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We find vacuum solutions such that massive gravitons are confined in a local spacetime region by their
gravitational energy in asymptotically flat spacetimes in the context of the bigravity theory. We call such
self-gravitating objects massive graviton geons. The basic equations can be reduced to the Schrödinger-
Poisson equations with the tensor “wave function” in the Newtonian limit. We obtain a nonspherically
symmetric solution with j ¼ 2, l ¼ 0 as well as a spherically symmetric solution with j ¼ 0, l ¼ 2 in this
system where j is the total angular momentum quantum number and l is the orbital angular momentum
quantum number, respectively. The energy eigenvalue of the Schrödinger equation in the nonspherical
solution is smaller than that in the spherical solution. We then study the perturbative stability of the
spherical solution and find that there is an unstable mode in the quadrupole mode perturbations which
may be interpreted as the transition mode to the nonspherical solution. The results suggest that the
nonspherically symmetric solution is the ground state of the massive graviton geon. The massive graviton
geons may decay in time due to emissions of gravitational waves but this timescale can be quite long when
the massive gravitons are nonrelativistic and then the geons can be long-lived. We also argue possible
prospects of the massive graviton geons: applications to the ultralight dark matter scenario, nonlinear (in)
stability of the Minkowski spacetime, and a quantum transition of the spacetime.
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I. INTRODUCTION

Recent observations found gravitational waves from
black hole mergers in which a few percent of the energy
of the system is radiated by the gravitational waves [1–4].
In this way, it is well known that the gravitational waves
have their energy and change the background geometry.
Therefore, it seems possible that the gravitational waves are
gravitationally bounded in a local region of the spacetime
by their own gravitational energy. This time-dependent
self-gravitating object is called a gravitational geon, short
for gravitational-electromagnetic entity, which was intro-
duced byWheeler [5]. Although a gravitational geon can be
constructed in asymptotically flat spacetimes [6,7], the
geon is not exactly periodic in time [8–15], and it has a
finite lifetime. However, the instability of geons could be
remedied in asymptotically anti–de Sitter (AdS) spacetimes
since the AdS boundary can confine particles and waves as

in a box. Gravitational geons in asymptotically AdS
spacetimes are constructed in [16–18].
In the present paper, we consider asymptotically flat

spacetimes and construct a gravitational geon of massive
gravitons. The extra ingredient in the present analysis is a
mass of a graviton. Although a graviton in general relativity
(GR) is massless, theories with a massive graviton have
received much attention. For instance, models with extra
dimensions predict the existence of massive gravitons as
well as a massless graviton as Kaluza-Klein modes. In other
examples, the massive graviton has been discussed to give
rise to the cosmic accelerating expansion (see [19,20] for
reviews and references therein) and recently discussed as a
candidate of dark matter [21–32].
Massive bosonic fields can form self-gravitating objects

which are called oscillatons in a real massive scalar field
[33], boson stars in a complex massive scalar field [34,35],
and Proca stars in a complex massive vector field [36]
(see also [37,38]). Hence, we can naturally expect that the
massive graviton also yields self-gravitating solutions
which we call massive graviton geons. Indeed, the paper
[27] showed the coherent oscillations of the massive
graviton lead to the Jeans instability and then the massive
gravitons could be self-gravitated. However, the analysis
[27] is based on the linear perturbation theory around the
homogeneous background. It has not been cleared whether
or not the massive gravitons indeed yield a nonperturbative
localized object.
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We study nontrivial vacuum solutions to the bigravity
theory. The bigravity theory contains a massless graviton
and a massive graviton [39]. The energy-momentum tensor
of the massive graviton was derived in [24,27] in the similar
way to general relativity [40]. We find that the basic
equations in the Newtonian limit can be reduced to the
Schrödinger-Poisson equations with the tensor “wave
function.” Due to the tensorial feature, the solutions in
this system have different properties from the scalar case.
We construct two types of the massive graviton geons: the
monopole geon and the quadrupole geon. The monopole
geon is the spherically symmetric configuration of the
massive graviton which corresponds to the eigenstate of
the zero total angular momentum. On the other hand, the
quadrupole geon is not spherically symmetric, instead, it is
given by the quadrupole modes of the spherical harmonics.
The quadrupole geon is the eigenstate of the zero orbital
angular momentum. Although the field configuration of the
quadrupole geon is not spherical, it yields the spherically
symmetric energy density and then the gravitational poten-
tial of the quadrupole geon is spherically symmetric.
We also discuss the stability of the geons. The monopole
geon is unstable against quadrupole mode perturbations.
We then expect a transition from the monopole geon to the
quadrupole one. The quadrupole geon would be a ground
state of the massive graviton geons.
The paper is organized as follows. In Sec. II, we

introduce the bigravity theory and take the Newtonian
limit with the self-gravity. We numerically construct the
massive graviton geons in Sec. III. We find that not only the
spherically symmetric configuration of the massive grav-
iton but also a nonspherically symmetric configuration
yields spherically symmetric energy density distributions.
The perturbative stability of the monopole geon is studied
in Sec. IV. We give a summary and discuss some physical
aspects of the massive graviton geons in Sec. V. In
Appendix A, we summarize multipole expansions of the
tensor field and the definitions of the angular momenta.
We also find an octupole configuration of the massive
graviton geon in Appendix B.

II. NEWTONIAN LIMIT OF BIGRAVITY

We assume the existence of a massive graviton as well
as a massless graviton. The gravitational action is given
by [39]

S ¼ 1

2κ2g

Z
d4x

ffiffiffiffiffiffi
−g

p
RðgÞ þ 1

2κ2f

Z
d4x

ffiffiffiffiffiffi
−f

p
RðfÞ

−
m2

G

κ2

Z
d4x

ffiffiffiffiffiffi
−g

p
Uðg; fÞ; ð2:1Þ

where gμν and fμν are two dynamical metrics, and RðgÞ and
RðfÞ are their Ricci scalars. The parameters κ2g and κ2f
are the corresponding gravitational constants, while κ is

defined by κ2 ¼ κ2g þ κ2f. Just for simplicity, to admit the
Minkowski spacetime as a vacuum solution, we restrict the
potential U as the form [41,42]

U ¼
X4
i¼2

ciU iðKÞ; ð2:2Þ

U2ðKÞ ¼ −
1

4
ϵμνρσϵ

αβρσKμ
αKν

β;

U3ðKÞ ¼ −
1

3!
ϵμνρσϵ

αβγσKμ
αKν

βKρ
γ;

U4ðKÞ ¼ −
1

4!
ϵμνρσϵ

αβγδKμ
αKν

βKρ
γKσ

δ; ð2:3Þ

with

Kμ
ν ¼ δμν −

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �μ

ν
; ð2:4Þ

where ð
ffiffiffiffiffiffiffiffiffiffi
g−1f

p
Þμν is defined by the relation

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
μ

ρ

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �
ρ

ν

¼ gμρfρν: ð2:5Þ

We can set c2 ¼ −1 by using the normalization of the
parameter mG. Then gμν ¼ fμν ¼ ημν is a vacuum solution
of the bigravity, and the parameter mG describes the mass
of the massive graviton propagating on the Minkowski
background.
We assume that the curvature scales of the spacetimes are

smaller than the graviton mass

j∂2gμνj ≪ m2
G; j∂2fμνj ≪ m2

G: ð2:6Þ

This means that we consider only weak gravity limit.1

We perform the perturbations up to second orders around
Minkowski spacetime and discuss a bound state of per-
turbed gravitational field. The perturbed gravitational fields
(δgμν and δfμν) are rewritten into two modes, that is,

massless mode∶
1

1þ α
ðδgμν þ αδfμνÞ; ð2:7Þ

massive mode∶
α

1þ α
ðδgμν − δfμνÞ: ð2:8Þ

where α ≔ κ2g=κ2f. Those two modes are split into four
components by those frequencies: the low-frequency

1The inequalities (2.6) also lead to that we do not need to take
into account the Vainshtein mechanism [43]. For instance, the
exterior region of a localized object with a mass M yields
j∂2gμνj ∼ GM=r3 and then (2.6) suggests the region outside the
Vainshtein radius rV ≔ ðGM=m2

GÞ1=3.
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massless mode δ g
ð0Þ

μν, the low-frequency massive mode
Mμν, the high-frequency massless mode hμν, and the high-
frequency massive mode φμν, i.e.,

massless mode∶ δ g
ð0Þ

μν þ hμν=Mpl ð2:9Þ

massive mode∶ Mμν þ φμν=MG; ð2:10Þ

where

Mpl ≔
κ

κgκf
; MG ≔

κ

κ2g
: ð2:11Þ

Here the high frequency means that the frequency is same
or larger than the graviton mass mG, while the low
frequency is that much smaller than mG. Intuitively,

δ g
ð0Þ

μν and Mμν represent the Newtonian potential and the
Yukawa potential, respectively, while the high-frequency
modes hμν and φμν are the propagating massless and
massive spin-2 fields (see [27] for more details).
We shall focus on the scale beyond the Compton

wavelength of the massive graviton (m−1
G ). In this scale,

Mμν can be ignored due to the Yukawa suppression. Since
we are interested in a localized object composed of the
massive graviton φμν, we assume the massless graviton hμν
does not appear. As a result, the metrics gμν and fμν are
approximated by

gμν ≃ g
ð0Þ

μν þ
φμν

MG
; ð2:12Þ

fμν ≃ g
ð0Þ

μν −
φμν

αMG
; ð2:13Þ

with jφμνj=MG ≪ j gð0Þμνj where g
ð0Þ

μν ¼ ημν þ δ g
ð0Þ

μν.
We then consider the perturbations up to second orders.

Just the similar to the GR case [40], the high frequency
modes φμν give the source for the low frequency gravita-
tional potential, when we take the Isaacson average. The
low-frequency projection (the Isaacson average) is usually
chosen as the spatial average (or the spacetime average)
because of massless fields. However, here we consider the
massive graviton, where momentum is much smaller
compared with the rest mass energymG. Hence we perform
the time average over the time interval T ¼ 2π=mG and we
do not take any spatial average.
Under this setting, the Einstein equations in bigravity

without matter fluids are reduced into the Einstein-Klein-
Gordon equations

G
ð0Þμν

¼ 1

M2
pl

hTμν
G ilow; ð2:14Þ

ð∇
ð0Þ

α∇
ð0Þα

−m2
GÞφμν ¼ 0þOðφ2

μνÞ; ð2:15Þ

with the constraints

∇
ð0Þ

μφ
μν ¼ 0þOðφ2

μνÞ; φμ
μ ¼ 0þOðφ2

μνÞ; ð2:16Þ
where we have ignored the higher order corrections of
φμν to the Einstein-Klein-Gordon equations. The Einstein

tensor G
ð0Þ

μν is constructed by the low-frequency background

g
ð0Þ

μν while T
μν
G is the energy-momentum tensor of the high-

frequency perturbations φμν. The energy-momentum tensor
of massive graviton is defined by

Tμν
G ¼ −

�
g
ð0Þμα

g
ð0Þνβ

−
1

2
g
ð0Þμν

g
ð0Þαβ

�
δR
ð2Þ

αβ½φ�

−
m2

G

8
ð4φμαφν

α − g
ð0Þμν

φαβφαβÞ þOðφ3
μνÞ; ð2:17Þ

with

δR
ð2Þ

μν½φ�

¼
�
1

4
∇
ð0Þ

μφ
αβ∇

ð0Þ
νφαβ þ ∇

ð0Þα
φβ

ν∇
ð0Þ

½αφβ�μ

þ 1

2
φαβð∇

ð0Þ
ν∇
ð0Þ

μφαβ þ ∇
ð0Þ

α∇
ð0Þ

βφμν − 2∇
ð0Þ

α∇
ð0Þ

ðμφνÞβÞ

þ
�
1

2
∇
ð0Þβ

φα
α − ∇

ð0Þ
αφ

αβ

��
∇
ð0Þ

ðμφνÞβ −
1

2
∇
ð0Þ

βφμν

��
:

ð2:18Þ
The time average of this energy-momentum tensor gives

the source of the low-frequency background g
ð0Þ

μν. We have
used the notations such that the suffixes on φμν are raised

and lowered by g
ð0Þ

μν and ∇
ð0Þ

μ is the covariant derivative with

respect to g
ð0Þ

μν.
We then take the Newtonian limit: the nonrelativistic

limit of the massive graviton as well as the weak
gravitational field approximation as for the background.
The background metric is given by

g
ð0Þ

μνdxμdxν ¼ −ð1þ 2ΦÞdt2 þ ð1þ 2ΨÞγijdxidxj;
ð2:19Þ

whereas the massive graviton is expressed by

φμν ¼
�
ψ00 ψ0i

� ψ tr
3
γij þ ψ ij

�
1ffiffiffi
2

p e−imGt þ c:c:; ð2:20Þ

where fΦ;Ψ;ψ00;ψ0i;ψ tr;ψ ijg are slowly varying func-
tions of ðt; xiÞ, e.g. ∂2

tψ ij ≪ mG∂tψ ij, and ψ ij is traceless,
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ψ i
i ¼ 0. The three-dimensional Euclidean metric is

denoted by γij and ∂i is the derivative with respect to
γij. We shall retain the three-dimensional covariance
thus γij and ∂i are not necessary to be δij and the partial
derivatives, respectively. The indices i, j are raised and
lowered by γij. The constraint equations (2.16) yield

ψ tr ¼ ψ00; ψ00 ¼
i

mG
∂iψ i0; ψ0i ¼

i
mG

∂jψ ij;

ð2:21Þ
which indicate the inequalities

jψ00j; jψ trj ≪ jψ0ij ≪ jψ ijj: ð2:22Þ
Using the time average h� � �ilow, we obtain

hTμν
G ilow ≃ diag

�
m2

G

4
ψ�
ijψ

ij; 0; 0; 0

�
; ð2:23Þ

where � denotes the complex conjugate. The equations are
reduced to the Poisson-Schrödinger equations

ΔΦ ¼ m2
G

8M2
pl

ψ�
ijψ

ij; ð2:24Þ

i
∂
∂tψ ij ¼

�
−

Δ
2mG

þmGΦ
�
ψ ij; ð2:25Þ

where Δ ¼ ∂i∂i. The spatial component of the Einstein
equation leads toΨ ¼ −Φ. Note that these equations (2.24)
and (2.25) are invariant under the rescaling

Φ → λ2Φ; ψ ij → λ2ψ ij; jxij → λ−1jxij;
t → λ−2t; ð2:26Þ

thus, the system is scale invariant. We also note that the
“wave function” of the Schrödinger equation is a tensor
field ψ ij which yields differences from the scalar wave
function case as we will see in the following sections.

III. SELF-GRAVITATING MASSIVE GRAVITONS

In this section, we study the periodical solutions with the
localized massive gravitons, i.e., the bound states of the
system (2.24) and (2.25). To find the bound states, we focus
on some eigenstates of the angular momentum of ψ ij.
As detailed in Appendix A, the angular dependence of each
eigenstate is given by the so-called pure-orbital spherical
harmonics ðTs

j;jz
Þij, where j and jz inside the parentheses

are the total angular momentum quantum number and the
total angular momentum projection quantum number.
The total angular momentum j and the orbital angular
momentum l are related by j ¼ lþ s with s ¼ 0;�1;�2.
We note that the label s does not refer to polarizations of

the massive graviton. The polarization eigenstates are
explicitly shown in Appendix A.
Note that the Laplace operator Δ is connected with the

orbital angular momentum l whereas the symmetry of the
field configuration is determined by j and jz. For instance,
the spherically symmetric configuration is given by j ¼
jz ¼ 0 but this mode does not correspond to the zero orbital
angular momentum mode as shown just below.
In what follows, we shall find two types of the massive

graviton geons: the monopole geon and the quadrupole
geon which correspond to the zero total angular momentum
mode j ¼ 0 and the zero orbital angular momentum mode
l ¼ 0, respectively. We discuss them in order. We will
summarize their properties in Table V.

A. Monopole geons

We first consider spherically symmetric bound states of
Eqs. (2.24) and (2.25) which we call the monopole geon.
The spherical symmetry leads to

ψ ijdxidxj ¼
ffiffiffiffiffiffiffiffi
16π

p
ψ0ðrÞe−iEtðT−2

0;0Þijdxidxj

¼
ffiffiffi
2

3

r
ψ0ðrÞe−iEtð2dr2 − r2dΩ2Þ; ð3:1Þ

where E is the “energy eigenvalue” of the bound state.
Since we are interested in the bound state, E is a real
constant and ψ0 is a real function of r. The Poisson-
Schrödinger equations are then given by

1

r2
d
dr

�
r2
dΦ
dr

�
¼ 4πGm2

Gψ
2
0; ð3:2Þ

and

1

r2
d
dr

�
r2
dψ0

dr

�
¼ 2

�
3

r2
þm2

GΦ
�
ψ0 − 2mGEψ0; ð3:3Þ

where G ¼ 1=8πM2
pl. The mass of the geon is defined by

M ≔ 4π

Z
∞

0

drr2m2
Gψ

2
0: ð3:4Þ

The mass M is rescaled under the scaling (2.26) as

M → λM: ð3:5Þ
The asymptotic forms of the solutions are analytically

found as

Φ → −
GM
r

; ð3:6Þ

ψ0 → Cr−1Wð−2 ~EÞ−1=2;5
2

�
2

ffiffiffiffiffiffiffiffiffi
−2 ~E

p
~r
�

→ C0 e−
ffiffiffiffiffiffiffi
−2 ~E

p
~r

r1−1=
ffiffiffiffiffiffiffi
−2 ~E

p ; ð3:7Þ
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with

~E ¼ E
ðGMÞ2m3

G
; ~r ¼ GMm2

Gr; ð3:8Þ

where Wκ;μðzÞ is the Whittaker function, and C and C0 are
integration constants. We notice that the dimensionless
variables ~E and ~r are invariant under the scaling (2.26).
Some numerical solutions to the Poisson-Schrödinger

equations are shown in Fig. 1 where we have used the
dimensionless scale-invariant variables:

~Φ ¼ Φ
ðGMmGÞ2

; ~ψ0 ¼
ψ0=Mpl

ðGMmGÞ2
: ð3:9Þ

The boundary condition is assumed to be dΦ=dr,
dψ0=dr → 0 as r → 0, and Φ and ψ0 vanish at infinity.
The solutions are parametrized by the number of nodes.
We call the solution with n nodes the n-th eigenstate of the
monopole geon because the energy eigenvalue increases as

n increases as shown in Table I. In Table I, we summarize
the scale-invariant energy eigenvalues ~E and the 95%
mass radii ~R95%, below which 95% of the mass energy
is included. Since the 95% mass radius increases in the
higher-node state, the lowest-node (the lowest-energy) state
gives the most compact object.
The orbital angular momentum l does not vanish in the

j ¼ 0 mode since the zero total angular momentum in the
tensor field is realized only when l ¼ þ2 and s ¼ −2. As a
result, the orbital angular momentum term 3=mGr2 exists in
Eq. (3.3). The regularity at the center of the monopole geon
leads to that ψ0 vanishes at r ¼ 0. As a result, the monopole
geon has a shell-like field configuration as shown in Fig. 1.
On the other hand, the Newtonian potential Φ is a scalar
field, which has no orbital angular momentum for a
spherical configuration, and then Φ is finite at the center.

B. Quadrupole geons

Next we consider a nonspherically symmetric configu-
ration of the massive graviton and find its bound state.
We assume a quadrupole configuration of ψ ij, which is
given by

ψ ij ¼
ffiffiffiffiffiffiffiffi
16π

p X2
jz¼−2

ψ2;jzðrÞe−iEtðTþ2
2;jz

Þij; ð3:10Þ

where ðTþ2
2;jz

Þij is given by the spherical harmonics of the
quadrupole mode. We call this bound state (3.10) the
quadrupole geon. As shown in Appendix A, ðTþ2

2;jz
Þij has

special properties which lead to

ψ�
ijψ

ij ¼ 4
X2
jz¼−2

ψ2
2;jz

; ð3:11Þ

Δψ ij ¼ e−iEt
X2
jz¼−2

ffiffiffiffiffiffiffiffi
16π

p

r2
d
dr

�
r2
dψ2;jz

dr

�
ðTþ2

2;jz
Þij: ð3:12Þ

As a result, the energy density of ψ ij turns to be spherically
symmetric. We then assume Φ ¼ ΦðrÞ. The basic equa-
tions are now given by

FIG. 1. The solutions to the Poisson-Schrödinger equations of
the spherically symmetric bound state j ¼ 0. The red curves
show the configuration of the massive graviton ~ψ0 and the
blue dashed curves correspond to the gravitational potential ~Φ.
The solutions are specified by the number of nodes of ~ψ0.

TABLE I. Energy eigenvalues and 95% mass radii of monopole
geon.

Node ~E ~R95%

n ¼ 0 −0.02708 37.72
n ¼ 1 −0.01140 89.85
n ¼ 2 −0.006302 161.9
n ¼ 3 −0.003995 254.3
n ¼ 4 −0.002757 367.4
n ¼ 5 −0.002016 500.0
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1

r2
d
dr

�
r2
dΦ
dr

�
¼ 4πGm2

G

X2
jz¼−2

ψ2
2;jz

; ð3:13Þ

1

r2
d
dr

�
r2
dψ2;jz

dr

�
¼ 2mGðmGΦ − EÞψ2;jz : ð3:14Þ

The orbital angular momentum l vanishes in the quadru-
pole geon although that is not the case in the monopole
geon. Note that the orbital angular momentum vanishes
only when j ¼ 2 and s ¼ þ2.
The variables ψ2;jz are the solutions to the Sturm-

Liouville equations with the same eigenvalue E under
the boundary conditions dψ2;jz=dr → 0 at the center and
ψ2;jz → 0 at infinity. Hence, the functional forms of ψ2;jz
are uniquely determined by some function ψ2EðrÞ for each
E and then ψ2;jz are expressed by

ψ2;jz ¼ ajzψ2E; ð3:15Þ

where ajz are constants which are normalized as

X
jz

jajz j2 ¼ 1: ð3:16Þ

Then, the equations are reduced to

1

r2
d
dr

�
r2
dΦ
dr

�
¼ 4πGm2

Gψ
2
2E; ð3:17Þ

1

r2
d
dr

�
r2

dψ2E

dr

�
¼ 2mGðmGΦ − EÞψ2E; ð3:18Þ

which are exactly the same equations of the Poisson-
Schrödinger system for the scalar field with the j¼ 0mode.
The solutions to Eqs. (3.17) and (3.18) have been already

investigated, e.g. in [44–49]. The energy eigenvalues and the
explicit forms of ψ2E are shown in Table. II and Fig. 2.
Compared to those of the monopole geon, the lowest energy
eigenvalue of the quadrupole geon ( ~E ¼ −0.1628) is much
lower than that of the monopole geon ( ~E ¼ −0.0278). Since
the lower energy state should be more stable than the higher
state, themonopole geonmay transit to the quadrupole geon.
In the next section, we will indeed find that the monopole
geon is unstable against quadrupole mode perturbations.

Whereas the radial dependence of the quadrupole geon is
uniquely determined by ψ2E for each E, the angular
dependence is not unique because the expansion coeffi-
cients ajz of five tensor spherical harmonics ðTþ2

2;jz
Þij are

arbitrary although there is one constraint (3.16). Each
energy eigenstate of the quadrupole geon is degenerated.
Needless to say, the scalar bosonic field with j ¼ 0 has no
degeneracy. Although the equations (3.17) and (3.18) are
the same, there are different features between the gravitons
and the scalar bosons.
Another difference from the bosonic case is that the field

configuration is not spherically symmetric. The quadrupole
geons have anisotropic pressures although they can be
ignored to discuss the bound states. As a result, the
quadrupole geons may emit gravitational waves. We will
return some consequences of the gravitational wave emis-
sion in Sec. V.
Before ending this section, we comment on the polar-

izations of the geons. The massive graviton has spin-0,
spin-1, and spin-2 polarization modes. The monopole geon
is an eigenstate of the spin-0 polarization while the
quadrupole geon is not an eigenstate of the polarizations.
The relation between the polarization eigenstates and the
angular momentum eigenstates is given by Eq. (A26) in
Appendix Awhich explicitly shows that ðTþ2

2;jz
Þij is not the

polarizations eigenstate.

IV. LINEAR FLUCTUATIONS AROUND
THE MONOPOLE GEON

In the previous section, we find two types of geon
solutions; monopole and quadrupole. Since the binding
energy (− ~E) of the quadrupole geon is much larger than
that of the monopole one, the monopole geon is expected to
be unstable. In order to confirm it, we study the perturba-
tions around the monopole geon. As long as the perturba-
tions do not spoil the Newtonian approximation, we can use
the equations (2.24) and (2.25). Hence, we consider the
configurations

Φ ¼ Φ0 þ δΦ; ψ ij ¼ ψ0;ij þ δψ ij; ð4:1Þ

where Φ0 and ψ0;ij are the solutions of the n-th state of the
monopole geon. The perturbations δψ ij can be decomposed
into the odd parity perturbations and the even parity
perturbations,

δψ ij ¼ δψ ðevenÞ
ij þ δψ ðoddÞ

ij ; ð4:2Þ

and the different parity modes are not coupled with
each other.
There is no odd parity mode of the gravitational

potential. The odd parity perturbations δψ ðoddÞ
ij are obtained

by only solving the Schrödinger equation with the potential
Φ ¼ Φ0 and then the problem can be reduced to the

TABLE II. Energy eigenvalues and 95% mass radii of quadru-
pole geon.

Node ~E ~R95%

n ¼ 0 −0.1628 7.830
n ¼ 1 −0.03080 36.00
n ¼ 2 −0.01250 85.04
n ¼ 3 −0.006747 154.4
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eigenvalue problem of a self-adjoint operator. Hence, the

eigenvalues, i.e., the frequencies of δψ ðoddÞ
ij , are real and

then there is no growing mode (and no decaying mode).
The monopole geons are linearly stable against the odd
parity perturbations.
We then study the even parity perturbations. We intro-

duce a different basis of the multipole expansion form
ðTs

j;jz
Þij which is called the pure-spin spherical harmonics

denoted by ðYA
j;jz

Þij with A ¼ S0; E1; E2; B1; B2.
2 The label

A characterizes the polarization states of the massive spin-2
field and the parity (see Appendix A). Then, the even parity
perturbations can be expressed by

δΦ ¼
ffiffiffiffiffiffi
4π

p X
j≥0

X
jjzj≤j

δϕj;jzðt; rÞYj;jz ; ð4:3Þ

δψ ðevenÞ
ij ¼

ffiffiffiffiffiffiffiffi
16π

p
e−iEt

X
j≥0

X
jjzj≤j

δξj;jzðt; rÞðYS0
j;jz

Þij

þ
ffiffiffiffiffiffiffiffi
16π

p
e−iEt

X
j≥1

X
jjzj≤j

δχj;jzðt; rÞðYE1

j:jz
Þij

þ
ffiffiffiffiffiffiffiffi
16π

p
e−iEt

X
j≥2

X
jjzj≤j

δσj;jzðt; rÞðYE2

j;jz
Þij; ð4:4Þ

where Yj;jz is the scalar spherical harmonics. Since the
different modes of j and jz are not coupled due to the

background spherical symmetry, we just omit the suffixes j
and jz hereafter.
The perturbed Poisson equation yields

1

r
∂2

∂r2 ðrδϕÞ −
jðjþ 1Þ

r2
δϕ ¼ 4πGψ0ðδξþ δξ�Þ; ð4:5Þ

while the Schrödinger equation with j ≥ 2 gives

−
1

2mGr
∂2

∂r2 ðrδξÞ þ
�
jðjþ 1Þ þ 6

2mGr2
þmGU

�
δξ

þmGψ0δϕþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jðjþ 1Þp
mGr2

δχ ¼ i
∂
∂t δξ; ð4:6Þ

−
1

2mGr
∂2

∂r2 ðrδχÞ þ
�
jðjþ 1Þ þ 4

2mGr2
þmGU

�
δχ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3jðjþ 1Þp
mGr2

δξþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðj − 1Þðjþ 2Þp

mGr2
δσ ¼ i

∂
∂t δχ;

ð4:7Þ

−
1

2mGr
∂2

∂r2 ðrδσÞ þ
�ðj − 1Þðjþ 2Þ

2mGr2
þmGU

�
δσ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðj − 1Þðjþ 2Þp

mGr2
δχ ¼ i

∂
∂t δσ; ð4:8Þ

where U ¼ Φ0 − E=m. We note j ¼ 0 and j ¼ 1 of the
perturbations are exceptional modes. The variables δχ and
δσ are undefined for the j ¼ 0 mode in which (4.7) and
(4.8) are not obtained. For the j ¼ 1 mode, the variable δσ
is undefined and the equation (4.8) does not exist. However,
Eq. (4.6) [and Eq. (4.7)] is correct even for the j ¼ 0 mode
(and the j ¼ 1 mode) since the coefficients in front of the
undefined variable vanish.
We find solutions of the form

δϕ ¼ W
r
e−iωt þW�

r
eiω

�t; ð4:9Þ

δξ ¼ 1

r
ðξA þ ξBÞe−iωt þ

1

r
ðξ�A − ξ�BÞeiω�t; ð4:10Þ

δχ ¼ 1

r
ðχA þ χBÞe−iωt þ

1

r
ðχ�A − χ�BÞeiω�t; ð4:11Þ

δσ ¼ 1

r
ðσA þ σBÞe−iωt þ

1

r
ðσ�A − σ�BÞeiω�t; ð4:12Þ

where fW; ξA;B; χA;B; σA;Bg are complex functions of r
and ω is a complex constant. The regularity conditions
at the center lead to the boundary condition fW; ξA;B;
χA;B; σA;Bg → 0. At infinity we assume the boundary
condition δξ; δψ ; δχ; δσ → 0. Except for the j ¼ 0 mode,
all variables fδϕ; δξ; δχ; δσg decay faster than r−1. Hence,

FIG. 2. The configurations of ψ2 (red curves) and Φ (blue
dashed curves) in the case of the quadrupole mode.

2We have used two types of the orthonormal sets of the tensor
harmonics ðTs

j;jz
Þij and ðYA

j;jz
Þij which are related by the

orthogonal transformation (A26). Although ðTs
j;jz

Þij are useful
to discuss the bound state solutions, the perturbation equations
are given by a simpler form by using ðYA

j;jz
Þij.
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we can assume the boundary condition fW; ξA;B; χA;B;
σA;Bg → 0 at infinity. However, δϕ of the j ¼ 0 mode
decays as r−1, i.e., W → W0 (constant). We cannot assume
W → 0 at infinity in the case of j ¼ 0; instead, we should
assume dW=dr → 0.
The Poisson equation yields that W is formally given by

W ¼ −8πGO−1
ϕ ψ0ξA; ð4:13Þ

where O−1
ϕ is the inverse operator of Oϕ, which is

defined by

Oϕ ¼ −
d2

dr2
þ jðjþ 1Þ

r2
: ð4:14Þ

The perturbed equations for the j ¼ 0 mode are given by

�
0 Oψ

Oψ − 8πGmGψ0O−1
ϕ ψ0 0

��
ξA

ξB

�
¼ ω

�
ξA

ξB

�
;

ð4:15Þ

the equations for j ¼ 1 are

0
BBBBBB@

0 Oψ 0
ffiffi
6

p
mGr2

Oψ − 8πGmGψ0O−1
ϕ ψ0 0

ffiffi
6

p
mGr2

0

0
ffiffi
6

p
mGr2

0 Oχffiffi
6

p
mGr2

0 Oχ 0

1
CCCCCCA

0
BBB@

ξA

ξB

χA

χB

1
CCCA

¼ ω

0
BBB@

ξA

ξB

χA

χB

1
CCCA; ð4:16Þ

and the equations for the general modes j ≥ 2 are
written as

0
BBBBBBBBBBBBBBBBBB@

0 Oψ 0

ffiffiffiffiffiffiffiffiffiffiffiffi
3jðjþ1Þ

p
mGr2

0 0

Oψ − 8πGmGψ0O−1
ϕ ψ0 0

ffiffiffiffiffiffiffiffiffiffiffiffi
3jðjþ1Þ

p
mGr2

0 0 0

0

ffiffiffiffiffiffiffiffiffiffiffiffi
3jðjþ1Þ

p
mGr2

0 Oχ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj−1Þðjþ2Þ

p
mGr2ffiffiffiffiffiffiffiffiffiffiffiffi

3jðjþ1Þ
p

mGr2
0 Oχ 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj−1Þðjþ2Þ

p
mGr2

0

0 0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj−1Þðjþ2Þ

p
mGr2

0 Oσ

0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj−1Þðjþ2Þ

p
mGr2

0 Oσ 0

1
CCCCCCCCCCCCCCCCCCA

0
BBBBBBBBBB@

ξA

ξB

χA

χB

σA

σB

1
CCCCCCCCCCA

¼ ω

0
BBBBBBBBBB@

ξA

ξB

χA

χB

σA

σB

1
CCCCCCCCCCA
; ð4:17Þ

where

Oψ ¼ −
1

2mG

d2

dr2
þ jðjþ 1Þ þ 6

2mGr2
þmGU; ð4:18Þ

Oχ ¼ −
1

2mG

d2

dr2
þ jðjþ 1Þ þ 4

2mGr2
þmGU; ð4:19Þ

Oσ ¼ −
1

2mG

d2

dr2
þ ðj − 1Þðjþ 2Þ

2mGr2
þmGU: ð4:20Þ

Once we find one solution with the eigenvalue ω, we can
easily obtain the solutions with the eigenvalues −ω;ω�
and −ω�. Supposing fW; ξA; ξB; � � �g with ω is a solution,
the solution with −ω is given by fW; ξA;−ξB; � � �g.
The solutions with eigenvalues ω� and −ω� are also

easily constructed from the definitions of the variables
(4.9)–(4.12).
We use the spectral method and then the problem is

reduced to the eigenvalue problem of the matrix. Since the
infinity cannot be treated in numerical calculations, we
choose a range ð0; 10R95%Þ for r for which we have
confirmed the numerical results are sufficiently converged.
When all eigenvalues are real, the solution is stable; while
if there exists an imaginary part of ω, there are always
exponentially growing modes because fω;−ω;ω�;−ω�g
are the eigenvalues of the perturbations.
In Tables III and IV, we show some eigenvalues of

ReðωÞ ≥ 0, ImðωÞ ≥ 0, where the rescaled ω is defined by

~ω ¼ ω

ðGMÞ2m3
G
: ð4:21Þ

We note that the j ¼ 0 mode perturbations have a trivial
solution such that ω ¼ 0 and
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ξB ∝ ψ0=r; ξA ¼ 0; δϕ ¼ 0; ð4:22Þ

which corresponds to a phase shift of the background
solution, i.e., ψ0;ij þ δψ ij ¼ eiϵψ0;ij with a small constant
ϵ. We also find almost zero eigenvalues in the j ¼ 1 and
j ¼ 2 modes perturbations which are not trivial solutions.

We first discuss the j ¼ 0 mode perturbations. We find
the n-th state has the n different unstable modes as shown in
Table III. The unstable modes could be interpreted as the
transition modes to the lower energy eigenstate from the
higher one. Only the zeroth state of the monopole geon is
linearly stable against the j ¼ 0 mode perturbation.
Henceforth, we shall only show the results of the

perturbations around the zeroth state. Our numerical
calculations show that the zeroth state is linearly stable
against the j ≠ 2 mode perturbations. However, we find
there exists an unstable mode in the j ¼ 2 mode perturba-
tions as shown in Table IV. The explicit forms of the
unstable mode are depicted in Fig. 3.
As a result, the zeroth state of the monopole geon is

unstable against the j ¼ 2 mode perturbation which is
consistent with the energy argument. However, it is not so
manifest whether the unstable mode indeed represents the
transition to the zeroth state of the quadrupole geon from
the zeroth state of the monopole geon. The quadrupole
geon is purely given by the j ¼ 2 mode and the gravita-
tional potential is exactly spherically symmetric. We expect
that the j ≠ 2 modes of ψ ij and the nonspherical part of Φ
decay in time and then the configurations of Φ and ψ ij will
converge towards the zeroth state of the quadrupole geon.
However, we need to fully solve (2.24) and (2.25) for the
monopole geon with perturbations in order to discuss this
process, which we leave for a future work.
Furthermore, the stability of the quadrupole geon is an

open question. Since the field configuration is not spheri-
cally symmetric in this case, different modes of the multi-
pole expansion should be coupled and the stability analysis
becomes very difficult. We hope that the quadrupole geon
is linearly stable since it is the only mode with the zero
orbital angular momentum and thus the lowest energy
eigenstate of (2.24) and (2.25).

V. SUMMARY AND DISCUSSIONS

We find vacuum solutions such that the massive grav-
itons are localized by their gravitational energy in the
context of the bigravity theory, which we have called the
massive graviton geon by following Wheeler’s idea [5]. In
the Newtonian limit, the vacuum equations of the bigravity

TABLE III. The seven lowest eigenvalues ~ωi of the j ¼ 0 mode perturbations with Reð ~ωiÞ, Imð ~ωiÞ ≥ 0
and j ~ω0j < j ~ω1j < j ~ω2j < � � �.

Zeroth state First state Second state

~ω0 0 0 0
~ω1 0.005127 0.001389 0.0005677
~ω2 0.01326 0.003794þ 0.0007111i 0.001571þ 0.0003633i
~ω3 0.01699 0.005369 0.002495
~ω4 0.01936 0.006537 0.002879þ 0.0001624i
~ω5 0.02095 0.007374 0.003445
~ω6 0.02197 0.008009 0.003839

TABLE IV. The seven lowest eigenvalues ~ωi of perturbations
around the zeroth state of the monopole geon.

j ¼ 1 j ¼ 2 j ¼ 3

~ω0 0.00000 0.00000 0.004440
~ω1 0.004674 0.0005155i 0.004918
~ω2 0.00622 0.008190 0.005600
~ω3 0.01078 0.008469 0.01133
~ω4 0.01132 0.008660 0.01189
~ω5 0.01551 0.01070 0.01346
~ω6 0.01581 0.01358 0.01559

FIG. 3. The solution to the j ¼ 2 mode perturbation equations
with ~ω ¼ 0.00052i (the unstable perturbation around the mo-
nopole geon). The amplitudes of the solutions are scale free
because the equations are linear.
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theory can be reduced to the Poisson-Schrödinger equa-
tions with the tensor “wave function.” We numerically
construct two types of the massive graviton geons: the
spherically symmetric configuration of the massive grav-
iton (the monopole geon) and the configuration is repre-
sented by the quadrupole modes of the spherical harmonics
(the quadrupole geon). We summarize their properties in
Table V. We find the energy density distribution is spheri-
cally symmetric not only for the monopole geon but also
for the quadrupole geon. The lower energy eigenstate
should be more stable than the higher eigenstate. Indeed,
the perturbation analysis around the monopole geon reveals
that there exists an unstable mode in the quadrupole mode
perturbations which is consistent with the energy argument.
Since the system is scale invariant, we can construct a

massive graviton geon with any size of R95% as long as
R95% ≫ m−1

G . The most stable and compact massive grav-
iton geon would be given by the zeroth state of the
quadrupole geon whose mass and typical amplitude are

GM ≃ 7.8
m2

GR95%

; ð5:1Þ

jφμνj=MG ≃ 0.3 × α1=2ðGMmGÞ2: ð5:2Þ

If the size of the geon becomes smaller such as
R95% ∼m−1

G , we cannot ignore the relativistic effects and
the present approximations are no longer valid.Nevertheless,
we may evaluate the maximummass of the massive graviton
geon from the expression (5.1) as follows: if R95% ≲m−1

G ,
M ≳ ðGmGÞ−1, then the Schwarzschild radius 2GM
becomes larger than the size of the massive graviton geon
R95%, which may become a black hole in a relativistic
situation. Then we expect that the massive graviton geon
exists only when M ≲Mmax, where

Mmax ∼ ðGmGÞ−1 ∼ 1 M⊙
�
10−10 eV

mG

�
: ð5:3Þ

This mass bound of the geon is consistent with the stability
analysis of the Schwarzschild black hole in the bigravity.
The papers [50,51] showed that the Schwarzschild black
hole solution is stable when 2GM ≳m−1

G while it turns to be

unstable when 2GM ≲m−1
G , in which case we may expect a

hairy black hole surrounded by time-dependent massive
gravitons is formed.
The quadrupole geons may emit gravitational waves. We

note, however, that the low-frequency part of Tμν
G has no

oscillation due to the phase cancellation up to the second
order. Hence, we study the backreaction of the massive
graviton φμν on the high-frequency massless gravitons hμν.
We find T00

G is static and spherically symmetric, while the
spatial components are given by

Tij
G ≃m2

G

�
−ψ ikψ j

k þ
3

4
γijψklψkl

�
e−2imGt þ c:c:; ð5:4Þ

which clearly has the oscillating anisotropic stress and then
the quadrupole geons emit the gravitational waves hμν. The
gravitational waves observed sufficiently far from the geon
are given by

hTTij ¼ 4G
r

eik·xPij;kl

Z
d3x0Tkl

Gðt; x0Þe−ik·x
0 þ c:c:; ð5:5Þ

where k is the wave vector of the gravitational waves with
k2 ¼ ð2mGÞ2 and Pij;kl is the transverse-traceless projec-
tion operator. Note that the pure-orbital spherical harmon-
ics with j ¼ 2 and s ¼ þ2 are just constant matrices in
the Cartesian coordinates (see Appendix A). Hence, the
integration in (5.5) isZ

d3x0Tkl
Ge

−ik·x0 ∝
Z

d3x0ψ2
2Eðr0Þe−ik·x

0

¼ 2π

mG

Z
dr0r0ψ2

2Eðr0Þ sin½2mGr0�: ð5:6Þ

As a result, the gravitational wave emission is suppressed
(probably exponentially) for the nonrelativistic geons, i.e.,
∂rψ2E ≪ mGψ2E. The nonrelativistic quadrupole geons are
long-lived objects even if they have the oscillating part of
the anisotropic stress.
The gravitational potential of the quadrupole geon has

the same structure as the case of a massive scalar field of the
j ¼ 0 mode because Eqs. (3.17) and (3.18) are the same
ones as those in the scalar case (see e.g., [44–49]). Hence,
the quadrupole geon can represent a central part of a dark
matter halo if the mass of the graviton is about 10−22 eV
just as the case with the ultralight scalar dark matter
(see [49] for example and references therein).
Because the matter fields are coupled with gμν given by

(2.12), the massive graviton φμν can be observed as
localized “gravitational waves” with the frequency and
amplitude of

f ≃mG=2π ∼ 10−8
�

mG

10−22 eV

�
Hz; ð5:7Þ

TABLE V. Properties of the massive graviton geons.

Monopole geon Quadrupole geon

Angular momentum j ¼ 0;l ¼ 2 j ¼ 2;l ¼ 0

Configuration Angular spherical quadrupole
Radial shell (Fig. 1) ball (Fig. 2)

Lowest energy ~E ¼ −0.027 ~E ¼ −0.16
Degeneracy 1 5
Polarization scalar not polarized
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jφμνj
MG

∼ 10−7α1=2
�

M
109 M⊙

�
2

: ð5:8Þ

In the case α ¼ ðMpl=MGÞ2 ∼ 1, i.e., Mpl ∼MG, this
oscillation has a large amplitude; thus, such a possibility
is already excluded by the pulsar timing array (PTA)
observations [52]. One possibility to be a consistent
scenario is introducing the hierarchy of the mass scales
MG ≳ 108Mpl (α1=2 ≲ 10−8). Another possibility is intro-
ducing the Z2 symmetry of the massive graviton [27]; the
theory is symmetric under φμν → −φμν. The symmetry
leads to MG ¼ Mpl and the matter fields are coupled with
the metric [53]

geffμν ¼
1

4

h
gμν þ 2gμα

� ffiffiffiffiffiffiffiffiffiffi
g−1f

q �α

ν
þ fμν

i
¼ g

ð0Þ
μν −

1

4M2
pl

φμαφ
α
ν þ � � � : ð5:9Þ

In this case, the amplitude of the oscillation is given by
jφμαφ

α
ν=4M2

plj ∼ 10−15, which can be detectable by the
future observations of PTA. We note that the ultralight
scalar dark matter predicts oscillations of the gravitational
potential because the coherent oscillation of dark matter
leads to the oscillation of the pressure [54]. In the tensor
case, we also expect the oscillation of the gravitational
potential [see (5.4)].
To discuss the dark matter scenario, we have to take into

account other observational constraints, such as the
Yukawa force constraints and the gravitational wave con-
straints, on the graviton mass. Supposing the linear theory
is a good approximation in the observational scales, the
mass range 10−23 eV≲mG ≲ 10−4 eV is excluded when
Mpl ∼MG (see [55–58] for examples). However, if
MG ≫ Mpl, the interaction of the massive graviton
becomes weak and then the constraints are relaxed (For
instance, the lunar laser ranging experiment can give a
graviton mass constraint only if ðMpl=MGÞ2 ≳ 10−11 [59]).
Furthermore, the observational constraints cannot be
applied to the Z2 symmetric model since the Z2 symmetry
prohibits the Yukawa interaction M−1

G φμνTμν. As a result,
the graviton mass constraints cannot be applied to the
graviton dark matter models with the hierarchy MG ≳
108Mpl or with the Z2 symmetry.
The gravitational geons are recently discussed in the

context of the nonlinear instability of the AdS spacetime
[16–18,60]. The energy eigenvalue of the massive graviton
geon is negative which suggests that the massive graviton
geons can be produced from fluctuations around the
Minkowski vacuum. Does it imply the instability of
Minkowski spacetime if a graviton is massive? We expect
that is not the case, because the mass energy of the
produced geon is not negative although the energy

eigenvalue is negative. When all fluctuation energy is
converted into the geons, the production of geons will stop.
This is just like a structure formation by Jeans instability.
Nonetheless, extended analysis may be required to con-

clude the nonlinear (in)stability of the Minkowski spacetime
with massive gravitons. We have also to study a quantum
mechanical (in)stability against quantum fluctuations.
Since the ground state of the massive graviton geon

would be the quadrupole geon, the produced geons should
eventually transit to the quadrupole geon. Although the
resultant quadrupole geon will emit the gravitational waves,
the gravitational wave emission is drastically suppressed if
the produced geon is nonrelativistic. As a result, we may
expect that the geon may not decay soon and the localized
structure would remain.
Although we have only discussed the classical features

of the Poisson-Schrödinger equations (2.24) and (2.25),
one may quantize the massive graviton regarding ψ ij as
indeed the wave function of the massive graviton. The
“Hamiltonian operator” could be defined by

Ĥ ≔ −
Δ

2mG
þmGΦ: ð5:10Þ

The massive graviton geon may be interpreted as a Bose-
Einstein condensate of the massive gravitons just by the
analogy to themassive scalar field and then it can be seen as a
macroscopic object. If the massive graviton geon can transit
quantum mechanically from one state to another, this
describes a quantum transition of spacetime since the
spacetime metric is given by (2.12) [or (5.9)]. On the other
hand, introducing a matter field and supposing the gravita-
tional potential is dominated by the matter with a massM⋆,
i.e., Φ ¼ −GM⋆=r, the Schrödinger equation is exactly
solved in a way similar to the quantization of the
Hydrogen atom. The nonrelativistic massive graviton may
be quantized by the method of the canonical quantization.
Finally, we notice that interesting phenomena must exist

in relativistic extensions of our study. For instance, we need
to discuss the relativistic system to obtain the precise value
of the maximum mass of the geon. In the Newtonian limit,
the quadrupole geon is degenerated because the projection
angular momentum jz does not contribute to the equations
of the geons. However, in the relativistic system, it is no
longer true. We may expect that the degeneracy is resolved.
Furthermore, the Vainshtein mechanism is irrelevant to the
nonrelativistic geons while it should be important for the
relativistic geons. All these investigations require treat-
ments beyond the Newtonian approximation.
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APPENDIX A: PURE-SPIN AND PURE-ORBITAL
SPHERICAL HARMONICS

As is well known, the angular dependence of a quantity
(which can be either a scaler, a vector, or a tensor) can be
expanded in terms of the spherical harmonics. Here, we
focus on a symmetric and traceless three-dimensional
tensor tij and consider a multipole expansion of it. We
introduce two types of the orthonormal bases of the
multipole expansion which are called the pure-spin
spherical harmonics ðYA

j;jz
Þij and the pure-orbital spherical

harmonics ðTs
j;jz

Þij, respectively3 (see [61,62] for more
details). Note that the suffix j inside the parentheses
represents the total angular momentum while the indices
outside the parentheses are the spatial indices of the tensor.
We first introduce the orbital angular momentum oper-

ators L̂I and the total angular momentum operators ĴI
which satisfy the commutator relations

½L̂I; L̂J� ¼ i
X
K

ϵIJKL̂K; ðA1Þ

½ĴI; ĴJ� ¼ i
X
K

ϵIJK ĴK; ðA2Þ

½ĴI; L̂J� ¼ i
X
K

ϵIJKL̂K; ðA3Þ

where I, J, K are the indices of the Cartesian coordinates,
I; J; K ¼ ðx; y; zÞ. The operators are explicitly given by

L̂I ≔ −iðr × ∂=∂rÞI;
¼ −iξiI∂i; ðA4Þ

ĴI ≔ −iLξI ; ðA5Þ

where ξiI is the rotational Killing vectors around I ¼ x, y, z
axes and LξI are the Lie derivatives with respect to them.
We recall that the indices i, j, k are not necessary to be
those of the Cartesian coordinates. For instance, the Killing
vectors are written by

ξix ¼ ð0;− sinϕ;− cot θ cosϕÞ; ðA6Þ

ξiy ¼ ð0; cosϕ;− cot θ sinϕÞ; ðA7Þ

ξiz ¼ ð0; 0; 1Þ; ðA8Þ

in the spherical coordinates, i; j; k ¼ ðr; θ;ϕÞ. The spin
angular momentum operators ŜI are defined so that
ĴI ¼ L̂I þ ŜI . The magnitude squared of the operators
are defined by the sum of the squared operators, e.g.,

L̂2 ¼ L̂2
x þ L̂2

y þ L̂2
z : ðA9Þ

We note

Ŝ2tij ¼ 2 × ð2þ 1Þtij; ðA10Þ

which explicitly shows that the symmetric and traceless
tensor is a spin-2 field.
We assume that some tensor spherical harmonics ðYj;jzÞij

are the eigenstates of the operators Ĵ2 and Ĵz:

Ĵ2ðYj;jzÞij ¼ jðjþ 1ÞðYj;jzÞij; ðA11Þ

ĴzðYj;jzÞij ¼ jzðYj;jzÞij; ðA12Þ

where j ¼ 0; 1; 2; � � � and jz ¼ 0;�1;…;�j. However,
these conditions do not determine the tensor spherical
harmonics completely. We can further assume a property
of them.
The pure-spin spherical harmonics ðYA

j;jz
Þij are under-

stood as polarization eigenstates of a spherical wave of a
spin-2 field where the polarization states are labeled by
A ¼ S0; E1; E2; B1; B2. The propagating direction of the
spherical wave is given by the unit radial vector ni ¼ ri=jrj.
The spin-2 polarization modes E2, B2 are transverse to the
propagating direction,

niðYE2

j;jz
Þij ¼ niðYB2

j;jz
Þij ¼ 0; ðA13Þ

the spin-1 polarization modes E1, B1 are mixed longi-
tudinal and transverse

niðYE1

j;jz
Þij ≠ 0; niðYB1

j;jz
Þij ≠ 0;

ninjðYE1

j;jz
Þij ¼ ninjðYB1

j;jz
Þij ¼ 0; ðA14Þ

and the spin-0 polarization mode S0 is the longitudinal
mode

niðYS0
j;jz

Þij ≠ 0; ninjðYS0
j;jz

Þij ≠ 0: ðA15Þ

The modes E1 and E2 are called the electric-type parity, i.e.,
the even parity according to ðθ;ϕÞ → ðπ − θ; π þ ϕÞ while
B1 and B2 are the magnetic-type parity, i.e., the odd parity.
The pure-spin spherical harmonics are orthonormal

3If tij is not traceless, the trace part can be expanded in terms of
Yj;jzγij=

ffiffiffi
3

p
which corresponds to the spin-zero state, i.e.,

Ŝ2ðYj;jzγijÞ ¼ 0.
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Z
dΩðYA

j;jz
Þ�ijðYA0

j0;j0z
Þij ¼ δAA0δjj0δjzj0z ; ðA16Þ

where the complex conjugate is given by ðYA
j;jz

Þ�ij ¼
ð−1ÞjzðYA

j;−jzÞij. In the spherical coordinates, they are
explicitly given by

ðYS0
j;jz

Þij ¼
1ffiffiffi
6

p
�
2Yj;jz 0

� −r2Yj;jz γ̂ab

�
;

ðYE1

j;jz
Þij ¼

�
0 rðYj;jzÞb
� 0

�
;

ðYE2

j;jz
Þij ¼

�
0 0

� r2ðYj;jzÞab

�
;

ðYB1

j;jz
Þij ¼

�
0 rϵbcðYj;jzÞc
� 0

�
;

ðYB2

j;jz
Þij ¼

�
0 0

� r2ϵðacðYj;jzÞbÞc

�
; ðA17Þ

with

ðYj;jzÞa ¼ −
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2jðjþ 1Þp D̂aYj;jz ; ðA18Þ

ðYj;jzÞab ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ðj − 1Þjðjþ 1Þðjþ 2Þ

s

×

�
D̂aD̂b −

1

2
D̂2γ̂ab

�
Yj;jz ; ðA19Þ

and the spherical harmonics Yj;jz where a, b, c are the
indices in the unit two-sphere d2Ω ¼ γ̂abdxadxb ¼ d2θ þ
sin2θdϕ2 and D̂a is the covariant derivative with respect to
γ̂ab. The two-dimensional Levi-Civita tensor is denoted by
ϵab. Clearly from the explicit forms, the modes E1, B1 are
defined only for j ≥ 1 and the modes E2, B2 are defined
only for j ≥ 2. In Table VI, we summarize which tensor
spherical harmonics are defined in each total angular
momentum.
The helicity eigenstates ðYh

j;jz
Þij are defined by

n · ŜðYh
j;jz

Þij ¼ hðYh
j;jz

Þij; ðA20Þ

where n is the unit radial vector in the Cartesian coor-
dinates and h ¼ 0;�1;�2. The helicity eigenstates are
given by linear combinations of the pure-spin spherical
harmonics as

ðY0
j;jz

Þij ¼ ðYS0
j;jz

Þij;

ðYþ1
j;jz

Þij ¼
1ffiffiffi
2

p ½ðYE1

j;jz
Þij þ iðYB1

j;jz
Þij�;

ðY−1
j;jz

Þij ¼
1ffiffiffi
2

p ½ðYE1

j;jz
Þij − iðYB1

j;jz
Þij�;

ðYþ2
j;jz

Þij ¼
1ffiffiffi
2

p ½ðYE2

j;jz
Þij þ iðYB2

j;jz
Þij�;

ðY−2
j;jz

Þij ¼
1ffiffiffi
2

p ½ðYE2

j;jz
Þij − iðYB2

j;jz
Þij�; ðA21Þ

which also indicates that A ¼ S0, A ¼ E1; B1, and A ¼
E2; B2 represent the polarization states of the spin-2 field,
respectively. In the j ¼ 0 mode, there exists only the
helicity-zero mode and there are the h ¼ 0;�1 modes in
the j ¼ 1 modes. The helicity-two modes appear when
j ≥ 2. In a massless spin-2 field, the helicity-zero mode and
the helicity-one modes are not dynamical degrees of
freedom whereas all modes are dynamical in the massive
case.
On the other hand, the pure-orbital spherical harmonics

ðTs
j;jz

Þij are defined by the eigenstates of the orbital angular
momentum operator

L̂2ðTs
j;jz

Þij ¼ lðlþ 1ÞðTs
j;jz

Þij; ðA22Þ

with the orthonormalityZ
dΩðTs

j;jz
Þ�ijðTs0

j0;j0z
Þij ¼ δss0δjj0δjzj0z : ðA23Þ

The possible total angular momenta of the spin-2 field are
given by j ¼ l;l� 1;l� 2 which are labeled by
s ¼ 0;�1;�2, i.e., j ¼ lþ s. We note that the label s
does not represent the spin states since the pure-orbital
spherical harmonics are no longer the eigenstates of the
polarizations of the spin-2 field. The pure-orbital spherical
harmonics are characterized by their angular momenta. We
note that

L̂2 ¼ −r2Δþ rirj∂i∂j þ 2ri∂i; ðA24Þ

thus, the pure-orbital spherical harmonics are also eigen-
states of the Laplace operator. As a result, we obtain

TABLE VI. Defined harmonics in each total angularmomentum.

Pure-spin
(helicity)

Pure-orbital
(orbital angular
momentum)

j ¼ 0 A ¼ S0 s ¼ −2
(h ¼ 0) ðl ¼ 2Þ

j ¼ 1 A ¼ S0; E1; B1 s ¼ 0;−1;−2
ðh ¼ 0;�1Þ ðl ¼ 1; 2; 3Þ

j ≥ 2 All modes are defined
ðh ¼ 0;�1;�2Þ ðl ¼ 0; 1; 2;…Þ
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Δ½fðrÞðTs
j;jz

Þij� ¼
�
1

r2
d
dr

r2
d
dr

f −
lðlþ 1Þ

r2
f

�
ðTs

j;jz
Þij;

ðA25Þ

where f is a function of r. The pure-orbital spherical
harmonics are explicitly constructed by the so-called spin

function as well as the (scalar) spherical harmonics (see
[61,62]). Here, we only show the relations between
the pure-spin spherical harmonics and the pure-orbital
spherical harmonics by which one can explicitly obtain the
pure-orbital spherical harmonics from Eq. (A17). The pure-
orbital spherical harmonics are obtained by the orthogonal
transformation as

ðT−2
j;jz

Þij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðjþ 1Þðjþ 2Þ

2ð2jþ 1Þð2jþ 3Þ

s
ðYS0

j;jz
Þij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jðjþ 2Þ

ð2jþ 1Þð2jþ 3Þ

s
ðYE1

j;jz
Þij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðj − 1Þ

2ð2jþ 1Þð2jþ 3Þ

s
ðYE2

j;jz
Þij;

ðT0
j;jz

Þij ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jðjþ 1Þ

ð2j − 1Þð2jþ 3Þ

s
ðYS0

j;jz
Þij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ð2j − 1Þð2jþ 3Þ

s
ðYE1

j;jz
Þij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðj − 1Þðjþ 2Þ
ð2j − 1Þð2jþ 3Þ

s
ðYE2

j;jz
Þij;

ðTþ2
j;jz

Þij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3jðj − 1Þ
2ð2jþ 1Þð2j − 1Þ

s
ðYS0

j;jz
Þij −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðj − 1Þðjþ 1Þ
ð2jþ 1Þð2j − 1Þ

s
ðYE1

j;jz
Þij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjþ 1Þðjþ 2Þ

2ð2jþ 1Þð2j − 1Þ

s
ðYE2

j;jz
Þij;

ðT−1
j;jz

Þij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 2

2jþ 1

s
ðYB1

j;jz
Þij þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
j − 1

2jþ 1

s
ðYB2

j;jz
Þij;

ðTþ1
j;jz

Þij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j − 1

2jþ 1

s
ðYB1

j;jz
Þij −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ 2

2jþ 1

s
ðYB2

j;jz
Þij: ðA26Þ

We note that ðT0
j;jz

Þ and ðT−1
j;jz

Þ are defined only for j ≥ 1,
whereas ðTþ2

j;jz
Þ and ðTþ1

j;jz
Þ are defined only for j ≥ 2 (see

Table VI). The relations (A26) can be used even for j ¼ 0,
1 since the coefficients in front of the undefined variables in
the right-hand side vanish when j ¼ 0, 1.
The total angular momentum operators are given by the

Lie derivatives. The symmetry of the field configuration is
determined by the total angular momentum. For instance,
the spherically symmetric mode is j ¼ jz ¼ 0 and the
axisymmetric modes are jz ¼ 0. On the other hand, the
orbital angular momentum vanishes only for the j ¼ s ¼ 2

modes of the pure-orbital spherical harmonics which are
not spherically symmetric.
We find that the j ¼ s ¼ 2 pure-orbital spherical

harmonics further have a special property: orthonormal
without integration

ðTþ2
2;jz

Þ�ijðYþ2
2;j0z

Þij ¼ 1

4π
δjzj0z ; ðA27Þ

which hold only for the j ¼ 2 modes of ðTþ2
j;jz

Þij. The
explicit forms in the spherical coordinates are given by

ðTþ2
2;0Þij ¼

1ffiffiffiffiffiffiffiffi
16π

p

0
BBB@

1ffiffi
6

p ð1þ 3 cos 2θÞ −
ffiffi
6

p
2
r sin 2θ 0

� r2ffiffi
6

p ð1 − 3 cos 2θÞ 0

� � −
ffiffi
2
3

q
r2sin2θ

1
CCCA; ðA28Þ

ðTþ2
2;1Þij ¼

eiϕffiffiffiffiffiffiffiffi
16π

p

0
B@

− sin 2θ −r cos 2θ −ir sin θ cos θ
� r2 sin 2θ ir2 sin2 θ

� � 0

1
CA; ðA29Þ

ðTþ2
2;2Þij ¼

e2iϕffiffiffiffiffiffiffiffi
16π

p

0
B@

sin2 θ r sin θ cos θ ir sin2 θ

� r2 cos2 θ ir2 sin θ cos θ

� � −r2 sin2 θ

1
CA; ðA30Þ
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and jz < 0 are obtained by the relation ðTþ2
2;−jzÞij ¼ð−1ÞjzðT2

2;jz
Þ�ij. On the other hand, in the Cartesian

coordinates, they are just constant matrices

ðTþ2
2;0Þij ¼

1ffiffiffiffiffiffiffiffi
24π

p

0
B@

−1 0 0

� −1 0

� � 2

1
CA; ðA31Þ

ðTþ2
2;�1Þij ¼∓ 1ffiffiffiffiffiffiffiffi

16π
p

0
B@

0 0 1

� 0 �i

� � 0

1
CA; ðA32Þ

ðTþ2
2;�2Þij ¼

1ffiffiffiffiffiffiffiffi
16π

p

0
B@

1 �i 0

� −1 0

� � 0

1
CA: ðA33Þ

APPENDIX B: OCTUPOLE GEONS

An octupole configuration also gives a spherically
symmetric energy density distribution. We find

ðTþ2
3;2Þ�ijðTþ2

3;2Þij ¼ ðTþ2
3;−2Þ�ijðTþ2

3;−2Þij ¼
1

4π
; ðB1Þ

ðTþ2
3;2Þ�ijðTþ2

3;−2Þij ¼ 0; ðB2Þ

where

ðTþ2
3;2Þij ¼

e2iϕffiffiffiffiffiffiffiffi
16π

p

0
B@

3 cos θsin2θ rð1þ 3 cos 2θÞ sin θ=2 2ir cos θsin2θ

� r2ðcos θ þ 3 cos 3θÞ=4 ir2 cos 2θ sin θ

� � −r2 cos θsin2θ

1
CA: ðB3Þ

Hence, if the configuration of the massive graviton is
given by

ψ ij ¼
ffiffiffiffiffiffiffiffi
16π

p
e−iEtψ3ðrÞ½aþðTþ2

3;2Þij þ a−ðTþ2
3;−2Þij�; ðB4Þ

we obtain Φ ¼ ΦðrÞ, where aþ and a− are constants with
a2þ þ a2− ¼ 1. The orbital angular momentum of this mode
is l ¼ 1.
The solutions can be found under the boundary conditions

ψ3 → 0 both at the center and at infinity. We note dψ3=dr
does not vanish at the center because the j ¼ 3modes are not
symmetric about the equatorial plane. On the other hand,
the boundary conditions of the gravitational potential are
dΦ=dr → 0 at the center and Φ → 0 at infinity.

A few lower energy eigenvalues and the 95% mass radii
are summarized in Table VII. Since the orbital angular
momentum is smaller than the monopole geon ðl ¼ 2Þ but
larger than the quadrupole geon ðl ¼ 0Þ, the energy
eigenvalues are intermediate between them.
Although the energy eigenvalue of the octupole geon is

smaller than that of the monopole geon, we could not find
the unstable mode in the linear stability analysis of the
j ¼ 3 mode perturbations in Sec. IV. This is not surprising
because the linear stability does not conclude the back-
ground is indeed stable. No unstable mode in the j ¼ 3
mode linear perturbations implies that the monopole geon
does not immediately transit to the octupole geon even if
the transition is possible due to the nonlinear effects.
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