which E;K;Σ231;Σ232;Σ151;Σ152;Σ241;Σ242;Σ161;Σ162

are the expansion coefficients, whose explicit expressions
are lengthy and will not be given here. The final result for
the greybody factor turns out to be

jγωlj2 ¼
4π8ðrcrhÞdþ2lþ3RCRH

�
1þ ~α

r2h

�2lþdþ3
d−3

sin2ðπδÞsin2ðπϵÞsin2ðπηþÞsin2ðπη−Þðδþ ϵ − 1Þðηþ þ η− − 1ÞC2
ω2 þOðω3Þ; ð3:36Þ
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in which RH ¼ rh
Ah0

, RC ¼ rc
2
and

δ ¼ 1

2

�
Bh0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − Bh0Þ2 þ

4λh0
A2
h0

s �
;

ϵ ¼ 1

2

�
2 − Bh0 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 − Bh0Þ2 þ

4λh0
A2
h0

s �
;

η� ¼
5 − d − 2l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd − 1Þ2 − 4ξRðcÞr2c

q
4

; ð3:37Þ

and

C ¼ r3cr
dþ2l
h

�
1þ ~α

r2h

�dþ2l
d−3

Γð1 − δÞΓð1 − ϵÞΓðδþ ϵ − 1Þ

× Γð1 − ηþÞΓð1 − η−ÞΓðηþ þ η− − 1Þ

− rdþ2l
c r3h

�
1þ ~α

r2h

� 3
d−3
ΓðδÞΓðϵÞΓð1 − δ − ϵÞ

× ΓðηþÞΓðη−ÞΓð1 − ηþ − η−Þ:

Note that the first nonvanishing term in the low energy
expansion is of order Oðω2Þ. This holds for all partial
waves including the dominant mode l ¼ 0. Therefore, there
is no modewith a nonvanishing low energy greybody factor
for the nonminimally coupled scalar. This has a simple
explanation: from the equation of motion for the non-
minimally coupled scalar, we see that the coupling constant
ξ plays a role of an effective mass for the scalar and breaks
the infrared enhancement, as mentioned in the introduction.

IV. THE EFFECTS OF VARIOUS PARAMETERS

There are several parameters in the theory which
influence the greybody factor for the nonminimally coupled
scalar propagating in the EGB-dS black hole spacetime.
These parameters include the non-minimally coupling
constant ξ, angular momentum number l, the spacetime
dimension d, the cosmological constant Λ, and the GB
coupling constant ~α. In fact, the parameters ξ, l, d, Λ have
the similar effects on the greybody factor of the EGB-dS
black hole as they have for that of the SdS black hole.
Therefore, we focus on the effect of the GB coupling
constant ~α on the greybody factor. To analyze their effects
more clearly, we plot the dependence of the greybody factor
on these parameters and the corresponding effective poten-
tials in the following.

A. The case ~α= 0

For the purpose of comparison, we produce Fig. 1 to
show that our results agree with the SdS results (figure 8 in
[34]) in the limit ~α → 0. From Fig. 1 we see that the
suppression of the greybody factor by the angular momen-
tum number l is obvious in the left upper panel, both for

minimally or nonminimally coupled scalar. As shown in
(3.33), for the dominant mode l ¼ 0 of the minimally
coupled scalar ξ ¼ 0, we find a nonvanishing greybody
factor for the low energy emission. While for the non-
minimally coupled scalar, the greybody factor for the low
energy mode vanishes. Moreover, ξ decreases the greybody
factor when other parameters are fixed. We plot the
effective potential in the lower panel to have an intuitive
explanation. It can be seen that the effective potential
barriers become higher with ξ, as a consequence it becomes
more difficult for the scalar to transverse the barrier to reach
the near horizon region. So the greybody factor decreases
with ξ.

B. Effects of ~α

Now we study the effects of the Gauss-Bonnet parameter
~α on the greybody factor.

1. Effects of ~α on different partial modes l

In Fig. 2 we plot the greybody factor for the minimally
coupled scalar when ~α ¼ 0.5. From the left upper panel, we
find the suppression of the greybody factor by the angular
momentum number l as well. For the dominant mode l ¼ 0,
there is a nonvanishing greybody factor for the low energy
modes. Unlike the case that the greybody factors for zero
modes vanish when ξ ≠ 0, the presence of ~αmakes it have a
nonzero value. The greybody factors with respect to ~α for
the dominant mode are shown in the right upper panel. It is
obvious that the greybody factor does not vanish when
ω ¼ 0. Actually, it increases with ~α. We plot the corre-
sponding effective potential in the lower panel to give an
intuitive interpretation. The effective potential decreases
with ~α when other parameters are fixed. Thus it becomes
easier for the scalar to transverse it and the greybofy factor
is enhanced with ~α.

2. The competition between ~α and ξ

Since the nonminimally coupling ξ suppresses the
Hawking radiation (as we can see in section IVA) while
the Gauss-Bonnet term ~α enhances it, there must be a
competition between them. In Fig. 3, we find that when ξ is
small (ξ ¼ 0.1 in the left panel), ~α increases the greybody
factor. When ξ is large (ξ ¼ 0.5 in the right panel), ~α
decreases the greybody factor. This phenomenon appears
also for ξ and Λ which will be shown in subsection IV B 4.
However, unlike the competition between ξ and Λ, the
competition between ξ and ~α is too involved for us to have
an intuitive analysis from the effective potential.

3. Effects of ~α on modes in different dimensional
spacetimes d

Now let us study the dependence of the greybody factor
on the spacetime dimension d in the presence of ~α. In
Fig. 4, we see that the greybody factor is significantly
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suppressed in higher dimensions. For example, for d ¼ 6,
8, 10 the greybody factors for the minimally coupled scalar
at ω ¼ 0 have values of order 10−4, 10−7 and 10−10,
respectively. For different dimensions the greybody factor
still increases with ~α. We plot the effective potential in the
right panel. We see that the potential barrier increases
significantly with d. Thus it becomes harder for the scalar
to transverse the barrier and the greybody factor decreases
with d. On the other hand, ~α decreases the potential barrier
and so increases the greybody factor.3

Note that in Fig. 4 we plot only the greybody factors in
the low energy region. In the high energy region the
greybody factors decrease to zero which is unreasonable
since the high energy modes can transverse the potential
barrier easier and the greybody factors should approach
to 1. Thus as we mentioned before, though we do not

restrict energy ω in the derivation of the greybody factors,
this matching approach is still limited to low energy region.
Moreover, due to the poles of the Gamma functions in the
solution, we are not able to obtain the analytical results for
odd dimensional spacetimes. A complete analysis is needed
and we leave it to future work.

4. Competition between ξ and Λ in the presence of ~α

We plot the competition between ξ and Λ when ~α ¼ 0.5
in Fig. 5. As we can see from the left upper panel, when ξ is
small, the greybody factor increases with Λ. However,
when ξ is large enough, the greybody factor decreases with
Λ, as shown in the right upper panel. We show the
corresponding effective potentials in the lower panels. It
is obvious that when ξ is small, the potential barrier
decreases with Λ. The situation is reversed when ξ is
large. Thus when ξ is small, Λ enhances the greybody
factor. When ξ is large enough, Λ decreases the greybody
factor. The phenomenon is observed similarly in the SdS

FIG. 1. Effects of parameters l and ξ. The greybody factors (upper panel) and corresponding effective potential (lower panel) for the
scalar fields when d ¼ 6,Λ ¼ 0.1, ~α ¼ 0. Left panel for l ¼ 0, 1, 2, 3, 4 and ξ ¼ 0 (solid lines) or ξ ¼ 0.3 (dashed lines). Right panel for
l ¼ 0 and ξ ¼ 0, 0.1, 0.2, 0.3, 0.4, 0.5.

3For the large d behavior of the EGB black holes, one can find
the study in [52,53].
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FIG. 2. Effects of l and ~α. The greybody factors (upper panel) and corresponding effective potential (lower panel) for d ¼ 6, Λ ¼ 0.1,
ξ ¼ 0. Left panel for l ¼ 0, 1, 2, 3 and ~α ¼ 0 (solid lines) or ~α ¼ 0.5 (dashed lines). Right panel for l ¼ 0 and ~α ¼ 0,
0.1, 0.2, 0.3, 0.4, 0.5.

FIG. 3. The competition between ξ and ~α. Greybody factors for d ¼ 6, l ¼ 0, Λ ¼ 0.1, ξ ¼ 0.1 (left) and ξ ¼ 0.5 (right) with respect
to ~α ¼ 0.5, 0.7, 0.9 respectively.
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FIG. 4. Effects of d and ~α. The greybody factors (left panel) and corresponding effective potentials (right panel) for Λ ¼ 0.1, ξ ¼ 0,
l ¼ 0 and d ¼ 6, 8, 10 with ~α ¼ 0 (solid lines) or ~α ¼ 0.5 (dashed lines).

FIG. 5. The competition between ξ and Λ. The greybody factors (upper panel) and corresponding effective potentials (lower panel) for
d ¼ 6, l ¼ 0, ~α ¼ 0.5 with respect to Λ ¼ 0.01, 0.1, 0.2, 0.3. Left panel for ξ ¼ 0. Right panel for ξ ¼ 0.5.
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case [34]. It is due to the double roles Λ plays in the
equations of motion. As a homogeneously energy distrib-
uted in the whole spacetime, it subsidizes the energy of
emitted particle and hence enhances the radiation. As an
effective mass term through the nonminimally coupling
term, it suppresses the emission. The competition between
these two different contributions leads to the phenomenon
we observed.

V. ENERGY EMISSION RATE OF HAWKING
RADIATION

Greybody factor characterizes the transmissivity of a
particular mode. The more direct quantity is the energy
emission rate, i.e., the power spectra of Hawking radiation.
It is given by [19,26,54]

d2E
dtdω

¼ 1

2π

X
l

Nljγωlj2ω
eω=TBH − 1

ð5:1Þ

where ω is the energy of the emitted particle, jγωlj2 the

greybody factor in Eq. (3.30), Nl ¼ ð2lþd−3Þðlþd−4Þ!
l!ðd−3Þ! the

multiplicity of states that have the same angular momentum
number. TBH is the normalized temperature of the black
hole determined by the surface gravity as [45,55]

TBH ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
hðr0Þ

p 1

4π

�ðd−2Þ½ðd−3Þr2hþðd−5Þ ~α�−2Λr4h
ðd−2Þrhðr2hþ2~αÞ

�
:

ð5:2Þ

Here r0 is the position where hðrÞ is extreme. We mainly
consider the effects of ξ and α on the power spectra in this
section. Since modes higher than l > 6 have contributions
many orders of magnitude lower than those of the l ≤ 6
modes, their contributions to the energy emission rate are
ignored safely.

=

=

=

FIG. 6. Power spectra of Hawking radiation for d ¼ 6, ~α ¼ 0.5, Λ ¼ 0.1 with respect to ~α ¼ 0.5, ξ ¼ 0, 0.1, 0.2, 0.3, 0.4, 0.5
(left panel) and ξ ¼ 0 and ~α ¼ 0, 0.1, 0.2, 0.3, 0.4, 0.5 (right panel).

FIG. 7. Power spectra of Hawking radiation for d ¼ 6, ~α ¼ 0.5 with respect to Λ ¼ 0.01, 0.1, 0.2, 0.3. Left panel for ξ ¼ 0. Right
panel for ξ ¼ 0.5.
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A. The effects of ξ and α

We plot the dependence of power spectra on ξ and α
in Fig. 6.
It has been found that ξ suppresses the Hawking

radiation in SdS background. In the left panel, we see that
ξ still suppresses the Hawking radiation in EGB-dS back-
ground. This behavior is coincident with that of greybody
factor in Fig. 1. Since the greybody factor decreases with ξ,
as can be seen from Eq. (5.1), the power spectra decreases
when other parameters are fixed.
In the right panel, we see that ~α also suppresses the

Hawking radiation. Since ~α increases the greybody factor in
Fig. 2, it seems strange at first sight. However, the power
spectra also depends on the temperature of the black hole. It
can be proved easily that the normalized temperature in
Eq. (5.2) decreases with ~α. This leads to the decrease of the
power spectra with ~α finally.

B. The competition between ξ and Λ
We have observed that there is a competition between

the contribution of ξ and Λ for greybody factor in
subsection IV B 4. In fact, they have the similar competi-
tion for power spectra of Hawking radiation. We plot their
influences on the power spectra in Fig. 7. It is obvious that
when ξ is small, Λ increases the Hawking radiation. When
ξ is large enough, Λ decreases the Hawking radiation. Note
that the existence of EGB coupling constant does not
change this behavior qualitatively.

VI. CONCLUSION AND DISCUSSION

We studied the greybody factors of the Hawking radi-
ation for the minimally and nonminimally coupled scalar
fields in a higher dimensional Einstein-Gauss-Bonnet-dS
black hole spacetime. Solving the equations of motion near
the event horizon and cosmological horizon separately and
matching them in the intermediate region, we derived an
analytical formula for the greybody factors when the
cosmological constant is small. The larger the distance
between the cosmological horizon and the event horizon,
the more accurate the analytical formula.
The effects of various parameters, such as the angular

momentum number l, the nonminimally coupling constant

ξ, the cosmological constant Λ, the GB coupling constant
~α, and the spacetime dimension d, on the greybody factor
were studied in detail. We found that when other param-
eters are fixed, similar to the case without the GB term, l, ξ
or d suppresses the greybody factor separately. However,
the GB coupling constant ~α enhances the greybody factor.
We analyzed the competition between ξ and ~α. We also
studied their effects on the power spectra of Hawking
radiation, and found that both of them suppressed
the power spectra. The effect of the cosmological constant
Λ is more involved. When ξ is small, it enhances the
greybody factor. When ξ is large enough, it suppresses the
greybody factor. We plotted the effective potentials to
give some intuitive explanations to the phenomenons we
observed.
For the dominant mode l ¼ 0, the greybody factor for the

minimally coupled scalar is nonvanishing when ω ¼ 0.
This feature is characteristic for the free massless scalar
propagating in the dS black hole spacetime. For the
EGB-dS black hole, the presence of GB constant ~α
preserves this feature qualitatively. But quantitatively, it
increases the greybody factor at ω ¼ 0.
For the nonminimally coupled scalar, the greybody

factors are of order Oðω2Þ and vanish for the low energy
modes for all the partial modes l including l ¼ 0. This can
be explained by the fact that for the non-minimally coupled
scalar, ξ plays the role of effective mass and hinders the
Hawking radiation when ω → 0. We obtained the coef-
ficient of the term at Oðω2Þ for the EGB-dS black hole
background.
As we mentioned in the context, the results we obtained

is only be valid in the low energy region, by using the
numerical method we may be able to obtain the greybody in
the high energy region. We leave this work to future.
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