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We put forward a new definition of complexity, for static and spherically symmetric self-gravitating
systems, based on a quantity, hereafter referred to as complexity factor, that appears in the orthogonal
splitting of the Riemann tensor, in the context of general relativity. We start by assuming that the
homogeneous (in the energy density) fluid, with isotropic pressure is endowed with minimal complexity.
For this kind of fluid distribution, the value of complexity factor is zero. So, the rationale behind our
proposal for the definition of complexity factor stems from the fact that it measures the departure, in the
value of the active gravitational mass (Tolman mass), with respect to its value for a zero complexity system.
Such departure is produced by a specific combination of energy density inhomogeneity and pressure
anisotropy. Thus, zero complexity factor may also be found in self-gravitating systems with inhomo-
geneous energy density and anisotropic pressure, provided the effects of these two factors, on the
complexity factor, cancel each other. Some exact interior solutions to the Einstein equations satisfying
the zero complexity criterium are found, and prospective applications of this newly defined concept, to the
study of the structure and evolution of compact objects, are discussed.
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I. INTRODUCTION

Many efforts have been devoted in the past towards a
rigorous definition of complexity in different branches of
science, although there is not yet a consensus on a precise
definition (see [1–12] and references therein).
Among the many definitions that have been proposed so

far, most of them resort to concepts such as information and
entropy, and are based on the intuitive idea that complexity
should, somehow, measure a basic property describing
the structures existing within a system (not necessarily a
physical one).
Thus, when dealing with a situation that intuitively is

judged as “complex,” we need to be able to quantify this
complexity, by defining an observable measuring it. It is the
purpose of this work to define one such quantity, for self-
gravitating systems in the context of general relativity.
Usually, the notion of complexity in physics starts by

considering the perfect crystal (periodic behaviour) and the
isolated ideal gas (random behaviour), as examples of
simplest models and therefore as systems with zero com-
plexity. A perfect crystal is completely ordered and the
atoms are arranged following specific rules of symmetry.
The probability distribution for the states accessible to the
perfect crystal is centered around a prevailing state of
perfect symmetry; i.e., it has low information content.

On the other hand, the isolated ideal gas is completely
disordered. The system can be found in any of its accessible
states with the same probability; i.e., it has a maximum
information. Therefore, since these two simple systems are
extreme in the scale of order and information, it is evident
that the definition of complexity, must include another
factors, besides order or information.
In [7], the concept of “disequilibrium” was introduced,

which measures the “distance” from the equiprobable
distribution of the accessible states of the system. Thus,
it would be different from zero if there are privileged, or
more probable, states among those accessible. Therefore,
“disequilibrium” would be maximum for a perfect crystal,
since it is far from an equidistribution among the accessible
states, whereas it would be zero for the ideal gas.
A compromise between these two concepts (“disequi-

librium” and information) is reached by defining the
complexity through a quantity, which is a product of these
two concepts (see [7] for details). Doing so, one ensures
that complexity vanishes for, both, the perfect crystal and
the ideal gas. It should be reminded that a definition of
complexity, based on the work developed by Lopez-Ruiz
and collaborators [7,10], has already been proposed for
self-gravitating systems [13–18]. However, as we shall see
below, the definition we propose here is quite different.
Indeed, our definition, although intuitively associated to

the very concept of “structure” within the fluid distribution,
is not related (at least not directly) to information or*lherrera@usal.es
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disequilibrium; rather, it stems from the basic assumption
that the simplest system (at least one of them) is represented
by the homogeneous fluid with isotropic pressure. Having
assumed this fact as a natural definition of a vanishing
complexity system, the very definition of complexity will
emerge in the development of the fundamental theory of
self-gravitating compact objects, in the context of general
relativity.
The basic motivation for our endeavor, resides in the fact

that the definition of complexity for self-gravitating sys-
tems proposed in [13–18], contains two features which, in
our opinion, are unsatisfactory.
On the one hand, the probability distribution which

appear in the definition of “disequilibrium” and informa-
tion, is replaced, in [13–18], by the energy density of the
fluid distribution. This has been justified by the statement
that the energy density is related to the probability of
finding some particles at a given defined location inside the
star, or, plainly, by the fact that it proved difficult to suggest
a better alternative from the available physical quantities.
On the other hand, in the above-mentioned definition of

complexity, only the energy density of the fluid intervenes,
whereas other important variables such as the pressure
components of the energy-momentum tensor, which we
expect to play an important role in the formation of any
structure within the fluid distribution, are absent. This is a
particularly unsatisfactory situation, if we recall that the
very concept of complexity should, somehow, be associ-
ated to generic properties of the structure of the fluid.
For the reasons expressed above, we intend in this work

to introduce a new concept of complexity, for self-
gravitating systems. The variable responsible for measuring
complexity, which we call the complexity factor, appears
in the orthogonal splitting of the Riemann tensor, and the
justification for such a proposition, roughly speaking, is
as follows (see Sec. IV for a more detailed discussion).
For a static fluid distribution, the simplest system is

represented by a homogeneous (in the energy density),
locally isotropic fluid (principal stresses equal). Sowe assign
a zero value of the complexity factor for such a distribution.
Next, we recall the concept of the Tolman mass [19], which
may be interpreted as the “active” gravitational mass, and as
we shall see may be expressed, for an arbitrary distribution,
through its value for the zero complexity case plus two terms
depending on the energy density inhomogeneity and pres-
sure anisotropy, respectively. These latter terms, in its turn
may be expressed through a single scalar function thatwe call
the complexity factor. It obviously vanishes when the fluid is
homogeneous in the energy density, and isotropic in pres-
sure, but also may vanish when the two terms containing
density inhomogeneity and anisotropic pressure, cancel each
other. Thus, as in [7], vanishing complexity may correspond
to very different systems.
The manuscript is organized as follows: In the next

section, we introduce all the variables and conventions used

throughout the paper. In Sec. III, we briefly review the
orthogonal splitting of the Riemann tensor and the origin
of the so called structure scalars, one of which would play
the role of the complexity factor. After introducing the
complexity factor in Sec. IV, we shall display in Sec. V,
different exact solutions to the Einstein equations with
vanishing complexity factor. Finally, a summary of the
obtained results as well as prospective applications and
extensions of the complexity factor, to more general
situations, are presented in Sec. VI.

II. THE VARIABLES AND THE EQUATIONS

In this section, we shall present the physical variables
and the relevant equations for describing a static self-
gravitating locally anisotropic fluid. For more details, see
[20–22].

A. Einstein equations

We consider spherically symmetric distributions of static
fluid, which for the sake of completeness we assume to be
locally anisotropic and bounded by a spherical surface Σ.
The line element is given in Schwarzschild-like coor-

dinates by

ds2 ¼ eνdt2 − eλdr2 − r2ðdθ2 þ sin2 θdϕ2Þ; ð1Þ

where νðrÞ and λðrÞ are functions of their arguments. We
number the coordinates: x0 ¼ t; x1 ¼ r; x2 ¼ θ; x3 ¼ ϕ.
The metric (1) has to satisfy Einstein field equations

Gν
μ ¼ 8πTν

μ; ð2Þ

In order to give physical significance to the Tμ
ν compo-

nents we apply the Bondi approach [23].
Thus, following Bondi, let us introduce purely locally

Minkowski coordinates (τ, x, y, z)

dτ ¼ eν/2dt; dx ¼ eλ/2dr; dy ¼ rdθ;

dz ¼ r sin θdϕ:

Then, denoting the Minkowski components of the energy
tensor by a bar, we have

T̄0
0 ¼ T0

0; T̄1
1 ¼ T1

1; T̄2
2 ¼ T2

2; T̄3
3 ¼ T3

3:

Next, we suppose that when viewed by a comoving with
the fluid observer, the physical content of space consists of
an anisotropic fluid of energy density μ, radial pressure Pr,
and tangential pressure P⊥. Thus, the covariant energy-
momentum tensor in (local) Minkowski coordinates is
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0
BBB@

μ 0 0 0

0 Pr 0 0

0 0 P⊥ 0

0 0 0 P⊥

1
CCCA:

Then,

T0
0 ¼ T̄0

0 ¼ μ; ð3Þ

T1
1 ¼ T̄1

1 ¼ −Pr; ð4Þ

T2
2 ¼ T3

3 ¼ T̄2
2 ¼ T̄3

3 ¼ −P⊥; ð5Þ

and the field equations read

μ ¼ −
1

8π

�
−

1

r2
þ e−λ

�
1

r2
−
λ0

r

��
; ð6Þ

Pr ¼ −
1

8π

�
1

r2
− e−λ

�
1

r2
þ ν0

r

��
; ð7Þ

P⊥ ¼ 1

32π
e−λ
�
2ν00 þ ν02 − λ0ν0 þ 2

ν0 − λ0

r

�
; ð8Þ

where primes stand for derivatives with respect to r.
From these last expressions it a simple matter to find the

hydrostatic equilibrium equation, which reads

P0
r ¼ −

ν0

2
ðμþ PrÞ þ

2ðP⊥ − PrÞ
r

: ð9Þ

This is the generalized Tolman-Opphenheimer-Volkoff
equation for anisotropic matter.
Alternatively, using

ν0 ¼ 2
mþ 4πPrr3

rðr − 2mÞ ; ð10Þ

which follows from the field equations, we may write

P0
r ¼ −

ðmþ 4πPrr3Þ
rðr − 2mÞ ðμþ PrÞ þ

2ðP⊥ − PrÞ
r

; ð11Þ

where m is the mass function defined by

R3
232 ¼ 1 − e−λ ¼ 2m

r
; ð12Þ

or, equivalently, as

m ¼ 4π

Z
r

0

r̃2μdr̃: ð13Þ

Next, the four-velocity vector is given by

uμ ¼ ðe−ν
2; 0; 0; 0Þ; ð14Þ

from which we can calculate the four acceleration,
aα ¼ uα;βu

β, whose only nonvanishing component is

a1 ¼ −
ν0

2
; ð15Þ

It will be convenient to write the energy-momentum
tensor (3)–(5) as

Tμ
ν ¼ μuμuν − Phμν þ Πμ

ν ; ð16Þ

with

Πμ
ν ¼ Π

�
sμsν þ

1

3
hμν

�
; P ¼ P̃r þ 2P⊥

3

Π ¼ Pr − P⊥; hμν ¼ δμν − uμuν; ð17Þ

and sμ being defined by

sμ ¼ ð0; e−λ
2; 0; 0Þ; ð18Þ

with the properties sμuμ ¼ 0, sμsμ ¼ −1.
For the exterior of the fluid distribution, the spacetime is

that of Schwarzschild:

ds2 ¼
�
1 −

2M
r

�
dt2 −

dr2

ð1 − 2M
r Þ

− r2ðdθ2 þ sin2 θdϕ2Þ:

ð19Þ

In order to match smoothly the two metrics above on the
boundary surface r ¼ rΣ ¼ const, we require the continuity
of the first and the second fundamental forms across that
surface, producing

eνΣ ¼ 1 −
2M
rΣ

; ð20Þ

e−λΣ ¼ 1 −
2M
rΣ

; ð21Þ

½Pr�Σ ¼ 0; ð22Þ

where, from now on, subscript Σ indicates that the quantity
is evaluated on the boundary surface Σ.
Eqs. (20), (21), and (22) are the necessary and sufficient

conditions for a smooth matching of the two metrics (1) and
(19) on Σ.

B. The Riemann and the Weyl tensor

As is well known, the Riemann tensor may be expressed
through the Weyl tensor Cαβμρ, the Ricci tensor Rαβ and the
scalar curvature R, as
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Rρ
αβμ ¼ Cρ

αβμ þ
1

2
Rρ
β gαμ −

1

2
Rαβδ

ρ
μ þ 1

2
Rαμδ

ρ
β

−
1

2
Rρ
μgαβ −

1

6
Rðδρβ gαμ − gαβδ

ρ
μ Þ: ð23Þ

In the spherically symmetric case, the magnetic part of
the Weyl tensor vanishes and we can express the Weyl
tensor in terms of its electric part (Eαβ ¼ Cαγβδuγuδ) as

Cμν8πλ ¼ ðgμναβgκλγδ − ημναβηκλγδÞuαuγEβδ; ð24Þ

with gμναβ ¼ gμαgνβ − gμβgνα, and ημναβ denoting the Levi-
Civita tensor. Observe that Eαβ may also be written as

Eαβ ¼ E

�
sαsβ þ

1

3
hαβ

�
; ð25Þ

with

E ¼ −
e−λ

4

�
ν00 þ ν02 − λ0ν0

2
−
ν0 − λ0

r
þ 2ð1 − eλÞ

r2

�
; ð26Þ

satisfying the following properties:

Eα
α ¼ 0; Eαγ ¼ EðαγÞ; Eαγuγ ¼ 0: ð27Þ

C. The mass function and the Tolman mass

Here we shall introduce the two most commonly used
definitions for the mass of a sphere interior to the surface Σ,
as well as some interesting relationships between them and
the Weyl tensor. These will be used later to justify our
choice for the complexity factor.

1. The mass function

Using (2), (23), (25) and the definition of the mass
function given in (12) [or (13)], we may write

m ¼ 4π

3
r3ðμþ P⊥ − PrÞ þ

r3E
3

; ð28Þ

from which it is easy to obtain

E ¼ −
4π

r3

Z
r

0

r̃3μ0dr̃þ 4πðPr − P⊥Þ: ð29Þ

Finally, inserting (29) into (28), we obtain

mðrÞ ¼ 4π

3
r3μ −

4π

3

Z
r

0

r̃3μ0dr̃: ð30Þ

Equation (29) relates the Weyl tensor to two fundamental
physical properties of the fluid distribution, namely, density
inhomogeneity and local anisotropy of pressure, whereas
(30) expresses the mass function in terms of its value in the

case of a homogeneous energy density distribution, plus the
change induced by density inhomogeneity.

2. Tolman mass

An alternative definition to describe the energy content
of a fluid sphere was proposed by Tolman many years
ago. The Tolman mass for a spherically symmetric static
distribution of matter is given by [19]

mT ¼ 4π

Z
rΣ

0

r2eðνþλÞ/2ðT0
0 − T1

1 − 2T2
2Þdr: ð31Þ

Although Tolman’s formula was introduced as a measure of
the total energy of the system, with no commitment to its
localization, we shall define the mass within a sphere of
radius r, completely inside Σ, as

mT ¼ 4π

Z
r

0

r̃2eðνþλÞ/2ðT0
0 − T1

1 − 2T2
2Þdr̃:

This extension of the global concept of energy to a local
level is suggested by the conspicuous role played by mT
as the “active gravitational mass,” which will be exhibited
below.
In fact, it can be shown after some lengthy calculations

(see [20,21] for details), that

mT ¼ eðνþλÞ/2½mðrÞ þ 4πr3Pr�: ð32Þ

Or, using the field equations,

mT ¼ eðν−λÞ/2ν0
r2

2
: ð33Þ

This last equation brings out the physical meaning of mT
as the active gravitational mass. Indeed, as it follows from
(15), the gravitational acceleration (a ¼ −sνaν) of a test
particle, instantaneously at rest in a static gravitational
field, is given by

a ¼ e−λ/2ν0

2
¼ e−ν/2mT

r2
: ð34Þ

Another expression for mT, which appears to be more
suitable for the discussion in Sec. IV is (see [20,21] for
details, but notice slight changes in notation):

mT ¼ ðmTÞΣ
�
r
rΣ

�
3

− r3

×
Z

rΣ

r
eðνþλÞ/2

�
8π

r̄
ðP⊥ − PrÞ þ

1

r̄4

Z
r̄

0

4πr̃3μ0dr̃
�
dr̄;

ð35Þ

or, using (29)
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mT ¼ ðmTÞΣ
�
r
rΣ

�
3

− r3
Z

rΣ

r

eðνþλÞ/2

r̃
½4πðP⊥ − PrÞ − E�dr̃:

ð36Þ
The important point to stress here is that the second

integral in (35) describes the contribution of density
inhomogeneity and local anisotropy of pressure to the
Tolman mass.
We shall next present the orthogonal splitting of the

Riemann tensor, and express it in terms of the variables
considered so far.

III. THE ORTHOGONAL SPLITTING
OF THE RIEMANN TENSOR

The orthogonal splitting of the Riemann tensor was first
considered by Bel [24]; here, we shall follow closely (with
some changes) the notation in [25].
Thus, following Bel, let us introduce the following

tensors,

Yαβ ¼ Rαγβδuγuδ; ð37Þ

Zαβ ¼ �Rαγβδuγuδ ¼
1

2
ηαγϵμRϵμ

βδuγuδ; ð38Þ

Xαβ ¼ �R�
αγβδu

γuδ ¼ 1

2
η ϵμ
αγ R�

ϵμβδu
γuδ; ð39Þ

where � denotes the dual tensor; i.e., R�
αβγδ ¼ 1

2
ηϵμγδR

ϵμ
αβ.

It can be shown that the Riemann tensor can be
expressed through these tensors in what is called the
orthogonal splitting of the Riemann tensor (see [25] for
details). However, instead of using the explicit form of the
splitting of Riemann tensor (Eq. (4.6) in [25]), we shall
proceed as follows (for details, see [26], where the general
nonstatic case has been considered).
Using the Einstein equations, we may write (23) as

Rαγ
βδ ¼ Cαγ

βδ þ 28πT ½α
½βδ

γ�
δ� þ 8πT

�
1

3
δα½βδ

γ
δ� − δ½α½βδ

γ�
δ�

�
;

ð40Þ

then feeding back (16) into (40), we split the Riemann
tensor as

Rαγ
βδ ¼ Rαγ

ðIÞ βδ þ Rαγ
ðIIÞ βδ þ Rαγ

ðIIIÞ βδ; ð41Þ

where

Rαγ
ðIÞ βδ ¼ 16πμu½αu½βδ

γ�
δ� − 28πPh½α½βδ

γ�
δ�

þ 8πðμ − 3PÞ
�
1

3
δα½βδ

γ
δ� − δ½α½βδ

γ�
δ�

�
ð42Þ

Rαγ
ðIIÞ βδ ¼ 16πðΠ½α

½βδ
γ�
δ� ð43Þ

Rαγ
ðIIIÞ βδ ¼ 4u½αu½βE

γ�
δ� − ϵαγμϵβδνEμν ð44Þ

with

ϵαγβ ¼ uμημαγβ; ϵαγβuβ ¼ 0; ð45Þ

and where the vanishing, due to the spherical symmetry, of
the magnetic part of the Weyl tensor (Hαβ ¼ �Cαγβδuγuδ)
has been used.
Using the results above, we can now find the explicit

expressions for the three tensors Yαβ, Zαβ, and Xαβ in terms
of the physical variables, and we obtain

Yαβ ¼
4π

3
ðμþ 3PÞhαβ þ 4πΠαβ þ Eαβ; ð46Þ

Zαβ ¼ 0; ð47Þ

and

Xαβ ¼
8π

3
μhαβ þ 4πΠαβ − Eαβ: ð48Þ

As shown in [26], the tensors above may be expressed in
terms of some scalar functions, referred to as structure
scalars.
Indeed, from the tensors Xαβ and Yαβ we may define four

scalars functions, in terms of which these tensors may be
written, these are denoted by XT, XTF, YT , YTF, a fifth
scalar associated to the tensor Zαβ vanishes in the static case
(see [26] for details).
These scalars may be written as

XT ¼ 8πμ; ð49Þ

XTF ¼ 4πΠ − E; ð50Þ

or using (29)

XTF ¼ 4π

r3

Z
r

0

r̃3μ0dr̃; ð51Þ

YT ¼ 4πðμþ 3Pr − 2ΠÞ; ð52Þ

YTF ¼ 4πΠþ E; ð53Þ

or using (29)

YTF ¼ 8πΠ −
4π

r3

Z
r

0

r̃3μ0dr̃: ð54Þ

From the above, it follows that local anisotropy of
pressure is determined by XTF and YTF by
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8πΠ ¼ XTF þ YTF: ð55Þ

To establish the physical meaning of YT and YTF, let us
get back to Eqs. (35) or (36). Using (53) or (54), we get

mT ¼ ðmTÞΣ
�
r
rΣ

�
3

þ r3
Z

rΣ

r

eðνþλÞ/2

r̃
YTFdr̃: ð56Þ

Comparing the above expression with (35), we see that
YTF describes the influence of the local anisotropy of
pressure and density inhomogeneity on the Tolman mass.
Or, in other words, YTF describes how these two factors
modify the value of the Tolman mass, with respect to its
value for the homogeneous isotropic fluid. It is also worth
recalling that YTF, together with XTF, determines the local
anisotropy of the fluid distribution.
Finally, observe that the Tolman mass may be written as

mT ¼
Z

r

0

r̃2eðνþλÞ/2YTdr̃: ð57Þ

IV. THE COMPLEXITY FACTOR

We are now ready to introduce our definition of com-
plexity, which as mentioned before, will be represented by
a single scalar function referred to as the complexity factor.
Following the tradition established in previous works on

the concept of complexity, we shall start by defining
the simplest (the less complex) system, within the whole
space of exact solutions of the Einstein equations for
spherically symmetric static fluid distributions with aniso-
tropic pressure.
For simple intuitive reasons, we shall assume that at least

one of these simplest systems is represented by a homo-
geneous energy density distribution with isotropic pressure.
For such a system, as we have seen in the previous section,
the structure scalar YTF vanishes. Furthermore, this single
scalar function, encompasses all the modifications produced
by the energy density inhomogeneity and the anisotropy of
the pressure, on the active gravitational (Tolman) mass.
From the comments above, it appears well justified to

identify the complexity factor with YTF.
The following remarks are in order at this point:
(i) It should be noticed that the complexity factor so

defined, not only vanishes for the homogeneous,
isotropic fluid, where the two terms in (54) vanish
identically, but also for all configurations where the
two terms in (54) cancel each other.

(ii) From the point above it follows that there are a
wealth of configurations satisfying the vanishing
complexity conditions.

(iii) It is worth noticing that whereas the contribution of
the pressure anisotropy to YTF is local, the contri-
bution of the density energy inhomogeneity is not.

(iv) If we allow the fluid distribution to be electrically
charged, then the corresponding YTF will include
contributions from the electric charge which are of,
both, local and nonlocal nature (see Eq. (25) in [27]).

In the next section, we shall present two examples of
inhomogeneous and anisotropic fluid configurations, sat-
isfying the vanishing complexity factor condition.

V. FLUID DISTRIBUTIONS WITH VANISHING
COMPLEXITY FACTOR

The Einstein equations for a spherically symmetric
static, anisotropic fluid (Eqs. (6)–(8), form a system of
three ordinary differential equations for five unknown
functions (ν, λ, μ, Pr, P⊥). Accordingly, if we impose
the condition YTF ¼ 0 we shall need still one condition in
order to solve the system.
The vanishing complexity factor condition, according to

(54), reads

Π ¼ 1

2r3

Z
r

0

r̃3μ0dr̃: ð58Þ

It is worth noticing that, as it follows from (58), the
vanishing complexity factor condition implies either,
homogeneous energy density and pressure isotropy, or
inhomogeneous energy density and pressure anisotropy.
Also, it should be noticed that (58) may be regarded as a

nonlocal equation of state, somehow similar to the one
proposed some years ago in [28].
Just for the sake of illustration, here we shall propose

some examples.

A. The Gokhroo and Mehra Ansätz

A family of anisotropic spheres has been found in [29],
which lead to physically satisfactory models for compact
objects.
The starting point for the obtention of these models,

is an assumption on the form of the metric function λ
which reads

e−λ ¼ 1 − αr2 þ 3Kαr4

5r2Σ
; ð59Þ

producing, because of (6) and (13),

μ ¼ μ0

�
1 −

Kr2

r2Σ

�
ð60Þ

and

mðrÞ ¼ 4πμ0r3

3

�
1 −

3Kr2

5r2Σ

�
; ð61Þ

where K is a constant in the range (0,1) and α ¼ 8πμ0
3
.
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Next, from (7), (8), we may write

8πðPr − P⊥Þ

¼ e−λ
�
−
ν00

2
−
�
ν0

2

�
2

þ ν0

2r
þ 1

r2
þ λ0

2

�
ν0

2
þ 1

r

��
−

1

r2
:

ð62Þ

Then, introducing the variables,

eνðrÞ ¼ e
R
ð2zðrÞ−2/rÞdr; ð63Þ

and

e−λ ¼ yðrÞ; ð64Þ
and feeding back into (62), we get

y0 þ y

�
2z0

z
þ 2z −

6

r
þ 4

r2z

�
¼ −

2

z

�
1

r2
þ ΠðrÞ

8π

�
: ð65Þ

In our case, yðrÞ is given by (59) whereas Π is obtained
from (58) and (60). Feeding back these expressions in (65),
this last equation becomes a Ricatti equation, whose
integration provides z, and thereby the solution is com-
pletely determined.
Indeed, in terms of these two functions z, Π, the line

element becomes (see [22] for details)

ds2 ¼ −e
R
ð2zðrÞ−2/rÞdrdt2

þ z2ðrÞe
R
ð 4

r2zðrÞþ2zðrÞÞdr

r6
 
−2
R zðrÞð1þΠðrÞr2

8π Þe
R

ð 4

r2zðrÞ
þ2zðrÞÞdr

r8 drþ C

! dr2

þ r2dθ2 þ r2 sin2 θdϕ2; ð66Þ
where C is a constant of integration.
And for the physical variables, we have

4πPr ¼
zðr − 2mÞ þm/r − 1

r2
; ð67Þ

4πμ ¼ m0

r2
; ð68Þ

and

4πP⊥ ¼
�
1 −

2m
r

��
z0 þ z2 −

z
r
þ 1

r2

�
þ z

�
m
r2

−
m0

r

�
:

ð69Þ
The obtained solution is regular at the origin and satisfies

the conditions μ > 0, μ > Pr, P⊥. In addition, to avoid the
singular behavior of physical variables on the boundary of
the source (Σ), the solution should also satisfy the Darmois
conditions on the boundary (20), (21), (22).

B. The polytrope with vanishing complexity factor

The polytropic equation of state plays an important role
in the study of self-gravitating systems, both, in Newtonian
and general relativistic astrophysics. The study of poly-
tropes for anisotropic matter has been considered in detail
in the recent past [30–32].
After adopting the polytropic equation of state, in the

case of anisotropic matter, we still need an additional
condition in order to solve the corresponding system of
equations. Here we propose to complement the polytropic
equation of state with the vanishing complexity factor
condition.
Thus, our model is obtained on the basis of the following

conditions,

Pr ¼ Kμγ ¼ Kμ1þ1/n; YTF ¼ 0; ð70Þ

where constants K, γ, and n are usually called the
polytropic constant, polytropic exponent, and polytropic
index, respectively.
From the polytropic equation of state, we obtain two

equations which read

ξ2
dΨ
dξ

�
1 − 2ðnþ 1Þαv/ξ

1þ αΨ

�
þ vþ αξ3Ψnþ1

þ 2ΠΨ−nξ

Prcðnþ 1Þ
�
1 − 2αðnþ 1Þv/ξ

1þ αΨ

�
¼ 0; ð71Þ

and

dv
dξ

¼ ξ2Ψn; ð72Þ

where

α ¼ Prc/μc; r ¼ ξ/A; A2 ¼ 4πμc/αðnþ 1Þ; ð73Þ

Ψn ¼ μ/μc; vðξÞ ¼ mðrÞA3/ð4πμcÞ; ð74Þ

where subscript c indicates that the quantity is evaluated at
the center. At the boundary surface r ¼ rΣ (ξ ¼ ξΣ), we
have ΨðξΣÞ ¼ 0 (see [32] for details).
Equations (71), (72), form a system of two first-order

ordinary differential equations for the three unknown func-
tions Ψ, v, Π, depending on a duplet of parameters n, α.
In order to proceed further with the modeling of a compact
object, we shall further assume the vanishing complexity
factor condition which, with the notation above, reads

6Π
nμc

þ 2ξ

nμc

dΠ
dξ

¼ Ψn−1ξ
dΨ
dξ

: ð75Þ

Now we have a system of three ordinary differential
equations (71), (72), (75) for the three unknown functions
Ψ, v, Π, which may be integrated for an arbitrary duplet of
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values of the parameters n, α, only constrained by the
physical conditions (see [31] for details):

μ > 0; αΨ ≤ 1;
3v
ξ3Ψn þ αΨ − 1 ≤ 1: ð76Þ

Since we do not intend to present specific models of
compact object, we shall not proceed further to integrate the
above equations.
Finally, it is worth mentioning that the generalization of

the Newtonian polytrope to the general relativistic case
admits two possibilities. One is Eq. (70), and the other is
Pr ¼ Kμγb ¼ Kμ1þ1/n

b , where μb denotes the baryonic (rest)
mass density. The treatment of this last case has been
described in detail in [31]. The equations equivalent to (71)
and(75) in this case are

ξ2
dΨb

dξ

�
1 − 2ðnþ 1Þαv/ξ

1þ αΨb

�
þ vþ αξ3Ψnþ1

b

þ 2ΠΨ−n
b ξ

Prcðnþ 1Þ
�
1 − 2αðnþ 1Þv/ξ

1þ αΨb

�
¼ 0; ð77Þ

6Π
nμbc

þ 2ξ

nμbc

dΠ
dξ

¼ Ψn−1
b ξ

dΨb

dξ
½1þ Kðnþ 1Þμ1/nbc Ψb�;

ð78Þ
with Ψn

b ¼ μb/μbc.

VI. CONCLUSIONS

Wehave introduced a newconcept of complexity, for static
spherically symmetric relativistic fluid distributions, which
stems from the basic assumption that one of the less complex
systems corresponds to an homogeneous (in the energy
density) fluid distributionwith isotropic pressure. Then, as an
obvious candidate to measure the degree of complexity, the
structure scalar YTF appears. We would like to emphasize
here the following reasons behind such a proposal:

(i) The scalar function YTF contains contributions from
the energy density inhomogeneity and the local
pressure anisotropy, combined in a very specific way.

(ii) This scalar measures the departure of the value of the
Tolman mass for the homogeneous and anisotropic
fluid, produced by the energy density inhomogene-
ity and the pressure anisotropy.

(iii) In the case of a charged fluid, this scalar also
encompasses the effect of the electric charge.

(iv) In the general nonstatic, dissipative fluid distribution,
YTF contains, besides the contributions from the
energy density inhomogeneity and the local pressure
anisotropy, also contributions from the dissipative
fluxes.

(v) In the nonstatic case, the vanishing of YTF is a
necessary condition for the stability of the shear–free
condition [33]. This last condition generalizes to the
relativistic case the homologous evolution, which in

turn appears to be the more “orderly” type of
evolution (see [34] for a discussion on this point).

Next, we have exhibited some exact solutions satisfying
the vanishing complexity factor condition. As mentioned
before, the intention was not to provide models with specific
astrophysical interest, but just illustrate how such models
may be found, with two examples. Among themany existing
possible conditions to complement the vanishing complexity
factor condition, in order to obtain models, wemaymention:

(i) Pr ¼ 0.
(ii) P⊥ ¼ 0.
(iii) The nonlocal equation of state proposed in [28].
(iv) The Ansäzte proposed by Cosenza et al. in [35].
(v) The Karmarkar condition [36].
(vi) The Krori-Barua Ansätz [37].

Before ending, we would like to make some final remarks
and to present a partial list of issues, which remain unan-
swered in this manuscript, but should be addressed in the
future.

(i) The definition of complexity proposed in this work,
is not directly related to entropy or disequilibrium,
although it is possible that such a link might exist
after all. If so, how could, such relationship, be
brought out?

(ii) We have introduced a definition for complexity,
but we have not explored how such a concept is
related to physical relevant properties of the source
such as the stability, or the maximal degree of
compactness.

(iii) The complexity factor may be negative. If we assume
that the simplest systems are described by a vanishing
complexity factor, what is the physical meaning of a
negative complexity factor?

(iv) How does the complexity factor evolves? Do physi-
cally meaningful systems prefer vanishing complex-
ity factor?

(v) Since, YTF has been defined also for the general
nonstatic case, and for the nonspherical case, the
extension of the discussion started here, to these
cases, may proceed without much difficulty. How-
ever, it should be mentioned that in this latter case
(nonspherical) the number of structure scalars is
larger, and it is possible that complexity should be
defined through more than one scalar function.

(vi) The complexity factor for a charged (spherically
symmetric) fluid is known, but what is the complexity
factor for a different type of field (e.g. a scalar field?).

(vii) We have defined the complexity factor in the context
of the Einstein theory of gravitation, but how should
we define it, in the context of any other alternative
theory?
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