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We examine the origin of two opposite results for the growth of perturbations in the Deser-Woodard
(DW) nonlocal gravity model. One group previously analyzed the model in its original nonlocal form and
showed that the growth of structure in the DW model is enhanced compared to general relativity (GR) and
thus concluded that the model was ruled out. Recently, however, another group has reanalyzed it by
localizing the model and found that the growth in their localized version is suppressed even compared to the
one in GR. The question was whether the discrepancy originates from an intrinsic difference between the
nonlocal and localized formulations or is due to their different implementations of the subhorizon limit.
We show that the nonlocal and local formulations give the same solutions for the linear perturbations as
long as the initial conditions are set the same. The different implementations of the subhorizon limit lead
to different transient behaviors of some perturbation variables; however, they do not affect the growth of
matter perturbations at the sub-horizon scale much. In the meantime, we also report an error in the
numerical calculation code of the former group and verify that after fixing the error the nonlocal version
also gives the suppressed growth. Finally, we discuss two alternative definitions of the effective
gravitational constant taken by the two groups and some open problems.
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I. INTRODUCTION

Nonlocal modifications of gravity as an account for the
current phase of cosmic acceleration have recently received
significant attention [1–54].1 One such attempt is a model
proposed by Deser and Woodard, in which a nonlocal piece
in the form of Rfð□−1RÞ is added to the Einstein-Hilbert
term [1]. Here, f is a free function with the nonlocal
argument, the inverse scalar d’Alembertian acting on the
Ricci scalar.
An advantage of leaving f as an arbitrary function is that

f can be constructed to reproduce any desirable expansion
history. A generic technique for how to tune the function f
for any given expansion history has been provided in
Ref. [10].2 Applying this technique to the special case of
Lambda-cold-dark-matter (ΛCDM) cosmology, the authors
of Ref. [10] have obtained a numerical solution for f that
exactly reproduces the expansion history of ΛCDM with-
out a cosmological constant. This implies that one does not
test the Deser-Woodard (DW) model with background
expansion data. One rather fixes the model by adjusting
the function f such that its background is identical to the

given expansion and then examines how perturbations
grow. A key aspect is that, even though its background
expansion is the same as in general relativity (GR), the
growth of perturbations in the DW model is different from
the growth in GR. Whether one fixes its background to the
ΛCDM expansion history as in Refs. [18,24,45] or to some
non-ΛCDM as in Ref. [43], one gets different structure
formation from that in GR. Thus, the model is testable with
growth data (but not with expansion data).
This is a distinct feature of the DW nonlocal model.

Other classes of nonlocal models, for instance, the
m2R□−2R model proposed by Maggiore and Mancarella
[29] or m2

□
−1R model by Vardanyan et al. [47], do not

reproduce a chosen background expansion. Thus, one tests
these nonlocal models with both expansion and growth
data. However, in practice, one first fixes the value (or
range) of the parameter m in such a way that the model
describes the expansion data as closely as possible and then
investigates how perturbations evolve. Therefore, when it
comes to testing the growth of perturbations, no free
parameter (or free function in the case of the DW model)
is left. The models then make their unique predictions for
the growth, which distinguish them from each other.
In this regard, measuring the growth of structure is a

powerful test that can decisively rule out a gravity model
[83–86]. For the DW nonlocal gravity model, two groups
(one in its original nonlocal form [18,24] and the other in a
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2Similar reconstruction techniques are found in Refs. [20,21].
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localized version [45]) have studied its prediction for the
growth once the background expansion was fixed to the one
of ΛCDM, and they have obtained results opposite of one
another. The reason for this discrepancy has been suspected
whether it is due to an intrinsic difference between the
nonlocal and localized formulations, or it is due to their
different implementations of the sub-horizon limit. In the
present paper, we thoroughly examine the two formulations
and the different approximations that they have taken for
the subhorizon scale.

II. MODEL AND ZEROTH-ORDER EQUATIONS

The DW model nonlocally modifies the Einstein-Hibert
action as [1]

SDW ¼ 1

16πG

Z
d4x

ffiffiffiffiffiffi
−g

p
R

�
1þ f

�
1

□
R

��
; ð1Þ

where f is a function of the inverse d’Alembertian acting
on the Ricci scalar that will be determined by matching a
given expansion history. Note that the argument □−1R is
dimensionless, and thus no new mass scale is introduced in
the action. By varying the action with respect to the metric
and imposing the retarded boundary conditions,3 one
obtains the modified Einstein equations

Gμν þ ΔGμν ¼ 8πGTμν; ð2Þ
where the correction to the Einstein tensor is [1]

ΔGμν¼½Gμνþgμν□−DμDν�
�
f

�
1

□
R

�
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□

�
Rf0
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ν −
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2
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�
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�
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�
1
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���
:

ð3Þ
Here, a prime means a derivative of the function with
respect to the argument. Applying the field equations (2) to
the Friedman-Lemaître-Robertson-Walker (FLRW) metric,

ds2 ¼ −dt2 þ a2ðtÞdx⃗ · dx⃗; ð4Þ

leads to

3H2 þ ΔḠ00 ¼ 8πGρ; ð5Þ

−2 _H − 3H2 þ 1

3a2
δijΔḠij ¼ 8πGp: ð6Þ

Here, ρ and p are the energy density and pressure of a
perfect fluid, and we denote quantities in the FLRW
background with overbars to distinguish them from per-
turbed quantities. The zeroth-order corrections are [1]

ΔḠ00 ¼ ½3H2 þ 3H∂t�
�
f

�
1

□̄
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□̄
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; ð7Þ

ΔḠij ¼ a2δij

�
1

2
∂t

�
1

□̄
R̄

�
∂t

�
1

□̄

�
R̄f0

�
1

□̄
R̄

���

− ð2 _H þ 3H2 þ 2H∂t þ ∂2
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: ð8Þ

A. Localization

One can localize the nonlocal field equations by intro-
ducing two auxiliary variables X and U defined as,
following the notation of Ref. [45],

□X ≡ R; ð9Þ

□U≡ Rf0ðXÞ: ð10Þ

Also, we denote the operator acting on the nonlocal
function as

Dμν ≡Gμν þ gμν□ −DμDν: ð11Þ
In this notation, the modified Einstein tensor ΔGμν is
simply written as

ΔGμν ¼ Dμνðf þ UÞ þ
�
δðρμ δ

σÞ
ν −

1

2
gμνgρσ

�
∂ρX∂σU; ð12Þ

and the zeroth-order corrections (7) and (8) become

ΔḠ00 ¼½3H2 þ 3H∂t�ðf̄ þ ŪÞ þ 1

2
∂tX̄∂tŪ; ð13Þ

ΔḠij ¼ a2δij

�
−ð2 _H þ 3H2 þ 2H∂t þ ∂2

t Þðf̄ þ ŪÞ

þ 1

2
∂tX̄∂tŪ

�
: ð14Þ

We then have the zeroth-order modified Einstein equations

3H2 þ ½3H2 þ 3H∂t�ðf̄ þ ŪÞ þ 1

2
∂tX̄∂tŪ ¼ 8πGρ;

ð15Þ

3The retarded boundary condition on Green’s function ensures
the field equations are causal. Note also that Green’s function,
being the inverse of a differential operator, is sufficient for
conservation. Hence, the resulting field equations are causal and
conserved. See Ref. [27] for more discussions on the causality
and conservation.
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− ð2 _H þ 3H2Þ − ½2 _H þ 3H2 þ 2H∂t þ ∂2
t �ðf̄ þ ŪÞ

þ 1

2
∂tX̄∂tŪ ¼ 8πGp; ð16Þ

accompanied by the zeroth-order auxiliary field equations

−ð∂2
t þ 3H∂tÞX̄ ¼ 6ð _H þ 2H2Þ; ð17Þ

−ð∂2
t þ 3H∂tÞŪ ¼ 6ð _H þ 2H2Þf̄0; ð18Þ

in this localized formulation.

B. Reconstruction of f

The last step to finalize the zeroth-order equations is to
reconstruct the free function f for a given expansion
history, for which Ref. [10] provides a general technique.
That is, one can solve a differential equation for f as the
following integral (see Eq. (43) of Ref. [10]):

fðζÞ ¼ −2
Z

∞

ζ
dζ1ζ1ϕðζ1Þ − 6ΩΛ

Z
∞

ζ
dζ1

ζ21
hðζ1ÞIðζ1Þ

×
Z

∞

ζ1

dζ2
Iðζ2Þ

ζ42hðζ2Þ
þ 2

Z
∞

ζ
dζ1

ζ21
hðζ1ÞIðζ1Þ

×
Z

∞

ζ1

dζ2
rðζ2Þϕðζ2Þ

ζ52
: ð19Þ

Here, the time variable ζ is defined as ζ ≡ 1þ z ¼ 1=a,
and the dimensionless Hubble parameter h and the dimen-
sionless Ricci scalar r are

h≡ H
H0

; H ≡ _a
a

and r≡ R
H2

0

¼ 6ð _hþ 2h2Þ; ð20Þ

where H0 is the Hubble parameter today. The functions
ϕðζÞ and IðζÞ are [10]

ϕðζÞ ¼ −6ΩΛ

Z
∞

ζ
dζ1

1

hðζ1Þ
Z

∞

ζ1

dζ2
1

ζ42hðζ2Þ
;

IðζÞ ¼
Z

∞

ζ
dζ1

rðζ1Þ
ζ41hðζ1Þ

: ð21Þ

Once an expansion history is specified in terms of h as a
function of ζ [e.g., h2ðζÞ¼ΩΛþΩmζ

3þΩrζ
4 for ΛCDM],

one can numerically integrate (19) to get f as a function of
ζ.4 Next, using

X̄ðζÞ ¼ −
Z

∞

ζ

dζ1ζ21
hðζ1Þ

Z
∞

ζ1

dζ2
rðζ2Þ
ζ42hðζ2Þ

¼ −
Z

∞

ζ

dζ1ζ21
hðζ1Þ

Iðζ1Þ;

ð22Þ

ζ can be converted to a function of X̄, and plugging it back
into (19) gives f as a function of X̄. For the case of ΛCDM,
the numerical solution is fit well by a simple hyperbolic
tangent [10]. The authors of Ref. [10] used the five-
year WMAP data [87], which were the latest back then,
fΩm;Ωrg¼f0.28;8.5×10−5g and ΩΛ ¼ 1 −Ωm ¼ 0.72,
and obtained an analytic parametrization fan,

fanðX̄Þ ¼ 0.245½tanhð0.350Y þ 0.032Y2 þ 0.003Y3Þ − 1�;
ð23Þ

where Y ≡ X̄ þ 16.5. We reevaluate f using the Planck
2015 values (for TTþ lowP), fΩm;Ωrg ¼ f0.314; 9.26 ×
10−5g [88], which can be fitted to an analytic function

fan Planck 2015ðX̄Þ
¼ 0.243½tanhð0.348Z þ 0.033Z2 þ 0.005Z3Þ − 1�; ð24Þ

where Z≡ X̄ þ 16.7. Reference [45] takes the analytic
function (23) derived in Ref. [10] (which was for
Ωm ¼ 0.28) and uses Ωm ¼ 0.3 for the rest of the compu-
tations, which can be justified because the two resulting
fðX̄Þ’s are actually very close to each other, as can be seen
in Fig. 1. However, it should be noted that their values at
z ¼ 0 are different by 0.02 at z ¼ 0, and the difference
between the growth functions for the DW model and GR is
about 0.04 at z ¼ 0 (see Fig. 2). Thus, for precision tests
and also for consistency, one should fix fðX̄Þ according to
the chosen expansion history.

– 20 – 15 – 10
X

– 0.4

– 0.3

– 0.2

– 0.1

0.0

f (X )

FIG. 1. The blue curve is fWMAP5 yearðX̄Þ with fΩΛ;Ωm;Ωrg ¼
f0.72; 0.28; 8.5 × 10−5g, which is identical to the plot given in
Ref. [10]. The red curve is fPlanck 2015ðX̄Þ with fΩΛ;Ωm;Ωrg ¼
f0.686; 0.314; 9.26 × 10−5g. The dots represent z ¼ 0, 1, 5, 30,
200, respectively, from left to right.

4Note that the expansion history does not have to be that of
ΛCDM. The function f for a simple non-ΛCDM expansion has
been evaluated in Ref. [43].
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III. PERTURBATION EQUATIONS

We take scalar perturbations around the background
FLRW metric in the Newtonian gauge,

g00ðt; x⃗Þ ¼ −1 − 2Ψðt; x⃗Þ; g0iðt; x⃗Þ ¼ 0;

gijðt; x⃗Þ ¼ δija2ðtÞ½1þ 2Φðt; x⃗Þ�: ð25Þ
Plugging the perturbed metric (25) into the field equa-
tions (2) and expanding them to the first order gives the
perturbation equations. We symbolically write the pertur-
bation equations as

δðGμν þ ΔGμνÞ ¼ 8πGδTμν: ð26Þ

In our notation, little δ refers to first-order perturbations,
and capital Δ refers to the nonlocal corrections to the
original Einstein tensor. Working in Fourier space, the
Einstein tensor at first order is

δG00 ¼ 6H _Φþ 2
k2

a2
Φ; ð27Þ

δGij ¼ δija2
�
2ð−2 _H − 3H2ÞðΦ −ΨÞ þ 2Hð _Ψ − 3 _ΦÞ

− 2Φ̈ −
k2

a2
ðΦþ ΨÞ

�
þ kikjðΦþΨÞ: ð28Þ

FIG. 2. The solutions of set A (or set B), set C, and GR for ΦðzÞ;ΨðzÞ; δðzÞ, and DðzÞ and of sets A and C for δXðzÞ and δUðzÞ.
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The modified Einstein tensor at first order is

δΔG00 ¼ D̄00ðδf þ δUÞ þ δD00ðf̄ þ ŪÞ

þ 1

2
∂tX̄∂tδU þ 1

2
∂tδX∂tŪ; ð29Þ

δΔGij ¼ D̄ijðδf þ δUÞ þ δDijðf̄ þ ŪÞ

þ δija2
�
ðΦ − ΨÞ∂tX̄∂tŪ þ 1

2
∂tX̄∂tδU

þ 1

2
∂tδX∂tŪ

�
: ð30Þ

Here, the 00 and ij components of the operatorDμν defined
in (11) are

D̄00 ¼ 3H2 þ 3H∂t −
∇2

a2
; ð31Þ

δD00 ¼ 6H _Φþ 3 _Φ∂t þ 2
k2

a2
Φ; ð32Þ

D̄ij ¼ δija2ð−2 _H − 3H2 − 2H∂t − ∂2
t Þ þ δij∇2 − ∂i∂j;

ð33Þ

δDij ¼ δija2
�
2ð−2 _H − 3H2ÞðΦ −ΨÞ þ 2Hð _Ψ − 3 _ΦÞ

− 2Φ̈þ ½ _Ψ − 2 _Φ − 4HðΦ −ΨÞ�∂t

− 2ðΦ − ΨÞ∂2
t −

k2

a2
ðΦþΨÞ

�
þ kikjðΦþΨÞ:

ð34Þ

In the derivation of δDμν, the terms containing spatial
derivatives have been dropped because they vanish when
acting on zeroth-order values (which are functions of time
only):

δðD0D0Þ ¼ − _Ψ∂t −Ψ
ikk

a2
∂k → − _Ψ∂t; ð35Þ

δðDiDjÞ ¼ −δija2½2HðΦ − ΨÞ þ _Φ�∂t

þ iΦδijkk∂k − iΦðki∂j þ kj∂iÞ →
− δija2½2HðΦ −ΨÞ þ _Φ�∂t; ð36Þ

δ□ ¼ 2Ψ∂2
t þ ð6HΨþ _Ψ − 3 _ΦÞ∂t − 2Φ

∇2

a2

þ ðΦþΨÞ ik
k

a2
∂k → 2Ψ∂2

t

þ ð6HΨþ _Ψ − 3 _ΦÞ∂t: ð37Þ

We also need the expansions for X,U, and f at first order
in Φ and Ψ. First, f can be expanded as

fðXÞ ¼ fðX̄ þ δXÞ ¼ fðX̄Þ þ f0ðX̄ÞδX ≡ f̄ þ δf: ð38Þ

To get δX, recall that

0 ¼ δð1Þ ¼ δ

�
□

1

□

�
¼ δ□

1

□
þ□δ

1

□
⇒ δ

�
1

□

�

¼ −
1

□
δ□

1

□
; ð39Þ

which leads to

δX ¼ δ

�
1

□
R

�
¼ δ

�
1

□

�
Rþ 1

□
δR

¼ −
1

□
δ□

1

□
Rþ 1

□
δR: ð40Þ

Here, since δ□ and δR are already at first order, δX at first
order becomes

δX ¼ 1

□̄

�
δR − δ□

1

□̄
R̄

�
¼ 1

□̄
½δR − δ□X̄�: ð41Þ

In the same way, δU at first order is

δU ¼ 1

□̄

�
δRf0ðX̄Þ þ R̄f00ðX̄ÞδX − δ□

1

□̄
½R̄f0ðX̄Þ�

�

¼ 1

□̄
½δRf0ðX̄Þ þ R̄f00ðX̄ÞδX − δ□Ū�: ð42Þ

In the localized formulation, the differential equations (9)
and (10) for X and U can be expanded as

□X ¼ R → ð□̄þ δ□ÞðX̄ þ δXÞ ¼ R̄þ δR;

→ □̄ X̄ ¼ R̄ and □̄δX þ δ□X̄ ¼ δR; ð43Þ

□U ¼ Rf0ðXÞ → ð□̄þ δ□ÞðŪ þ δUÞ
¼ ðR̄þ δRÞ½f0ðX̄Þ þ f00ðX̄ÞδX�;

→ □̄ Ū ¼ R̄f0ðX̄Þ and □̄δU þ δ□Ū

¼ δRf0ðX̄Þ þ R̄f00ðX̄ÞδX: ð44Þ

These local auxiliary equations at first order are equivalent
to the corresponding nonlocal expressions (41) and (42), as
they should be,

□̄δX ¼ δR − δ□X̄; ð45Þ

□̄δU ¼ δRf0ðX̄Þ þ R̄f00ðX̄ÞδX − δ□Ū: ð46Þ

This fulfills the linear perturbation equations (26) for the
gravitational potentials Φ and Ψ with all the components
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δG00; δΔG00; δGij, and δΔGij and the two auxiliary equa-
tions for δX and δU given above. For the ij equations,
contracting with the projector operator k̂ik̂j − 1=3δij

greatly simplifies them by extracting the longitudinal
traceless component,

�
k̂ik̂j −

1

3
δij

�
½δGij þ δΔGij� ¼

�
k̂ik̂j −

1

3
δij

�
δTij

¼ −8πGðρþ pÞσ; ð47Þ

where σ represents the anisotropic stress in the convention
of Ref. [89]. The linear perturbation equations for Φ and Ψ
are then explicitly written as

6H _Φþ 2
k2

a2
Φþ

�
3H2 þ 3H∂t −

∇2

a2

�
ðf̄0δX þ δUÞ

þ
�
6H _Φþ 3 _Φ∂t þ 2

k2

a2
Φ
�
ðf̄ þ ŪÞ

þ 1

2
ð∂tX̄∂tδU þ ∂tδX∂tŪÞ;

¼ 8πGρδ; ð48Þ

where δT00 ¼ ρδ and δ ¼ δρ=ρ is the matter overdensity,
and

2

3
k2ðΦþΨÞ þ 2

3
k2ðf̄0δX þ δUÞ þ 2

3
k2ðΦþ ΨÞðf̄ þ ŪÞ

¼ −8πGðρþ pÞa2σ: ð49Þ

So far, we have not taken any approximations yet, and thus
these two equations (48) and (49) are full linear perturba-
tion equations, which we have not provided in our previous
papers [18,24].5

At late times, which is the regime in which we are
interested, the contributions to the energy from relativistic
particles are negligible, and hence we can set σ ¼ 0:

ðΦþΨÞ þ ðf̄0δX þ δUÞ þ ðΦþΨÞðf̄ þ ŪÞ ¼ 0: ð50Þ

We now have four equations for five unknown variables
Φ;Ψ; δX; δU, and δ; thus, we need one more equation to
complete the set of equations. It can be supplied by the
energy-momentum conservation (∇μTμν ¼ 0), which is
guaranteed by the conservation of the modified Einstein
tensor (∇μΔGμν ¼ 0).
In the next subsection, we will take the subhorizon limit

(k ≫ Ha) since these are the scales most relevant to
structure formation and then solve those five equations.

However, we must emphasize here that those equations can
be solved numerically without taking any approximation.
Taking the subhorizon limit makes the equations simpler,
and the solutions of the full linear equations and those of
the subhorizon limit equations have a negligible difference
(for instance, in the scales of k ¼ 100H0, the difference is
order of 10−4), which justifies taking the limit. However,
there are important subtleties to be considered when taking
this limit, which we will discuss next in detail.

A. Subhorizon limit

An additional advantage of taking the subhorizon limit is
that Green’s function for the differential operator □̄ in the
two auxiliary equations (45) and (46) has an analytic
solution in that limit. The retarded Green’s function for
the operator □̄ satisfies

□̄Gretðx; x0Þ ¼
�
−∂2

t − 3H∂t þ
∇2

a2

�
Gretðx; x0Þ

¼ δ4ðx − x0Þ: ð51Þ
This Green’s function can be constructed using the mass-
less, minimally coupled scalar mode functions uðt; kÞ:

Gretðx; x0Þ ¼
Θðt − t0Þa3ðt0Þ

i

Z
d3k
ð2πÞ3

× eik⃗·ðx⃗−x⃗0Þ½uðt; kÞu�ðt0; kÞ − u�ðt; kÞuðt0; kÞ�:
ð52Þ

There is no general solution uðt; kÞ for an arbitrary aðtÞ, so
one numerically solves for uðt; kÞ. However, for the case of
subhorizon modes (k ≫ Ha), we can find an analytic form
for uðt; kÞ using the Wentzel-Kramers-Brillouin (WKB)
approximation,

uðt; kÞ ¼ 1ffiffiffiffiffi
2k

p
exp ½−ik R t dt0

aðt0Þ�
aðtÞ : ð53Þ

Plugging these mode functions into (52) leads to the
Fourier space Green’s function,

Gðt; t0; kÞ ¼ −
Θðt − t0Þa2ðt0Þ

kaðtÞ sin

�
k
Z

t

t0

dt00

aðt00Þ
�
: ð54Þ

The two auxiliary equations, Eqs. (45) and (46), can then be
solved as

δXðk⃗; tÞ ¼
Z

t

ti

dt0Gðt; t0; kÞ½δR − δ□X̄�ðk⃗; t0Þ; ð55Þ

δUðk⃗; tÞ ¼
Z

t

ti

dt0Gðt; t0; kÞ½δRf0ðX̄Þ

þ R̄f00ðX̄ÞδX − δ□Ū�ðk⃗; t0Þ: ð56Þ

Now, we take the subhorizon limit, which practically
means dropping time derivative terms (hence, not having

5Equation (3.8) of Ref. [45] corresponds to (48); however, the
authors omitted some terms in the subhorizon limit. This limit
will be discussed in the next subsection. Equation (3.17) of
Ref. [45] is the same as (49).
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k2) because they are a factor of ðH=kÞ2 smaller than the
terms having k2 in the scales of k ≫ Ha. In this limit, the
00 equation (48) becomes the so-called modified Poisson
equation,

k2Φþ k2
�
Φðf̄ þ ŪÞ þ 1

2
ðf̄0δX þ δUÞ

�
¼ 4πGa2ρδ:

ð57Þ

The energy-momentum conservation∇μTμν ¼ 0 leads to

δ̈þ 2H_δ ¼ −
k2

a2
Ψ; ð58Þ

which is also derived in most cosmology textbooks (see, for
example, Refs. [90,91]). Note that in this equation for δ
the subhorizon limit is taken only on the rhs. We do not
drop the time derivatives of δ on the lhs because we are
eventually interested in the time evolution of δ. This also
indicates the different nature of the gravitational potentials
Φ and Ψ from that of the matter density field δ. The
gravitational potentials, which are parts of metric pertur-
bations governing the geometry of the Universe, do not
change much in the subhorizon scale (while still in the
linear regime). This is indeed the reason why we can
safely drop the time derivatives of Φ and Ψ and why the
subhorizon limit is also called the quasistatic limit.
However, as one can see from (58), the gravitational
potentials source the matter density to grow.
How about the auxiliary fields δX and δU? The authors

of Ref. [45] dropped their time derivatives, assuming they
are slowly varying in the subhorizon scale. However, the
authors of Ref. [24] did not drop all of their time derivatives
because these fields were newly introduced variables in the
DW model and their dynamics were unknown. In fact, the
structure of the auxiliary equations is very similar to that of
the equation for δ:

�
−∂2

t − 3H∂t −
k2

a2

�
δX ¼ SδXðk⃗; tÞ; ð59Þ

�
−∂2

t − 3H∂t −
k2

a2

�
δU ¼ SδUðk⃗; tÞ; ð60Þ

ð∂2
t þ 2H∂tÞδ ¼ Sδðk⃗; tÞ: ð61Þ

In all three equations, the gravitational potentials Φ and Ψ
source the time evolution of δX; δU, and δ. As can be seen
from Eq. (58), one takes the quasistatic limit (i.e., dropping
times derivatives) for the source term on the right-hand side
when interested in the dynamics of the variable on the left-
hand side. The authors of Ref. [24] followed this approach
because they were interested in the dynamics of the
nonlocal pieces δX and δU. The objective of their study

after all was to find out how the nonlocal modification
(which is encoded in δX and δU) affects geometry and
eventually matter.
Taking the subhorizon limit in the source term of the

auxiliary field equations leads to

SδX ¼ δR − δ□X̄ → δR; ð62Þ
SδU ¼ δRf0ðX̄Þ þ R̄f00ðX̄ÞδX − δ□Ū

¼ δRf0ðX̄Þ þ R̄f00ðX̄Þ 1
□̄
ðδR − δ□X̄Þ

− δ□Ū → δRf0ðX̄Þ: ð63Þ
Here, δ□ → 0 from Eq. (37) and the second term of SδU
(which is □̄

−1δR ∼ k−2k2 ¼ k0) drop in the subhorizon
limit. Then, the auxiliary equations simply become

□̄δX ¼ δR or; explicitly;�
−∂2

t − 3H∂t −
k2

a2

�
δX ¼ 2

k2

a2
ðΨþ 2ΦÞ; ð64Þ

□̄δU ¼ δRf0ðX̄Þ or; explicitly;�
−∂2

t − 3H∂t −
k2

a2

�
δU ¼ 2

k2

a2
ðΨþ 2ΦÞf0ðX̄Þ: ð65Þ

Instead, if the quasistatic limit had also been taken also
on the left-hand side, they would have become

δX ¼ −2ðΨþ 2ΦÞ; ð66Þ

δU ¼ −2f0ðX̄ÞðΨþ 2ΦÞ; ð67Þ
which are exactly the same as Eqs. (3.19) and (3.20) in
Ref. [45]. It should be noted that δX and δU are now local in
this implementation of the quasistatic limit. We recall that X
was originally nonlocal, as one can see fromX ¼ □

−1R, and
this is why the DWmodel is called nonlocal. This is another
reasonwhy the authors of Ref. [24]were reluctant to drop the
time derivatives of δX.
In summary, we have a system of five equations for five

perturbation variables, Φ;Ψ; δ; δX, and δU, in the localized
formulation:

k2Φþ k2
�
Φðf̄ þ ŪÞ þ 1

2
ðf̄0δX þ δUÞ

�
¼ 4πGa2ρδ;

ð68Þ

ðΦþΨÞ þ ðf̄0δX þ δUÞ þ ðΦþΨÞðf̄ þ ŪÞ ¼ 0; ð69Þ

δ̈þ 2H_δ ¼ −
k2

a2
Ψ; ð70Þ

�
−∂2

t − 3H∂t −
k2

a2

�
δX ¼ 2

k2

a2
ðΨþ 2ΦÞ; ð71Þ
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�
−∂2

t − 3H∂t −
k2

a2

�
δU ¼ 2

k2

a2
ðΨþ 2ΦÞf̄0: ð72Þ

Or, equivalently, inserting the integral solutions for δX
and δU,

δXðk⃗; tÞ ¼
Z

t

ti

dt0Gðt; t0; kÞ 2k2

aðt0Þ2 ½Ψðk⃗; t
0Þ þ 2Φðk⃗; t0Þ�;

ð73Þ

δUðk⃗; tÞ ¼
Z

t

ti

dt0Gðt; t0; kÞ 2k2

aðt0Þ2
× ½Ψðk⃗; t0Þ þ 2Φðk⃗; t0Þ�f0ðX̄ðt0ÞÞ; ð74Þ

leads to a system of three equations for three variables Φ,
Ψ, and δ:

k2Φþ k2
�
Φðf̄ þ ŪÞ þ k2

Z
t

ti

dt0

a2ðt0ÞGðt; t
0; kÞ

× ½Ψðk⃗; t0Þ þ 2Φðk⃗; t0Þ�½f0ðX̄ðtÞÞ þ f0ðX̄ðt0ÞÞ�
�

¼ 4πGa2ρδ; ð75Þ

ðΦþΨÞ þ ðΦþ ΨÞðf̄ þ ŪÞ þ 2k2
Z

t

ti

dt0

a2ðt0ÞGðt; t
0; kÞ

× ½Ψðk⃗; t0Þ þ 2Φðk⃗; t0Þ�½f0ðX̄ðtÞÞ þ f0ðX̄ðt0ÞÞ� ¼ 0;

ð76Þ

δ̈þ 2H_δ ¼ −
k2

a2
Ψ; ð77Þ

which was used by the authors of Ref. [24]. As long as the
initial conditions are taken the same, these two sets of
equations should give the same answers for Φ, Ψ, and δ,
respectively.

B. Solutions of the three sets of perturbation equations

To compare with the results in Ref. [45], we solve the
three sets of perturbation equations:

(i) Set A: five equations (68)–(72);
(ii) Set B: three equations (75)–(77) taken by Ref. [24];
(iii) Set C: five equations (68)–(70) and (66) and (67)

taken by Ref. [45]
Set A and Set B give identical solutions for Φ;Ψ; δ; δX,
and δU, as they should. Setting initial conditions at zi ¼ 9
the same as in GR (because the nonlocal modification is
negligible at, z > 5, as can be seen from Fig. 1),

ΦðziÞ ¼ ΦGRðziÞ; ΨðziÞ ¼ ΨGRðziÞ ¼ −ΦGRðziÞ;
ð78Þ

δðziÞ ¼ δGRðziÞ ¼
2k2aðziÞ
3H2

0Ωm
ΦGRðziÞ; δ0ðziÞ ¼ δ0GRðziÞ;

ð79Þ

δXðziÞ ¼ 0; δUðziÞ ¼ 0; δX0ðziÞ ¼ 0;

δU0ðziÞ ¼ 0; ð80Þ

with Ωm ¼ 0.314; k ¼ 100H0 ¼ 0.03hMpc−1, we have
numerical solutions6 plotted in red in Fig. 2. Their numerical
values have so little difference that the two pairs of graphs
fromsetA and setB look identical. Thus,weonly provide the
plots for the solutions of set A.

FIG. 3. Left: The gravitational slip η computed using the solutions forΦ andΨ from set A (or set B) and set C as a function of redshift.
Right: The growth rate fσ8 ≡ d ln δ=d lnðaÞ × σ8ðzÞ using the solutions for δ from set A (or set B), set C, and GR as a function of
redshift.

6Set A can be solved using aMathematica function NDSOLVE.
For set B, we discretized the equations and iterated them 104

times. While the running time of set A is a few minutes, it takes
set B about 11 hours with a relatively new computer. Back in
2013, running set B took days, so the current author made a
simplification (a sort of localization) in which she made a coding
mistake, which led to the result that now turns out to be wrong,
namely, the enhanced growth of δ.
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It should be noted that δX and δU are forced (and lightly
damped) harmonic oscillators with the driving forces
−2ðΨþ 2ΦÞ and −2f0ðX̄ÞðΨþ 2ΦÞ for δX and δU,
respectively, so that they will eventually follow the driving
forces after transient oscillations. These driving forces are
actually the solutions of δX and δU in (66) and (67) taken
by Ref. [45], and this is why the solutions of set C are
asymptotically the same as the ones of set A (and set B).
This behavior is verified in Fig. 2, which plots the solutions
of set A, set C, and GR for comparison. Because δX is
multiplied by f̄0 (which is almost zero at high redshifts
z≳ 5) in Eqs. (68) and (69), its oscillation is killed at high
redshifts. Hence, the solutions for ΦðzÞ;ΨðzÞ, and δðzÞ of
sets A and C are almost the same. As pointed out in
Ref. [45], the growth of δ in the DW model is lower than in
GR. In Fig. 2, we also provide the normalized solution for
δ, the growth function DðzÞ, which can be obtained by

DðzÞ ¼ 3ΩmH2
0

2k2
δðzÞ ð81Þ

or, equivalently, by solving the growth equation (89) given
in the next subsection with the same initial conditions as in
Ref. [45]:

DðziÞ ¼ aðziÞ; D0ðziÞ ¼ −DðziÞaðziÞ: ð82Þ

Figure 3 depicts the gravitational slip η≡ ðΦþΨÞ=Φ
and the growth rate fσ8 ≡ d ln δ=d lnðaÞ × σ8ðzÞ, which
are in fair agreement with the ones obtained in Ref. [45].
The slight difference in the numerical values of η in Fig. 3
and in Fig. 1 of Ref. [45] might be due to their different
choices of the nonlocal distortion function f (which cause
their background solutions for X̄ and Ū, and hence Φ and
Ψ, to differ slightly from the ones in this manuscript) and
different Ωm values. The normalization condition for
σ8ðzÞ is taken to be the one given in Ref. [24], which is
setting the initial amplitude σ8ðziÞ the same for GR, i.e.,

σ8ðziÞ ¼ σ8ðz ¼ 0Þ δGRðziÞ
δGRðz¼0Þ. Reference [45] used a slightly

different normalization condition that also sets the initial
amplitude identical to GR but evolves it with the solution
for δ of the DW model. Also, while we set σ8ðz ¼ 0Þ ¼
0.83 according to the Planck 2015 results [88], Ref. [45]
sets σ8ðz ¼ 0Þ ¼ 0.78.

C. Alternative definitions of the effective
gravitational constant Geff

One confusion between Refs. [24,45] regarding the
modified strength of gravity might arise from the alter-
native definitions of the effective gravitational constantGeff
(in units ofGNewton). In Ref. [24], it was defined through the
relation between Φ and δ (the modified Poisson equation),
whereas in Ref. [45], it was defined through the relation
between Ψ and δ:

k2

a2
Φ≡GeffΦ × 4πGρδ vs −

k2

a2
Ψ≡GeffΨ × 4πGρδ:

ð83Þ

If the gravitational slip η ¼ ðΦþ ΨÞ=Φ vanished (at late
times) like in GR, these two definitions would be identical;
however, it is not the case of the DW nonlocal model. In
fact, these two Geff’s behave in opposite ways. While GeffΦ
increases with time, GeffΨ decreases. That is, while jΦj in
the DW model becomes larger than in GR, jΨj becomes
smaller. This is in contrast to the case of GR in which
jΦj ¼ jΨj. Another way to see the difference is that, while
GeffΦ corresponds to Geff in the background level, GeffΨ
more directly characterizes the growth of δ.
In the background level, what the DW model essentially

does is increase Geff in order to overcome the falling-down
matter density ρ. This can be seen from the Friedmann
equation without Λ:

H2 ¼ 8πG
3

ρ: ð84Þ

The problem is that, while the left-hand side is observed to
be approaching a constant, the matter density in the right-
hand side is dropping as a−3. The DW model modifies the
Friedmann equation, thereby increasing the gravitational
constant so that the left- and right-hand sides match each
other:

H2 ¼ 8πG ×Geff

3
ρ: ð85Þ

The left panel of Fig. 4 depicts GeffΦ; GeffΨ, and Geff bgd

(Geff in the background level), where Geff bgd is obtained
from GeffΦ by taking the background modifications only,

GeffΦ ¼ 1

1þ f̄ þ Ū þ 1
2Φ ðf̄0δX þ δUÞ → Geff bgd

¼ 1

1þ f̄ þ Ū
: ð86Þ

Finally, the growth equation governing the evolution of δ
can be directly characterized by GeffΨ,

δ̈þ 2H_δ ¼ 3

2
H2

0Ωma−3ð1þ YÞδ; with 1þ Y ≡ GeffΨ:

ð87Þ

Alternatively, using the parameter μ defined in Ref. [92],

Ψ≡ ð1þ μÞΨGR; ð88Þ

we have
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δ̈þ 2H_δ ¼ 3

2
H2

0Ωma−3ð1þ μÞδ;
where 1þ μ ¼ ð1 − ηÞGeffΦ: ð89Þ

By comparing (87) and (89), one can easily see that Y ¼ μ.
The right panel of Fig. 4 presents Y ¼ μ as a function of
redshift, which agrees with Y in Ref. [45]. The sign of
Y ¼ μ being negative means that the growth of δ gets
suppressed in the DW model compared to the one in GR.
Reference [45] has pointed out that this GeffΨ being
negative is related to the violation of the ghost-free
condition in the localized version [7,12,13,15,93].7

On the other hand, Refs. [23,27] have shown the absence
of ghosts in the original nonlocal version. In any case, at the
linear perturbation level, the nonlocal and localized ver-
sions give the same solutions for perturbation variables as
long as the initial conditions are set the same, and no kinetic
instability is observed (i.e., no linear perturbations blow up).

IV. DISCUSSION

We have investigated the origin of two opposite results
for the growth rate fσ8 in the DW nonlocal gravity model.
The growth rate obtained by one group [24] was higher
than that ofΛCDM, but the one obtained by the other group
[45] was lower than ΛCDM.
The evolution equations for the perturbation variables

Φ, Ψ, and δ derived by the two groups (the former in the
original nonlocal formulation and the latter in a localized
version) were equivalent, and the only difference was in

the implementation of the subhorizon limit on the two
auxiliary equations for δX and δU. In the subhorizon
scales of k ≫ Ha, time derivatives are typically dropped;
hence, the limit is also called the quasistatic limit. While
the former group took the quasistatic limit only on the
source terms of the rhs to keep the time derivatives of δX
and δU,

�
−∂2

t − 3H∂t −
k2

a2

�
δX ¼ SδX;

�
−∂2

t − 3H∂t −
k2

a2

�
δU ¼ SδU;

the latter took the limit both on the lhs and rhs, which
turned the differential equations into algebraic ones:

−
k2

a2
δX ¼ SδX;

−
k2

a2
δU ¼ SδU:

The current author initially suspected that this different
implementation of the quasistatic limit was the main
source of the discrepancy. However, as one can see from
their equations, the auxiliary fields are forced harmonic
oscillators; henceforth, they eventually follow the applied
force on the source term. Moreover, the transient oscil-
lation of δX in the beginning (at high redshifts) is erased
by the factor of f̄0 (which is almost zero at high redshifts
z≳ 5) in the equations of Φ and Ψ, and therefore the two
implementations give almost the same solutions for Φ, Ψ,
and δ. Working on the nonlocal form only, the author did
not realize this now-simple behavior, and she made a
mistake in the numerical calculation code, which unfortu-
nately led to the result opposite of the one by Ref. [45].

FIG. 4. Left: Alternative ways of defining the effective gravitational constantGeff :GeffΦ from the relation betweenΦ and δ,GeffΨ from
the relation between Ψ and δ, and Geff bgd from the modified Friedmann equation. The curves are wiggly because we used the solutions
of set A. Instead, if one uses the solutions of set C, the curves are smooth with the same overall shapes. Right: The parameter Y defined
in (87), which turns out to be the same as the parameter μ defined in (88): Their negative sign indicates the lower growth of δ compared
to the one in GR.

7It should be noted that Ref. [45] checked the violation of the
ghost-free condition 6f0ðXÞ > 1þ fðXÞ þU > 0 with only the
background solutions fðX̄Þ and Ū. It would be interesting to
check the condition including linear perturbations, which would
require solving the full linear perturbation equations.
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We summarize what should be corrected in our previous
papers [18,24,43]. In Ref. [18], all equations and the
numerical results plotted in figures are actually correct.
However, it should be noted that the results of GeffΦ and η
were obtained by solving the perturbation equations pertur-
batively, which means by inserting the standard ΛCDM
solution forΦ andΨ into the new terms. SinceΦ andΨ in the
DW model turn out to be quite different from ΦGR and
ΨGR, these are somewhat rough estimates. In Ref. [24], all
equations are correct, but the numerical solutions plotted in
the figures are wrong; therefore, the discussions based
on those solutions should be discarded. Reference [43]
attempted to lower the growth of δ by changing the back-
ground expansion rather than that of ΛCDM, motivated by
thewrong conclusion of Ref. [24] that the DWmodel cannot
do better than ΛCDM in suppressing growth when its
background is fixed by ΛCDM. All equations there are also
correct, but the solutions for δ plotted in Figs. 2 and 3 are
subject to change. The tendency that the equation of state w
less negative than −1 gives more suppressed growth might
still remain because the dimensionless Hubble parameter
being in the denominator in the source term of the growth
equation ((17) in Ref. [43]) was a key factor lowering
the growth. However, more careful analysis is required to
confirm it. Furthermore, it would be still worth it to check the
growth of perturbations in the DW model with different
background expansions rather than ΛCDM.
After all, we extend the conclusion of Ref. [45] to

include the equivalence of the nonlocal and localized
formulations on the linear perturbation level so that both
versions of the DW model make identical predictions: the
lower growth of the matter overdensity δ compared to the
case of ΛCDM. We also remark that the entire analysis on
the perturbation equations in this paper was performed for

only one scale k ¼ 100H0 ¼ 0.03 hMpc−1 and the quasi-
static approximation worked very well in this subhorizon
scale. This raises the question of in what range of k the
approximation holds. Solving the full linear perturbation
equations without taking the quasistatic limit would help to
answer this question. We note that the full linear equations
for Φ and Ψ are already given in (48) and (49), and for
δ; δX, and δU, we only need to recover the time derivatives
dropped in the source terms. It would be also interesting
to check the dependence of the solutions on the initial
conditions. In practice, the localized version is much
simpler than the nonlocal one and is expected to be
relatively easily incorporated with extensive cosmological
simulation codes such as CAMB [94] and CLASS [95]. There
are also theoretical issues like the apparent violation of the
ghost-free condition in the localized formulation. However,
we agree with the authors of Ref. [45] that the DW nonlocal
model gives interesting predictions at linear perturbation
level and deserves further consideration.
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