
 

Geodesic motion in the five-dimensional Myers-Perry-AdS spacetime
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In this article we study the geodesic motion of test particles and light in the five-dimensional Myers-
Perry-anti–de Sitter spacetime. We derive the equations of motion and present their solutions in terms of the
Weierstrass ℘, σ, and ζ functions. With the help of parametric diagrams and effective potentials, we analyze
the geodesic motion and give a list of all possible orbit types for timelike, null, and spacelike geodesics. We
plot examples of the orbits and take a look at the photon region in five dimensions. Furthermore, we study
spacelike geodesics and their relation to the AdS/CFT correspondence.
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I. INTRODUCTION

In 1997, quantum field theory was connected to gravity
by famous anti–de Sitter/conformal field theory (AdS/CFT)
correspondence [1]. In particular, compactifications of
string theory on anti–de Sitter space were related to a
conformal field theory. This made asymptotically anti–de
Sitter black holes an interesting phenomenon to study.
The first rotating AdS black hole in four dimensions was

described by Carter [2], shortly after Kerr proposed his
asymptotically flat rotating black hole solution [3]. The
higher-dimensional generalization of the Kerr black hole
was found by Myers and Perry [4]. The d-dimensional
Myers-Perry black hole possesses ⌊ðd − 1Þ=2⌋ rotation
parameters associated with ⌊ðd − 1Þ=2⌋ independent
planes of rotation. Hawking et al. [5] found a five-
dimensional rotating AdS black hole with two rotation
parameters. This solution was extended to higher dimen-
sions [6,7] and moreover the Newman-Unti-Tamburino
(NUT) parameter was included [8].
The study of the orbits of test particles and light in a

spacetime is a powerful method to explore black holes and
to test different models and theories. Observable quantities
like the periastron shift of bound orbits, the light deflection
angle of escape orbits, or the shadow of a black hole can be
compared to observations. Geodesics provide insight to the
structure of the spacetime and information on the black
hole. In particular, geodesics can be related to two-point
correlators in AdS/CFT [9].
The Hamilton-Jacobi formalism has proved to be very

efficient in deriving the equations of motion. Carter [2]
showed that the Hamilton-Jacobi equation for test particles
in the Kerr spacetime separates. The equations of motion in

the four-dimensional Kerr spacetime can be solved ana-
lytically in terms of elliptic functions. However, when the
cosmological constant is added to the four-dimensional
Kerr spacetime hyperelliptic functions are required for the
analytical solution [10–16].
In [17] the equations of motion in the five-dimensional

Myers-Perry spacetime were given and different types of
orbits were analyzed. In higher dimensions the separability
of rotating (A)dS spacetimes was shown in [18–23]. The
separability of the Myers-Perry spacetime and its charged
version in arbitrary dimensions was shown in [24] by
constructing Killing-Yano tensors. A method to solve the
equations of motion in the higher-dimensional Myers-Perry
spacetime with a single rotation parameter was presented in
[25]. There hyperelliptic functions were involved. However,
in the five-dimensional Myers-Perry spacetime with two
rotation parameters, it is possible to solve the geodesic
equations analytically in terms of elliptic functions [26,27].
Although the four-dimensional Kerr-Newman solution of

Einstein’s field equation could not be generalized to higher
dimensions yet, solutions of the Einstein-Maxwell-Chern-
Simons field equations in the five-dimensional minimal
gauged supergravity have been found [28,29]. This solution
is determined by themass, two angular momenta, an electric
charge, and a (negative) cosmological constant. The geo-
desic equations of this spacetime have been solved analyti-
cally in [30] in the case of a vanishing cosmological
constant. For a nonvanishing cosmological constant, but a
vanishing electrical charge, the solution reduces to the
Myers-Perry-AdS spacetime. Delsate et al. investigated
the geodesic motion in the five-dimensional Myers-Perry-
AdS spacetime with two equal angular momenta [31]. The
geodesics in another spacetime in minimal supergravity
were studied in [32] and later in [33]. There a charged
rotating extremal black hole, the Breckenridge-Myers-Peet-
Vafa solution, was considered. Charged geodesics in the
same spacetime were studied in [34].
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In the present article we study the geodesic motion of test
particles and light in the general five-dimensional Myers-
Perry-AdS spacetime with two independent angular
momenta and a negative cosmological constant. We start
with a short discussion of the Myers-Perry-AdS spacetime
and derive the equations of motion in Sec. II. In Sec. III we
analyze timelike and null geodesics using parametric
diagrams and the effective potential to give a list of all
possible types. We also study the photon region and the
conditions for orbits ending in the singularity. Furthermore,
in Sec. IV we look at spacelike geodesics and comment on
the application of these geodesics in AdS/CFT. The
equations of motion are solved analytically in terms of
the Weierstrass ℘, σ, and ζ functions in Sec. V. Examples of
the orbits are shown in Sec. VI. In Sec. VII we conclude
and give an outlook on possible future work.

II. THE MYERS-PERRY-ANTI DE SITTER
SPACETIME

In a coordinate frame which is nonrotating at infinity, the
Myers-Perry-AdS spacetime is given by (compare [28]
with q ¼ 0)

ds2 ¼ −
Δθð1þ g2r2Þdt2

ΞaΞb

þ 2M
ρ2

�
Δθdt
ΞaΞb

− asin2θ
dϕ
Ξa

− bcos2θ
dψ
Ξb

�
2

þ r2 þ a2

Ξa
sin2θdϕ2 þ r2 þ b2

Ξb
cos2θdψ2

þ ρ2dθ2

Δθ
þ ρ2r2dr2

Δr
: ð1Þ

The metric is given in asymptotically static Boyer-
Lindquist-like coordinates. It is characterized by its mass
related to the parameter M, two independent rotation
parameters a, b and the (negative) cosmological constant
which is represented by g2 ¼ − Λ

4
. In the following we

assume without loss of generality that a ≥ b. The metric
functions are

Ξa ¼ 1 − a2g2;

Ξb ¼ 1 − b2g2;

Δθ ¼ 1 − a2g2cos2θ − b2g2sin2θ;

Δr ¼ ðr2 þ a2Þðr2 þ b2Þð1þ g2r2Þ − 2Mr2;

ρ2 ¼ r2 þ a2cos2θ þ b2sin2θ: ð2Þ

Myers and Perry introduced a new radial coordinate x ¼ r2,
so that the whole spacetime is covered [4,35]. Applying this
to the Myers-Perry-AdS metric (1) yields

ds2 ¼ −
Δθð1þ g2xÞdt2

ΞaΞb

þ 2M
ρ2

�
Δθdt
ΞaΞb

− asin2θ
dϕ
Ξa

− bcos2θ
dψ
Ξb

�
2

þ xþ a2

Ξa
sin2θdϕ2 þ xþ b2

Ξb
cos2θdψ2

þ ρ2dθ2

Δθ
þ ρ2dx2

4Δx
; ð3Þ

with

Δx ¼ ðxþ a2Þðxþ b2Þð1þ g2xÞ − 2Mx;

ρ2 ¼ xþ a2cos2θ þ b2sin2θ: ð4Þ
The Myers-Perry-AdS black hole has a singularity for
ρ2 ¼ 0, which is the same condition as in the asymptoti-
cally flat case g ¼ 0. The singularity is a closed surface in
the range x ∈ ½−a2;−b2� and cannot be traversed, even
when one of the two rotations parameters is vanishing [27].
We shift the coordinate x by þa2 in the usual trans-
formation from Boyer-Lindquist to Cartesian coordinates

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 2a2

p
sin θ cosϕ;

Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ 2a2

p
sin θ sinϕ;

Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ b2 þ a2

p
cos θ cosψ ;

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xþ b2 þ a2

p
cos θ sinψ : ð5Þ

The coordinate ranges are x ∈ ½−a2;∞�, θ ∈ ½0; π
2
�,

ϕ ∈ ½0; 2π�, and ψ ∈ ½0; 2π�. Figure 1 shows the singularity
for different rotation parameters in the X − Z plane
(ϕ ¼ ψ ¼ 0).
The horizons of the black hole are given by Δx ¼ 0,

whereΔx is a third order polynomial in x. Applying the rule
of Descartes we find that Δx has a single negative and
possibly two positive zeros if 2M ≥ a2 þ b2 þ a2b2g2.
There are one or three negative zeros if 2M < a2 þ b2þ
a2b2g2. For positive M all negative zeros are smaller than
−a2, but for negativeM a negative zero can be greater than
−b2. However, at least in the case g ¼ 0 it was pointed out
by Gibbons and Herdeiro [35] that this negative zero for
M < 0 does not correspond to a regular horizon.
The number of zeros changes if Δx has a double zero.

Figure 2 shows a parametric a − b diagram for positive M,
plotted from the conditions Δx ¼ 0 and dΔx

dx ¼ 0. There are
three regions with different numbers of zeros. Positive
horizons are only present for small rotation parameters in
region (A); here Δx has two positive zeros and a single
negative zero which is smaller than −a2. Regions (B) (one
zero < −a2) and (C) (three zeros < −a2) correspond to a
naked singularity.
The boundary of the ergoregion is defined by gtt ¼ 0 and

therefore
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2MΔθ − ρ2ð1þ g2xÞ ¼ 0; ð6Þ
which has two solutions

x�ergo ¼
1

2g2

�
Δθ − 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔθðΔθ þ 8Mg2Þ

q �
: ð7Þ

The solution x−ergo is smaller than −a2 (if the parameters are
chosen such that horizons exist) and lies not within the
allowed range of x. The ergoregion is the space between the
event horizon and xþergo, the so called static limit (see Fig. 1).
Equations of motion for test particles in the Myers-Perry-

AdS spactime in a nonrotating coordinate frame (1) can be

derived with the Hamilton-Jacobi formalism. To solve the
Hamilton-Jacobi equation

∂S
∂λ þ

1

2
gμν

∂S
∂xμ

∂S
∂xν ¼ 0 ð8Þ

we use the following ansatz for the action S:

S ¼ 1

2
δλ − Etþ Lϕþ Jψ þ SrðrÞ þ SθðθÞ; ð9Þ

where E is the energy of the test particle and L, J are the
two angular momenta. δ represents the mass of the test
particle. We choose δ ¼ 1 for timelike geodesics, δ ¼ 0 for
null geodesics, and δ ¼ −1 for spacelike geodesics. Along
the geodesics λ is an affine parameter. The Hamilton-Jacobi
equation (8) separates with the help of the Carter [36]
constant K and yields five differential equations of motion�

dx
dγ

�
2

¼ XðxÞ; ð10Þ
�
dθ
dγ

�
2

¼ ΘðθÞ; ð11Þ
�
dϕ
dγ

�
¼ 1

Δx
fLΞað1þ g2xÞðb2 þ xÞðb2 − a2Þ

þ 2M½Eaðb2 þ xÞ − Lðb2 þ a2g2xÞ

− Jabð1þ g2xÞ�g þ LΞa

sin2θ
; ð12Þ

�
dψ
dγ

�
¼ 1

Δx
fJΞbð1þ g2xÞða2 þ xÞða2 − b2Þ

þ 2M½Ebða2 þ xÞ − Jða2 þ b2g2xÞ

− Labð1þ g2xÞ�g þ JΞb

cos2θ
; ð13Þ

(a) (b) (c)

FIG. 1. (a) a ¼ 0.5 and b ¼ 0, (b) a ¼ 0.5 and b ¼ 0.1, (c) a ¼ 0.5 and b ¼ 0.4. Plots of the singularity given by ρ2 ¼ 0 (grey
structure with black boundary) and the horizons given by Δx ¼ 0 (grey dashed lines) with M ¼ 0.5, g ¼ 0.01, and various rotation
parameters. The red dotted line is the static limit, the boundary of the ergoregion. The Cartesian coordinates from Eq. (5) are used in the
plane ϕ ¼ ψ ¼ 0.

FIG. 2. Parametric a − b diagram (M ¼ 0.5, g ¼ 1) showing
three regions with different numbers of zeros of Δx. In region (A)
Δx has a single negative and two positive zeros, therefore two
horizons exist. There is a single negative zero in regions (B) and
three negative zeros in region (C). Regions (B) and (C) corre-
spond to a naked singularity.
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�
dt
dγ

�
¼ 1

Δx
fE½2Mðða2 þ b2Þxþ a2b2Þ þ ðxþ a2Þðxþ b2Þðx − ða2 þ b2Þgx − a2b2g2Þ�

−2M½aLðb2 þ xÞ þ Jbða2 þ xÞ�g þ E
Δθ

ðΞaa2cos2θ þ Ξbb2sin2θÞ; ð14Þ

with the polynomial XðxÞ of order four and the function ΘðθÞ

XðxÞ ¼ −4fΔxðK þ δxÞ þ E2½−2Mðða2 þ b2Þxþ a2b2Þ − ðxþ a2Þðxþ b2Þðx − ða2 þ b2Þg2x − a2b2g2Þ�
þ L2½Ξað1þ g2xÞðb2 þ xÞðb2 − a2Þ − 2Mða2g2xþ b2Þ�
þ J2½Ξbð1þ g2xÞða2 þ xÞða2 − b2Þ − 2Mðb2g2xþ a2Þ�
þ 4M½ELaðb2 þ xÞ þ EJbða2 þ xÞ − LJabð1þ g2xÞ�g; ð15Þ

ΘðθÞ ¼ KΔθ þ E2ðΞaa2cos2θ þ Ξbb2sin2θÞ − Δθ

�
δða2cos2θ þ b2sin2θÞ þ L2Ξa

sin2θ
þ J2Ξb

cos2θ

�
: ð16Þ

We applied the Mino [37] time γ as ρ2dγ ¼ dλ to remove the factor ρ2 from all equations. From now on we will use
dimensionless quantities in the equations of motion which is achieved by setting

x → 2Mx; t →
ffiffiffiffiffiffiffi
2M

p
t; γ →

γffiffiffiffiffiffiffi
2M

p ; a →
ffiffiffiffiffiffiffi
2M

p
a; b →

ffiffiffiffiffiffiffi
2M

p
b; ð17Þ

L →
ffiffiffiffiffiffiffi
2M

p
L; J →

ffiffiffiffiffiffiffi
2M

p
J; K →

ffiffiffiffiffiffiffi
2M

p
K; g →

gffiffiffiffiffiffiffi
2M

p : ð18Þ

This is equivalent to setting M ¼ 1
2
.

III. CLASSIFICATION OF TIMELIKE AND NULL
GEODESICS

In this section we analyze timelike and null geodesics.
Using parametric diagrams and effective potentials we
determine the possible orbit types, which are characterized
by the x equation (10) and the θ equation (11). The
following orbits can be found in the Myers-Perry-AdS
spacetime:

1. Bound orbits (BO) with the range x ∈ ½x1; x2� and
(a) either x1, x2 > xþ
(b) or x1, x2 < x−.

2. Many-world bound orbits (MBO) with the range
x ∈ ½x1; x2�, where x1 ≤ x− and x2 ≥ xþ. These
geodesics emerge into another universe every time
the horizons are crossed twice.

3. Escape orbits (EO) with the range x ∈ ½x1;∞Þ
and x1 ≥ xþ.

4. Two-world escape orbits (TWEO) with the range
x ∈ ½x1;∞Þ and x1 ≤ x−. These geodesics emerge

into another universe after the horizons are
crossed twice.

5. Terminating orbits (TO) with the range
(a) x ∈ ½x0;∞Þ
(b) or x ∈ ½x0; x1�

where x0 is on the closed surface ρ2 ¼ 0. These orbits end
in the singularity and exist in special cases only.

A. Timelike geodesics

First, we will study timelike geodesics describing par-
ticles moving in the spacetime of the Myers-Perry-AdS
black hole.

1. The θ motion

The θ motion is described by Eq. (11). The function
ΘðθÞ [see Eq. (16)] has poles at θ ¼ 0 (or θ ¼ π) and at
θ ¼ π

2
. Therefore, the geodesics cannot reach θ ¼ 0 (or

θ ¼ π) as long as L ≠ 0 and θ ¼ π
2
as long as J ≠ 0. For

simplicity we substitute ν ¼ cos θ2 so that function ΘðθÞ
becomes

ΘðνÞ ¼ KΔν þ E2ðΞaa2νþ Ξbb2ð1 − νÞÞ − Δν

�
δða2νþ b2ð1 − νÞÞ þ L2Ξa

1 − ν
þ J2Ξb

ν

�
ð19Þ

with Δν ¼ 1 − a2g2ν − b2g2ð1 − νÞ.
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The turning points of the θ motion are the zeros of Eqs. (11) or (19) in the range θ ∈ ½0; π
2
� or ν ∈ ½0; 1�. The number of

zeros changes if double zeros appear. From this condition parametric diagrams can be drawn to obtain parameter regions
with a different number of zeros. It appears that the function Θ has either two zeros or none in the allowed range. In Fig. 4
the θ equation has two zeros in the white region and none in the grey region. Therefore, geodesic motion is not possible in
the grey region.
Additionally we define an effective potential U by ΘðνÞ ¼ fðνÞðE −U−ÞðE −UþÞ so that

U� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δν

Ξaa2νþ Ξbb2ð1 − νÞ
�
δða2νþ b2ð1 − νÞÞ − K þ L2Ξa

1 − ν
þ J2Ξb

ν

�s
: ð20Þ

Figure 3 depicts two typical effective potentials for the θ
motion. The green and blue curves are the two parts of the
effective potential. In the grey area θ (or ν) becomes
imaginary and therefore motion is not allowed. A potential
barrier prevents light and test particles from reaching ν ¼ 0
and ν ¼ 1.
In Fig. 3(a) the function ΘðνÞ has two zeros except for

some energy range where geodesic motion not possible,
whereas in Fig. 3(b) ΘðνÞ has two zeros for all energies.

2. The x motion

The radial motion is described by Eq. (10) with the new
coordinate x ¼ r2. The zeros of the polynomial XðxÞ [see
Eq. (15)] are the turning points of the geodesics and
therefore the x Eq. (10) determines the possible orbit types.
The number of zeros in the allowed coordinate range x ∈
½−a2;∞� changes if double zeros occur, i.e., XðxÞ ¼ 0 and
dXðxÞ
dx ¼ 0, or if a zero crosses x ¼ −a2 [which leads to

Xð−a2Þ ¼ 0]. From these conditions we plot parametric
K − E2 diagrams and also include the parametric diagrams
for the θ equation. Figure 4 shows a typical example of a

parametric plot in the Myers-Perry-AdS spacetime. The
blue curves correspond to double zeros of XðxÞ and the red
dashed curve corresponds to Xðx ¼ −a2Þ ¼ 0. The curves
separate regions with a different number of zeros. XðxÞ has
two zeros in region (Ia) and four zeros in regions (IIa) and
(IIIa). Although regions (IIa) and (IIIa) have the same
amount of zeros, different orbit configurations occur, as we
will see in the following. In both regions there are MBOs
and BOs, but in region (IIa) the BOs are outside the black
hole and in region (IIIa) the BOs are hidden behind the
inner horizon.
Furthermore, we define an effective potential V consist-

ing of two parts Vþ and V−�
dx
dγ

�
2

¼ XðxÞ ¼ fðxÞðE − VþÞðE − V−Þ: ð21Þ

Then, the effective potential for the x motion is

V� ¼ −β �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 − 4αγ

p
2α

ð22Þ

(a) (b)

FIG. 3. (a) K ¼ 2, (b) K ¼ 3.5. Plots of the effective θ-potential for δ ¼ 1, g ¼ 0.1, a ¼ 0.5, b ¼ 0.4, L ¼ 1.2, J ¼ 0.4, and different
K. The green and blue curves are the two parts of the effective potential. The grey areas are forbidden by the θ equation. Geodesic
motion is possible in the white areas only.
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with

α ¼ 8M½ða2 þ b2Þxþ a2b2�
þ 4ðxþ a2Þðxþ b2Þ½x − ða2 þ b2Þg2x − a2b2g2�;

β ¼ −16M½Laðb2 þ xÞ þ Jbða2 þ xÞ�;
γ ¼ −4L2½Ξað1þ g2xÞðb2 þ xÞðb2 − a2Þ

− 2Mða2g2xþ b2Þ� − 4ΔxðK þ δxÞ
− 4J2½Ξbð1þ g2xÞða2 þ xÞða2 − b2Þ
− 2Mðb2g2xþ a2Þ� þ 16MLJabð1þ g2xÞ: ð23Þ

Figure 5 shows examples of the effective potential for
timelike geodesics. The green and blue curves are the
two parts of the effective potential. The grey areas are
forbidden by the x equation and the hatched areas are
forbidden by the θ equation. Geodesic motion is possible in
the white areas only. The vertical black dashed lines
indicate the position of the horizons. The red dashed lines
are example energies for different orbits and the red dots
mark the turning points. With the help of the effective
potential we can now determine the orbit types in regions
(Ia)–(IIIa) of the parametric diagrams (in the following we
assume xi < xiþ1):

(a) (b)

FIG. 4. (a) δ ¼ 1, g ¼ 0.1, a ¼ 0.55, b ¼ 0.4, L ¼ 0.6, J ¼ 0.5, (b) Closeup of the box in Fig. 4(a). Combined parametric K − E2

diagrams of the x equation and the θ equation for timelike geodesics. The blue curves correspond to double zeros of XðxÞ and the red
dashed curve corresponds to Xðx ¼ −a2Þ ¼ 0. The curves separate regions with a different number of zeros. XðxÞ has two zeros in
region (Ia) and four zeros in regions (IIa) and (IIIa). The θ equation has two zeros in the white region and none in the grey region, so that
geodesic motion in not possible in the grey region.

(a) (b) (c)

FIG. 5. (a) δ ¼ 1, K ¼ 1.6, g ¼ 0.2, a ¼ 0.55, b ¼ 0.4, L ¼ 0.5, J ¼ 0.7, (b) δ ¼ 1, K ¼ 1.106, g ¼ 0.3, a ¼ 0.55, b ¼ 0.4,
L ¼ 0.65, J ¼ 0.5, (c) Closeup of Fig. 5(b). Plots of the effective potential for timelike geodesics. The green and blue curves are the two
parts of the effective potential. The grey areas are forbidden by the x equation and the hatched areas are forbidden by the θ equation.
Geodesic motion is possible in the white areas only. The vertical black dashed lines indicate the position of the horizons. The red dashed
lines are example energies and the red dots mark the turning points. The red numbers refer to the orbit types of Table I and Fig. 4.
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1. Region (Ia): The polynomialXðxÞ has two zeros x1 ≤
x− and x2 ≥ xþ. XðxÞ is positive for x ∈ ½x1; x2�
and therefore MBOs crossing both horizons can be
found in this region.

2. Region (IIa): The polynomial XðxÞ has four zeros
x1 ≤ x− and x2, x3, x4 ≥ xþ. XðxÞ is positive for
x ∈ ½x1; x2� and x ∈ ½x3; x4�. MBOs and BOs exist.

3. Region (IIIa): The polynomial XðxÞ has four zeros
x1, x2, x3 ≤ x−, and x4 ≥ xþ. XðxÞ is positive for
x ∈ ½x1; x2� and x ∈ ½x3; x4�. There are BOs hidden
behind the inner horizon and MBOs.

An overview of the possible orbits types for timelike
geodesics is shown in Table I.
The asymptotic behavior of the effective potential is

given by

lim
x→∞

V� ¼ �∞: ð24Þ

Furthermore, from the Eqs. (22) and (23) it is obvious that
the effective potential diverges for x < ∞ at the zeros of α.
To find the parameter regions in which the potential diverges
for x < ∞we plot parameteric a − b diagrams, see Fig. 6(a).
The red curves in the diagram separate three regions with

different numbers of zeros of α. Below the blue dashed
curve, the black hole has two horizons and above the curve
there is a naked singularity. In region (A) the potential
diverges for x → ∞ and a negative x value, since α has a
single negative zero. The potential diverges for x → ∞ and
additionally for two positive x values in region (B); see
Fig. 6(b). In region (C) the potential diverges for a positive x
and a negative x; see Fig. 6(c).

B. Null geodesics

Null geodesics or lightlike geodesics describe the world
lines of massless particles (δ ¼ 0), such as photons. Their
properties can be used in order to discuss spacetime
observables like the light deflection, which is described
by a lightlike escape orbit. Furthermore, the shadow of the
black hole can be calculated by means of null geodesics.

1. The θ motion

We will start our analysis of null geodesics by studying
the θ equation in its substituted form (19) for δ ¼ 0. As we
did in the case of timelike geodesics, we will define an
effective potential

(a) (b) (c)

FIG. 6. (a) Parametric a-b-diagram, (b) Effective potential from region (B) with a ¼ 0.3, b ¼ :264, (c) Effective potential from region
(C) with a ¼ 0.3, b ¼ :27. Parametric a − b diagram (M ¼ 0.5, g ¼ 2.5) showing three regions with different numbers of zeros of α and
corresponding effective potentials from regions (B) and (C) with parameters g ¼ 2.5, δ ¼ 1, L ¼ 2, J ¼ 1, K ¼ 5. In region (A) α has a
single negative zero. In region (B) α has two positive zeros and a single negative zero. In region (C) α has a positive and a negative zero.
The red curves in panel (a) separate the different regions and the blue dashed curve separates the black hole and the naked singularity.
The blue and green curves in panels (b) and (c) are the effective potential V. In the grey region geodesic motion is not possible.

TABLE I. Types of orbits for timelike geodesics in the Myers-Perry-AdS spacetime. The range of the orbits is
represented by thick lines. The turning points are marked by thick dots. The two vertical double lines indicate the
position of the horizons and the single vertical line corresponds to the singularity.

Region Zeros Range of x Orbit

Ia 2 MBO
IIa 4 MBO, BO

IIIa 4 BO, MBO

GEODESIC MOTION IN THE FIVE-DIMENSIONAL … PHYS. REV. D 97, 044011 (2018)

044011-7



U� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δν

Ξaa2νþ Ξbb2ð1 − νÞ
�
−K þ L2Ξa

1 − ν
þ J2Ξb

ν

�s

ð25Þ
in order to investigate the possible set of zeros confining
the θ motion. Figure 7 depicts three typical effective
potentials.
We can see that the possible set of zeros of the θ equation

is quite similar to the timelike case. Nevertheless, for certain
values of the Carter constantK, it is possible to attain energy
values in the lightlike case, which are not valid for timelike
geodesics with the same set of parameters.

2. The x motion

In order to classify the possible set of orbit types for
null geodesics, we will investigate the radial Eq. (10) by
means of parametric diagrams and effective potentials as
we did for timelike geodesics. The combined parametric
K − E2 diagram for the lightlike θ and r motions is
shown in Fig. 8.
In contrast to the timelike orbits of the Myers-Perry-AdS

spacetime, there is one more region in the case of lightlike
orbits.

1. Region (Ib): The polynomial XðxÞ has as single zero
x1 ≤ x−. XðxÞ is positive for x > x1 and therefore
TWEOs crossing both horizons can be found in this
region.

2. Region (IIb): The polynomial XðxÞ has three zeros
x1 ≤ x− and x2, x3 ≥ xþ. XðxÞ is positive for x ∈
ðx1; x2Þ and x > x3. MBOs and EOs exist.

3. Region (IIIb): The polynomial XðxÞ has two zeros
x1 ≤ x− and x2 ≥ xþ. XðxÞ is positive for x ∈
ðx1; x2Þ and therefore MBOs crossing both horizons
can be found in this region.

4. Region (IVb): The polynomial XðxÞ has three zeros
x1, x2, x3 ≤ x−. XðxÞ is positive for x ∈ ðx1; x2Þ and
x > x3. There are BOs hidden behind the inner
horizon and TWEOs.

The corresponding orbit types can be visualized by
effective potentials. Proceeding in the same way as for

FIG. 7. (a) K ¼ 2, (b) K ¼ 2.6, (c) K ¼ 3.5. Plots of the effective θ potential for δ ¼ 0, g ¼ 0.1, a ¼ 0.5, b ¼ 0.4, L ¼ 1.2, J ¼ 0.4,
and different K. The solid green and blue curves are the two parts of the lightlike effective potential and the dashed lines show the
corresponding timelike effective potentials. The grey areas are forbidden by the θ equation. Geodesic motion is possible in the white
areas only.

FIG. 8. Combined parametric K − E2 diagrams of the x
equation and the θ equation for lightlike geodesics with δ ¼ 0,
g ¼ 0.1, a ¼ 0.55, b ¼ 0.4, L ¼ 0.6, J ¼ 0.5. The blue curves
correspond to double zeros of XðxÞ and the red dashed curve
corresponds to Xðx ¼ −a2Þ ¼ 0. The curves separate regions
with a different number of zeros. XðxÞ has one real zero in region
(Ib), three real zeros in region (IIb) and (IVb), and two real zeros
in region (IIIb). The θ equation has two zeros in the white region
and none in the grey region, so that geodesic motion in not
possible in the grey region.
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timelike geodesics, we define the effective potential
according to Eq. (22) with δ ¼ 0. In the case of null
geodesics, the asymptotic behavior of the effective poten-
tial is given by

lim
r→∞

V� ¼ � g
ffiffiffiffi
K

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ða2 þ b2Þg2

p : ð26Þ

This behavior is quite similar to the Kerr-Anti-de Sitter
spacetime, but contrary to the timelike case, where the
effective potentials diverge for radial infinity. Furthermore,
the same divergences as discussed for the timelike case
occur, due to the denominator α in Eq. (22) defining the
effective potential. Since α is independent of δ, there is no
difference to the timelike case for this special conditions.
Figure 9 shows some typical effective potentials presenting
the possible orbit types for null geodesics. The complete
classification of lightlike orbits in the Myers-Perry-AdS
spacetime is given in Table II.

3. The photon region

If an observer points a telescope at a black hole, he or
she will notice a region in the sky which stays dark. This
is the shadow of a black hole. There are two kinds of
light rays in the surroundings of a black hole: those
escaping the black hole and those falling beyond the
horizon. The two kinds of orbits are separated by
unstable spherical light orbits, which can be found in
the so-called photon region. The shadow of the black
hole is an image of the photon region as seen by a fixed
observer and can be obtained via a coordinate trans-
formation; see, e.g., [38–41].
To obtain the photon region for the five-dimensional

Myers-Perry-AdS black holes, we consider null geodesics
on unstable spherical orbits. For δ ¼ 0 these obey the
conditions

dx
dγ

¼ 0 and
d2x
dγ2

¼ 0: ð27Þ

(a) (b) (c)

FIG. 9. (a) δ ¼ 0, K ¼ 4, g ¼ 0.2, a ¼ 0.5, b ¼ 0.4, L ¼ 0.5, J ¼ 0.3, (b) δ ¼ 0, K ¼ 4, g ¼ 0.2, a ¼ 0.5, b ¼ 0.4, L ¼ 0.5,
J ¼ 0.3, (c) δ ¼ 0,K ¼ 1.106, g ¼ 0.3, a ¼ 0.55, b ¼ 0.4, L ¼ 0.75, J ¼ 0.5. Plots of the effective potential for lightlike geodesics in a
semilogarithmic overview plot (a) and two detailed plots including orbit types (b)–(c). The green and blue curves are the two parts of the
effective potential. The grey areas are forbidden by the x equation and the hatched areas are forbidden by the θ equation. Geodesic
motion is possible in the white areas only. The vertical black dashed lines indicate the position of the horizons. The red dashed lines are
example energies and the red dots mark the turning points. The red numbers refer to the orbit types of Table II and Fig. 8.

TABLE II. Types of orbits for lightlike geodesics in the Myers-Perry-AdS spacetime. The range of the orbits is
represented by thick lines. The turning points are marked by thick dots. The two vertical double lines indicate the
position of the horizons and the single vertical line corresponds to the singularity.

Region Zeros Range of x Orbit

Ib 1 TWEO

IIb 3 MBO, EO

IIIb 2 MBO
IVb 3 BO, TWEO
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The conditions depend on the parameters a, b, and g of the
black hole and on the constants of motion K, L, J, and E.
We define the impact parameters

KE ¼ K
E2

; LE ¼ L
E

and JE ¼ J
E
: ð28Þ

The conditions (27) are solved for two of the impact
parameters (here KE and LE). However, the expressions are
too long to be displayed here.
The θ equation of motion (11) yields

ΘðθÞ ≥ 0: ð29Þ

By inserting KE and LE, which we obtained before, we get
a relation for the photon region depending on the coor-
dinates x and θ and the parameters a, b, g, and JE.
Figure 10 shows examples of the photon region in the

Myers-Perry-AdS spacetime. Usually, in four-dimensional
spacetimes a photon region does not depend on the
parameters of the light rays and is fully determined by
the parameters of the black hole. However, in this case we
do not have enough constraints to eliminate the angular
momentum J from the equation for the photon region. To
give an impression on what the full photon region looks
like, we display plots for several JE combined in one
picture; see Fig. 11. The photon region consists of crescent
shaped areas for JE ¼ 0 similar to the four-dimensional
Kerr-(AdS) spacetime. In contrast to four-dimensional

spacetimes (compare [38,40,41]) for JE ≠ 0 there is a
gap in the photon region centered around the equatorial
plane. The gap grows if JE increases.
Behind the horizons there are additional smaller parts of

the photon region. Here stable and unstable spherical
photon orbits can be found, as seen in the effective potential
(Fig. 9).

C. Terminating orbits

In this section we study the conditions for so-called
terminating orbits which end at the singularity. As we have
seen before the singularity, in the Meyers-Perry-AdS
spacetime is a complex structure which extends both
in the x direction and in the θ direction. The two rotation
parameters a and b determine the shape of the closed
surface ρðx; θÞ2 ¼ 0; see Fig. 1. To check if a geodesic
hits the singularity, that is, a terminating orbit exists, one
has to consider both the x Eq. (10) and the θ Eq. (11). If
light or a particle hits the singularity then ρ2 ¼ 0 and
therefore

x ¼ −ða2cos2θ þ b2sin2θÞ or x ¼ −ða2νþ b2ð1 − νÞÞ:
ð30Þ

Now we can write the effective potential UðνÞ of the θ

motion with ν ¼ b2þx
b2−a2 as

U�ðxÞ ¼ �


Δν

Ξaa2 b2þx
b2−a2 þ Ξbb2ð1 − b2þx

b2−a2Þ

�
δ

�
a2

b2 þ x
b2 − a2

þ b2
�
1 −

b2 þ x
b2 − a2

��
− K þ L2Ξa

1 − b2þx
b2−a2

þ J2Ξb
b2þx
b2−a2

�s
ð31Þ

(a) (b) (c)

FIG. 10. (a) JE ¼ 0, (b) JE ¼ 0.1, (c) JE ¼ 0.6. Plots of the photon region in the Myers-Perrs-AdS spacetime for a ¼ 0.5, b ¼ 0.4,
g ¼ 0.1, and different JE in the X − Z plane. The black curve is the singularity and the dashed grey curves indicate the positions of the
horizons. The blue curve is the boundary of the photon region.

GRUNAU, NEUMANN, and REIMERS PHYS. REV. D 97, 044011 (2018)

044011-10



with Δν ¼ 1 − a2g2 b2þx
b2−a2 − b2g2ð1 − b2þx

b2−a2Þ. Since ν ∈
½0; 1� we only consider UðxÞ in the range x ∈ ½−a2;−b2�,
which is also the x range of ρ2 ¼ 0. The potential UðνÞ
diverges for ν → 0 and ν → 1 [see Eq. (20)]. Similarly,
the potential UðxÞ diverges if x approaches the closed
surface of the singularity (from each side), i.e., if x → −a2
or x → −b2.
UðxÞ is the θ potential if a geodesic hits the singularity

and can be plotted together with the effective potential VðxÞ
for the x motion. Some plots are depicted in Fig. 12. Here
the black dashed lines indicate the positions of the horizons
and the red dotted lines represent the range of the
singularity x ∈ ½−a2;−b2�. A test particle does not auto-
matically hit the singularity once it enters the region
x ∈ ½−a2;−b2�. It falls into the singularity if θ and x fulfill
the condition ρ2 ¼ 0. The blue and green curves are the
effective potential VðxÞ of the xmotion. Geodesic motion is
allowed in the white regions but not in the grey regions. In

the dashed area, motion is forbidden by the θ equation. The
potential UðxÞ is shown as a yellow curve.
The test particle meets the singularity at the intersection

point of UðxÞ and VðxÞ. We find that there are two
intersection points at the extrema of the potential U, which
are at the same time the boundaries of the forbidden
energy regime for the θ motion. Therefore, terminating
orbits have constant θ and only appear for these specific
energies. This behavior is already present in the five-
dimensional Myers-Perry spacetime [26,27].
In Fig. 12(a) the parameters are chosen such that

certain energies are forbidden by the θ equation (dashed
area). If a test particle has precisely the boundary energy of
the forbidden region (that means this energy is the
extremum of U), a terminating orbit is possible.
However, in Fig. 12(b) all energies are allowed by the θ
equation. The potential UðxÞ cannot be reached by the test
particles, because it lies entirely in the region forbidden by
the x equation. In this case it is not possible to find a value

(a) (b)

(c) (d)

FIG. 11. (a) a ¼ 0.5, b ¼ 0, (b) a ¼ 0.5, b ¼ 0.2, (c) a ¼ 0.5, b ¼ 0.4, (d) a ¼ 0.4, b ¼ 0.5. Plots of the photon region in the Myers-
Perrs-AdS spacetime for g ¼ 0.1 and different a,b in the X − Z plane. Here we show plots for several JE in one picture to give an
impression on what the full photon region would look like. The black curve is the singularity and the dashed grey curves indicate the
positions of the horizons.
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for the energy of the test particle so that it hits the
singularity.

IV. SPACELIKE GEODESICS AND AdS/CFT

Spacelike geodesics refer to test particles with imaginary
mass (δ ¼ −1) and therefore they are usually not consid-
ered in the analysis of geodesic motion. However, there are
applications in AdS/CFT. The observables on the asymp-
totic boundary of the AdS spacetime are described by CFT
correlators or Feynman propagators. The correlation func-
tions of operators in CFT on the boundary are dual to the
correlation functions of fields in the bulk. The correlator of
two operators corresponds to the Green function

hOðt;xÞOðt0;x0Þi ¼
Z

exp½iΔLðPÞ�DP ð32Þ

where LðPÞ is the proper length of the path P between the
boundary points ðt; xÞ and ðt; x0Þ. LðPÞ is imaginary for
spacelike trajectories. The mass m of the bulk field is
related to the conformal dimension Δ of the operator O by
Δ ¼ 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2

p
. For large masses (so that Δ ≈m) the

correlator can be computed in the WKB approximation

hOðt; x⃗ÞOðt0; x⃗0Þi ¼
X
g

expð−ΔLgÞ: ð33Þ

The correlator is now described by the sum over all
spacelike geodesics between the boundary points. Lg is
the real proper length of a geodesic. Since the length
diverges due to contributions near the AdS boundary, we
have to renormalize it by removing the divergent part in

pure AdS. It turns out that the sum is dominated by the
shortest spacelike geodesic between the boundary points
(see, e.g., [9,42,43]).
In this formalism one can study two-point correlators to

calculate, for instance, the thermalization time [42] or
entanglement entropy [44,45].
Geodesics relevant for AdS/CFT must have endpoints on

the boundary which is at r → ∞. Therefore we are looking
for escape orbits which have a single turning point and

FIG. 13. Parametric K − E2 diagram for spacelike geodesics
with δ ¼ −1, g ¼ 0.1, a ¼ 0.5, b ¼ 0.4, L ¼ 0.4, J ¼ 0.5. The
blue lines separate regions with different numbers of zeros of
XðxÞ and different types of orbits. For x > −a2 there is a single
zero in region (Ic) and three zeros in regions (IIc)–(IVc). In the
grey region geodesics cannot exist due to constraints coming
from the ϑ equation.

(a) (b)

FIG. 12. (a) K ¼ 1.25, (b) K ¼ 1.75. Plots of the effective potential for δ ¼ 1, g ¼ 0.1, a ¼ 0.55, b ¼ 0.4, L ¼ 0.6, J ¼ 0.5, and
different values of K. The black dashed lines indicate the position of the horizons. The red dotted lines represent the range of the
singularity x ∈ ½−a2;−b2�. The blue and green curves are the effective potential VðxÞ of the xmotion. Geodesic motion is allowed in the
white regions but not in the grey regions. The yellow curve is the potential UðxÞ for a particle hitting the singularity. In the dashed area
motion is forbidden by the θ equation.
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reach infinity. If the turning point of a geodesic lies outside
the horizons, both endpoints are located on a single
boundary. In contrast, if a geodesic crosses a horizon
the endpoints will be on two disconnected boundaries.
The corresponding correlators will then be sensitive
to the physics behind the horizon, which could be used
to study black hole formation [9] or the black hole
singularity [46].
We will now analyze the behavior of spacelike geodesics

in the Myers-Perry-AdS spacetime. The θ motion is
qualitatively the same as for timelike and null geodesics.
Considering the x motion we will perform the analysis as
before and start with parametric K − E2 diagrams which
show the number of zeros of the polynomial XðxÞ in
different parameter regions. Figure 13 depicts a parametric
K − E2 diagram for spacelike geodesics. In the grey part of
the diagramΘðνÞ is negative and therefore geodesic motion
is not possible, whereas in the white part ΘðνÞ has two
zeros. The blue curves correspond to double zeros of XðxÞ
and separate parameter regions with a different number of
zeros. For x > −a2 there is a single zero in region (Ic) and
three zeros in regions (IIc)–(IVc).

If we take the effective potential [see Eq. (22)] into
account, we can determine the orbit types in each region.
Figure 14 shows examples of the effective potential
for spacelike geodesics. The green and blue curves are
the two parts of the effective potential. The grey areas
are forbidden by the x equation and the hatched areas are
forbidden by the θ equation. Geodesic motion is possible in
the white areas only. The vertical black dashed lines
indicate the position of the horizons. The red dashed lines
are example energies for different orbits and the red dots
mark the turning points.
We find the following orbit types in regions (Ic)–(IVc)

(let xi < xiþ1):
1. Region (Ic): The polynomial XðxÞ has a single zero

x1 ≤ x−. XðxÞ is positive for x ∈ ½x1;∞Þ and there-
fore TWEOs crossing both horizons can be found in
this region.

2. Region (IIc): The polynomial XðxÞ has three zeros
x1 ≤ x− and x2, x3 ≥ xþ. XðxÞ is positive for x ∈
½x1; x2� and x ∈ ½x3;∞Þ. MBOs and EOs exist.

3. Region (IIIc): The polynomial XðxÞ has three zeros
x1 ≤ x− and x− ≤ x2, x3 ≤ xþ. XðxÞ is positive for

(a) (b) (c)

FIG. 14. (a) δ ¼ −1, K ¼ 2, g ¼ 0.1, a ¼ 0.5, b ¼ 0.4, L ¼ 0.4, J ¼ 0.5, (b) δ ¼ −1, K ¼ 0.4, g ¼ 0.1, a ¼ 0.4, b ¼ 0.3, L ¼ 0.4,
J ¼ 0.5, (c) δ ¼ −1,K ¼ 0.19, g ¼ 0.1, a ¼ 0.5, b ¼ 0.4, L ¼ 0.3, J ¼ 0.5. Plots of the effective potential for spacelike geodesics. The
green and blue curves are the two parts of the effective potential. The grey areas are forbidden by the x equation and the hatched areas are
forbidden by the θ equation. Geodesic motion is possible in the white areas only. The vertical black dashed lines indicate the position of
the horizons. The red dashed lines are example energies and the red dots mark the turning points. The numbers refer to the orbit types of
Table III and Fig. 13.

TABLE III. Types of orbits for spacelike geodesics in the Myers-Perry-AdS spacetime. The range of the orbits is
represented by thick lines. The turning points are marked by thick dots. The two vertical double lines indicate the
position of the horizons and the single vertical line corresponds to the singularity.

Region Zeros Range of x Orbit

Ic 1 TWEO

IIc 3 MBO, EO
IIIc 3 MBO, TWEO

IVc 3 BO, TWEO
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x ∈ ½x1; x2� and x ∈ ½x3;∞Þ. Here special kinds of
MBOs and TWEOs exist, which cross just one of the
horizons.

4. Region (IVc): The polynomial XðxÞ has three zeros
x1, x2, x3 ≤ x−. XðxÞ is positive for x ∈ ½x1; x2� and
x ∈ ½x3;∞Þ. There are BOs hidden behind the inner
horizon and TWEOs crossing both horizons.

An overview of the possible orbits types for timelike geo-
desics is shown in Table III. Geodesics relevant for AdS/CFT
with endpoints on the boundary exist in all four regions.
However, only the EOs in region (IIc) return to the same
boundary where they started. In regions (Ic), (IIIc), and (IVc)
we find TWEOs which cross the horizons and go to another
universe. Escaping geodesics in regions (Ic) and (IVc) reach
past the inner horizon x− while escaping geodesics in region
(IIIc) can probe behind xþ but do not cross x−.
Like EOs, the TWEOs can be considered as propagators

in the AdS/CFT context [9,43]. Boundary correlators can be
used to probe physics behind the horizons and especially
physics of the singularity, although there are limitations [47].
Geodesics crossing the horizons and therefore connecting
two different boundaries represent a pure state, an entangled
state of the two field theories. In [48] it was argued that the
region behind an event horizon is encoded in the “holo-
gram;” however, the region behind a Cauchy horizon is not.
Furthermore, geodesics crossing the horizon can also be

applied to questions regarding the information paradox [49].

V. SOLUTION OF THE GEODESIC EQUATIONS

In this section we solve the equations of motion
(10)–(14). The analytical solutions are given in terms of
the Weierstrass ℘, σ, and ζ functions.

A. The x equation

On the right-hand side of the x equation�
dx
dγ

�
2

¼ XðxÞ ¼
X4
i¼1

aixi; ð34Þ

we find a polynomial of order four, which can be reduced to
third order by the substitution x ¼ � 1

y þ x0. Here x0 is a
zero of X. The equation�

dy
dγ

�
2

¼
X3
i¼1

biyi ð35Þ

can then be transformed into the Weierstrass form by
setting y ¼ 1

b3
ð4z − b2

3
Þ

�
dz
dγ

�
2

¼ 4z3 − gx2z − gx3 ¼ Px
3ðzÞ: ð36Þ

The coefficients are

gx2 ¼
b22
12

−
b1b3
4

; gx3 ¼
b1b2b3
48

−
b0b23
16

−
b32
216

: ð37Þ

The solution of the x Eq. (10) is now trivial, since it is
known that Eq. (36) is solved by the elliptic Weierstrass ℘
function (see e.g. [50])

zðγÞ ¼ ℘ðγ − γ0in; g
x
2; g

x
3Þ; ð38Þ

with the initial values γ0in ¼ γin þ
R
∞
zin

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z3−gx

2
z−gx

3

p and zin ¼
� b3

4ðxin−x0Þ þ
b2
12

and xin ¼ r2in. Via resubstitution we obtain

the solution of Eq. (10)

xðγÞ ¼ � b3
4℘ðγ − γ0in; g

x
2; g

x
3Þ − b2

3

þ x0; ð39Þ

and in terms of the r coordinate we get

rðγÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� b3
4℘ðγ − γ0in; g

x
2; g

x
3Þ − b2

3

þ x0

s
: ð40Þ

B. The θ equation

The θ Eq. (11) can be simplified with ν ¼ cos θ2

�
dν
dγ

�
2

¼ Θν ¼
X4
i¼1

ciνi; ð41Þ

so that Θν is a fourth order polynomial. To transform this
into a polynomial of order three

P
3
i¼1 diy

i we substitute
ν ¼ � 1

y þ ν0, where ν0 is a zero of Θν. Analogous to the

previous section, another substitution y ¼ 1
d3
ð4z − d2

3
Þ gives

the Weierstrass form

�
dz
dγ

�
2

¼ 4z3 − gν2z − gν3 ¼ Pν
3ðzÞ; ð42Þ

where the coefficients are

gν2 ¼
d22
12

−
d1d3
4

; gν3 ¼
d1d2d3
48

−
d0d23
16

−
d32
216

: ð43Þ

Again, the Eq. (42) is solved by Weierstrass ℘ function.
Therefore the solution of the θ Eq. (11) is

θðγÞ ¼ arccos

 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� d3
4℘ðγ − γ00in; g

ν
2; g

ν
3Þ − d2

3

þ ν0

s !
; ð44Þ

where the initial values are γ00in ¼ γin þ
R
∞
z0in

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4z3−gν

2
z−gν

3

p and

z0in ¼ � d3
4ðνin−ν0Þ þ

d2
12

and νin ¼ cos2 θin.
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C. The ϕ equation

To solve the ϕ Eq. (12) we rewrite it using the x Eq. (10)
and the θ equation in the form of Eq. (19)

dϕ ¼ fLΞað1þ g2xÞðb2 þ xÞðb2 − a2Þ
þ 2M½Eaðb2 þ xÞ − Lðb2 þ a2g2xÞ

− Jabð1þ g2xÞ�g dx

Δx

ffiffiffiffi
X

p þ LΞa

1 − ν

dνffiffiffiffiffiffi
Θν

p : ð45Þ

Integrating this equation yields two integrals IxðxÞ and
IνðνÞ which can be solved separately

ϕ − ϕin ¼
Z

x

xin

fLΞað1þ g2xÞðb2 þ xÞðb2 − a2Þ

þ 2M½Eaðb2 þ xÞ − Lðb2 þ a2g2xÞ

− Jabð1þ g2xÞ�g dx

Δx

ffiffiffiffi
X

p

þ
Z

ν

νin

LΞa

1 − ν

dνffiffiffiffiffiffi
Θν

p ¼ IxðxÞ þ IνðνÞ: ð46Þ

In the integral IxðxÞ we substitute x ¼ � b3
4z−b2

3

þ x0 to

transform the polynomial XðxÞ into the Weierstrass form
Px
3ðzÞ. Then we apply a partial fraction decomposition

Ix ¼
Z

z

zin

�
A0 þ

X3
i¼1

Ai

z − pi

�
dzffiffiffiffiffiffiffiffiffiffiffi
Px
3ðzÞ

p : ð47Þ

The constants Ai which arise from the partial fraction
decomposition depend on the parameters of the metric and
the test particle. The poles pi correspond to the zeros of Δx.
Furthermore, with z ¼ ℘ðγ − γ0in; g

x
2; g

x
3Þ≕℘xðvÞ and v ¼

γ − γ0in the integral Ix acquires the form

Ix ¼
Z

v

vin

�
A0 þ

X3
i¼1

Ai

℘xðvÞ − pi

�
dv: ð48Þ

The integral IνðνÞ can be treated in the same way by
substituting first ν ¼ � d3

4z−d2
3

þ ν0 and then z ¼
℘ðγ − γ00in; g

ν
2; g

ν
3Þ≕℘νðuÞ with u ¼ γ − γ00in,

Iν ¼
Z

u

uin

�
B0 þ

B1

℘νðuÞ − qϕ

�
du: ð49Þ

The constants B0 ¼ LΞa
1−ν0

, B1 ¼ � LΞad3
ð1−ν0Þ2 and the pole qϕ ¼

d2ð1−ν0Þ�3d3
12ð1−ν0Þ arise in a partial fraction decomposition.

Equations (48) and (49) show that Ix and Iν are elliptic
integrals of the third kind. Those can be solved in terms of
the ℘, σ, and ζ functions as shown in, e.g., [51–53]. Hence,
we can write the solution of the ϕ Eq. (12) as

ϕðγÞ ¼ A0ðv − vinÞ þ
X3
i¼1

Ai

℘0
xðviÞ

�
2ζxðviÞðv − vinÞ þ ln

σxðv − viÞ
σxðvin − viÞ

− ln
σxðvþ viÞ
σxðvin þ viÞ

�

þ B0ðu − uinÞ þ
B1

℘0
νðuϕÞ

�
2ζνðuϕÞðu − uinÞ þ ln

σνðu − uϕÞ
σνðuin − uϕÞ

− ln
σνðuþ uϕÞ
σνðuin þ uϕÞ

�
þ ϕin: ð50Þ

Here ℘0 is the derivative of the Weierstrass ℘ function and pi ¼ ℘xðviÞ, qϕ ¼ ℘νðuϕÞ, v ¼ γ − γ0in, u ¼ γ − γ00in. We also
defined

℘xðvÞ ¼ ℘ðv; gx2; gx3Þ; ℘νðuÞ ¼ ℘ðu; gν2; gν3Þ;
ζxðvÞ ¼ ζðv; gx2; gx3Þ; ζνðuÞ ¼ ζðu; gν2; gν3Þ;
σxðvÞ ¼ σðv; gx2; gx3Þ; σνðuÞ ¼ σðu; gν2; gν3Þ: ð51Þ

D. The ψ equation

The ψ Eq. (13) can be rewritten by employing the same substitutions as in Sec. V C

ψ − ψ in ¼
Z

v

vin

�
C0 þ

X3
i¼1

Ci

℘xðvÞ − pi

�
dvþ

Z
u

uin

�
D0 þ

D1

℘νðuÞ − qψ

�
du: ð52Þ

The constants Ci, D0 ¼ JΞb
ν0
, and D1 ¼ JΞbd3

4ν2
0

result from a partial fraction decomposition. The poles pi are the same as in

Sec. V C, but the pole qψ is qψ ¼ d2ν0∓3d3
12ν0

. Analogously to Sec. V C the solution of the ψ equation is
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ψðγÞ ¼ C0ðv − vinÞ þ
X3
i¼1

Ci

℘0
xðviÞ

�
2ζxðviÞðv − vinÞ þ ln

σxðv − viÞ
σxðvin − viÞ

− ln
σxðvþ viÞ
σxðvin þ viÞ

�

þD0ðu − uinÞ þ
D1

℘0
νðuψ Þ

�
2ζνðuψ Þðu − uinÞ þ ln

σνðu − uψ Þ
σνðuin − uψÞ

− ln
σνðuþ uψÞ
σνðuin þ uψ Þ

�
þ ψ in; ð53Þ

where qψ ¼ ℘νðuψÞ, v ¼ γ − γ0in, u ¼ γ − γ00in.

E. The t equation

The t Eq. (14) can be rewritten by employing the same substitutions as in Sec. V C

t − tin ¼
Z

v

vin

�
F0 þ

X3
i¼1

Fi

℘xðvÞ − pi

�
dvþ

Z
u

uin

�
G0 þ

G1

℘νðuÞ − qt

�
du; ð54Þ

where the constants Fi,Gi and the poles pi, qt arise from a partial fraction decomposition. Note that the poles pi are the
same as in Sec. V C. Analogously to Sec. V C, the solution of the t equation is

tðγÞ ¼ F0ðv − vinÞ þ
X3
i¼1

Fi

℘0
xðviÞ

�
2ζxðviÞðv − vinÞ þ ln

σxðv − viÞ
σxðvin − viÞ

− ln
σxðvþ viÞ
σxðvin þ viÞ

�

þG0ðu − uinÞ þ
G1

℘0
νðutÞ

�
2ζνðutÞðu − uinÞ þ ln

σνðu − utÞ
σνðuin − utÞ

− ln
σνðuþ utÞ
σνðuin þ utÞ

�
þ tin; ð55Þ

where qt ¼ ℘νðutÞ, v ¼ γ − γ0in, u ¼ γ − γ00in.

VI. THE ORBITS

In this sections we plot examples of the orbits using the
analytical solutions of the equations of motion. Figure 15
shows three timelike geodesics, a bound orbit [15(a)], a
bound orbit hidden behind the horizons [15(b)] and a
many-world bound orbit crossing both horizons [15(c)].
Discontinuities in the orbit in Fig. 15(c) can be observed

when the geodesic crosses a horizon. These are caused by
divergencies in the ϕ equation which occur on the horizons.
The divergencies are due to the choice of coordinates and
also appear in the ψ and t equation.
In contrast to timelike geodesics, which only move on

bound orbits, null and spacelike geodesics can approach the
black hole and then escape its gravity after a turning point.

(a) (b) (c)

FIG. 15. (a) BO with parameters δ ¼ 1, K ¼ 2, g ¼ 0.1, a ¼ 0.5, b ¼ 0.4, L ¼ 0.2, J ¼ 0.8 and E ¼ 1.12. (b) BO hidden behind the
horizons with parameters δ ¼ 1, K ¼ 5, g ¼ 0.1, a ¼ −0.4, b ¼ −0.3, L ¼ −2.45, J ¼ −0.5 and E ¼ 6.122. (c) MBO with parameters
δ ¼ 1,K ¼ 0.9, g ¼ 0.1, a ¼ 0.5, b ¼ 0.4, L ¼ 0.2, J ¼ 0.5 and E ¼ 0.7. Example plots of timelike geodesics in the Myers-Perry-AdS
spacetime. The blue curve depicts the orbit and the wire frame spheroids are the inner and outer horizons. The grey solid spheroid is the
singularity.
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However, bound orbits with r > rþ do not exist for null and
spacelike geodesics.
Examples of null geodesics are depicted in Fig. 16.

Here an escape orbit [16(a)] and a two-world escape orbit
crossing the horizons [16(b)] can be seen. Terminating
orbits [16(c)], which end in the singularity, have a con-
stant θ value and their energy an extremum of the effective
θ potential.
Spacelike geodesics are shown in Fig. 17. Here an escape

orbit [17(a)], and a two-world escape orbit crossing both
horizons [17(b)] are shown. Since spacelike geodesics
move faster than light, there are orbits which cross just a
single horizon; see Fig. 17(c) for a two-world escape orbit
of this kind.

VII. CONCLUSION

In this article we studied the Myers-Perry-AdS black
hole which is characterized by its mass, two independent
rotation parameters, and a negative cosmological constant.
We derived the equations of motion and solved them
analytically in terms of the Weierstrass ℘, σ, and ζ
functions. To analyze the geodesics we used parametric
diagrams and effective potentials.
Timelike geodesics move on bound orbits and many-

world bound orbits which cross both horizons. They never
reach the AdS boundary at infinity. For null geodesics we
found many-world bound orbits and escape orbits which
reach the boundary. Additionally, two-world escape orbits
which cross both horizons exist for null geodesics.

(a) (b) (c)

FIG. 16. (a) EO with parameters δ ¼ 0, K ¼ 5, g ¼ 0.2, a ¼ −0.4, b ¼ −0.3, L ¼ −0.7, J ¼ −0.7 and E ¼ 1.4. (b) TWEO with
parameters δ ¼ 0, K ¼ 3, g ¼ 0.25, a ¼ −0.4, b ¼ −0.3, L ¼ −0.7, J ¼ −0.5 and E ¼ 1.7. (c) TO with parameters δ ¼ 0, K ¼ 5,
g ¼ 0.1, a ¼ −0.4, b ¼ −0.3, L ¼ −2.45, J ¼ −0.5 and E ≈ 5.9954. Example plots of null geodesics in the Myers-Perry-AdS
spacetime. The blue curve depicts the orbit and the wire frame spheroids are the inner and outer horizons. The grey solid spheroid is the
singularity.

(a) (b) (c)

FIG. 17. (a) EO with parameters δ ¼ −1, K ¼ 1, g ¼ 0.1, a ¼ 0.5, b ¼ 0.4, L ¼ 0.3, J ¼ 0.5 and E ¼ 0.5782. (b) TWEO crossing
both horizons with parameters δ ¼ −1, K ¼ 2, g ¼ 0.1, a ¼ 0.5, b ¼ 0.45, L ¼ 1.2, J ¼ 0.4 and E ¼ 4. (c) TWEO crossing one
horizon with parameters δ ¼ −1, K ¼ 0.22, g ¼ 0.1, a ¼ 0.5, b ¼ 0.4, L ¼ 0.3, J ¼ 0.5 and E ¼ 1.1. Example plots of spacelike
geodesics in the Myers-Perry-AdS spacetime. The blue curve depicts the orbit and the wire frame spheroids are the inner and outer
horizons. The grey solid spheroid is the singularity.
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Using the analytical solutions one can calculate the exact
orbits and their properties, such as the periastron shift of a
bound orbit or the light deflection of an escape orbit. The
observables can be computed with formulas analogous to
those given in [16]. The analytical solutions of the
equations of motion for null geodesics can be applied to
calculate the shadow of the black hole.
Since spacelike geodesics have applications in the AdS/

CFT correspondence, we studied their properties too. The
relevant geodesics, which correspond to correlation func-
tions, must have endpoints on the boundary. For spacelike
geodesics, bound orbits hidden behind the inner horizon
and many-world bound orbits which cross both horizons
exist. We found escape orbits with endpoints on a single
boundary and also two-world escape orbits crossing both
horizons with endpoints on two different boundaries. For
certain parameter ranges there are many-world bound orbits
and two-world escape orbits which just cross one of the
horizons.

For future work it would be very interesting to study the
geodesic motion of charged particles in the charged Myers-
Perry-AdS spacetime. In minimal five-dimensional gauged
supergravity, a charged generalization of the spacetime
considered in the present article was found [28]. We are
confident that the geodesic equations for charged particles in
this spacetime can be solved analytically in terms of elliptic
or hyperelliptic functions. In the AdS/CFT context, charged
correlation functions are interesting to study, for example,
the Schwinger pair production or induced emission [54].
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