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We obtain a charged black lens solution in the five-dimensional Einstein-Maxwell-Chern-Simons theory
with a positive cosmological constant. It is shown that the solution obtained here describes the formation
of a black hole with the spatial cross section of a sphere from that of the lens space of Lðn; 1Þ in five-
dimensional de Sitter space.
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I. INTRODUCTION

Black holes in more than four spacetime dimensions
have been one of the most interesting subjects of general
relativity in the last two decades. For example, the
statistical counting of black-hole entropy was performed
in string theory [1], which needs higher-dimensional
gravity. Also, the AdS/CFT correspondence [2] relates
the dynamics of higher-dimensional black holes to those of
a quantum field theory in one lower dimension. Moreover,
higher-dimensional black-hole production at an accelerator
was predicted in the scenario of large extra dimensions [3].
In spite of a lot of efforts by many physicists, our under-
standing of higher-dimensional black holes cannot be said
to be enough, even in five-dimensional pure gravity.
The topology theorems for stationary black holes in five

dimensions [4–7] state that the allowed topology of the
spatial cross section of the event horizon is either a sphere S3,
a ring S1 × S2, or lens spaces Lðp; qÞ, if the spacetime is
asymptotically flat and admits biaxisymmetry. For both the
sphere and the ring, the corresponding exact solutions have
been found as stationary solutions to the five-dimensional
vacuum Einstein equations [8–11], whereas for the lens
spaces, they have not yet been found, although some authors
have tried to find them as regular vacuum solutions [12,13].
Recently, however, as for the class of supersymmetric
solutions in the bosonic sector of five-dimensional minimal
ungauged supergravity, the first black lens solution whose
horizon topology is Lð2; 1Þ ¼ S3=Z2 has been constructed
by Kunduri and Lucietti [14] with the help of the well-known
construction developed by Gauntlett et al. [15]. Moreover,

this solution has been extended to those that admit the
horizon with the more general lens space topologies
Lðn; 1Þ ¼ S3=Zn [16] and multiple horizons [17].
The next step that one should consider may be whether a

black lens exists in a de Sitter space and an anti–de Sitter
space. To find such a solutionmay seem to be a considerably
difficult problem since not only dowe not have the solution-
generation methods for the Einstein equations with a
cosmological constant, but also we do not know even a
(regular) vacuum solution of the black lens. However, if we
start with an extremal black hole solution to the Einstein-
Maxwell-Chern-Simons (EMCS) equations, it is not too
difficult to find such an exact solution. For instance, the
Kastor-Traschen (KT) solution, which describes colliding
charged black holes for a contracting phase, was found by
adding a positive cosmological constant to the Majumdar-
Papapetrou (MP) multi-black-hole solutions. Applying the
same method to higher dimensions, London has also found
the KT solutions in arbitrary higher dimensions that present
the coalescence of an arbitrary number of spherical black
holes into a single spherical black hole from the MP
solutions in arbitrary higher dimensions. Moreover, using
the method for the rotating case and deforming the well-
known supersymmetric Breckenridge-Myers-Peet-Vafa
(BMPV) solution [18] so that it has a cosmological constant,
Klemm and Sabra have obtained the five-dimensional
rotating KT solution that presents the coalescence of any
number of rotating black holes.
The regular metric on the lens space Lðn; 1Þ ¼ S3=Zn

with unit radius can be written as

ds2 ¼ 1

4

��
dψ
n

þ cos θdϕ

�
2

þ dθ2 þ sin2θdϕ2

�
; ð1Þ

where 0 ≤ ψ < 4π, 0 ≤ ϕ < 2π, and 0 ≤ θ ≤ π, and n is a
positive integer parametrizing the Chern class of the
principal bundle over S2. In particular, for n ¼ 1, this
coincides with the metric on a three-dimensional sphere
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written in terms of the Euler angle coordinates. The purpose
of this paper is to seek an exact solution of a black lens
solution such that the spatial cross section of the horizon
can be written in the above form in the five-dimensional
EMCS theory with a positive cosmological constant by
adding the found supersymmetric black lens solution to a
positive cosmological constant. The method is essentially
based on some previous work in Refs. [14,16] and by
Klemm and Sabra [19]. It is worth mentioning that while
the cosmological black hole with the horizon of S3 in
Ref. [19] is stationary, the cosmological black lens solution
is dynamical in the sense that the horizon topology changes
from the lens space of Lðn; 1Þ ¼ S3=Zn into a sphere S3.
In fact, using the cosmological chart, we can analytically
show that at early time the horizon is isometric to the lens
space Lðn; 1Þ ¼ S3=Zn, whereas at late time it is isometric
to a sphere S3. For the stationary supersymmetric black lens
solution, a black lens with zero angular momenta cannot be
realized [14,16], while for the cosmological black lens
solution (at least, at early time), it can be realized due to the
existence of a cosmological constant.
This paper is organized as follows. In Sec. II, we first

review the supersymmetric black lens solution [16] in the
bosonic sector of five-dimensional minimal supergravity.
Next, we review the Klemm-Sabra (KS) solution of
Ref. [19], which can be regarded as a cosmological BMPV
solution. In Sec. III, we explicitly present the cosmological
black lens solution in the five-dimensional EMCS theory
with a positive cosmological constant. In Sec. IV, it is
shown that—unlike the Klemm-Sabra solution—the solution
obtained here describes a dynamical spacetime, which can be
seen by showing that the horizon topology changes from the
lens space of Lðn; 1Þ into a sphere S3. In Sec. V, we give the
summary and some discussions.

II. REVIEW

A. Review of the black lens solution

We give a brief review on the supersymmetric black lens
solution [14,16] in five-dimensional minimal ungauged
supergravity, whose bosonic Lagrangian is described by the
Einstein-Maxwell-Chern-Simons theory:

L ¼ R⋆1 − 2F ∧ ⋆F −
8

3
ffiffiffi
3

p A ∧ F ∧ F; ð2Þ

where F ¼ dA is the Maxwell field. The metric and gauge
potential 1-form are given, respectively, by

ds2 ¼ −f2ðdtþ ωÞ2 þ f−1ds2M; ð3Þ

A ¼
ffiffiffi
3

p

2

�
fðdtþ ωÞ − K

H
ðdψ þ χÞ − ξ

�
; ð4Þ

where ds2M is the Gibbons-Hawking metric, which can be
written in terms of the spherical coordinates and the
harmonic function H on E3 that has n point sources as

ds2M ¼ H−1ðdψ þ χÞ2 þH½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�;
ð5Þ

H ¼
Xn
i¼1

hi
ri

≔
n
r1

−
Xn
i¼2

1

ri
; ð6Þ

χ ¼
Xn
i¼1

hi
z − zi
ri

: ð7Þ

Here, ri ≔ jr − rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 − 2rzi cos θ þ z2i

p
, where the

constants zi and n take positive integer values.
Furthermore, the function f−1 and the 1-form ω in the
metric are given, respectively, by

f−1 ¼ H−1K2 þ L; ð8Þ

ω ¼ ωψðdψ þ χÞ þ ω̂; ð9Þ

where the function ωψ and the 1-form ω̂ are written as

ωψ ¼ H−2K3 þ 3

2
H−1KLþM; ð10Þ

ω̂¼
Xn

i;j¼1ði≠jÞ

�
himjþ

3

2
kilj

�
r2− ðziþ zjÞrcosθþ zizj

zjirirj

−
Xn
i¼1

�
m0hiþ

3

2
l0ki

�
z− zi
ri

þc; ð11Þ

and K, L, M are the harmonic functions with n point
sources on E3, which are given by

K ¼
Xn
i¼1

ki
ri
; ð12Þ

L ¼ l0 þ
Xn
i¼1

li
ri
; ð13Þ

M ¼ m0 þ
Xn
i¼1

mi

ri
; ð14Þ

and c is a constant and zji ≔ zj − zi. The 1-form ξ in the
gauge potential A is written as

ξ ¼ −
Xn
i¼1

ki
z − zi
ri

: ð15Þ
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The point source r ¼ r1 corresponds to a degenerate Killing
horizon which has the lens space topology Lðn; 1Þ, and
each point source r ¼ ri ði ¼ 2;…; nÞ denotes a regular
timelike surface as an origin in the Minkowski spacetime
under the appropriate conditions on the parameters.
The solution contains 4nþ 1 parameters (c; l0; m0; ki;

li; mi≥2; zi≥2) but must satisfy the equations

l0 ¼ 1; ð16Þ

c ¼ −
X

i;jði≠jÞ

himj þ 3
2
kilj

zji
; ð17Þ

m0 ¼ −
3

2

X
i

kil0; ð18Þ

li ¼ k2i ði ¼ 2;…; nÞ; ð19Þ

mi ¼
1

2
k3i ði ¼ 2;…; nÞ; ð20Þ

c2 ≔ m0 −
3

2
ki þ

X
jð≠iÞ

1

jzjij
½3k2i kj þ 2k3i hj

−
3

2
ðkilj þ likj þ kilihjÞ þmj� ¼ 0 ði ¼ 2;…; nÞ;

ð21Þ

and the inequalities

R2
1 ≔ k21 þ nl1 < 0; ð22Þ

R2
2 ≔

l21ð3k21 þ 4nl1Þ
R4
1

< 0; ð23Þ

c1 ≔ 1þ
X
jð≠iÞ

1

jzjij
ðlj − 2kikj − k2i hjÞ < 0 ði ¼ 2;…; nÞ;

ð24Þ

where we assume zi > zj for i > j and zij ≔ zi − zj.
Equations (16)–(18) are required from asymptotic flatness
and Eqs. (19)–(21) remove curvature singularities and
causal violation around each ri ði ¼ 2;…; nÞ. In particular,
the conditions (21) are referred to as “bubble equations” in
Refs. [20,21]. The inequalities (22) and (23) exclude closed
timelike curves (CTCs) around the horizon r1, and the
inequality (24) ensures that the spacetime metric is
Lorenzian around each ri ði ¼ 2;…; nÞ. Thus, the physical
requirements of regularity and causality reduce the number
of parameters to nþ 1. The Arnowitt-Deser-Misner
(ADM) mass and two ADM angular momenta can be
computed, respectively, as

M ¼
ffiffiffi
3

p

2
Q ¼ 3π

��X
i
ki

�
2

þ
X
i

li

�
; ð25Þ

Jψ ¼4π

��X
i
ki

�
3

þ1

2

Xn
i¼2

k3i þ
3

2

�X
i

ki

��
l1þ

Xn
i¼2

k2i

��
;

ð26Þ

Jϕ ¼ 6π

��X
i

ki

��Xn
j¼2

zj

�
þ
�Xn

i¼2

kizi

��
; ð27Þ

where Q is the electric charge, which saturates the
Bogomol’nyi bound. Let ðx; y; zÞ be Euclidean coordinates
on E3 in the Gibbons-Hawking space. The z axis of E3 is
split into (nþ 1) intervals: I−¼fðx;y;zÞjx¼y¼0;z<z1g,
Ii¼fðx;y;zÞjx¼y¼0;zi <z<ziþ1g ði ¼ 1;…; n − 1Þ,
and Iþ ¼ fðx; y; zÞjx ¼ y ¼ 0; z > zng. The magnetic
fluxes through Ii ði ¼ 1;…; n − 1Þ are defined as

q½Ii� ≔
1

4π

Z
Ii

F; ð28Þ

which gives

q½I1� ¼
ffiffiffi
3

p

2

�
k1l1

2ðk21 þ nl1Þ
− k2

�
;

q½Ii� ¼
ffiffiffi
3

p

2
ðki − kiþ1Þ ði ¼ 2;…n − 1Þ: ð29Þ

In particular, for n ¼ 1, this solution recovers the BMPV
black hole solution.

B. Review of the Klemm-Sabra solution

Next, we briefly review the Klemm-Sabra solution from
Ref. [19], which can be regarded as the BMPV black hole
[18] in de Sitter or anti–de Sitter spacetime in the EMCS
theory with a cosmological constant, whose Lagrangian is
given by

L ¼ ðRþ 2ΛÞ⋆1 − 2F ∧ ⋆F −
8

3
ffiffiffi
3

p A ∧ F ∧ F: ð30Þ

In particular, for Λ > 0, the solution can be expressed in the
cosmological coordinates as follows:

ds2 ¼ −
�
λτ þ m

ρ2

�
−2
�
dτ þ j

2ρ2
ðdψ þ cos θdϕÞ

�
2

þ
�
λτ þ m

ρ2

��
dρ2 þ ρ2

4
fdθ2 þ sin2θdϕ2

þ ðdψ þ cos θdϕÞ2g
�
; ð31Þ
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A ¼
ffiffiffi
3

p

2

�
λτ þ m

ρ2

�
−1
�
dτ þ j

2ρ2
ðdψ þ cos θdϕÞ

�
: ð32Þ

The constants m and j are the mass parameter and angular
momentum parameter, respectively, and the constant λ
is related to the positive cosmological constant by
λ ¼ �2

ffiffiffiffiffiffiffiffiffi
Λ=3

p
. This metric seems to have time dependence

due to the existence of the time coordinate τ in themetric, but
it can be shown that it has a stationary region (see Ref. [22]).
To see the locations of the apparent horizons for the

Klemm-Sabra black hole spacetime, let us define x ≔ λτρ2.
In terms of this x, the expansions of the outgoing and
ingoing null geodesic congruences for ψ ;ϕ; θ ¼ constant
can be computed as

θ� ¼ λ� 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþmÞ3 − j2

p : ð33Þ

Hence, it turns out that three horizons exist at x ¼ x�; xc
ðx− < xþ < xcÞ, which are the three roots of the cubic
equation

λ2½ðxþmÞ3 − j2� − 4x2 ¼ 0 ð34Þ
when the two parameters satisfy the inequalities

0 ≤ mλ2 ≤
2

3
; j2−ðmÞ ≤ j2 ≤ j2þðmÞ; ð35Þ

where

j2�ðmÞ¼ 4

27λ6
½9mλ2ð8−3mλ2Þ−32�8

ffiffiffi
2

p
ð2−3mλ2Þ3=2�:

ð36Þ
In the case of j ¼ jþ, the black hole horizon xþ coincides
with the inner horizon x−, and in the case of j ¼ j−, the
black hole horizon xþ coincides with the cosmological
horizon xc. The naked singularity appears if m and j are
outside of the ranges (35). The curvature singularity
exists at x ¼ −m. Moreover, we can show the absence
of CTCs on/outside the black hole horizon since the two-
dimensional ðψ ;ϕÞ part of the metric can be shown to be
positive within the ranges (35). Finally, for use in the next
section, we should keep in mind that this BMPV solution
can be formally obtained by replacing “λτ” of λτ þm=ρ2 in
Eqs. (31) and (32) with the constant “1.”

III. COSMOLOGICAL BLACK LENS SOLUTION

To obtain a cosmological black lens solution, we con-
sider the special case of ki ¼ αhi (where α is a constant) for
i ¼ 1;…; n in the supersymmetric black lens solution,
namely,

K ¼ αH: ð37Þ

Then, the conditions (17)–(21) are written in simpler forms,
respectively, as

c ¼ −
X

i;jði≠jÞ

hiðmj þ 3
2
αljÞ

zji
; ð38Þ

m0 ¼ −
3

2
α; ð39Þ

li ¼ α2 ði ¼ 2;…; nÞ; ð40Þ

mi ¼ −
1

2
α3 ði ¼ 2;…; nÞ; ð41Þ

l1 ¼ −
2

3
nα2: ð42Þ

Also, the inequities (22), (23), and (24) can be written,
respectively, as

R2
1 ≔ α2n2 þ nl1 > 0; ð43Þ

R2
2 ≔

l21ð3α2n2 þ 4nl1Þ
R4
1

> 0; ð44Þ

ðc1 ≔Þ1þ l1 þ nα2

zi1
< 0: ð45Þ

We should note that when the condition (42) holds, both
of the inequalities (43) and (44) are automatically satisfied,
whereas the inequality (45) cannot be satisfied since the left-
hand side is positive. Therefore, the metric never becomes
Lorenzian near each point of r ¼ ri ði ¼ 2;…; nÞ under the
parameter setting (37). This fact implies that a physical black
lens with two zero angular momenta cannot be realized since
it can be shown from Eq. (42) that two angular momenta
[Eqs. (26) and (27)] vanish when Eq. (37) is imposed. As
will be seen later, however, the existence of a positive
cosmological constant changes this situation since a negative
term relating to the cosmological constant term appears on
the left-hand side. We will show that at least, at late time
and early time, the parameters are such that all of these
conditions can be satisfied.
Let us recall that the Klemm-Sabra solution (31)

expressed in terms of the cosmological coordinates can
be obtained by replacing the constant 1 in the harmonic
function f ¼ 1þm=ρ2 with λτ for the BMPV solution,
where τ is a cosmological time coordinate and
λ ¼ �2

ffiffiffiffiffiffiffiffiffi
Λ=3

p
. In the same way, let us formally replace

the constant l0 in Eq. (75) with λτ. Then, we can see that
the obtained metric and gauge potential 1-form are the
solutions in the five-dimensional EMCS theory with a
positive cosmological constant, whose Lagrangian is given
by Eq. (30).
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The metric and gauge potential obtained here for the
cosmological black lens are presented, respectively, as

ds2 ¼ −f2ðdτ þ ωÞ2 þ f−1ds2M; ð46Þ

A ¼
ffiffiffi
3

p

2
½fðdτ þ ωÞ − αðdψ þ χÞ − ξ�; ð47Þ

where ds2M is the metric of the Gibbons-Hawking space

ds2M ¼ H−1ðdψ þ χÞ2 þH½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�;
ð48Þ

H ¼
Xn
i¼1

hi
ri

≔
n
r1

−
Xn
i¼2

1

ri
; ð49Þ

χ ¼
Xn
i¼1

hi
z − zi
ri

: ð50Þ

The function f−1 and the 1-form ω are written as

f−1 ¼ λτ þ
X
i

li þ α2hi
ri

; ð51Þ

ω ¼ ωψðdψ þ χÞ þ ω̂: ð52Þ

The function ωψ and 1-forms ðω̂; ξÞ are given, respectively,
by

ωψ ¼ m0 þ
3

2
αl0 þ

X
i

α3hi þ 3
2
αli þmi

ri
; ð53Þ

ω̂ ¼
" Xn
i;j¼1ði≠jÞ

hi

�
mj þ

3

2
αlj

�
r2 − ðzi þ zjÞr cos θ þ zizj

zjirirj

−
Xn
i¼1

hi

�
m0 þ

3

2
l0α

�
r cos θ − zi

ri
þ c

#
dϕ; ð54Þ

ξ ¼ −α
Xn
i¼1

hi
z − zi
ri

: ð55Þ

This solution has (3nþ 4) constants ðl0; li≥1; m0; mi≥1;
zi≥1; α; cÞ, but as will be explained later, in order that
we can regard this as a physical solution, appropriate
conditions must be imposed on these parameters.

IV. ANALYSIS

In this section, we analyze the cosmological black lens
solution obtained in the previous section, focusing on the
contracting phase λ < 0. Using the cosmological coordi-
nates τ, we can see that the spatial cross section of the
apparent horizon changes from the lens space Lðn; 1Þ ¼
S3=Zn into a sphere S3. It is a hard task to see the process of
this topology change analytically, but it is easy to see the
asymptotic behaviors of the solution at early time τ ¼ −∞
and late time τ ¼ 0, since the spacetime near r ¼ r1 and
r ¼ ∞ becomes (locally) the Klemm-Sabra spacetime,
namely, it asymptotically becomes stationary.

A. Early time

First of all, we show that the spacetime around r ≔
jr − r1j ¼ 0 can be locally approximated by the Klemm-
Sabra black hole spacetime, namely, the spacetime
asymptotically becomes stationary, at least around this region.
In fact, it turns out that for r ¼ jr − r1j → 0, the metric
behaves as

ds2 ≃ −
�
λτ þ l1 þ nα

r

�
−2
�
dτ þ

�
nα3 þ 3

2
αl1 þm1

r

�
ðdψ þ n cos θdϕÞ

�
2

þ
�
λτ þ l1 þ nα

r

��
r
n
ðdψ þ n cos θdϕÞ2 þ n

r
ðdr2 þ r2ðdθ2 þ sin2θdϕ2ÞÞ

�
; ð56Þ

where we have shifted τ appropriately. In terms of the five-dimensional radial coordinate ρ ≔
ffiffiffiffiffiffiffiffi
4nr

p
, the asymptotic form of

the metric can be rewritten as

ds2 ≃ −
�
λτ þ 4n

l1 þ nα
ρ2

�
−2
�
dτ þ

�
4n2

nα3 þ 3
2
αl1 þm1

ρ2

��
dψ
n

þ cos θdϕ

��
2

þ
�
λτ þ 4n

l1 þ nα
ρ2

��
dρ2 þ ρ2

4

��
dψ
n

þ cos θdϕ

�
2

þ dθ2 þ sin2θdϕ2

��
: ð57Þ

We observe from Eq. (31) that this metric is locally isometric to that of the Klemm-Sabra solution obtained by identifying
ðm; jÞ in Eq. (31) with ð4nðl1 þ nαÞ; 8n2ðnα3 þ 3

2
nαl1 þm1ÞÞ. Therefore, the sufficiently small closed surface that is

CHARGED BLACK LENS IN DE SITTER SPACE PHYS. REV. D 97, 044001 (2018)

044001-5



centered at r ¼ 0 ðr ¼ r1Þ turns out to be outer trapped
at early time τ ¼ −∞ since θþ ¼ 0 holds at ρ2 ¼
xþð4nðl1 þ nαÞ; 8n2ðnα3 þ 3

2
nαl1 þm1ÞÞ=ðλτÞ for a suffi-

ciently small τ. From Eq. (1), we must note that the spatial
cross section of the apparent horizon is topologically not a
sphere S3, but rather the lens space of Lðn; 1Þ ¼ S3=Zn,
since ψ in the asymptotic metric (57) is divided by n.
Second, we show that the spacetime near each r ¼ ri

ði ¼ 2;…; nÞ behaves as an origin in the Minkowski
spacetime written in polar coordinates. For r≔ jr−rij→0
ði ¼ 2;…; nÞ and τ → −∞ and keeping λτr≕ β (where β
is a positive constant), the functions ðf−1;ωψÞ are approxi-
mated as

f−1 ≃ li þ α2hi þ β

r
þ c1; ð58Þ

ωψ ≃ α3hi þ 3
2
αli þmi

r
þ c2; ð59Þ

where the constants c1 and c2 are defined by

c1 ≔
X
jð≠iÞ

lj þ α2hj
jzjij

; ð60Þ

c2 ≔ m0 þ
3

2
αl0 þ

X
jð≠iÞ

α3hj þ 3
2
αlj þmj

jzjij
: ð61Þ

The metric behaves as

ds2 ≃ −
�
li þ α2hi þ β

r
þ c1

�−2�
dτ þ

�
α3hi þ 3

2
αli þmi

r
þ c2

�
fdψ þ ð− cos θ þ χð0ÞÞdϕg þ ðω̂ð1Þ cos θ þ ω̂ð0ÞÞdϕ

�
2

−
�
li þ α2hi þ β

r
þ c1

�
r

�
fdψ þ ð− cos θ þ χð0ÞÞdϕg2 þ

dr2

r2
þ dθ2 þ sin2θdϕ2

�
; ð62Þ

where χð0Þ, ω̂ð0Þ, and ω̂ð1Þ are given, respectively, by

χð0Þ ≔ −
X
jð≠iÞ

hjzji
jzjij

; ð63Þ

ω̂ð0Þ ≔
X

k;jð≠i;k≠jÞ

�
hkmj þ

3

2
αhklj

�
zjizki

jzjizkijzjk

þ
X
jð≠iÞ

�
m0hj þ

3

2
αhjl0

�
zji
jzjij

þ c; ð64Þ

ω̂ð1Þ ≔ −
X
jð≠iÞ

�
himj − hjmi þ

3

2
αðhilj − hjliÞ

�
1

jzjij

−
�
m0hi þ

3

2
αhil0

�
: ð65Þ

To remove the divergence of the metric at r¼jr−rij¼0
ði ¼ 2;…; nÞ, we impose the following conditions on the
set of parameters ðli; miÞ ði ¼ 2;…; nÞ:

li ¼ α2 − β; ð66Þ

mi ¼ −
1

2
α3 þ 3

2
αβ; ð67Þ

which imply

c2 ¼ ω̂ð1Þ: ð68Þ
Therefore, the metric is

ds2 ≃ −c−21 ½dτ þ c2fdψ þ χð0Þdϕg þ ω̂ð0Þdϕ�2 ð69Þ

−c1r

�
dr2

r2
þfdψþð−cosθþχð0ÞÞdϕg2þdθ2þsin2θdϕ2

�
:

ð70Þ

Since the existence of c2 and ω̂ð0Þ yield CTCs around r ¼ ri
ði ¼ 2;…; nÞ, furthermore, we must impose the following
additional condition:

ðc2 ¼Þm0 þ
3

2
αl0 þ

nα3 þ 3
2
l1αþm1

zi1
¼ 0: ð71Þ

It can be shown from c2 ¼ 0 that ω̂ð0Þ ¼ 0 automatically
holds. In addition, in order that the metric has Lorenzian
signature, we need to require

ðc1 ¼Þ l1 þ nα2

zi1
− β

X
2≤jð≠iÞ

1

jzjij
< 0: ð72Þ

Under this parameter setting, the asymptotic form of the
metric can be written as

ds2 ¼ −ðdt0Þ2 þ dρ2

þ ρ2

4
½ðdψ 0 − cos θdϕÞ2 þ dθ2 þ sin2θdϕ2�; ð73Þ
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where we have introduced the new coordinates ðt0;ψ 0; ρÞ:

t0 ¼ c−11 τ; ψ 0 ¼ ψ þ χð0Þϕ; ρ ¼ 2
ffiffiffiffiffiffiffiffiffiffi
−c1r

p
: ð74Þ

As we showed in Sec. II, for the stationary black lens
solution with ki ¼ αhiði ¼ 1;…; nÞ, the inequality (72)
with β ¼ 0 cannot be satisfied. In contrast to this, for the
cosmological black lens solution, the parameter region
satisfying the inequality (72) indeed exists since the first
term on the left-hand side of Eq. (72) is still positive, while
the second term—which obviously appears due to the
existence of a positive cosmological constant—is negative.
Hence, under these conditions, the region around r ¼ ri
ði ¼ 2;…; nÞ at early time is isometric to the Minkowski
spacetime.

B. Late time

For ρ ≔ 2
ffiffiffi
r

p
→ ∞, under the conditions (66) and (67),

the two functions ðf−1;ωψÞ and the 1-form ω̂ behave,
respectively, as

f−1 ≃ λτ þ l1 þ nα2 − ðn − 1Þβ
r

þ const; ð75Þ

ωψ ≃m0 þ
3

2
αl0 þ

α3
P

ihi þ 3
2
α
P

ili þ
P

imi

r
ð76Þ

¼ α3 þ 3
2
αl1 þm1

r
; ð77Þ

and

ω̂ϕ≃
Xn

i;j¼1ði≠jÞ

�
himjþ

3

2
kilj

�
1

zji

�
1−

z2jisin
2θ

2r2
þOðr−3Þ

�
−
Xn
i¼1

�
m0hiþ

3

2
l0ki

��
cosθ−

zisin2θ
r

þOðr−2Þ
�
þc ð78Þ

¼
Xn

i;j¼1ði≠jÞ

�
himj þ

3

2
kilj

�
1

zji
þ c −

Xn
i¼1

�
m0hi þ

3

2
l0ki

�
cos θ −

Xn
i¼1

�
m0hi þ

3

2
l0ki

�
−zisin2θ

r
þOðr−2Þ ð79Þ

¼
Xn
i¼1

�
m0 þ

3

2
l0α

�
hi

�
cos θ −

−zisin2θ
r

�
þOðr−2Þ ð80Þ

¼ Oðr−2Þ; ð81Þ

where to ensure an asymptotic de Sitter space (or, the absence of CTCs) at r → ∞, we have imposed

c ¼ −
X
i;j

�
himj þ

3

2
kilj

�
1

zij
; ð82Þ

m0 þ
3

2
αl0 ¼ 0: ð83Þ

Then, the metric can be approximately written as

ds2 ≃ −
�
λτ þ l1 þ nα2 − ðn − 1Þβ

r

�−2�
dτ þ α3 þ 3

2
αl1 þm1

r
ðdψ þ cos θdϕÞ

�
2

þ
�
λτ þ l1 þ nα2 − ðn − 1Þβ

r

��
rðdψ þ cos θdϕÞ2 þ 1

r
ðdr2 þ r2dΩ2

S2Þ
�

ð84Þ

¼ −
�
λτ þ 4½l1 þ nα2 − ðn − 1Þβ�

ρ2

�−2�
dτ þ 4fα3 þ 3

2
αl1 þm1g
ρ2

ðdψ þ cos θdϕÞ
�
2

þ
�
λτ þ 4½l1 þ nα2 − ðn − 1Þβ�

ρ2

��
dρ2 þ ρ2

4
fðdψ þ cos θdϕÞ2 þ dθ2 þ sin2θdϕ2g

�
; ð85Þ

where we have shifted τ so that the constant term in Eq. (75) vanishes. Compared with Eq. (31), we immediately find
that this obtained asymptotic metric coincides with the metric of the Klemm-Sabra solution with the mass parameter
m ¼ 4½l1 þ nα2 − ðn − 1Þβ� and angular momentum parameter j ¼ 8½α3 þ 3

2
αl1 þm1�. Therefore, a sufficiently large
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closed surface r ¼ const turns out to be outer trapped at late
time τ≃ −0 since θþ ¼ 0 holds at ρ2 ¼ xþð4ðl1 þ nα2 −
ðn − 1ÞβÞ; 8ðα3 þ 3

2
αl1 þm1ÞÞ=ðλτÞ if τ is sufficiently

close to 0 and negative. Here, we must note that the spatial
cross section of the apparent horizon is topologically a
sphere S3, whereas it is topologically the lens space
Lðn; 1Þ ¼ S3=Zn at early time.
From the behaviors at early time and at late time, we can

make the physical interpretation that the solution obtained
here describes the topology change of a black hole from
the lens space Lðn; 1Þ into a sphere S3. We note from the
conditions (83) and (71) that at early time, the angular
momentum along ∂=∂ψ , j vanishes, whereas at late time it
does not vanish. Hence, apparently, the angular momentum
seems to not be preserved, but this is not very surprising
since at early time the Maxwell field exists outside the
black hole horizon, which can be considered to contribute
to the mass and angular momenta.

C. τ = const

It seems to be difficult to analytically see the behavior of
the solution for −∞ < τ < 0 since the spacetime is not
stationary. However, we can see the behaviors around the
points r ¼ ri ði ¼ 2;…; nÞ at which the metric diverges for
finite τ ð−∞ < τ < 0Þ. For r ≔ jr − rij → 0 and finite τ
ð−∞ < τ < 0Þ, the metric functions ðf−1;ωψÞ behave as

f−1 ≃ −β
r

þ λτ þ c1; ð86Þ

ωψ ≃ α3hi þ 3
2
αli þmi

r
þ c2 ¼ OðrÞ; ð87Þ

ω̂ϕ ≃ ω̂ð1Þ cos θ þ ω̂ð0Þ ¼ 0; ð88Þ

where we have used the conditions (66), (67), and (71). The
metric is approximated by

ds2 ≃ −r2

β2
dt2 þ dρ2 þ β

�
ðdψ 0 − cos θdϕÞ2

þ dθ2 þ sin2θdϕ2g
�
; ð89Þ

where we have introduced the new coordinates ðψ 0; ρÞ:

ψ 0 ¼ ψ þ χð0Þϕ; ρ ¼
ffiffiffi
β

p
log r: ð90Þ

Thus, the divergence of the metric at r ¼ 0 has been
removed. It turns out from the above asymptotic form that
for −∞ < τ < 0, each point r ¼ ri approximately behaves
like a Killing horizon with the spatial cross section of a
sphere of radius 2

ffiffiffi
β

p
.

V. SUMMARY

In this paper, we have obtained the cosmological black
lens solution in the five-dimensional EM theory with a
Chern-Simons term and a positive cosmological constant.
We have also discussed some properties of the rotating
charged black lens solution in terms of the cosmological
coordinates. It has been shown that this solution can be
regarded as a dynamical black hole spacetime such that at
early time, the horizon cross section is isometric to the lens
space Lðn; 1Þ ¼ S3=Zn, while at late time, it is isometric to
a sphere S3. This solution has been obtained from the
special limit of the extreme black lens in Refs. [14,16]
in the same way that Klemm and Sabra’s cosmological
charged black hole was obtained from the BMPV black
hole solution. In this restricted limit, the supersymmetric
black lens spacetime behaves pathologically near the point
sources r ¼ ri ði ¼ 2;…; nÞ outside the horizon, whereas
the cosmological solution does not show this behavior
(at least, at early time and late time) due to the presence of a
cosmological constant.
For n ¼ 1, our solution exactly coincides with the

Klemm-Sabra solution that can be physically regraded
as a stationary, rotating black hole in de Sitter space. It
hence follows that the angular momentum along ∂=∂ψ is
conserved. For n ≥ 2, in turn, it apparently seems to
describe the dynamical spacetime that violates the con-
servation of angular momentum. In fact, it can be seen
from Eqs. (71) and (83) that at early time, r ¼ r1 locally
behaves like the five-dimensional Reissner-Nordström de
Sitter black hole (i.e., the Klemm-Sabra black hole with
zero angular momentum), whereas at late time, r ¼ ∞
behaves as the Klemm-Sabra black hole with nonzero
angular momentum. We may consider that this is because
at early time, the Maxwell field outside the black hole
horizon carries the same amount of the angular
momentum.
The cosmological multi-black-hole solutions were

first obtained by Kastor and Trashen [23] for the four-
dimensional EM theory with a positive cosmological
constant. Furthermore, these solutions were immediately
generalized to the five-dimensional EM theory with a
cosmological constant and a Chern-Simons term in
Ref. [24] for the nonrotating case and in Ref. [19] for
the rotating case, respectively. For the present solution, we
can consider the multicentered black hole solution if one
does not impose the conditions (66), (67), and (71). It is
easily expected that such a solution describes the coales-
cence of black lenses since multiple black holes with
various lens space topologies exist at early time, while
only a single black hole with spherical topology exists at
late time.
From the viewpoint of the AdS/CFT correspondence,

one of the most interesting generalizations is to look for
an anti–de Sitter black lens. Concerning the spherical
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topology, the charged rotating black hole solutions were
obtained in the five-dimensional EMCS theory with a
negative cosmological constant in Refs. [19,25–30]. As
for the ring topology S1 × S2, it was shown that there is no
supersymmetric black ring solution in five-dimensional
minimal gauged supergravity, although it is not yet known
if one exists in nonminimal supergravity. These results
seem to not prohibit the existence of a black lens solution
even in five-dimensional minimal gauged supergravity.

Therefore, to construct such solutions is also an interesting
and challenging problem. This issue deserves further
study.
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