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We investigate quantum cosmological models in an n-dimensional anisotropic universe in the presence
of a massless scalar field. Our basic inspiration comes from Chodos and Detweiler’s classical model, which
predicts interesting behavior of the extra dimension, shrinking down as time goes by. We work in the
framework of a recent geometrical scalar-tensor theory of gravity. Classically, we obtain two distinct types
of solutions. One of them has an initial singularity, while the other represents a static universe considered as
a whole. By using the canonical approach to quantum cosmology, we investigate how quantum effects
could have had an influence in the past history of these universes.
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I. INTRODUCTION

In the last decades, a great deal of work has gone into
scalar-tensor theories of gravity, particularly in the context
of inflationary models and also in attempts to explain the
observed acceleration of the Universe. In all these, the
scalar field plays an essential role, although its nature and
origin so far remain unclear. However, in a recently
proposed scalar-tensor theory, the nature of the scalar field
is attributed to the space-time geometry [1]. In this picture,
physical and geometrical objects are, by construction,
invariant under a new group of symmetry, namely, the
group of Weyl transformations, and this leads to a natural
mapping between the action of a scalar-tensor theory with
a nonminimally coupled scalar field in a non-Riemannian
space-time and the action of general relativity with a
massless scalar field coupled to gravity through a dimen-
sionless parameter. Recent applications of this new theo-
retical proposal to cosmology include scenarios displaying
unusual geometrical space-time behavior [2].
Among other alternative approaches to gravity theories,

in which the scalar field emerges, we would like to call

attention to the modern n-dimensional models of the
Universe. These have been developed in many different
contexts, starting from the seminal Kaluza-Klein ideas to
string cosmology [3]. Even in a purely classical general
relativistic framework, a particular appealing cosmological
model worth mentioning is the one obtained in general
relativity by Chodos and Detweiler, who put forward the
idea that the present stage of the Universe evolved from a
five-dimensional scenario in which the extra dimension
becomes unobservably small due to a kind of dynamical
contraction [4]. Following the same direction, other higher-
dimensional general anisotropic models have been consid-
ered also in scalar-tensor theories of gravity [5].
The introduction of scalar fields and higher dimensions

is also motivated by the attempt to answer many open
questions in classical cosmology, particularly those related
to the early phases of the Universe. One possibility of
examining these questions in a deeper way is to go beyond
the classical level and look for a new picture in which
quantum effects are taken into account. An important
contribution to this line of research has been provided
by the quantum cosmology program [6]. It should be said,
however, that there are currently many technical and
conceptual difficulties with this approach. For instance, a
well-known problem in quantum cosmology is the defi-
nition of time, a problem often referred to as the problem of
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time [7]. Indeed, it turns out that quantum cosmology does
not specify in a unique way a parameter that plays the role
of time. In the general relativistic context, there have been
several attempts to overcome this difficulty. A well-known
way of tackling the problem is by introducing matter
content into the model, the latter usually being represented
by a scalar field associated to a fluid with a barotropic
equation of state [8]. Another interesting attempt to find a
possible solution to the problem of time in the framework
of Brans-Dicke theory, in which there is no need to add
matter in the form of a scalar field as the gravitational
theory itself provides such a field, was given recently [9].1

By choosing suitable canonical transformations, the Brans-
Dicke scalar field may be identified with time in the sense
of the usual Schrödinger picture. By the same token, in the
quantization of a geometrical scalar-tensor theory, we can
naturally relate the intrinsic scalar field to a parameter that
measures the evolution of the system at the quantum level.
The goal of the present work is to analyze quantum

cosmological scenarios predicted by the geometrical scalar-
tensor theory in an anisotropic n-dimensional space-time.
In the context of general relativity, a similar problem was
recently considered by Letelier and Pitelli [11]. The paper is
organized as follows.We begin, in Sec. II, with a brief review
of the basic tenets of the geometrical scalar-tensor gravita-
tional theory. In Sec. III, we present the classical solutions of
the n-dimensional model in light of the Lagrangian formal-
ism. We then proceed to perform the Hamiltonian formalism
and propose some canonical transformations to decouple the
canonical variables. We check that the solutions obtained
from the Lagrangian formalism are also solutions of the
Hamiltonian equations. Next, in Sec. IV, we carry out the
canonical quantization of the model. By assuming that
the classical geometry has a flat spatial section, we obtain
the wave function of the Universe and calculate the expect-
ation values according to the many-worlds interpretation.
Finally, in Sec. VI, we discuss our results.

II. GEOMETRICAL GRAVITATIONAL THEORY

Let us begin by considering the gravitational sector of
the nonminimally coupled scalar-tensor action

S ¼
Z

dnx
ffiffiffiffiffi
jgj

p
½e−ϕðRþ ωgμνϕ;μϕ;νÞ − VðϕÞ�; ð1Þ

defined on a n-dimensional space-time,2 with R denoting the
n-dimensional curvature scalar,3 g denoting the determinant
of the metric tensor gμν, and ω being a dimensionless

parameter. As in the four-dimensional case, the field
equations for gμν and ϕ, together with the nonmetricity
condition that characterizes aWeyl integrable space-time, are
easily obtained by applying Palatini’s variational method to
the above action (see Ref. [1]). Thus, the variation of (1) with
respect to the affine connection leads to

∇αgμν ¼ −
2

n − 2
ϕ;αgμν; ð2Þ

where ϕ;α ¼ ∂αϕ. This is precisely the nonmetricity con-
dition mentioned above, and that, in a certain sense,
leads, from first principles, to the determination of the
space-time geometry [13]. From the above, ψ ¼ 2

n−2ϕ
plays the role of the n-dimensional Weyl scalar field.4 In
the terminology of the geometrical scalar-tensor theory, a
Weyl frame is the set ðM; g;ψÞ characterized by the metric
tensor g and the scalar field ψ defined on the manifoldM. An
important property of the Weyl geometry is that the non-
metricity condition ∇αgμν ¼ −ψ ;αgμν is invariant under the
set of transformations

ḡμν ¼ efgμν; ψ̄ ¼ ψ þ f: ð3Þ
That is, in the new frame ðM; ḡ; ψ̄Þ, we have ∇αḡμν ¼
−ψ̄ ;αḡμν. Clearly, these transformations preserve the geodesic
curves, since the affine connection is kept invariant. Because
ḡμν and gμν are related by a conformal transformation, the
causal structure these metrics define on the manifoldM does
not change when we go from one Weyl frame to another. By
settingf ¼ − 2

n−2ϕ ¼ −ψ in (3),wehave ψ̄ ¼ 0. Becausewe
recover the Riemannian compatibility condition between the
metric and affine connection, this frame is usually called the
Riemann frame and is denoted as the set ðM; ḡ; 0Þ.
It is not difficult to verify that in the Riemann frame

ðM; ḡ; 0Þ the action (1) becomes

S̄ ¼
Z

dnx
ffiffiffiffiffi
jḡj

p
½R̄þ ωḡμνϕ;μϕ;ν − e

n
n−2ϕVðϕÞ�; ð4Þ

which, for ω ¼ 1
2
, is formally identical to the n-dimensional

Hilbert-Einstein action of a scalar field minimally coupled
with gravity with a potential UðϕÞ given by UðϕÞ ¼
e

n
n−2ϕVðϕÞ. In fact, the analogy between the two configu-
rations is even more apparent if we recall that in the
Riemann frame particles and light rays will follow
Riemannian metric and affine geodesics, respectively. In
the next section, we shall investigate the cosmological
scenarios that are generated by the action (4), when we
take VðϕÞ ¼ 0.

1The quantization of the Brans-Dicke theory of gravity has also
been considered in a standard way using Schutz’s formalism [10].

2This action can be regarded as the n-dimensional generali-
zation of the Jordan-Brans-Dicke action [12].

3We shall adopt the following definition of the curvature
tensor: Rα

βμν ¼ Γα
βμ;ν − Γα

βν;μ þ Γσ
βμΓα

σν − Γσ
βνΓα

σμ. The Ricci tensor
is defined as Rμν ¼ Rα

μαν.

4Let us recall that Eq. (2) gives an expression for the Weylian
affine connection in terms of the two fundamental geometrical
elements of the manifold, namely, the metric tensor and the
scalar field. This may be written as Γα

μν ¼ f α
μνg − 1

2
gαβðgμβψ ;νþ

gβνψ ;μ − gμνψ ;βÞ, with f α
μνg denoting the Christoffel symbols and

ψ denoting the geometric scalar field.
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III. CLASSICAL COSMOLOGICAL MODEL

A. Lagrangian formalism

We shall now consider the n-dimensional, n > 4, aniso-
tropic cosmological model of which the geometry is
described by the line element

ds2 ¼ NðtÞ2dt2 − aðtÞ2ðdx2 þ dy2 þ dz2Þ − bðtÞ2
Xn−4
i¼1

dli2;

ð5Þ

with NðtÞ denoting the lapse function, aðtÞ being the scale
factor associated with the usual three spatial dimensions,
and bðtÞ representing the scale factor of the (n − 4)
dimensions, the latter being assumed to be compact.
The reduced action corresponding to (4) written in terms

of the geometry given by the line element (5) takes the form

Sred ¼ Vo

Z
dt

�
−
6

N
_a2abn−4 −

6ðn − 4Þ
N

_b _a a2bn−5

−
ðn − 4Þðn − 5Þ

N
_b2a3bn−6 þ ω

N
a3bn−4 _ϕ2

�
; ð6Þ

where the overdot denotes differentiation with respect to
the time coordinate t, while Vo stands for the integration on
the (n − 1)-dimensional space defined by the compact extra
dimensions.5 From (6), we write the Lagrangian of the
model as

L≡ −
6

N
_a2abn−4 −

6ðn − 4Þ
N

_b _a a2bn−5

−
ðn − 4Þðn − 5Þ

N
_b2a3bn−6 þ ω

N
a3bn−4 _ϕ2: ð7Þ

Now, if we set NðtÞ≡ 1, the field equations, obtained from
the Euler-Lagrange equations, are

3H2
a þ 3ðn − 4ÞHaHb þ

ðn − 4Þðn − 5Þ
2

H2
b ¼

ω

2
_ϕ2;

2 _Ha þ 3H2
a þ ðn − 4Þ _Hb þ 2ðn − 4ÞHaHb

þ ðn − 3Þðn − 4Þ
2

H2
b ¼ −

ω

2
_ϕ2;

3 _Ha þ 6H2
a þ ðn − 5Þ _Hb þ 3ðn − 5ÞHaHb

þ ðn − 4Þðn − 5Þ
2

H2
b ¼ −

ω

2
_ϕ2;

3Ha
_ϕþ ðn − 4ÞHb

_ϕþ ϕ̈ ¼ 0; ð8Þ

where we are defining Ha ¼ _a
a and Hb ¼ _b

b. A solution of
the equations of motion above is given by the set

aðtÞ ¼ a0jCðt − t0Þ − 1j16; bðtÞ ¼ b0jCðt − t0Þ − 1j 1
2ðn−4Þ;

ϕðtÞ ¼ ϕ0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ω

�
2

3
þ n − 5

4ðn − 4Þ
�s
ln jCðt − t0Þ − 1j; ð9Þ

with a0, b0, ϕ0, and C denoting integration constants. It is
not difficult to verify that the solutions (9) represent a
universe in which both the usual three dimensions and the
extra n − 4 dimensions expand as time passes, with a
space-time singularity at t ¼ t0 þ 1=C (see Fig. 1 below) 1.
In this solution, since the scalar field is a real function of
time, it is required that ω > 0. On the other hand, a set of
distinct solutions is given by

aðtÞ ¼ a0jCðt − t0Þ − 1jð10−nÞ18 ; bðtÞ ¼ b0jCðt − t0Þ − 1j16;

ϕðtÞ ¼ ϕ0 �
1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−n2 þ 17nþ 20

3ω

r
ln jCðt − t0Þ − 1j: ð10Þ

As in the previous solution (9), the behavior of the scale
factor of the extra dimensions (10) leads to a singularity as
t → t0 þ 1=C. There are, however, some differences in this
case. While the extra dimensions always expand, the
behavior of the three-dimensional spatial dimensions
depends on the dimensionality of the model. If n < 10,
then they start from a singularity at t ¼ t0 and expand
forever; if n > 10, they undergo indefinitely a contraction
phase; and if n ¼ 10, they remain constant as
aðtÞ ¼ a0 ¼ const. In Fig. 2, we show the behavior of
both scale factors, aðtÞ and bðtÞ, for n ¼ 6 and n ¼ 11. Let
us also note that ωmust be positive for n < 19 and negative
for n ≥ 19.
Here, it is interesting to note that, according to (10), a

curious scenario arises when n ¼ 10. In that case, the three-
dimensional scale factor a is constant. On the other hand, if
we consider the time interval between t0 and the finite time
t0 þ 1=C, we see that the scale factor bðtÞ goes to zero as
t → t0 þ 1=C [see Fig. 2(b)]. This could be interpreted as a
sort of preinflationary period when, immediately after the
beginning of the Universe, a dynamical compactification of
the extra dimensions takes place.

FIG. 1. Scale factors in (9).

5In the derivation of reduced action, we have dropped surface
terms, which do not contribute to the field equations.
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If we now turn our attention to the expansion factor of
the Universe, a simple calculation from (5) yields

ΘðnÞ ¼
_N
N
þ 6Ha þ 2ðn − 4ÞHb: ð11Þ

At this point, it should be mentioned that the expansion
factor (11) calculated for the solutions (9) and (10) is
given by

Θ ¼ 3

jCðt − t0Þ − 1j : ð12Þ

That is, ΘðnÞ has the same value and does not depend on the
dimension n. In both cases, we have expanding universes in
which the expansion rate decreases with time (see Fig. 3).
Let us now consider two other different sets of solutions

to the system of Eq. (8), which are given by

aðtÞ ¼ a0 exp½Λaðt − t0Þ�; bðtÞ ¼ b0 exp½−Λbðt − t0Þ�;
ϕðtÞ ¼ ϕ0 þDðt − t0Þ; ð13Þ

and

aðtÞ ¼ a0 exp½−Λaðt − t0Þ�; bðtÞ ¼ b0 exp½Λbðt − t0Þ�;
ϕðtÞ ¼ ϕ0 þDðt − t0Þ; ð14Þ

where

Λa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
ðn − 4ÞD2ω

3ðn − 1Þ

s
and Λb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−

3D2ω

ðn − 1Þðn − 4Þ

s
;

ð15Þ

with D being an integration constant; ω < 0; and a0, b0,
and ϕ0 as defined above. Note that the solutions (13) and
(14) describe distinct scenarios. In the first, the four-
dimensional part of the universe is expanding, while the
extra- dimensional part is contracting. In the second, the
dynamics of the universe is reversed: the four-dimensional
part collapses, while the extra dimensions become larger
(see Fig. 4). Moreover, as it is clear from (13) and (14), in
these universes, there is no space-time singularity. For the
expansion factor, we have, from (11),

ΘðnÞ ¼ 0;

which means that, according to these models, the universe,
as a whole, would have no dynamics.

B. Hamiltonian formalism

As we have already mentioned, the aim of this work is to
investigate quantum cosmological scenarios predicted by
the geometrical scalar-tensor theory in the case of aniso-
tropic n-dimensional space-time. Following the methods of
canonical quantum cosmology, the first step is to carry out
the canonical quantization of the classical model. Thus, let
us compute the classical Hamiltonian from the correspond-
ing Lagrangian (7).
It is not difficult to verify that the canonical momenta

corresponding to the variables a, and b, and ϕwill be given,
respectively, by

(a) (b)

FIG. 2. Scale factors in (10).

FIG. 3. Expansion factor in (12).
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Pa ¼ −
12

N
abn−4 _a −

6ðn − 4Þ
N

a2bn−5 _b;

Pb ¼ −
2ðn − 4Þðn − 5Þ

N
bn−6a3 _b −

6ðn − 4Þ
N

bn−5a2 _a;

Pϕ ¼ 2ω

N
a3bn−4 _ϕ: ð16Þ

For n > 4, the Hamiltonian takes the form

H ¼ N
ðn − 2Þabn−6

�ðn − 5Þ
12

Pa
2

b2
þ 1

2ðn − 4Þ
Pb

2

a2

−
PaPb

2ab
þ ðn − 2Þ
4ωa2b2

Pϕ
2

�
: ð17Þ

It turns out, however, that the above form of H is not
suitable for working out the canonical quantization. A
more convenient expression for H can be obtained if we
perform the following canonical transformations: A ¼ ln a,

PA ¼ aPa, B ¼ ln b, PB ¼ bPb, T ¼ ϕ
Pϕ
, and PT ¼ pϕ

2

2

[9,14]. The new Hamiltonian written in terms of the new
variables will be given by

H̄ ¼ N̄

�
ωðn − 5Þ
6ðn − 2Þ PA

2 −
ω

n − 2
PAPB

þ ω

ðn − 2Þðn − 4ÞPB
2 þ PT

�
; ð18Þ

with N̄ ¼ N
2ωa3bn−4, which then leads to the equations of

motion

_A ¼ N̄ω

n − 2

�
n − 5

3
PA − PB

�
; _PA ¼ 0;

_B ¼ N̄ω

n − 2

�
2

n − 4
PB −

PA

n − 2

�
; _PB ¼ 0;

_T ¼ N̄ and _PT ¼ 0: ð19Þ

The solution of the above system (19) is easily obtained and
is given by

aðTÞ ¼ a0 exp

�
ω

n − 2

�
n − 5

3
PA − PB

�
T

�
;

bðTÞ ¼ b0 exp
�

ω

n − 2

�
2

n − 4
PB −

PA

n − 2

�
T
�
;

ϕðTÞ ¼ �
ffiffiffiffiffiffiffiffi
2PT

p
T; ð20Þ

with PA, PB, and PT being constants. As expected, one can
easily verify that (9), (10), (13), and (14) are solutions
of (19) when we set T ∝ ϕ.

IV. CANONICAL QUANTIZATION
OF THE MODEL

A. Wheeler-DeWitt equation

In this section, we proceed with the quantization of the
classical cosmological model. By following the canonical
quantization prescription

PA → −i
∂
∂A ; PB → −i

∂
∂B ; PT → −i

∂
∂T ; ð21Þ

the Wheeler-DeWitt equation

ĤΨðA;B; TÞ ¼ 0 ð22Þ

takes the form

�
−
ωðn − 5Þ
6ðn − 2Þ

∂2

∂A2
þ ω

n − 2

∂2

∂A∂B −
ω

ðn − 2Þðn − 4Þ
∂2

∂B2

�

×ΨðA; B; TÞ ¼ i
∂
∂T ΨðA; B; TÞ; ð23Þ

where Ĥ denotes the operator corresponding to H [defined
by H̄ ¼ N̄H according to (18)] and Ψ stands for the wave
function of the universe. Clearly, Eq. (22) may be identified
with the Schrödinger equation ĤΨ ¼ i ∂Ψ∂T , where T plays
the role of the parameter that measures the time evolution of
the quantum system in question. Let us just recall that the
Hamiltonian Ĥ is required to be a Hermitian operator, with
the usual inner product defined on L2 as

FIG. 4. From left to right, scale factors in (13) and (14), respectively.
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hΨ1jΨ2i ¼
Z

∞

−∞
dA

Z
∞

−∞
dBΨ�

1Ψ2;

where are Ψ1 and Ψ2 are complex-valued measurable
functions, satisfying the boundary conditions

ΨðA → �∞Þ ¼ 0;

ΨðB → �∞Þ ¼ 0 ðDirichlet conditionÞ

or

∂Ψ
∂A ðA → �∞Þ ¼ 0;

∂Ψ
∂A ðB → �∞Þ ¼ 0;

∂Ψ
∂B ðB → �∞Þ ¼ 0;

∂Ψ
∂B ðA → �∞Þ ¼ 0

ðNeumann conditionÞ:

At this point, it is interesting to note that for n ¼ 5 the
first term on the left-hand side in (18) vanishes, and hence
the Schrödinger equation takes the simple form

ω

3

� ∂2

∂B2
−

∂2

∂A∂B
�
ΨðA;B; TÞ ¼ −i

∂
∂T ΨðA;B; TÞ: ð24Þ

Because of this great simplification, we shall consider the
case n ¼ 5 separately. The more general case correspond-
ing to n > 5 will be presented next. For the sake of
completeness, the quantization of the five-dimensional
model will be analyzed in Sec. V.

B. Solutions and expectation values for
an n-dimensional quantum universe

Since the Hamiltonian does not dependent on time
explicitly, we shall look for stationary solutions of the form

ΨðA;B; TÞ ¼ ΦðA; BÞe−iET; ð25Þ

where E is a constant. As is well known, this leads to the
time-independent Schrödinger equation

ĤΦðA; BÞ ¼ EΦðA;BÞ:

If we now define new variables u and v by

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðn − 2Þ
jωjðn − 5Þ

s
Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 2Þðn − 4Þ

jωj

s
B

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðn − 2Þ
jωjðn − 5Þ

s
A −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 2Þðn − 4Þ

jωj

s
B; ð26Þ

then Eq. (23) takes the form

�
ηð−Þ

∂2

∂u2 þ ηðþÞ ∂2

∂v2 þ E

�
Φðu; vÞ ¼ 0; ð27Þ

where we have introduced the constants

ηð�Þ ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ðn − 4Þ
n − 5

r
;

and, for simplicity, we shall take ω > 0. To solve Eq. (27),
we write Φðu; vÞ ¼ UðuÞ VðvÞ. This gives rise to the
differential equations

d2U
du2

þ λ

ηð−Þ
U ¼ 0;

d2V
dv2

þ E − λ

ηðþÞ V ¼ 0; ð28Þ

where λ is a constant.
A particular solution to Eq. (27) will then easily be

given by

Φλ;Eðū; v̄Þ ¼ K sinðū
ffiffiffi
λ

p
Þ sinðv̄ ffiffiffiffiffiffiffiffiffiffiffiffi

Eþ λ
p Þ; ð29Þ

where ū ¼ uffiffiffiffiffiffiffiffi
jηð−Þj

p and v̄ ¼ vffiffiffiffiffiffi
ηðþÞ

p , K is an arbitrary constant,

and we are taking λ > 0 and E > −λ. Clearly, the general
solution to Eq. (23) is given by superposing the functions
Ψλ;Eðū; v̄; TÞ, that is,

Ψðū; v̄; TÞ ¼ K
Z

∞

0

dE1

×
Z

∞

0

dE2FðE1; E2Þe−iðE2−E1ÞT

× sinðū
ffiffiffiffiffiffi
E1

p
Þ sinðv̄

ffiffiffiffiffiffi
E2

p
Þ; ð30Þ

where we are setting E1 ¼ λ, E2 ¼ Eþ λ, and FðE1; E2Þ is
a suitable weight function chosen to construct wave
packets.
We are now going to choose a particular solution from

(30) by taking FðE1; E2Þ ¼ exp½−ξðE1 þ E2Þ�. It is not
difficult to verify that with this choice the normalized wave
function reads

Ψðū; v̄; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn − 2Þðn − 4Þp

ωπ

s �
ξ

ξ2 þ T2

�
3=2

× ū v̄ exp

�
−
1

4

�
ū2

ξ − iT
þ v̄2

ξþ iT

��
: ð31Þ

In the sameway, it is possible to obtain the wave function of
the universe from Eq. (23) for ω < 0. In this case, a simple
calculation leads to
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Ψðū; v̄; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðn − 2Þðn − 4Þp

jωjπ

s �
ξ

ξ2 þ T2

�
3=2

× ū v̄ exp

�
−
1

4

�
ū2

ξþ iT
þ v̄2

ξ − iT

��
: ð32Þ

Clearly, the wave function of the universe for ω > 0, given
by Eq. (31), is just the complex conjugate of (32).
Let us now compute the expectation values hai and hbi

of the scale factors aðtÞ and bðtÞ.6 Returning to the
original variables, we have, for any real ω, that hai will
be given by

hai ¼ jωj
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3ðn− 2Þðn− 4Þ

s Z
∞

−∞
dū

×
Z

∞

−∞
dv̄exp

�
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jωjðn− 5Þ
6ðn− 2Þ

s � ffiffiffiffiffiffiffiffiffiffi
jηð−Þj

q
ūþ

ffiffiffiffiffiffiffiffi
ηðþÞ

q
v̄

��

× jΨðū; v̄;TÞj2; ð33Þ

which leads to

hai ¼ 1

8

�
ω2ðn − 5Þ
36ðn − 2Þ Σ

2ðξ; T2Þ

þ 4jωj
n − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 4Þðn − 5Þ

6

r
Σðξ; T2Þ þ 8

�

× exp

� jωj
4ðn − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn − 4Þðn − 5Þ

6

r
Σðξ; T2Þ

�
; ð34Þ

where here we have defined Σðξ; T2Þ ¼ ξ2þT2

ξ . In a similar
manner, the expectation value hbi of the extra-dimensional
scale factor bðtÞ is given by

hbi ¼ 1

8

"
ω2

ðn − 2Þðn − 4Þ2ðn − 5ÞΣ
2ðξ; T2Þ

þ 4jωj
n − 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

ðn − 4Þðn − 5Þ

s
Σðξ; T2Þ þ 8

#

× exp

"
jωj

4ðn − 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

ðn − 4Þðn − 5Þ

s
Σðξ; T2Þ

#
: ð35Þ

An interesting point is, as was to be expected, that both
expectation values (34) and (35) coincide when n ¼ 7.
In Fig. 5, the time behavior of hai and hbi is shown,
qualitatively, for different dimensions of the space-time. It
should be mentioned that a similar picture for a four-
dimensional space-time was obtained in Ref. [17], in which
the exponentially decreasing (increasing) classical solu-
tions are replaced by scale factors of a bouncing universe.
From the expression of the expectation values given by

Eqs. (34) and (35), we get for the expansion factor

ΘðnÞ ¼
�
6

1

hai
dhai
dT

þ 2ðn − 4Þ 1

hbi
dhbi
dT

�
dT
dt

: ð36Þ

Now, let us consider the behavior of the expansion factor
for n > 5, shown in Fig. 6. It is important to highlight
here that the behavior of ΘðnÞ, as given by (36), does
depend on the space-time dimension, which is distinct from
its behavior at the classical level. The expression of the
evolution parameter T as a function of time is obtained
from the solution of the Hamiltonian equations (20) as

T ¼ ϕðtÞffiffiffiffiffiffi
2PT

p , PT being a constant and ϕðtÞ being given by the

classical model. As is expected in the classical approxi-
mation, that is, when t → ∞ and ξ → 0, we recover the
results obtained in Sec. III A.

V. QUANTIZATION OF THE
FIVE-DIMENSIONAL MODEL

In this section, we present the quantization of the
model for n ¼ 5, taking into consideration the solutions
of Eq. (24).

FIG. 5. From left to right, expectation values of the scale factors with n ¼ 6 and n ¼ 8, respectively.

6We remark here that we shall adopt the many-worlds
interpretation of quantum mechanics [15,16].
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By defining the variables

x ¼ 2Aþ B y ¼ B;

and again applying the method of separation of variables,
Eq. (24) can be solved similarly to what was done in
Sec. IV B. In this way, the normalized wave function of the
universe, for ω > 0, will be given by

Ψðx; y; TÞ ¼ 1

2
ffiffiffi
π

p
�

ξ

ξ2 þ ω2

9
T2

�3
2

× xy exp

�
−
1

4

�
x2

ξ − i ω
3
T
þ y2

ξþ i ω
3
T

��
;

while for ω < 0, we have

Ψðx; y; TÞ ¼ 1

2
ffiffiffi
π

p
�

ξ

ξ2 þ ω2

9
T2

�3
2

× xy exp

�
−
1

4

�
x2

ξþ i jωj
3
T
þ y2

ξ − i jωj
3
T

��
:

ð37Þ

The expectation value of the three-dimensional and extra-
dimensional scale factors will be given, respectively, by

hai ¼ 1

4

�
1þ 1

4
Σðξ; T2Þ

�
2

exp

�
Σðξ; T2Þ

4

�
; ð38Þ

hbi ¼ 1

4
½1þ Σðξ; T2Þ� exp

�
Σðξ; T2Þ

2

�
; ð39Þ

where we have defined Σðξ; T2Þ ¼ ξ2þω2

9
T2

ξ . It follows, then,
that the expansion factor for n ¼ 5 calculated from (38)
and (39) will be

Θð5Þ ¼
2ω2

9ξ
T

�
3½12þΣðξ;T2Þ�
2½4þΣðξ;T2Þ� þ

3þΣðξ;T2Þ
1þΣðξ;T2Þ

�
dT
dt

; ð40Þ

which exhibits the same profile shown in Fig. 6 and, as in
the previous cases, coincides with classical solutions as
ξ → 0 and t → ∞.

VI. FINAL REMARKS

In this work, we have investigated the classical and
quantum cosmological scenarios predicted by a geome-
trical scalar-tensor gravitational theory, in an anisotropic
n-dimensional space-time. At the classical level, we have
obtained four different sets of solutions. Two of them
represent a dynamical singular universe bearing close
resemblance to the well-known Kasner solution.7 The
remaining sets of classical solutions show an interesting
picture. In one case, we have a nonsingular static universe
undergoing an expansion regime in the usual three dimen-
sions, while in the extra dimensions, we have a contraction.
We regard this result as some kind of a n-dimensional
generalization of the Chodos-Detweiler model [4]. The
other case, leading to the opposite behavior, in which
the roles of the dimensions are reversed, is also allowed by
the field equations.
At the quantum level, we have made use of the approach

of quantum cosmology. After carrying out a series of
canonical transformations, we obtained, after applying the
canonical quantization procedure, a Schrödinger-like dif-
ferential equation for the wave function of the universe. We
then found the general solution to this equation and treated
separately the cases n ¼ 5 and n > 5, which present similar
behavior. In the many-worlds interpretation, we found that
the expectation values of the scale factors are clearly not
singular and, in fact, describe a bouncing universe. In other
words, the primordial cosmological singularity is avoided,
and the whole volume of the universe undergoes a con-
traction phase, reaches a minimum volume, and then starts
expanding. When compared with the classical regime, we
could say that at the quantum level the two classical

FIG. 6. From left to right, expansion factors corresponding to TðtÞ related to the classical solutions (9) and (10), respectively.

7We note that the similarities with the Kasner solution are due
to the form of the solutions for the scalar factors, since we are not
considering the vacuum case (we have effectively a scalar field
stress tensor) and the Kasner condition is no longer present.

ALVES-JÚNIOR, PUCHEU, BARRETO, and ROMERO PHYS. REV. D 97, 044007 (2018)

044007-8



solutions are linked to give rise to a nonsingular universe,
in accordance with previous results [17].
To conclude, let us briefly comment on the role played

by the Weyl field in the framework of this geometrical
scalar-tensor theory. As is already known, the Weyl trans-
formations preserve the geodesic lines and a number of
other geometrical objects, which then implies the physical
equivalence of the class of Weyl frames, at the classical
level [1]. It is possible to show that there exists a class of
Weyl transformations which induce canonical transforma-
tions in the reduced Hamiltonian of the original action [18].
However, we still do not know how to extend this classical
equivalence to the quantum level, if this is possible at
all [19].

Finally, we would like to remark that, with regard to the
well-known problem of time in quantum cosmology, it
seems appealing to consider that the geometrical nature of
the scalar field may lead to a more natural identification of
this field with the time parameter that governs the evolution
of the quantum variables.
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