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The general form of the action growth for a large class of static black hole solutions in modified gravity
which includes FðRÞ-gravity models is computed. The cases of black hole solutions with nonconstant Ricci
scalar are also considered, generalizing the results previously found and valid only for black holes with
constant Ricci scalar. An argument is put forward to provide a physical interpretation of the results, which
seem tightly connected with the generalized second law of black hole thermodynamics.
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I. INTRODUCTION

Recently, Brown et al. proposed an interesting conjecture
in the AdS=CFT framework, according to which the quan-
tum computational complexity of a holographic state may be
inferred from the classical action related to a specific region
in the bulk [1]. Such a proposal has been checked in the
context of the anti–de Sitter (AdS) black holes (BHs) in
general relativity (GR), and this is an interesting test for the
complexity/action (CA) duality [2]. This conjecture is a
refined version of a previous one which states that the
complexity is dual to the spatial volume of a maximal slice
behind the horizon [3]. Since the properties of the black hole
interior are represented on the holographic boundary, it is
possible to find the boundary state by computing the classical
action of the space-time region inside theBH (in the so-called
“Wheeler-DeWitt” (WdW) patch; see Ref. [4] for a detailed
geometrical analysis of the issue). After calculating the
growth of the complexity at the late time, it is found that
in the case of neutral black holes the action growth is
bounded by a term proportional to the BH energy.
In modified theories of gravity several attempts have been

made in order to calculate the action growth for neutral and
charged AdS black holes; see for example Refs. [5–7].
In this paper, our aim is to investigate the action growth

in the case of the black holes within a class of modified
gravity. We are mainly interested in FðRÞ theories of
gravity, where the action is given by a general function

of the Ricci scalar R. Such models represent the simplest
generalization of Einstein’s theory, and, in general, they
admit the existence of Schwarzschild dS/AdS black holes,
namely solutions with constant Ricci curvature. Beside
these “trivial” black hole solutions, we present the compu-
tation of the action growth associated with nontrivial black
hole (vacuum) solutions with nonconstant Ricci curvature,
found in Refs. [8–13]. Some of these static solutions
represent “dirty BHs” [14], namely ones in which the
(00)- and (11)-metric components are related as
g00g11 ≠ −1. They typically involve scalar hairs.
The thermodynamical interpretation for such BHs sol-

utions is still an open issue (see for instance Refs. [15–19])
and the relation between the action growth and the BH
energy in FðRÞ gravity should be careful considered. For
our purposes, we make use of the fact that in most cases and
within FðRÞ gravity, the BH energy may be obtained by
deriving the first law of BH thermodynamics from the
equations of motion [20]. In fact, when only one integration
constant appears in the solution, it is possible to identify it
with the Killing energy of the black hole itself.
For the black holes with constant Ricci curvature, we

confirm the results previously obtained. For dirty black
holes with nonconstant Ricci scalar, the so-called Kodama-
Hayward energy appears in the action growth. Finally, we
also investigate the action growth for a modified gravity
model with an additional term based on the Weyl tensor,
which is not belonging to the FðRÞ class.
Quite apart from computations, it is also important to

assess the validity of the conditions allowing us to restrict
attention to spherically symmetric solutions beyond the
obvious demand of simplicity and the advantage of working
with exact solutions, and to relate the action grow with the
physics of black hole evaporation. In this context, the more
important property is the grows being proportional to the
internal energy of the black hole. We show that this is
equivalent, for neutral nonrotating black holes, to the
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simultaneous validity of the generalized second law together
with the Pendry’s inequality [21] characterizing the infor-
mation rate of a single communication channel, whose exact
definition in general depends on the physical character of the
information carriers and the medium by which they propa-
gate.1 We recall that the generalized second law stipulates
that the entropyof the black hole plus the one carried away by
the Hawking radiation should satisfy the inequality

0 ≤ _SBH þ _Srad; ð1Þ
where thedot denotes the timederivative,2whilewhat Pendry
says (adapted in a form suitable to us) is that for a channel fed
by power P, we have

_Sþ ≤
�
πP
3

�
1=2

; ð2Þ

where _Sþ is the entropy flow along the channel. Identifying
Sþ with Srad and P ¼ − _EBH, both are satisfied by the black
holes and together would imply that the action grow scales
with the internal energy, sowemay say that the neutral black
hole is a kind of one-dimensional information channel in the
sense specified by Pendry, as was shown long ago by
Bekenstein by other means [23]. Adopting the CA con-
jecture, onemay conclude that the rate of complexity growof
(the boundary horizon state) of the black hole cannot bemore
than twice its thermodynamical energy.
The rest of the paper is organized in the following way.

In Sec. II, the equations of motion for static spherical
symmetric (SSS) metric of FðRÞ gravity are calculated,
starting from a suitable action in which the associated
boundary term has been taken into account. In Sec. III we
present a derivation of the first law of BH thermodynamics
which allows us to obtain the BH Killing energy in the
framework of FðRÞ gravity. In Sec. IV the general
formalism for the evaluation of the action growth in
FðRÞ gravity is presented and applied to the black holes
previously introduced. We use a simpler approach making
full use of the assumed spherical symmetry. For a full
treatment in general relativity in anti–de Sitter space, see
the recent comprehensive paper of D. Carmi et al. [24].
Section V is devoted to the calculation of the action growth
for a BH solution in a Weyl model of modified gravity.
After these rather technical sections, in Sec. VI we give a
physical discussion of the results thereby obtained. The
conclusions and final remarks are given in Sec. VII, while
in the appendixes the explicit calculations of the boundary
terms of the action in FðRÞ and Weyl gravity are presented.
In this work we use units of kB ¼ c ¼ ℏ ¼ 1.

II. ACTION AND EQUATIONS OF MOTION
IN FðRÞ GRAVITY

To begin with, we recall that the action for a generic
modified gravity model depending only on the scalar Ricci
curvature in the vacuum and in four dimensions may be
written as (see for example [25–27])

I ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p
FðRÞ; ð3Þ

where M is a four-dimensional space-time manifold with
boundary ∂M, g is the determinant of the metric tensor
gμνðxμÞ, and FðRÞ is a function of the Ricci scalar R.
As in GR, in order to deal with a proper well-posed

variational problem for the metric tensor [28], one needs to
subtract to the Lagrangian a suitable boundary term. In the
so-called Jordan frame, one has to work with the following
action [29–36],

Î ¼
Z
M

d4x
ffiffiffiffiffiffi
−g

p
FðRÞ − 2

Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
F0ðRÞK; ð4Þ

where K is the trace of the extrinsic curvature related to ∂M
and h is the trace of the three-dimensional induced metric
hijðxiÞ. Usually the boundary has topology S2 × R and is
foliated by two-spheres. The signature can be either time-
like or null, but not spacelike. In the null case there are
some unresolved ambiguities [4]. If it is not orthogonal to
the space-time foliation in the Hamiltonian formulation
then suitable bolt terms have to be added, along the lines
discussed in [37] in GR, for example. The field equations
can be derived and one gets

F0ðRÞRμν −
1

2
FðRÞgμν − ð∇μ∇ν − gμν∇α∇αÞF0ðRÞ ¼ 0;

ð5Þ
where∇μ is the covariant derivative associated to the metric
tensor gμνðxμÞ and the prime denotes the derivative with
respect to the Ricci scalar. As is well known, these above
sets of differential equations are difficult to solve. However,
if one is looking for exact solutions admitting a space-time
symmetry, one may proceed via the so-called minisuper-
space approach (see for example Refs. [38–40]).
In this paper we consider a class of static spherically

symmetric topological space-times defined by the metric

ds2 ¼ −e2αðrÞBðrÞ þ dr2

BðrÞ þ r2dΩ2
k; ð6Þ

where dΩ2
k is the metric of a constant curvature compact

two-dimensional space, the so-called horizon manifold
with areal radius r, and admitting three different topologies,
namely spherical, flat (toroidal really) or Riemann surfaces,
depending on the k parameter, k ¼ 1; 0;−1, respectively.
Furthermore, αðrÞ and BðrÞ are functions of the radial
coordinate only.

1We are using these terms in the sense of Shannon’s commu-
nication theory [22]. One may conveniently think of a one-
dimensional channel as an optical fiber.

2Here time derivatives are taken with respect to retarded
coordinate time, or equivalently to time at infinity.
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The associated Ricci scalar reads

R¼−3
�
d
dr

BðrÞ
�
d
dr

αðrÞ−2BðrÞ
�
d
dr

αðrÞ
�
2

−
d2

dr2
BðrÞ−2BðrÞ d

2

dr2
αðrÞ−4

d
drBðrÞ

r
−4

BðrÞ d
drαðrÞ
r

−2
BðrÞ
r2

þ2k
r2
: ð7Þ

In what follows, we implement the minisuperspace approach following Ref. [12].
First from Appendix A we note that in the case of the metric (6) the related boundary term is a total divergence with

respect to r and may be written as

BT ¼ −Vk

Z
dt

Z
dr

d
dr

�
F0ðRÞeαðrÞr2

�
dBðrÞ
dr

þ 2BðrÞ dαðrÞ
dr

þ 4BðrÞ
r

��
;

¼ −Vk

Z
dt

�
F0ðRÞeαðrÞr2

�
dBðrÞ
dr

þ 2BðrÞ dαðrÞ
dr

þ 4BðrÞ
r

��
; ð8Þ

where Vk is the volume of the horizon manifold, namely V1 ¼ 4π for the sphere, V0 ¼ Imτ, with τ being the Teichmüller
parameter for the torus, and finally V−1 ¼ 4πðg − 1Þ, 2 < g, for the compact hyperbolic manifold with genus g [41].
In order to deal with a standard Lagrangian with quantities admitting only first order derivatives with respect to r, one

may introduce in the action (3) evaluated with respect to the metric (6) a Lagrangian multiplier λ in the following way:

I ¼
Z
M

d4xðeαðrÞr2Þ
�
FðRÞ − λ

�
Rþ 3

�
d
dr

BðrÞ
�
d
dr

αðrÞ þ 2BðrÞ
�
d
dr

αðrÞ
�
2

þ d2

dr2
BðrÞ þ 2BðrÞ d2

dr2
αðrÞ þ 4

d
dr BðrÞ

r
þ 4

BðrÞ d
dr αðrÞ
r

þ 2
BðrÞ
r2

−
2k
r2

��
: ð9Þ

Thus, the variation with respect to R leads to Eq. (7) after the identification

λ ¼ F0ðRÞ: ð10Þ
Now, integrating by parts, it is possible to write the action in the standard form with respect to the variables αðrÞ, BðrÞ and
R ¼ RðrÞ, namely

I ¼ Vk

Z
dt

Z
dreαðrÞ

�
r2ðFðRÞ − F0ðRÞRÞ þ F0ðRÞ

�
2kþ 2r

dBðrÞ
dr

þ 2BðrÞ þ 4rBðrÞ dαðrÞ
dr

�

þ F00ðRÞ dR
dr

r2
�
dBðrÞ
dr

þ 2BðrÞ dαðrÞ
dr

þ 4BðrÞ
r

��
þ BT; ð11Þ

where we take into account the equalities in (8) and (10). As a consequence, one may work only with the new bulk action,
obtained subtracting the correct boundary term,

Î ¼ Vk

Z
dt

Z
dreαðrÞ

�
r2ðFðRÞ − F0ðRÞRÞ þ F0ðRÞ

�
2kþ 2r

dBðrÞ
dr

þ 2BðrÞ þ 4rBðrÞ dαðrÞ
dr

�

þ F00ðRÞ dR
dr

r2
�
dBðrÞ
dr

þ 2BðrÞ dαðrÞ
dr

þ 4BðrÞ
r

��
: ð12Þ

Finally, the equations of motion can be obtained by making the variation with respect to αðrÞ and BðrÞ and are given by (see
also Appendix B)

VkeαðrÞ
�
r2ðRF0ðRÞ − FðRÞÞ − 2F0ðRÞ

�
k − BðrÞ − r

dBðrÞ
dr

�

þ 2BðrÞF00ðRÞr2
�
d2R
dr2

þ
�
2

r
þ dBðrÞ=dr

2BðrÞ
�
dR
dr

þ F000ðRÞ
F00ðRÞ

�
dR
dr

�
2
��

¼ 0; ð13Þ

VkeαðrÞ
�
1

r2
dαðrÞ
dr

�
2

r
þ F00ðRÞ

F0ðRÞ
dR
dr

�
−

1

r2
F00ðRÞ
F0ðRÞ

d2R
dr2

−
1

r2
F000ðRÞ
F0ðRÞ

�
dR
dr

�
2
�
¼ 0: ð14Þ

Furthermore, as already mentioned, the variation with respect to R leads again to Eq. (7). With this approach, Eq. (13) does
not contain an explicit (nontrivial) dependence on αðrÞ, while Eq. (14) does not contain an explicit dependence on BðrÞ. In
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order to look for exact solutions, the strategy is to make a
suitable ansatz for R ¼ RðrÞ or to make an ansatz for αðrÞ.
In the next subsections, we review the examples of BH
solutions we are interested in.

A. Constant curvature case

In the constant Ricci scalar case one has R ¼ R0. From
Eq. (14) we immediately obtain

αðrÞ ¼ const: ð15Þ

Thus, if F0ðR0Þ ≠ 0, Eq. (13) leads to the topological
Schwarzschild-AdS solution,3

BðrÞ ¼ k −
c
r
−
Λr2

3
; Λ ¼ R0F0ðR0Þ − FðR0Þ

2F0ðR0Þ
< 0;

ð16Þ

where c is a free integration constant. Finally, from Eq. (7)
one has

R0 ¼ 4Λ; ð17Þ

such that Λ ¼ FðR0Þ=ð2F0ðR0ÞÞ.

B. Solutions with αðrÞ= const
Equation (14) with αðrÞ ¼ const leads to [11,12],

F0ðRÞ ¼ arþ b; ð18Þ

where a, b are constant parameters. The form of BðrÞ can
be derived by taking the derivative with respect to r of
Eq. (13), but in general it is not possible to fully reconstruct
the corresponding FðRÞ model (see Refs. [12,13] for
details). On the other hand, when a ¼ 0 we recover the
constant Ricci scalar case already treated in the preceding
subsection, while if one poses b ¼ 0 we get

BðrÞ ¼ k
2
þ c
r2

þ λr2; ð19Þ

where c, λ are integration constants. The Ricci scalar reads

R ¼ −12λþ k
r2
; ð20Þ

and by using Eq. (18) one easily reconstructs the model as

FðRÞ ¼ 2ak
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðRþ 12λÞ

p
: ð21Þ

Note that in this case only one free integration constant c
appears in the metric.

C. Clifton-Barrow solutions

Consider the Lagrangian

FðRÞ ¼ Rδþ1

κ
; δ ≠ 1; ð22Þ

with κ being a dimensional parameter. One looks for
solutions described by the SSS metrics with αðrÞ ≠ 0,
namely

e2αðrÞ ¼
�
r
r0

�
2a
; ð23Þ

where a is a number and r0 a dimensional constant. We also
assume

R ¼ R0

r2
: ð24Þ

In this case, Eqs. (13)–(14) are solved by (k ¼ 1 in Ref. [8],
k generic in Ref. [20])

αðrÞ ¼ log

��
r
r0

�
a
�
; BðrÞ ¼ B0

�
k −

c
rb

�
; ð25Þ

where c is a free integration constant and R0, B0, a, b are
functions of the parameter δ,

R0 ¼
6δkð1þ δÞ

ð2δ2 þ 2δ − 1Þ ;

B0 ¼
ð1 − δÞ2

ð1 − 2δþ 4δ2Þð1 − 2δ − 2δ2Þ ;

a ¼ δð1þ 2δÞ
ð1 − δÞ ;

b ¼ ð1 − 2δþ 4δ2Þ
ð1 − δÞ : ð26Þ

We also observe that the following relation holds true:

b ¼ a − 2δþ 1: ð27Þ

When δ ¼ −1=2 one has αðrÞ ¼ const and we recover the
model (21) with λ ¼ 0 and solution (19). The case δ ¼ 1
has to be considered separately and corresponds to the scale
invariant model FðRÞ ∼ R2 (see for example [42]) and is
not investigated in this paper.
It is also possible to add to the Clifton-Barrow model in

(22) a cosmological constant. An explicit example is the
following: a ¼ 2; thus δ ¼ −2. The corresponding model
with cosmological constant is given by [13]

3Since in this paper we are interested in black hole solutions
with a well-defined temperature we do not consider de Sitter
metrics with two horizons.

SEBASTIANI, VANZO, and ZERBINI PHYS. REV. D 97, 044009 (2018)

044009-4



FðRÞ ¼ 1

κ

�
1

R
− λ

�
: ð28Þ

When k ≠ 0, the model admits the topological SSS solution
(6) with

e2αðrÞ ¼
�
r
r0

�
4

; BðrÞ¼−
k
7
þ c
r7
þ 8λ

15r2
; R¼4k

r2
: ð29Þ

Furthermore, when λ ≠ 0 the model in (28), after the
redefinition λ → 6k=λ2, leads to the solution [12]

e2αðrÞ ¼
�
r
r0

�
; BðrÞ¼ 4

7

�
kþ c

r7=2
−
7λr
36

�
; R¼ λ

r
:

ð30Þ

III. FIRST LAW AND BH ENERGY
IN FðRÞ GRAVITY

In this section, following Ref. [20], we propose a simple
method to obtain the black hole energy in FðRÞ gravity by
starting from the first law of thermodynamics (see also
Refs. [15–17]).
We recall that a SSS solution in the form of (6) describes

a black hole with a single event horizon with radius r ¼ rH
when there exists a single rH > 0 such that

BðrHÞ ¼ 0; 0 <
dBðrÞ
dr

				
r¼rH

: ð31Þ

In this way, 0 < dBðrÞ=drjrH leads to a positive Killing
surface gravity

κK ¼ eαðrHÞ
dBðrÞ
dr

				
r¼rH

: ð32Þ

The metric signature ð−þþþÞ is preserved for rH < r,
while it is violated when r < rH. In other words, inside of
the horizon, the coordinate r plays the role of the time, t
plays the role of a spatial coordinate, and the metric
becomes dynamic.
The metrics presented in the preceding section describe a

black hole at least for some choices of the horizon topology.
For example, it is well known that the Schwarzschild-AdS
metric in (16) can describe a black hole with various
topologies when Λ < 0 (see Ref. [43]), but if Λ ¼ 0 we
obtain a black hole only for k ¼ 1 and 0 < c.
Given a BH solution within a FðRÞ-modified gravity

model, it is well known that the entropy and the related
Hawking temperature can be computed by making use of
independent approaches. In the case of the black hole
entropy, the Wald method gives [44]

SW ¼ ð4πÞVkr2HF
0ðRHÞ; ð33Þ

where the pedex H denotes a quantity evaluated with
respect to r ¼ rH. The Killing-Hawking temperature [45]
can be derived, for instance, with the tunneling method
[46,47] and reads

TK ¼ κK
2π

≡ eαðrHÞ

4π

dBðrHÞ
dr

: ð34Þ

Thus, from Eq. (13) evaluated on the BH horizon we may
derive a first law of thermodynamics where the Killing
temperature emerges in a natural way as follows:

TkdSW ¼ eαðrHÞVkð2kF0ðRHÞ − ðRHF0ðRHÞ
− FðRHÞr2HÞÞdrH: ð35Þ

Here, we have used the condition BðrHÞ ¼ 0 and we have
multiplied by drH. An important remark is in order. The
relation

dSW ¼ð4πÞVk

�
2rHF0ðRHÞdrHþr2HF

00ðRHÞ
�
dR
dr

�				
H
drH

�

is valid only if

dRH ¼
�
dR
dr

�				
H
drH: ð36Þ

It means that the on-shell form of the Ricci scalar does not
have to depend on the integration constant(s) of the
solution. In this case the first law holds true,

TKdSW ¼ dEK; ð37Þ

and leads to the identification

dEK ¼ eαðrHÞVkð2kF0ðRHÞ− ðRHF0ðRHÞ−FðRHÞr2HÞÞdrH:
ð38Þ

Thus, at least in the case where only an integration constant
appears in the black hole solution, we have an explicit
expression for the BH energy in FðRÞ gravity,

EK≔Vk

Z
eαðrHÞð2kF0ðRHÞ−ðRHF0ðRHÞ−FðRHÞr2HÞÞdrH:

ð39Þ

The condition (36) looks restrictive, but it holds for a large
class of static black holes in FðRÞ gravity. For these
solutions, the first law is a robust argument for the
definition of the BH energy or mass. In particular, these
considerations are valid for the FðRÞ models presented in
the previous section.
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IV. THE EVALUATION OF THE ACTION
GROWTH IN FðRÞ GRAVITY

In this section, we start recalling the approach described in
Ref. [2] and usedwithinFðRÞ gravity in other papers (see for
example Refs. [7,48]). In Ref. [4] this approach has been
rigorously proved to give the correct answer. Within a
holographic scenario, the CA conjecture tells us that one
can compute the complexity growth by the evaluation of the
action growth in the time, action defined with respect to the
so-calledWdWpatch. For large time, one may consider only
the bulk on-shell action associated with the black hole
solution evaluated in the interior region of the black hole.
Motivated by these considerations, we compute the action

growth in FðRÞ-modified gravity making use of our minis-
uperspace approach and working only with the bulk action
(12). We are interested in computing the action growth
associated with the interior of the black holes, namely for
r < rH, where the metric becomes dynamics. Thus, if we
replace rwith a time coordinate and twith a space coordinate,

r ¼ T; t ¼ ρ; 0 < T < rH; ð40Þ
we can see the interior metric as a spherically symmetric
dynamical space-time. The metric (6), after the redefinition
BðrÞ → −BðTÞ, can be rewritten as

ds2 ¼ −
dT2

BðTÞ þ e2αðTÞBðTÞdρ2 þ T2dΩ2
k

¼ γijðxiÞdxidxj þ ðRÞ2dΩ2
k; ð41Þ

where γijðxiÞ is the reduced metric with respect to the
coordinates xi ¼ ðT; ρÞ, RðxiÞ ¼ T is the areal radius,
and BðTÞ is positive in the given range of T. In a dynamical
case we lose the timelike Killing vector field and the Killing
formalism becomesmeaningless. On the other hand, one can
use the covariant Hayward formalism [49]. The trapping
(event horizon) is located at

χ ¼ γij∂iRðxiÞ∂jRðxiÞ ¼ 0; ð42Þ
and one has BðTHÞ ¼ 0. Furthermore, Hayward surface
gravity is

κH ¼ 1

2
□γRðxiÞH; ð43Þ

where the d’Alambertian is referred to as the reduced metric.
In our case

κH ¼ −
1

2

dBðTÞ
dT

				
T¼TH

: ð44Þ

Here, the role of the timelike Killing vector is played by the
Kodama vector [50],

Ki ¼ 1ffiffiffiffiffiffi−γp εij∂jRðxiÞ; ð45Þ

where γ is the determinant of the reduced metric γijðxiÞ and
ϵij is the two-dimensional antisymmetric Levi-Civita tensor.
Thus, we get

Kμ ¼ ð0; e−αðTÞ; 0; 0Þ: ð46Þ

The action growth can be defined in a covariant way by
means of

C ¼ lim
T→rH

Kμ∂μÎ; ð47Þ

where Î is the bulk action (12).
For our class of black hole solutions within the modified

gravitational theories described by FðRÞ, one has

C ¼ Vke−αðrHÞ
Z

rH

0

dTLðTÞ; ð48Þ

where the bulk Lagrangian is given by

LðTÞ¼ eαðTÞ
�
T2ðFðRÞ−F0ðRÞRÞ

þ2F0ðRÞ
�
k−T

dBðTÞ
dT

−BðTÞ−2TBðTÞdαðTÞ
dT

�

−F00ðRÞdR
dT

T2

�
dBðTÞ
dT

þ2BðTÞdαðTÞ
dT

þ4BðTÞ
T

��
;

ð49Þ

and must be evaluated on shell, R ¼ RðTÞ being a function
of T,

R ¼ 3

�
d
dT

BðTÞ
�
d
dT

αðTÞ þ 2BðTÞ
�
d
dT

αðTÞ
�
2

þ d2

dT2
BðTÞ þ 2BðTÞ d2

dT2
αðTÞ

þ 4
d
dT BðTÞ

T
þ 4

BðTÞ d
dT αðTÞ
T

þ 2
BðTÞ
T2

þ 2k
T2

: ð50Þ

A. Action growth: α= 0 cases

In this subsection, we calculate the action growth of the
FðRÞ-black holes with metric (6) and αðrÞ ¼ const.
Without loss of generality we can pose αðrÞ ¼ 0. Let us
start with the constant Ricci curvature case R ¼ R0

analyzed in Sec. II A. Evaluating the Lagrangian (49) on
the solution,

BðTÞ ¼ −kþ c
T
þ ΛT2

3
; Λ ¼ R0F0ðR0Þ − FðR0Þ

2F0ðR0Þ
;

ð51Þ

one has
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LðTÞ ¼ 4F0ðR0Þðk − ΛT2Þ: ð52Þ
As a result we obtain for the action growth (48),

C ¼ 4VkF0ðRÞ
�
krH −

1

3
Λr3H

�
: ð53Þ

By using the horizon condition BðTHÞ ¼ 0, we get

C ¼ 4VkF0ðRÞc: ð54Þ
In general, from (39), we can now identify

EK ¼ 2VkF0ðRHÞc: ð55Þ
As a result one gets

C ¼ 2EK: ð56Þ
This result is in agreement with the action growth com-
puted by other method in Refs. [5,6,48]. One remark is in
order. The expression (55) has been obtained by fixing the
cosmological constant Λ and the procedure is always valid
when Λ explicitly appears in the form of the FðRÞ model
[for example, FðRÞ ∝ R − 2Λ]. However, when the cos-
mological constant is a second integration constant of the
solution, an additional thermodynamical potential may
contribute to the energy. It is the case, for instance, of
R2 gravity, where the scale invariance of the theory brings
to the emergence of the length scale from the solution.
Let us come back to the model (21) discussed in Sec. II B,

for which one has αðTÞ ¼ 0, but nontrivial Ricci curvature.
We have that the model admits the following interior BH
solution,

BðTÞ ¼ −
k
2
−

c
T2

− λT2; ð57Þ

with nonconstant Ricci scalar,

R ¼ −12λþ k
T2

: ð58Þ

The on-shell Lagrangian is

LðTÞ ¼ 6aTðkþ 4λT2Þ: ð59Þ
Thus, the action growth results in

C ¼ 6Vka

�
kr2H
2

þ λr4H

�
≡ −6VKac: ð60Þ

From (39) we have that the energy of the black hole under
investigation is

EK ¼ −3VKac; ð61Þ
and one obtains again the relation (56). This is a new result,
similar to the casewith constantRicci scalar discussed above.

B. Action growth: Clifton-Barrow models

As an example of the nonconstant Ricci scalar case with
αðrÞ ≠ 0, we compute the action growth for the Clifton-
Barrow models (22) discussed in Sec. II C. The interior BH
solution reads

αðTÞ¼ log

��
T
r0

�
a
�
; BðTÞ¼B0

�
−kþ c

Tb

�
; R¼R0

T2
;

ð62Þ

where R0, B0, a and b are given by (26). By using the
definitions in (48)–(49) and the condition (27), the action
growth results in

C ¼ Vke−αðTÞ

κra0
Rδ
0B0ð1 − δ2ÞkrbH ≡ Vke−αðTÞ

κra0
Rδ
0B0ð1 − δ2Þc:

ð63Þ

On the other hand, the Killing BH energy for a Clifton-
Barrow BH is derived as

EK ¼ 2ð1 − δ2Þ Vk

ra0κ
Rδ
0B0c; ð64Þ

and, as a consequence, one has

C ¼ 2e−αðrHÞEK: ð65Þ

We return later to this result.
As a further example, we consider now the model (28)

with interior BH solution,

e2αðTÞ ¼
�
T
r0

�
4

; BðTÞ ¼ k
7
−

c
T7

−
8λ

15T2
; R ¼ 4k

T2
;

ð66Þ

where we recall that k ≠ 0. For the action growth one
obtains

C ¼ 3Vke−αðrHÞ

4r20κ

�
kr7H
7

−
8λr5H
15

�
≡ 3e−αðrHÞc

4r20κ
: ð67Þ

Since the BH Killing energy computed with the static
external metric reads

EK ¼ 3c
8r20κ

; ð68Þ

we see that the relation (65) holds true again. The result is
confirmed even in the case of the interior BH solution
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e2αðTÞ ¼
�
T
r0

�
;

BðTÞ ¼ −
4

7

�
kþ c

T7=2 −
7λT
36

�
;

R ¼ λ

T
; ð69Þ

which can still be inferred from the model (28) after the
redefinition λ → 6k=λ2. Now the action growth is

C ¼ 8Vke−αðrHÞ

63λ2κðr0Þ1=2
r7=2H ð−36kþ 7λrHÞ≡ 32VKe−αðrHÞc

7κλ2ðr0Þ1=2
;

ð70Þ

while the Killing energy of the black hole is derived as

EK ¼ 16VKc

7κλ2ðr0Þ1=2
: ð71Þ

It follows that for these classes of black hole solutions with
αðrÞ ≠ 0, the action growth has the universal form (65);
namely the Kodama-Hayward energy,

EH ¼ e−αðrHÞEK; ð72Þ

appears. When α ¼ 0 we recover the relation (56).

V. DESER-SARIOGLU-TEKIN BLACK HOLES

So far, we have investigated in detail the BH solution
within FðRÞ-modified gravity, and we have obtained a
quite general result expressed by (65). In this section we
present another specific example of modified gravity for
which we can make use of the minisuperspace approach.
In Ref. [51], Deser et al. presented an interesting model

based on aWeyl correction to GR for which they provide an
exact SSS BH solution. The model including the cosmo-
logical constant has the following action,

I ¼ 1

2κ2

Z
M

d4x
ffiffiffiffiffiffi
−g

p ðR − 2Λþ
ffiffiffi
3

p
σ

ffiffiffiffiffi
W

p
Þ; ð73Þ

where Λ is the cosmological constant, σ is a real dimen-
sionless parameter andW ¼ CμνξσCμνξσ is the square of the
Weyl tensor,

W ¼ 1

3
R2 − 2RμνRμν þ RμνξσRμνξσ; ð74Þ

Rμν and Rμνσξ being the Ricci and the Riemann tensors,
respectively. For σ ¼ 0 the Weyl contribution turns off and
the action of the ΛCDM model is recovered for
κ2 ¼ 16πGN , with GN being the Newton constant. A
key point is the following: for the SSS metric (6) the
square of the Weyl tensor is a perfect square and reads

W ¼ 1

3

�
1

r2

�
r2
�
d2BðrÞ
dr2

�
þ 2ðBðrÞ − kÞ − 2r

�
dBðrÞ
dr

��

þ 1

r

�
3r

�
dBðrÞ
dr

��
dαðrÞ
dr

�
− 2BðrÞ

�
dαðrÞ
dr

− r

�
d2αðrÞ
dr2

þ
�
dαðrÞ
dr

�
2
����

2

: ð75Þ

After integration by parts, we are able to separate the action of the bulk from the boundary terms (see Appendix C) as

I ¼ Vk

2κ2

Z
dt

Z
dreαðrÞð−2Λr2 þ 2kð1 − ϵσÞ þ 2BðrÞð1 − ϵσÞ þ 2r

dBðrÞ
dr

ð1 − 4ϵσÞþ2rBðrÞ dαðrÞ
dr

ð2 − 5ϵσÞÞ þ BT;

ð76Þ

where

BT ¼ −
Vk

2κ2

Z
dt

Z
dr

d
dr

�
eαðrÞr2

�
dBðrÞ
dr

þ 2BðrÞ dαðrÞ
dr

þ 4BðrÞ
r

�
ð1 − ϵσÞ

�

¼ −
VkΔt
2κ2

�
eαðrÞr2

�
dBðrÞ
dr

þ 2BðrÞ dαðrÞ
dr

þ 4BðrÞ
r

�
ð1 − ϵσÞ

�
: ð77Þ

In this expression, the parameter ϵ ¼ �1 must be set in order to have
ffiffiffiffiffi
W

p ¼ j ffiffiffiffiffi
W

p j. The bulk action is obtained by
subtracting the boundary term, namely

Î ¼ Vk

2κ2

Z
dt

Z
dreαðrÞ

�
−2Λr2 þ 2kð1 − ϵσÞ þ 2BðrÞð1 − ϵσÞ þ 2r

dBðrÞ
dr

ð1 − 4ϵσÞþ2rBðrÞ dαðrÞ
dr

ð2 − 5ϵσÞ
�
: ð78Þ
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The field equations are derived by making the variation of
the bulk action with respect to αðrÞ and BðrÞ and read

Vk

2κ
eαðrÞ

�
ð1 − ϵσÞ

�
k − BðrÞ − r

dBðrÞ
dr

�

þ 3ϵσBðrÞ − Λr2
�
¼ 0; ð79Þ

Vk

2κ
eαðrÞ

�
3ϵσ þ dαðrÞ

dr
ð1 − ϵσÞr

�
¼ 0: ð80Þ

Note that for the SSS metric the field equations of this
theory are at the second order. The general solution is given
by [20,51]

αðrÞ ¼ log

�
r
r0

� 3ϵσ
ϵσ−1

;

BðrÞ ¼ k
ð1 − ϵσÞ
ð1 − 4ϵσÞ − cr−

1−4ϵσ
1−ϵσ − Λ

r2

3ð1 − 2ϵσÞ ;

σ ≠ �1;� 1

4
; ð81Þ

where r0 has been introduced for dimensional reasons, and
c is an integration constant. This solution describes a black
hole with event horizon located at BðrHÞ ¼ 0. Thus, if one
uses the Killing temperature and the Wald entropy [52],

TK ¼ 1

4π

�
rH
r0

� 3ϵσ
ϵσ−1

�
c

�
1 − 4ϵσ

1 − ϵσ

�
r
−−3ϵσ
1−ϵσ

H − 2Λ
rH

3ð1 − 2ϵσÞ
�
;

SW ¼ ð4πÞVkr2H
2κ

ð1 − ϵσÞ; ð82Þ

it is easy to see that Eq. (79) evaluated on the horizon leads
to the first law of thermodynamics, namely

TKdSW ¼ VkeαðrHÞ

κ
½ð1 − ϵσÞk − Λr2H�≡ dEK: ð83Þ

Thus, we can identify the BH energy as

EK ≔
Vk

κ

Z
eαðrHÞ½ð1 − ϵσÞk − Λr2H�drH ¼ Vkc

κr
3ϵσ
ϵσ−1
0

ð1 − ϵσÞ;

ð84Þ
where we have taken into account that on the horizon
BðrHÞ ¼ 0.
The growth action can be computed in an analogue way

of the FðRÞ case by starting from (78) and the result is

C ¼ e−αðrHÞEK
ð2 − 5ϵσÞ
ð1 − ϵσÞ ≤ 2e−αðrHÞEK: ð85Þ

In this case of the modified gravity model, the action
growth does not coincide with the double of the Kodama
energy, but is still proportional to it and, more importantly,
bounded by twice its value as long as 0 < ϵσ, which is in

accord with the general complexity bound as usually stated.
In the contrary case ϵσ < 0 and the bound is violated. As a
check, when σ goes to 0, one gets the result of general
relativity.

VI. A BIT OF BLACK HOLE PHENOMENOLOGY

What we say in this section is strictly valid in Einstein’s
theory of gravity and then argued to hold for more general
models. Black holes radiate away their mass in a certain
lifetime. The efficiency of particle emission from black
holes is clearly an important issue of the evaporation
phenomenon. Beyond this, it is also relevant to interpret
the result on the action grow that we obtained in some
models of modified gravity. In particular, we justify the use
of nonrotating uncharged solutions.
As is well known, the temperature of a black hole in GR

is inversely proportional to its total mass, M, which
includes the gravitational contribution, and the horizon
area A is proportional toM2, so the total power emitted P is
proportional to AT4, or M−2. From this it follows that the
lifetime tl ¼ M=P is proportional toM3. To state a number,
black holes formed by stellar collapse having M⊙ ≤ M,
where M⊙ is the solar mass, have a lifetime of order
1066 yr. Therefore the thermal emission is physically
insignificant for such black holes, although still very
important theoretically. However, it is relevant for primor-
dial black holes, for whichM could be less than 1015 g, and
the corresponding lifetime less than the age of the Universe.
The problem is how rapidly a charged rotating black hole

discharges and spins down. The main difference in the
rapidity of the two processes can be seen as follows. Given
the BH angular momentum J and the BH chargeQ, the two
parameters

a� ¼
J
M2

; Q� ¼
Q
M

; ð86Þ

are constrained by the inequality

a2� þQ2� ≤ 1: ð87Þ
This is because the solutions with 1 < a2� þQ2� do not
describe black holes but exhibit, as a rule, one or more
naked singularities. A charged emitted particle with massm
carries off n units of the fundamental charge, sayΔQ ¼ ne,
and an angular momentum −ΔJ ¼ m, both of order unity.
Hence due to the constraint the number of charged particles
needed to neutralize the hole isQ=ðneÞ, which is at most of
order M, and the number of particles needed to spin down
the hole is J=m, which is at most of orderM2. Thus the hole
can discharge quickly [53–55] but the loss of angular
momentum requires the same number of particles as the
loss of mass. The question of the evolution of a rotating
black hole was analyzed by Page in Refs. [56,57] in great
detail. By considering all the known particles with masses
less than 20 Mev, the temperature of a black hole with mass
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of order 1016 grams, he found that the emission of angular
momentum increases greatly with a�. Moreover, more than
one half of the energy is emitted after a� reaches a small
value of the order of 0.06. From this point the power is
within 1% of its Schwarzschild value and therefore the
earlier assumption that decaying black holes have negli-
gible rotation is valid.
These properties are challenged by the black holes of

modified gravity, although the main argument should retain
its strength, because the standard model Lagrangian,
describing the matter part of the system, is not modified
in the present considerations and the only additional
particle in the gravitational sector (other than the massless
graviton) is a massive scalar. In Page’s time one did not
consider the emission of dark matter particles, and we too
avoid this question here.
But it is clear that the black hole will emit several species

of massless and massive particles depending on its temper-
ature. In this case the total luminosity of the black hole can
be computed by summing over all particle species. Don
Page was able to estimate the total power emitted: taking
into account four kinds of neutrinos (νe, νμ and the two
antineutrinos), the photon and the graviton, for 1017g < M
his result was

P ¼ 2.28 × 10−54L⊙ðM⊙=MÞ2; ð88Þ

where 81.4% is in the four kinds of neutrinos, 16.7% is in
photons and 1.9% is in gravitons. Here, M⊙ ¼ 1.99 ×
1033g is the solar mass and L⊙ ¼ 3.9 × 1033 erg sec−1 is
the solar luminosity. For 5 × 1014 < M < 1017 the black
hole emits ultrarelativistic e� which may be treated as
massless fermions, and the power is

P ¼ 4.07 × 10−54L⊙ðM⊙=MÞ2; ð89Þ

of which 45% is in electrons and positrons, 45% is in
neutrinos, 9% is in photons and only 1% in gravitons. In all,
most of the energy is radiated in the form of massless or
nearly massless particles, as was to be expected on general
grounds for a low temperature object. Moreover, the bulk of
the radiation appears in standard model particles, rather
than gravitons.
The black holes of modified gravity we are considering

presently have a finite temperature and entropy and
obey the first law of thermodynamics for a suitable
defined thermodynamics energy. Thus they radiate
away their energy via Hawking steady emission for most
of their lifetimes. They do this by emitting particles
of the standard model, which is left untouched in
modified gravity. Moreover, no new gravitational excita-
tion is introduced except for a massive scalar, so we may
still consider the evaporation rate of black holes in
modified gravity, for not too small masses, as substantially

identical as for asymptotically flat black holes in general
relativity.4 Of course filling in the details (like the precise
percentages for example) deserves a more careful study.
The conclusions we can draw from the above discussion

and the examples we gave for the explicit solutions is that
the simple scaling of the action grow with the thermody-
namics energy is a direct consequence of the universality of
Hawking radiation for a given particle spectrum. In
particular, it is largely independent on the gravitational
sector and massive states are not radiated anyway. So one
expects the same complexity as in GR, if gravity is treated
classically.
One can see the connection with Hawking radiation

quantitatively. In GR the Hamiltonian on a three-surface Σ
bounded by a sphere which is part of a horizon has the form

H ¼ bulk term −
1

8πGN

Z
M
ðκ − 16πh−1=2PijNiξjÞdA

þ terms at infinity; ð90Þ

where κ is the surface gravity,Ni the shift, and ξj the normal
toMwithin the three-surface andwhere h is the determinant
of the inducedmetric on the three-surfaceΣ. On shell the bulk
term vanishes because it is a constraint, the momentum term
also vanishes in a static geometry orwhen the shift is taken to
vanish on the horizon, while the term at infinity is absent if Σ
is internal to the horizon. Identifying the temperature T ¼
κ=2π and the entropy SBH ¼ A=4GN as usual, the action
grow bound is _I ¼ TSBH ≤ 2E, or by taking derivatives5

_SBH ≤ −2P=T; ð91Þ

whereP is the power emitted by the BH.We have to consider
now the entropy carried away by the Hawking radiation, say
_Srad. By the generalized second law,

0 ≤ _SBH þ _Srad; ð92Þ

so finally

2P=T ≤ _Srad: ð93Þ

We should note that one usually expects P=T ≤ _Srad by
conventional thermodynamics.
If one accepts Pendry’s [21] universal bound on the

entropy flow out of a thermal source radiating in vacuum
(like the black hole)

4At least if we treat gravity (modified or not) as a classical
external field.

5The time derivative of an inequality does not necessarily
respect the inequality, but if the entropy increases with energy
that is the case. The only exception would be systems with
negative temperature.
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_Srad ≤
�
πP
3

�
1=2

ð94Þ

(we remember that kB ¼ 1 in our units) then one gets for
the power the limit

P ≤
πT2

12
: ð95Þ

As a qualification, the Pendry inequality holds only for
outward flow of energy and therefore it does not represent
the maximum rate of cooling of the black hole. This is
easily disposed of: since we took P ¼ − _E, the left-hand
side of Eq. (95) should be replaced by

P
sΓ̄sPs, where Γ̄s is

the average over energy of the transmission coefficient of
the potential barrier surrounding the black hole for a
particle species s. It is a number of order 1. This is because
the fraction 1 −

P
sΓ̄sPs of the power is reflected back into

the hole. The left-hand side is just the total power radiated
via Hawking radiation by a Schwarzschild black hole,
which saturates the inequality, and was used by Bekenstein
[23] long ago to infer the one-dimensional character of a
black hole considered as an information transmission
channel. In fact, the inequality (94) can be easily violated
by transmitting over many parallel channels. The result for
the action grow in the modified gravity models considered
here indicates the validity of the same bound for the power
emitted, provided the power in these equations measures
the rate of emission of the thermodynamical energy as
defined in the text.
For different gravitational actions the particle spectrum

sometimes changes radically. For example, adding a term
∼RμνRμν introduces a massive spin two ghost, but what is
the complexity of a negative norm state? However in one
case the Weyl correction discussed above was in agreement
with the standard complexity bound (0 < ϵσ); in another it
was not (ϵσ < 0). It would be interesting to test whether in
this case the theory contains ghostlike excitations, which
would violate the action grow bound.

VII. CONCLUSIONS

In this paper we have investigated the general form of the
action growth for some modified gravity black hole
solutions. Within this more general framework different
to the one of GR, new vacuum black hole solutions with
nonvanishing curvature may be found. In our analysis, we
have considered several BH solutions where only one
integration constant is present. Thus, by making use of
the first law of BH thermodynamics in these modified
gravity models, we have shown that the energy of our black
holes is always proportional to the integration constant
associated with the solution. We should note that within the
class of modified gravity models we are interested in, the
first law can be derived from the equations of motion and
making use of the Killing temperature and the Wald

entropy and this fact seems to be a robust argument to
substantiate the definition of the BH energy we have made
use of. In the case of solutions with constant Ricci
curvature, we have confirmed the results of Refs. [5,6];
namely the action growth corresponds to the double of the
Killing energy, in agreement with the result of Brown et al.
in general relativity [2]. On the other hand, for solutions
with nonconstant Ricci curvature, the Kodama-Hayward
BH energy emerges in the action growth. We recall that the
Kodama-Hayward energy is different to the Killing one due
to the different expression of the Kodama and Killing
vectors associated with dirty BHs, and they coincide only
when g00ðrÞg11ðrÞ ¼ −1. Our result is not surprising since
the Hayward formalism is covariant and valid for spheri-
cally symmetric dynamical space-times.
In the last part of our work, we considered a modified

gravity model based on aWeyl correction of gravity with an
exact BH solution and we have derived the form of the
related action growth, which is still proportional to the
Kodama-Hayward energy of the black hole itself. In one
case the GR bound was satisfied; in another it was not. We
argue that the theory could contain a ghostlike excitation.
To interpret physically the obtained result, we argued on

the basis of some black hole phenomenology that the
complexity bound as expressed by the action grow is tightly
related to the Hawking radiation process. Since the particle
spectrum of FðRÞ gravity is just the same as for GR, apart
from a massive scalar, and the standard matter Lagrangian
describing the matter sector is left untouched, the black
holes of modified gravity radiate away their mass in
essentially the same way as in GR. In fact, writing the
action in the Einstein frame, a scalar degree of freedom
appears which is really a masked metrical invariant of the
Jordan frame. This formulation of the theory has been
studied elsewhere in the cited references, but for constant
scalar field. Our description can be interpreted in the
Einstein frame as the presence of a nonconstant scalar
field.
If the mass is defined as described in the text to represent

the thermodynamical energy of the black holes, then the
action grow must scale with this energy, as was actually
found, and thus be the same as in GR up to numerical
coefficients. This physical interpretation is not precise,
since no detailed calculations were provided to fill in the
details of the radiation process for general fðRÞ models,
except for the Brans-Dicke theory which has exactly the
same black holes as general relativity, as was shown by
Hawking long ago.

APPENDIX A: BOUNDARY TERMS FOR
SPACELIKE SURFACES

In this appendix, we review some elementary aspects
of induced geometry associated with an r-constant
surface. Let us start by recalling the four-dimensional
metric,
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ds2 ¼ gμνdxμdxν

¼ −e2αðrÞBðrÞdt2 þ dr2

BðrÞ þ r2sabðxaÞdxadxb; ðA1Þ

where sabðxaÞ is a two-dimensional “horizon metric.” Let
us denote by nμ the unit normal vector to the surface r
constant, which reads

nμ ¼
�
0;

1ffiffiffiffiffiffi
grr

p ; 0; 0

�
¼ ð0;

ffiffiffiffiffiffiffiffiffi
BðrÞ

p
; 0; 0Þ: ðA2Þ

The induced metric hαβðxiÞ of a surface with constant r is
given by

hαβðxiÞ ¼ gαβðxμÞ − nαnβ; ðA3Þ
namely

dh2 ¼ −e2αðrÞBðrÞdt2 þ r2sabdxadxb; ðA4Þ

and this may represent a timelike, spacelike or null-like
surface. One has

ffiffiffiffiffiffi
−h

p ¼ r2eα
ffiffiffiffi
B

p ffiffiffi
s

p
, and the related

extrinsic curvature is defined as

K ¼ ∇αnα ¼ hαβðxiÞ∇βnα: ðA5Þ
Thus, one obtains

K ¼
ffiffiffiffiffiffiffiffiffi
BðrÞp
2

�
1

BðrÞ
dBðrÞ
dr

þ 2
dαðrÞ
dr

þ 4

r

�
; ðA6Þ

with scalar density

ffiffiffiffiffiffi
−h

p
K ¼ ffiffiffi

s
p r2eαðrÞ

2

�
dBðrÞ
dr

þ 2
dαðrÞ
dr

BðrÞ þ 4BðrÞ
r

�
:

ðA7Þ

In ourwork,
ffiffiffi
s

p ¼ Vk. A direct computation of the boundary
term in (4) leads to

BT¼−2
Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
F0ðRÞK

¼−VkΔt
�
F0ðRÞeαðrÞr2

�
dBðrÞ
dr

þ2BðrÞdαðrÞ
dr

þ4BðrÞ
r

��
;

ðA8Þ

and we recover Eq. (8).

APPENDIX B: CONSISTENCY OF THE ANZATZ
WITH THE EQUATIONS OF MOTION

In this appendix, we explicitly show that the equations of
motion (13)–(14) obtained by inserting the metric ansatz
(6) in the gravitational action of FðRÞ gravity are equivalent

to the (0,0) and (1,1) components of the general field
equations (5) of the theory [in the vacuum case, the other
nonzero components, namely the (2,2) and (3,3) compo-
nents, are derived from the first two].
Let us rewrite Eq. (5) as

F0ðRÞ
�
Rμν −

1

2
Rgμν

�
þ 1

2
gμνðRF0ðRÞ − FðRÞÞ

− ð∇μ∇ν − gμν∇α∇αÞF0ðRÞ ¼ 0: ðB1Þ
The (0,0) and (1,1) components of this equation with the
metric (6) read

−
�
BðrÞe2αðrÞ

2r2

��
r2ðRF0ðRÞ − FðRÞÞ

− 2F0ðRÞ
�
k − BðrÞ − r

dBðrÞ
dr

�

þ 2BðrÞF00ðRÞr2
�
d2R
dr2

þ
�
2

r
þ dBðrÞ=dr

2BðrÞ
�
dR
dr

þ F000ðRÞ
F00ðRÞ

�
dR
dr

�
2
��

¼ 0; ðB2Þ
�

1

2BðrÞr2
��

r2ðRF0ðRÞ − FðRÞÞ

− 2F0ðRÞ
�
k − BðrÞ − r

dBðrÞ
dr

�

þ 4F0ðRÞrBðrÞ dαðrÞ
dr

þ F00ðRÞ dR
dr

�
2BðrÞr2 dαðrÞ

dr
þ 4BðrÞr

��
¼ 0: ðB3Þ

Thus, Eq. (B2) is equivalent to Eq. (13), while in order to
obtain Eq. (14) we must substitute Eq. (B2) in Eq. (B3).

APPENDIX C: THE BOUNDARY TERM OF
THE WEYL MODEL

In this appendix, following Ref. [36], we compute the
boundary term for the Weyl model in (73) in the case of a
SSS space-time. First of all, we recall the general form of
the boundary term for such a kind of theory in the form of a
surface integral with r constant, namely

BT ¼ −2
Z
∂M

d3x
ffiffiffiffiffiffi
−h

p
ΨK; ðC1Þ

where we are using the parametrizations and the definitions
in (A1)–(A7). Moreover, Ψ is the trace of the tensor Ψij,

Ψij ¼ −2hiκhjlnμnνϕκμlν; ϕκμlν ¼ dL
dRκνlν

; ðC2Þ

where in our case
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L ¼ 1

2κ2
ðR − 2Λþ

ffiffiffi
3

p
σ

ffiffiffiffiffi
W

p
Þ: ðC3Þ

One has

δL
δRμνξσ

¼ 1

2κ2

�
1

2
ðgμξgνσ − gμσgνξÞ þ

ffiffiffi
3

p
σ

2
ffiffiffiffiffi
W

p
�
2Rμνξσ − ðgμξRνσ þ gνσRμξ − gμσRνξ − gνξRμσÞ þ 1

3
ðgμξgνσ − gμσgνξÞR

��
:

ðC4Þ
By taking into account (A2) and the symmetries of the metric, it is easy to see that

Ψ≡ hijΨij ¼ −2h00h00h00nrnrh00h11h00h11ϕ0101 ¼ 2e2αðrÞ
dL

dR0101

: ðC5Þ

A direct computation leads to
�

δL
δR0101

�
¼ 1

4κ2

�
g00g11 þ

ffiffiffi
3

p
σffiffiffiffiffiffi

C2
p

�
2R0101 − g00R11 − g11R00 þ 1

3
g00g11R

��
¼ 1

4κ2e2αðrÞ
ð1 − ϵσÞ: ðC6Þ

We finally obtain

Ψ ¼ 1

2κ2
ð1 − ϵσÞ; ðC7Þ

and from Eq. (C1) with (A7) one has the result

BT ¼ −2
Z
∂M

d3x
ffiffiffiffiffiffi
−h

p �
1 − ϵσ

2κ2

�
K ¼ −

VkΔt
2κ2

ð1 − ϵσÞeαðrÞr2
�
dBðrÞ
dr

þ 2
dαðrÞ
dr

BðrÞ þ 4BðrÞ
r

�
; ðC8Þ

which corresponds to (77).
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