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We study large-scale inhomogeneous perturbations and instabilities of interacting dark-energy models.
Past analysis of large-scale perturbative instabilities has shown that we can only test interacting dark-energy
models with observational data when their parameter ranges are either wx ≥ −1 and ξ ≥ 0, or wx ≤ −1 and
ξ ≤ 0, where wx is the dark-energy equation of state and ξ is a coupling parameter governing the strength
and direction of the energy transfer. We show that by adding a factor (1þ wx) to the background energy
transfer, the whole parameter space can be tested against all the data, and thus, the instabilities in such
interaction models can be removed. We test three classes of interaction models using the latest astronomical
data from the CMB, supernovae, baryon acoustic oscillations, redshift-space distortions, weak lensing,
cosmic chronometers, and the local Hubble constant. Precise constraints are found. Our analysis shows that
a very small but nonzero deviation from pure Λ-cosmology is suggested by the observational data, while
the no-interaction scenario can be recovered at the 68.3% confidence level. In particular, for three
interacting dark-energy (IDE) models, identified as IDE 1, IDE 2, and IDE 3, the 68.3% confidence-level
constraints on the interaction coupling strengths are ξ ¼ 0.0360þ0.0091

−0.0360 (IDE 1), ξ ¼ 0.0433þ0.0062
−0.0433 (IDE 2),

ξ ¼ 0.1064þ0.0437
−0.1064 (IDE 3). In addition, we find that the dark-energy equation of state tends towards

the phantom region. Taking the 68.3% confidence-level constraints, wx ¼ −1.0230þ0.0329
−0.0257 (IDE 1), wx ¼

−1.0247þ0.0289
−0.0302 (IDE 2), and wx ¼ −1.0275þ0.0228

−0.0318 (IDE 3). However, the possibility of wx > −1 is also not
rejected by the astronomical data employed in this analysis. Moreover, we find in all interaction models
that, as the value of the Hubble constant decreases, the behavior of the dark-energy equation of state shifts
from a phantom to a quintessence type with its equation of state very close to that of a simple cosmological
constant at the present time. Finally, we compare the observational estimations of the coupling strength
imposed on some interaction models studied in this work with the past constraints obtained on them for
different regions of the dark-energy equation of state.
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I. INTRODUCTION

The physics of dark energy (DE) and dark matter is still an
open issue in cosmology. Dark energy occupies about 68.5%
of the total energy density of the Universe today [1] and is
believed to accelerate its observed expansion, but the
physical nature, origin, and time evolution of this dark
energy remain unknown. On the other hand, the dark-matter
sector (occupying almost 27.5% of the total energy density
of the present-day Universe) appears to be the principal

gravitational influence on the formation of large-scale
structure in the Universe, and its existence is supported
by direct evidence from the spiral galaxy rotation curves and
cluster dynamics [2]. At present, we have many dark-energy
models [3,4] and, according to syntheses of all the current
observational data, Λ-cosmology appears to be the simplest
cosmological model that can explain the bulk of the
evidence. However, the unexplained numerical value of
the cosmological constant, and the coincidences between
the present densities of the different dark and luminous
components of the Universe, provoke us to search for new
cosmological scenarios in which the observed state of affairs
is more natural. In this work, we explore cosmologies where
dark energy interacts and exchanges energy with dark matter.
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Originally, the possibility that dark energy might interact
with dark matter was introduced to justify the very small
value of the cosmological constant by Wetterich [5,6].
However, when dynamical models were introduced as
alternatives to a simple (noninteracting) cosmological
constant, it was found that interactions between dark
energy and dark matter might provide a simple explanation
for the cosmic coincidence problem [7]. If one views this
interaction from the particle physics perspective, then it is
natural that the two fields should interact with each other
nongravitationally [8]. Models of this type are known as
interacting, or coupled, dark-energy models.
The interacting dynamics is described by a new function

Q, which determines the form of the coupling between dark
matter and dark energy via their conservation equations as
∇νT

μν
c ¼ −Q and ∇νT

μν
x ¼ Q, where Tμν

c and Tμν
x are,

respectively, identified as the energy-momentum tensors
for cold dark matter (CDM) and DE. Consequently, one can
further identify ρc and ρx to be the energy densities of CDM
and DE fluids, respectively. Until now, there have been
many interacting dark-energy models based on different
proposals for the form of energy exchange termQ. A series
of investigations have been performed using observational
data with interesting results [9–35]. Aside from the specific
issue of dark-matter–dark-energy interactions, we can also
view the interaction Q as an energy exchange between any
two barotropic fluids (see Ref. [36]).
The interacting fluid models are generally well behaved

when one only considers their effects on the background
evolution. However, the analysis of inhomogeneous cos-
mological perturbations is essential to provide a fuller
picture of these models, to determine if they are stable or
unstable components of the large-scale structure of the
Universe. For example, a simple energy exchange term
Q ∝ ρc leads to an instability in the dark-matter perturba-
tions at early times since the curvature perturbation blows
up on super-Hubble scales [27]. In order to derive a stable
perturbation evolution, another simple interaction term,
Q ∝ ρx, needs to be tested by the observations with two
intervals of possible dark-energy equations of state: wx ≤
−1 and wx ≥ −1 [29–33]. Therefore, the principal moti-
vation of this paper is to find a form of energy transfer Q
that could alleviate the perturbative instability. In this way,
we might test the full parameter space of dark-energy
equations of state by the observations, allowing for even the
possibility of a “phantom” equation of state. In this respect,
large-scale structure information, such as redshift-space
distortion (RSD) [37–40] and weak gravitational lensing
[41–43], provides an important tools to break any degen-
eracy of cosmological models. This view has already
been confirmed by many investigations [44–53]. One
conclusion from these studies was that joint measurements
of the geometry and dynamical observations found that
the interaction rate Q was zero at about 1σ [30–33].
Unfortunately, this conclusion has been drawn using the

intervals wx ≤ −1 and wx ≥ −1 separately. If we could test
the interacting dark-energy model with the full parameter
space of wx against the observations, then a different
conclusion might be found, which is one aim of this paper.
The paper is outlined as follows. In Sec. II, we describe

the perturbation equations for the interacting dark-energy
models. Section III contains a brief description of the
observational data used in our analysis. In Sec. IV, we
discuss the main observational results extracted from the
interacting models in our study. Finally, in Sec. V, we
conclude with a short summary.

II. BACKGROUND AND PERTURBATION
EVOLUTION IN COUPLED
DARK-ENERGY MODELS

In this section we describe the dynamics of the coupled
dark-energy model at both the background and perturbative
levels. As usual, we consider a spatially flat Friedmann-
Lemaître-Robertson-Walker (FLRW) universe character-
ized by the metric line element

ds2 ¼ −dt2 þ a2ðtÞ½dr2 þ r2ðdθ2 þ sin2θdϕ2Þ�;

where aðtÞ is the expansion scale factor and t is the
comoving proper time. The total energy density of the
Universe is ρt ¼ ρc þ ρx þ ρb þ ρr, where we identify
each ρi as the energy density of the ith fluid component
(the subscripts c, x, b, and r, respectively, stand for cold
dark matter, dark energy, baryons, and radiation). The cold
dark matter is pressureless, and we assume the dark energy
is barotropic. In order to neglect any kind of inflexible
constraints like a “fifth force,” we assume that the baryons
and radiation are conserved separately; in other words, they
follow the usual conservation laws without any interaction.
Now, in such a spacetime, the modified conservation
equations for cold dark matter and dark energy are assumed
to have the following forms,

ρ0c þ 3Hρc ¼ −aQ; ð1Þ

ρ0x þ 3Hð1þ wxÞρx ¼ aQ; ð2Þ

where a prime 0 denotes differentiation with respect to the
conformal time, H ¼ a0/a is the conformal Hubble param-
eter, and wx is the equation-of-state parameter of dark
energy. The positive energy exchange term shows that the
energy transfer is from dark matter to dark energy, and
negative Q denotes the opposite case. Further, one can see
that the conservation equations (1) and (2) can be rewritten
by introducing effective equations of state for the dark
fluids as

ρ0c þ 3Hð1þ weff
c Þρc ¼ 0;

ρ0x þ 3Hð1þ weff
x Þρx ¼ 0;
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where weff
c , weff

x are defined as the effective equation-of-
state parameters for CDM and dark energy with

weff
c ¼ aQ

3Hρc
; weff

x ¼ wx −
aQ
3Hρx

:

We note that the effective equation-of-state parameter for
CDM could be nonzero, while the effective equation of state
for dark energy offers several possibilities depending on the
strength of the interaction rate Q. In particular, the direction
of energy transfer controls the nature of an effective dark
energy (“phantom” or “quintessence” or an “equivalent
cosmological constant” scenario) fluid through the quantity
weff
x . Finally, the Friedmann equation is

H2 ¼ 8πG
3

a2ðρc þ ρx þ ρb þ ρrÞ;

which constrains the dynamics of the Universe. Thus, the
system of Eqs. (1) and (2), together with the Friedmann
equation, determines the entire dynamics of the Universe,
once the energy transfer rate Q is specified.
We now discuss the linear perturbations for the interact-

ing models that we introduce here. The metric that
determines the most general scalar mode perturbation is
given by [54–56]

ds2 ¼ a2ðτÞ½−ð1þ 2ϕÞdτ2 þ 2∂iBdτdxi

þ ðð1 − 2ψÞδij þ 2∂i∂jEÞdxidxj�;

where the quantities ϕ, B, ψ , and E, respectively, stand
for the gauge-dependent scalar perturbations, and τ is the
conformal time. Now, for any fluid subscripted by “A,” its
energy-momentum conservation equations can be calcu-
lated and are [27–29]

∇νT
μν
A ¼ Qμ

A;
X

A

Qμ
A ¼ 0;

where one has Qμ
A ¼ ðQA þ δQAÞuμ þ a−1ð0; ∂ifAÞ rela-

tive to the four-velocity uμ [27–29]. We specialize the
momentum transfer potential to be the simplest physical
choice, which is zero in the rest frame of dark matter
[27,29,57]. Hence, the momentum transfer potential
becomes k2fA ¼ QAðθ − θcÞ. We define the pressure
perturbation by δpA ¼ c2sAδρA þ ðc2sA − c2aAÞρ0AðvA þ BÞ
[27,58,59], where c2aA ¼ p0

A/ρ
0
A ¼ wx þ w0

x/ðρ0A/ρAÞ is the
physical sound speed of the fluid A in the rest frame. If we
further define the density contrast by δA ¼ δρA/ρA and
consider πA ¼ 0, then in the synchronous gauge, equiv-
alently, ϕ ¼ B ¼ 0, ψ ¼ η, and k2E ¼ −h/2 − 3η, the
general evolution equations for the density perturbation
(i.e., the continuity equation) and the velocity perturbation
(Euler equation) equations for dark energy and dark matter,
respectively, become

δ0x ¼ −ð1þ wxÞ
�
θx þ

h0

2

�

− 3Hðc2sx − wxÞ
�
δx þ 3Hð1þ wxÞ

θx
k2

�
− 3Hw0

x
θx
k2

þ aQ
ρx

�
−δx þ

δQ
Q

þ 3Hðc2sx − wxÞ
θx
k2

�
; ð3Þ

θ0x ¼ −Hð1 − 3c2sxÞθx þ
c2sx

ð1þ wxÞ
k2δx

þ aQ
ρx

�
θc − ð1þ c2sxÞθx

1þ wx

�
; ð4Þ

δ0c ¼ −
�
θc þ

h0

2

�
þ aQ

ρc

�
δc −

δQ
Q

�
; ð5Þ

θ0c ¼ −Hθc; ð6Þ

where the term δQ/Q includes the perturbation term for the
Hubble expansion rate, δH (we note that H ¼ aH). From
the perturbation of the Hubble expansion rate, δH, one
could obtain the gauge-invariant equations for the coupled
dark sector [60]. Thus, we consider the perturbation of the
Hubble expansion rate since the total expansion rate would
include two parts: background and perturbation. In the
light of the analysis of the contribution from the perturba-
tion of the expansion rate in Ref. [60], it is chosen to be
associated with the volume expansion of the total fluid,
i.e., δH/H ¼ ðθ þ h0/2Þ/ð3HÞ.
The energy transfer may change the history of the

Universe. In most of the cases, interacting models are
reliable when their background evolution is considered.
However, it is also very important to take care of the
cosmological perturbations in order to ensure the stability
of the cosmological models under consideration. The
Hubble rate is assumed to be the average expansion rate
inQ. One should treatH as a local variable so as to include
the perturbation term δH. Thus, we can consistently obtain
the gauge-invariant perturbation equations [61].
In the following, we discuss the stability and instability

issues associated with the current interacting models. The
large-scale instability arises from the pressure perturbation
of dark energy [27]. The pressure perturbation includes the
adiabatic pressure perturbation and the intrinsic nonadia-
batic pressure perturbation. For the interacting dark-energy
models, the nonadiabatic part might grow fast at early times
due to the energy transfer, and this leads to rapid growth of
the curvature perturbation on large scales. For example, as
mentioned above, the simple energy exchange termQ ∝ ρc
leads to an instability in the dark-matter perturbations at
early times since the curvature perturbation blows up on
super-Hubble scales [27]. Subsequently, another interaction
model Q ¼ 3Hξρcρx/ðρc þ ρxÞ was suggested in Ref. [62],
where it was shown that this form of Q for the energy
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transfer could avoid the large-scale instability during the
early expansion of the Universe.
The pressure perturbation for the coupled dark-energy

models is given by [58,60]

δpx ¼ c2sxδρx − ðc2sx − c2axÞρ0x
θx
k2

;

¼ c2sxδρx þ 3Hρxð1þ wxÞðc2sx − c2axÞ

×

�
1 −

aQ
3Hρxð1þ wxÞ

�
θx
k2

;

¼ c2sxδρx þ 3Hρxð1þ wxÞðc2sx − c2axÞð1þ dÞ θx
k2

: ð7Þ

Now, one could judge the stability condition of the
perturbations via the “doom factor” [60], defined as

d≡ −aQ/½3Hρxð1þ wxÞ�;
using the pressure perturbation of dark energy. Thus,
stability can be realized when d ≤ 0 [29,60]. It means that
for the usual interaction rates in the literature, Q ¼ 3HξQ̄
(with Q̄ > 0), the perturbation stability requires the con-
ditions ξ ≥ 0 and ð1þ wxÞ > 0 or ξ ≤ 0 and ð1þ wxÞ < 0.
Following this, the interaction term Q ¼ 3Hξρx needs to
be tested against the observations with two intervals for
the dark-energy equation of state, wx ≤ −1 and wx ≥ −1
[29–33]. We note thatwx ¼ −1 is the limiting case (see [29]
for details). Now, looking at the pressure perturbations in
Eq. (7), it is worth noting that the interaction functions with
(1þ wx) could release the prior of the DE equation of state,
which is a very interesting property because the prior on
the dark-energy equation of state plays a crucial role in
the statistical analysis. Thus, here we assume a phenom-
enological energy transfer which includes the factor
(1þ wx) explicitly—for example, of the form Q ¼
3Hξð1þ wxÞρx, Q ¼ 3Hξð1þ wxÞρcρx/ðρc þ ρxÞ, Q ¼
3Hξð1þ wxÞραxρβc, or the general form Q ¼ 3Hξð1þ wxÞ
ραcρ

γ
xðρc þ ρxÞβ, where wx might be constant or time

dependent. Thus, we can define the doom factor for the
coupled model

d≡ −
aQ

3Hρxð1þ wxÞ
¼ −ξραcρ

γ−1
x ðρc þ ρxÞβ:

Now, it is easy to see that in order to have the stable
perturbations, i.e., d ≤ 0, the coupling parameter should

satisfy the relation ξ ≥ 0. That means there is no need to
test the interaction models for two intervals of the dark-
energy equation of state, namely, wx ≤ −1 and wx ≥ −1
[30–33]; rather, we could just constrain the full parameter
space of wx using the observational data. Thus, with the
simple constraint on the coupling parameter that ξ ≥ 0, we
can alleviate the large-scale perturbation instabilities in
the coupled dark-energy models—this is the novelty of the
present work. In this way, we can explore the possibility of
a phantom dark-energy equation of state. It should be noted
that, for some suitable time-varying dark-energy equations
of state, such as the Chevallier-Polarski and Linder (CPL)
parametrization [63,64], the perturbation instability could
also be alleviated [28]. However, we note that the proposed
general interaction model Q¼3Hξð1þwxÞραcργxðρcþρxÞβ
can be viewed as Q ¼ 3Hξ̄ραcρ

γ
xðρc þ ρxÞβ using a simple

transformation ξ → ξ̄ ¼ ξð1þ wxÞ. Now, we observe that,
if one allows the dark-energy equation of state to run
beyond the cosmological constant limit, i.e., wx ≤ −1, then
considering the stability condition d ≤ 0, the model could
produce stable perturbations on large scales for ξ̄ ≤ 0. This
is an alternative route to produce the stable perturbations
from interaction models for the large-scale structure of the
Universe [29–33] without introducing the factor (1þ wx)
explicitly outside the interaction rate.
Next, we recall the general interaction model which

recovers the three interactions used in our study above.
Since this general interaction assumes the expression

Q ¼ 3Hξð1þ wxÞραcργxðρc þ ρxÞβ;

where the exponents ðα; β; γÞ ∈ R3 must satisfy
αþ β þ γ ¼ 1, so that the dimension of Q is in accordance
with the background energy-momentum conservation
equation, then, using the relation γ ¼ 1 − α − β, we may
rewrite Q as Q ¼ 3Hξð1þ wxÞραcρ1−α−βx ðρc þ ρxÞβ. Now,
for this interaction the variation δQ reads

δQ¼Q

�
αδc þ ð1− α− βÞδx þ β

ρcδc þ ρxδx
ρc þ ρx

þ θþ h0/2
3H

�
;

and consequently, the density and velocity perturbation
equations for dark energy and dark matter for this Q
become

δ0x ¼ −ð1þ wxÞ
�
θx þ

h0

2

�
− 3Hðc2sx − wxÞ

�
δx þ 3Hð1þ wxÞ

θx
k2

�
− 3Hw0

x
θx
k2

þ 3Hξð1þ wxÞραcρ−α−βx ðρc þ ρxÞβ
�
αδc − ðαþ βÞδx þ β

ρcδc þ ρxδx
ρc þ ρx

þ θ þ h0/2
3H

þ 3Hðc2sx − wxÞ
θx
k2

�
; ð8Þ

θ0x ¼ −Hð1 − 3c2sxÞθx þ
c2sx

ð1þ wxÞ
k2δx þ 3Hξραcρ

−α−β
x ðρc þ ρxÞβ½θc − ð1þ c2sxÞθx�; ð9Þ
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δ0c ¼ −
�
θc þ

h0

2

�
þ 3Hξð1þ wxÞρα−1c ρ1−α−βx ðρc þ ρxÞβ

×

�
ð1 − αÞδc − ð1 − α − βÞδx

− β
ρcδc þ ρxδx
ρc þ ρx

−
θ þ h0/2
3H

�
; ð10Þ

θ0c ¼ −Hθc; ð11Þ
where α ≤ 0 or β ≤ 0 is required for the perturbation
evolution to be stable at early times, according to the
analysis of large-scale instability [27]. These perturbation
equations of dark energy and dark matter include many
coupled dark-energy models. For example, if β ¼ 0, the
stability requirement α ≤ 0 favors the coupling Q ¼
3Hξð1þ wxÞραcρ1−αx . For α ¼ −1 and β ¼ 0, we get the
coupling Q ¼ 3Hξð1þ wxÞρ2x/ρc. When α ¼ 1 and
β ¼ −1, we have Q ¼ 3Hξð1þ wxÞρcρx/ðρc þ ρxÞ. Fur-
ther, for α ¼ β ¼ 0, we could obtain the simplest energy
transfer, with Q ¼ 3Hξð1þ wxÞρx. We note that the
explicit appearance of the Hubble factor H in the inter-
action function is, in general, not necessary in spatially flat
universes. However, its appearance helps us write the
conservation equations with respect to the lapse function
or the scale factor of the FLRW universe.1 Moreover, the
volume factor “3” has no physical meaning; this is just
for simplicity without any loss of generality. We note that
the perturbation equations are valid when the dark-energy
equation of state is time dependent, such as CPL [63,64].
Now, for some particular choices of α, β, we test three
interacting dark-energy models against the observational
data sets when the dark-energy equation of state is assumed
to be constant.
We consider first the simplest interacting dark-energy

model (labeled IDE 1), with α ¼ 0 and β ¼ 0. The coupling
Q thus becomes

Q ¼ 3Hξð1þ wxÞρx:

For this model, following [61], we calculate that δQ ¼
Q½δx þ ðθ þ h0/2Þ/ð3HÞ�. Thus, the perturbation equations
for dark energy and dark matter become

δ0x ¼ −ð1þ wxÞ
�
θx þ

h0

2

�

− 3Hðc2sx − wxÞ
�
δx þ 3Hð1þ wxÞ

θx
k2

�

þ 3Hξð1þ wxÞ
�
θ þ h0/2
3H

þ 3Hðc2sx − wxÞ
θx
k2

�
; ð12Þ

θ0x ¼ −Hð1 − 3c2sxÞθx þ
c2sx

ð1þ wxÞ
k2δx

þ 3Hξ½θc − ð1þ c2sxÞθx�; ð13Þ

δ0c ¼ −
�
θc þ

h0

2

�
þ 3Hξð1þwxÞ

ρx
ρc

�
δc − δx −

θþ h0/2
3H

�
;

ð14Þ

θ0c ¼ −Hθc: ð15Þ

Next we consider the second interaction model (IDE 2)
for the specific values of the parameters α ¼ 1 and β ¼ −1.
The coupling for such a choice becomes

Q ¼ 3Hξð1þ wxÞ
ρcρx

ðρc þ ρxÞ
:

Consequently, we have δQ ¼ Q½δc þ δx − ðρcδc þ ρxδxÞ/
ðρc þ ρxÞ þ ðθ þ h0/2Þ/ð3HÞ�, and similarly the perturba-
tion equations of dark energy and dark matter follow:

δ0x ¼ −ð1þ wxÞ
�
θx þ

h0

2

�

− 3Hðc2sx − wxÞ
�
δx þ 3Hð1þ wxÞ

θx
k2

�

þ 3Hξð1þ wxÞ
ρc

ρc þ ρx

�
δc −

ρcδc þ ρxδx
ρc þ ρx

þ θ þ h0/2
3H

þ 3Hðc2sx − wxÞ
θx
k2

�
; ð16Þ

θ0x ¼ −Hð1 − 3c2sxÞθx þ
c2sx

ð1þ wxÞ
k2δx

þ 3Hξ
ρc

ρc þ ρx
½θc − ð1þ c2sxÞθx�; ð17Þ

δ0c ¼ −
�
θc þ

h0

2

�
þ 3Hξð1þ wxÞ

ρx
ρc þ ρx

×

�
−δx þ

ρcδc þ ρxδx
ρc þ ρx

−
θ þ h0/2
3H

�
; ð18Þ

θ0c ¼ −Hθc: ð19Þ

Finally, we consider the third interaction model (IDE 3),
with the choices α ¼ −1, β ¼ 0, and this leads to the
coupling

Q ¼ 3Hξð1þ wxÞ
ρ2x
ρc

;

which gives rise to the variation δQ ¼ Q½ð−δc þ 2δxþ
ðθ þ h0/2Þ/ð3HÞ�, and consequently, it is possible to find

1The conservation equations (1) and (2) can, respectively, be
rewritten as ρ0m þ 3ρm ¼ −Q̄ and ρ0x þ 3ð1þ wxÞρx ¼ Q̄, where
Q̄ ¼ Q/H and the prime is taken with respect to the lapse
function N ¼ ln a.
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the perturbation equations of dark energy and dark matter,
respectively, as

δ0x ¼ −ð1þ wxÞ
�
θx þ

h0

2

�

− 3Hðc2sx − wxÞ
�
δx þ 3Hð1þ wxÞ

θx
k2

�

þ 3Hξð1þ wxÞ
ρx
ρc

�
−δc þ 2δx þ

θ þ h0/2
3H

þ 3Hðc2sx − wxÞ
θx
k2

�
; ð20Þ

θ0x ¼ −Hð1 − 3c2sxÞθx þ
c2sx

ð1þ wxÞ
k2δx

þ 3Hξ
ρx
ρc

½θc − ð1þ c2sxÞθx�; ð21Þ

δ0c¼−
�
θcþ

h0

2

�
þ3Hξð1þwxÞ

ρ2x
ρ2c

�
2δc−2δx−

θþh0/2
3H

�
;

ð22Þ

θ0c ¼ −Hθc: ð23Þ

We analyze these three interaction models using the
latest observational data and discuss their large-scale
stability.

III. OBSERVATIONAL DATA SETS

To constrain the three interacting models (IDE 1-3)
we use observational data from different astronomical
sources, as follows:
(1) Cosmic microwave background observations

(CMB): We use CMB data from the Planck 2015
measurements [65,66], where we combine the full
likelihoods CTT

l , CEE
l , CTE

l with low-l polarization
CTE
l þ CEE

l þ CBB
l , which is notationally the same as

the “PlanckTT, TE, EEþ lowP” of Ref. [66].
(2) Supernovae type Ia: Supernovae type Ia are the

first geometric sample to infer the accelerating
phase of the universe and so far serve as one of the
best samples to analyze any dark-energy model.
In this work we use the latest SNIa sample, known
as joint light curve analysis (JLA) samples [67]
comprising 740 data points in the redshift
range 0.01 ≤ z ≤ 1.30.

(3) Baryon acoustic oscillation (BAO) distance mea-
surements: For this data set, we use four BAO
points—the 6dF Galaxy Survey (6dFGS) measure-
ment at zeff ¼ 0.106 [68], the Main Galaxy
Sample of Data Release 7 of Sloan Digital Sky
Survey (SDSS-MGS) at zeff ¼ 0.15 [69], and the
CMASS and LOWZ samples from the latest Data

Release 12 (DR12) of the Baryon Oscillation
Spectroscopic Survey (BOSS) at zeff ¼ 0.57 [70]
and zeff ¼ 0.32 [70].

(4) Redshift-space distortion: We employ two RSD
measurements, which include the CMASS sample
with an effective redshift of zeff ¼ 0.57 and
the LOWZ sample with an effective redshift of
zeff ¼ 0.32 [71].

(5) Weak lensing (WL): We use the weak gravitational
lensing data from Canada-France-Hawaii Telescope
Lensing Survey (CFHTLenS) [72,73].

(6) Cosmic chronometers (CC): The Hubble parameter
measurements from most old and passively
evolving galaxies, known as cosmic chronometers
have been considered as potential candidates to
probe the nature of dark energy due to their
model-independent measurements. For a detailed
description on how one can measure the Hubble
parameter values at different redshifts through
this CC approach, and its usefulness, we refer to
[74]. Here, we use 30 measurements of the Hubble
parameter at different redshifts within the range
0 < z < 2.

(7) Local value of the Hubble constant (H0):We include
the local value of the Hubble parameter which
yields H0 ¼ 73.24� 1.74 km/s/Mpc with 2.4%
precision [75].

IV. RESULTS OF THE ANALYSIS

For the three interacting dark-energy models above, we
consider the following eight-dimensional parameter space
(see [76]):

P≡ fΩbh2;Ωch2;ΘS; τ; wx; ξ; ns; log½1010AS�g;

where Ωbh2 and Ωch2 stand for the density of baryons and
the dark matter, respectively; ΘS ¼ 100θMC is the ratio of
sound horizon to the angular diameter distance; τ is the
optical depth; wx is the equation-of-state parameter of dark
energy; ξ is the coupling parameter; ns is the scalar spectral
index; and As represents the amplitude of the initial power
spectrum. The priors of the basic model parameters are
shown in the second column of Table I. The recent value of
the Hubble constant H0 ¼ 73.24� 1.74 km/s/Mpc [75] is
used as a prior. Here, we note that the sound speed of dark-
energy perturbations, csx, plays an important role in the
large-scale dynamics. For stable perturbations of dark
energy, one must have c2sx > 0. Since we have assumed
a constant equation-of-state parameter for the dark energy,
if dark energy is an adiabatic fluid, then one can see that
c2sx ¼ c2ax ¼ wx < 0. This means that the sound speed of
dark-energy perturbations becomes imaginary, and con-
sequently, this leads to instabilities in the dark-energy
evolution. Here, we assume c2sx ¼ 1, the sound speed for
quintessence following the earlier studies in Refs. [27–29].
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In fact, with the assumption of c2sx ¼ 1, or close to 1, the
dark energy does not cluster on the sub-Hubble scale. The
dark-matter velocity perturbation equation is the same as in
the uncoupled case, so we can consistently set θc ¼ 0 [27]
since there is no momentum transfer in the rest frame of
dark matter. Here, in order to study the effects of the
interaction rate on the angular CMB power spectra, we
modified the publicly available CAMB package [77], which
is included in COSMOMC [78], to calculate the anisotropic
power spectrum of the CMB.
This allows us to analyze the results of global fitting for

the three different interaction models, namely, IDE 1: Q ¼
3Hξð1þ wxÞρx, IDE 2: Q ¼ 3Hξð1þ wxÞρcρx/ðρc þ ρxÞ,
and IDE 3: Q ¼ 3Hξð1þ wxÞρ2x/ρc.
Table I summarizes the main observational results

extracted from all three interacting dark-energy models
using the combined analysis CMBþ BAOþ JLAþ
RSDþWLþ CCþH0. In the following, we describe
the behavior of each interacting fluid model in detail.

(i) IDE 1: In Fig. 1, we display the 68.3% and 95.4%
confidence-level (C.L.) contour plots for different
combinations of the free parameters of this model as
well as the one-dimensional posterior distribution for
each parameter. From the analysis, one finds that the
model predicts a very small coupling in the dark
sectors, with ξ¼0.0360þ0.0091

−0.0360 at 68.3% C.L. Also, as
one can see, a zero value for ξ (i.e., no interaction)
is allowed at 68.3% C.L. This implies that within
68.3% C.L., our interaction model can recover the
noninteracting wxCDM model. But, our analysis
also shows that the equation of state of dark energy,
wx, can cross the phantom dividing line, with wx ¼
−1.0230þ0.0329

−0.0257 at 68.3% C.L. with the best fit value
wx ¼ −1.0210. Although, at the 68.3% C.L., wx

could be greater than “−1,” this means that its
quintessential character cannot be excluded—at least
according to the current observational data employed
in this analysis. However, we note that numerical
values of both mean and best fit values ofwx are close
to the cosmological constant limit of wx ¼ −1. Thus,
from the constraints on the coupling strength, as well
as the equation of state for dark energy, one finds that
the observational data favor a very small interaction in
the dark sector, and the model for the background
evolution displays a close match to the ΛCDM
cosmology. We also find that, at the perturbative
level, IDE 1 cannot be distinguished from theΛCDM
cosmology. In Figs. 2 and 3, we have described the
angular power spectra of the CMB temperature
anisotropy and the matter power spectra for different
values of wx and ξ. We see that a very slight deviation
is observed at the highest peak of the plot (right-hand
panel of Fig. 2) for a higher coupling strength of
ξ ¼ 0.8. A very similar observation can be made
about the matter power spectra (right-hand panel of 3)
for ξ ¼ 0.8. However, overall, the model does not
show any significant deviation from ΛCDM even
for such a high coupling strength. Similarly, as wx
deviates from −1 towards the quintessence regime, a
very slight deviation from the ΛCDM cosmology is
observed, although it is not significant either. Further,
in Fig. 4, we have displayed the two-dimensional
marginalized posterior distribution for the parameters
ðwx; ξÞ using the combined analysis mentioned
above. The points in Fig. 4 are the samples from
the chains of the combined analysis that have been
colored by the values of H0. From this figure, it is
seen that the higher values of H0 favor the phantom

TABLE I. The table summarizes the mean values of the free and derived cosmological parameters with their errors at 68.3%
and 95.4% confidence regions for IDE 1: Q ¼ 3Hξð1þ wxÞρx, IDE 2: Q ¼ 3Hξð1þ wxÞρcρx/ðρc þ ρxÞ, and IDE 3: Q ¼ 3Hξð1þ
wxÞρ2x/ρc using the combined analysis CMBþ BAOþ JLAþ RSDþWLþ CCþH0. We note that Ωm0 ¼ Ωc0 þ Ωb0.

Parameters Priors IDE 1 Best fit IDE 2 Best fit IDE 3 Best fit

Ωbh2 [0.005, 0.1] 0.0223þ0.0001þ0.0003
−0.0001−0.0003 0.0222 0.0223þ0.0001þ0.0003

−0.0002−0.0003 0.0222 0.0223þ0.0002þ0.0003
−0.0001−0.0003 0.0222

Ωch2 [0.01, 0.99] 0.1183þ0.0014þ0.0030
−0.0014−0.0029 0.1185 0.1182þ0.0013þ0.0025

−0.0012−0.0027 0.1186 0.1194þ0.0022þ0.0048
−0.0023−0.0047 0.1180

100θMC [0.5, 10] 1.0406þ0.0003þ0.0006
−0.0003−0.0006 1.0403 1.0406þ0.0004þ0.0006

−0.0003−0.0007 1.0408 1.0406þ0.0003þ0.0006
−0.0003−0.0006 1.0406

τ [0.01, 0.8] 0.0663þ0.0161þ0.0315
−0.0162−0.0319 0.0762 0.0662þ0.0154þ0.0318

−0.0178−0.0298 0.0514 0.0682þ0.0168þ0.0317
−0.0170−0.0316 0.0699

ns [0.5, 1.5] 0.9760þ0.0036þ0.0071
−0.0038−0.0070 0.9778 0.9763þ0.0044þ0.0085

−0.0044−0.0087 0.9717 0.9762þ0.0038þ0.0079
−0.0042−0.0074 0.9794

lnð1010AsÞ [2.4, 4] 3.0722þ0.0311þ0.0605
−0.0288−0.0616 3.0945 3.0714þ0.0302þ0.0622

−0.0341−0.0607 3.0414 3.0747þ0.0333þ0.0624
−0.0332−0.0623 3.0747

wx ½−2; 0� −1.0230þ0.0329þ0.0527
−0.0257−0.0603 −1.0210 −1.0247þ0.0289þ0.0895

−0.0302−0.0841 −1.0374 −1.0275þ0.0228þ0.0603
−0.0318−0.0509 −1.0134

ξ [0, 1] 0.0360þ0.0091þ0.0507
−0.0360−0.0360 0.0436 0.0433þ0.0062þ0.0744

−0.0433−0.0433 0.0086 0.1064þ0.0437þ0.1413
−0.1064−0.1064 0.1080

H0 73.24� 1.74 68.4646þ0.8199þ1.3348
−0.7380−1.3616 68.1714 68.5099þ0.8529þ2.0520

−0.9264−1.7640 68.6939 68.5420þ0.7817þ1.3760
−0.6763−1.4114 68.3716

Ωm0 � � � 0.3014þ0.0070þ0.0139
−0.0077−0.0141 0.3042 0.3008þ0.0082þ0.0155

−0.0078−0.0163 0.2997 0.3030þ0.0063þ0.0126
−0.0062−0.0124 0.3014

σ8 � � � 0.8156þ0.0121þ0.0246
−0.0137−0.0244 0.8249 0.8166þ0.0134þ0.0300

−0.0166−0.0280 0.8096 0.8051þ0.0231þ0.0336
−0.0185−0.0396 0.8068
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regime, wx < −1, while the lower values of H0 favor
the quintessence dark energy, i.e., wx > −1. In fact, a
shifting from phantom to quintessence dark energy is
displayed as the Hubble parameter values decrease
from higher values. Furthermore, we can also see that
a nonzero interaction might be useful to ease the
tension on H0 created by the ΛCDM-based Planck
estimation (H0 ¼ 67.27� 0.66 km s−1 Mpc−1) [1]
and the local measurements by Riess et al. (H0 ¼
73.24� 1.74 km s−1 Mpc−1) [75]. From our analy-
sis, we find that the introduction of a coupling into the
dark sector gives H0 ¼ 68.4646þ0.8199þ1.3348þ1.6568

−0.7380−1.3616−1.8747 ,
which shows that the coupling does produce a shift
of the Hubble parameter towards higher values, and
consequently, the tension onH0 might be eased in the
presence of the interaction. The easing of the H0

tension in the presence of an interaction in the dark
sector has also been noticed in some earlier works
[21,79,80] with some different interactions, and
thus it might be considered an interesting outcome

of such a wxCDMþ ξ scenario. One can also see
that the σ8 value extracted from this model matches
with the Planck estimation [1] when lensing is added
to either Planck TTþ lowP or Planck TT, TE,
EEþ lowP. This means that the estimated values
of σ8 are σ8 ¼ 0.8149� 0.0093 (Planck TT+lowP
+lensing) [1] and σ8 ¼ 0.8150� 0.0087 (Planck TT,
TE, EEþ lowPþ lensing) [1]. The external data
BAO+JLA+H0 added to both of these data (Planck
TTþ lowP and Planck TT, TE, EEþ lowP) agree
with the same estimation.

(ii) IDE 2: In Fig. 5, we display the 68.3% and 95.4%
confidence-level (C.L.) contour plots for different
combinations of the free parameters of this model as
well as the one-dimensional posterior distribution
for each parameter. The results for IDE 2 are quite
similar to IDE 1. The coupling parameter for this
model is constrained to be (ξ ¼ 0.0433þ0.0062

−0.0433 at
68.3% C.L.) from the combined analysis, and we
also notice that a zero value of ξ is allowed at the

FIG. 1. The figure displays the 68.3% and 95.4% confidence-region contour plots for IDE 1 using the combined analysis
CMBþ BAOþ JLAþ RSDþWLþ CCþH0. Here, Ωm0 ¼ Ωc0 þ Ωb0.
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68.3% C.L. This means the noninteracting wxCDM
cosmology is still permitted, while the observational
data always favor ξ ≠ 0. In addition, we find that this
interacting scenario allows the equation of state for
dark energy to go over the phantom divide boundary
of −1. The best fit (wx ¼ −1.0374) and the mean
value of wx (¼ −1.0247þ0.0289

−0.0302 at 68.3% C.L.) are the
characteristics of a phantom dark energy. However,
at the 68.3% C.L., the possibility of wx > −1 is
permitted, at least from the present observational
data. Furthermore, in Figs. 6 and 7 we have plotted
the CMB temperature anisotropy spectra and the
matter power spectra for a wide range of wx and ξ,
and both these plots indicate that IDE 2 does not
deviate much from the standardΛ-cosmology. In fact,
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FIG. 2. The plots show the angular CMB temperature power spectra of IDE 1 compared to the standard ΛCDM cosmology using the
combined analysis CMBþ BAO þ JLAþ RSDþWLþ CCþH0. In the left panel we show different angular CMB spectra for
different values of wx including its mean value obtained from the above combined analysis, while the right panel shows a replica of the
left panel but for different values of the coupling parameter ξ, including its mean value from the same combined analysis.
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FIG. 3. The figure shows the behavior of the matter power spectra of IDE 1 compared to the ΛCDM cosmology for the combined
observational analysis CMBþ BAO þ JLAþ RSDþWLþ CCþH0. In the left panel we use different values of the dark-energy
equation of state wx, while in the right panel we vary the coupling parameter ξ.

FIG. 4. MCMC samples in the ðwx; ξÞ plane colored by the
Hubble constant value H0 for IDE 1 analyzed with the combined
analysis CMBþ BAOþ JLAþ RSDþWLþ CCþH0.

LARGE-SCALE STABILITY AND ASTRONOMICAL … PHYS. REV. D 97, 043529 (2018)

043529-9



FIG. 5. The figure displays the 68.3% and 95.4% confidence-region contour plots for different combinations of the free parameters of
IDE 2 using the combined analysis CMBþ BAOþ JLAþ RSDþWLþ CCþH0. Here, Ωm0 ¼ Ωc0 þ Ωb0.
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FIG. 6. The plots show the angular CMB temperature power spectra of IDE 2 compared to the standard ΛCDM cosmology using the
combined analysis CMBþ BAO þ JLAþ RSDþWLþ CCþH0. In the left panel we show different angular CMB spectra for
different values of wx including its mean value obtained from the combined analysis, while the right panel shows a replica of the left
panel but for different values of the coupling parameter ξ including its mean value from the same combined analysis.
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we observe that the deviation from the Λ-cosmology
for the strong coupling, ξ ¼ 0.8, is weaker in respect
to the deviation for the same coupling strength
observed in IDE 1. A similar argument for wx holds
true as for IDE 1. In Fig. 8 we also show the two-
dimensional marginalized posterior distribution for
the parameters ðwx; ξÞ using the combined analysis
mentioned above. The points in Fig. 8 are the samples
from the chains of the combined analysis that have
been colored by the values of H0. We find similar
behavior as in IDE 1. This means that higher values of
H0 favor the phantom regime wx < −1, while lower
values of H0 favor the quintessence dark energy, i.e.,
wx > −1. The shift from phantom to quintessence
dark energy is displayed as the Hubble parameter
values decrease from higher values. We now return
to the estimation of the Hubble parameter in order to
see whether this model could also ease the tension
on H0 in a similar fashion to that observed in

IDE 1. The estimated value from our analysis is
H0 ¼ 68.5099þ0.8529þ2.0520þ2.1279

−0.9264−1.7640−2.4521 . One can clearly
see that the inclusion of the coupling shifts the
Hubble parameter towards higher values; however,
in comparison to IDE 1, the shifting is now slightly
higher. Certainly, the tension onH0 might be released
in a similar fashion. Thus, at the statistical level, this
model resembles IDE 1. Moreover, the estimated
value of σ8 for this model also matches the ΛCDM-
based Planck estimate [1], in the presence of lensing
where σ8 ¼ 0.8149� 0.0093 (Planck TTþ lowPþ
lensing) [1] and σ8 ¼ 0.8150� 0.0087 (Planck TT,
TE, EEþ lowPþ lensing) [1]. The observational
constraints in the presence of the other data, for
instance BAOþ JLAþH0, return similar fits to σ8
[1]. Thus, we see that this interaction model is close
to the ΛCDM cosmology.

(iii) IDE 3: In Fig. 9, we display the 68.3% and 95.4%
confidence-level (C.L.) contour plots for different
combinations of the free parameters of this model as
well as the one-dimensional posterior distribution
for each parameter. The observational constraints on
IDE 3 display some different properties from those
of IDE 1 and IDE 2. We find that the coupling
parameter ξ is comparatively high (ξ ¼ 0.1064þ0.0437

−0.1064
at 68.3% C.L.), unlike in the two other interaction
models (68.3% C.L. constraints on the coupling
strength are ξ ¼ 0.0360þ0.0091

−0.0360 for IDE 1 while
ξ ¼ 0.0433þ0.0062

−0.0433 for IDE 2), although its zero value
is still marginally allowed at the 68.3% C.L. The best
fit and the mean values of wx describe a phantom
dark energy. The numerical values of the best fit, as
well as the mean values of the dark-energy equation
of state, are, respectively, wx ¼ −1.0134 and wx ¼
−1.0275þ0.0228

−0.0318 (at 68.3% C.L.). It is interesting to
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FIG. 7. The figure shows the behavior of the matter power spectra of IDE 2 compared to the ΛCDM cosmology for
CMBþ BAOþ JLAþ RSDþWLþ CCþH0. In the left panel we use different values of the dark-energy equation of state wx,
while in the right panel we vary the coupling parameter ξ.

FIG. 8. MCMC samples in the ðwx; ξÞ plane colored by the
Hubble constant value H0 for IDE 2 analyzed with the combined
analysis CMBþ BAOþ JLAþ RSDþWLþ CCþH0.
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FIG. 9. The figure displays the 68.3% and 95.4% confidence-region contour plots for IDE 3 using the combined analysis
CMBþ BAOþ JLAþ RSDþWLþ CCþH0. Here, Ωm0 ¼ Ωc0 þ Ωb0.
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FIG. 10. The plots show the angular CMB temperature power spectra of IDE 3 compared to the standard ΛCDM cosmology for the
analysis CMBþ BAO þ JLAþ RSDþWLþ CCþH0. In the left panel we show different angular CMB spectra for different values
of wx including its mean value obtained from the combined analysis, while the right panel shows a replica of the left panel but for
different values of the coupling parameter ξ including its mean value from the same combined analysis.
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mention that, at 68.3% C.L., the dark-energy equation
of state wx strictly shows phantom behavior. How-
ever, at the 95.4% confidence level, wx could still be
greater than −1 (wx¼−1.0275þ0.0603

−0.0509 at 95.4% C.L.),
which means the quintessential regime is not
excluded at all, at least with the present data. Now,
following the same trend as in IDE 1 and IDE 2, in
Figs. 10 and 11, respectively, we show the CMB
temperature anisotropy spectra and the matter power
spectra for a wide range of wx and the coupling
strength ξ. From both the figures, we see that the
model shows a clear difference from theΛ-cosmology
and hence from the other two interaction models.
However, it is also true that such differences observed
in Figs. 10 and 11 are not significant enough, although
a nonzero deviation from Λ-cosmology is clearly
presented. The deviations in other cosmological
parameters for this model can also be compared
to IDE 1 and IDE 2. As one can see, a lower value

of σ8 (¼ 0.8051þ0.0231þ0.0336
−0.0185−0.0396 ) is favored for thismodel

unlike for the other two IDE models where the
estimations are σ8 ¼ 0.8156þ0.0121þ0.0246

−0.0137−0.0244 (IDE 1)
and σ8 ¼ 0.8166þ0.0134þ0.0300

−0.0166−0.0280 (IDE 2). This value
also reflects a slight difference from the Planck
estimate [1]. Thus, one can see that, according to
the observations, this model shows a nonzero
deviation from the Λ-cosmology with a phantom
character within up to the 68.3% C.L. Now, concern-
ing the tension on H0 determinations, we find that
IDE 3 may also ease such tension. This might be
clear from the estimation of the Hubble parameter,
H0 ¼ 68.5420þ0.7817þ1.3760þ1.6177

−0.6763−1.4114−1.9236 , and by following
similar arguments to those provided for IDE 1
and IDE 2. Finally, in Fig. 12, we plot the two-
dimensional marginalized posterior distribution for
the parameters ðwx; ξÞ as we did for the models IDE 1
and IDE 2. The observational data are as described
above. Overall, we find that IDE 3 follows a similar
trend to IDE 1 and IDE 2. Indeed, this interaction
model shows differences with respect to the other two
interaction models, but such differences are small.

A. Comparisons of the IDE models

Let us provide a statistical comparison of the three IDE
models. In order to visualize all three models in a single
frame, in Fig. 13 we have provided the contour plots for
different combinations of the model parameters. It is clearly
seen that IDE 1 and IDE 2 have considerable overlap with
each other, showing that these two models resemble each
other, while IDE 3 is slightly different, which can be seen
from the estimation of the coupling parameter, and also
from the behavior of the dark-energy equation of state
which retains its phantom character within 68.3% C.L.
unlike the other two interaction models, namely, IDE 1 and
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FIG. 11. The figure shows the behavior of the matter power spectra of IDE 3 compared to the ΛCDM cosmology for
CMBþ BAOþ JLAþ RSDþWLþ CCþH0. In the left panel we use different values of the dark-energy equation of state wx,
while in the right panel we vary the coupling parameter ξ.

FIG. 12. MCMC samples in the ðwx; ξÞ plane colored by the
Hubble constant value H0 for IDE 3 analyzed with the combined
analysis CMBþ BAOþ JLAþ RSDþWLþ CCþH0.
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IDE 2. Nevertheless, they share some common properties.
The IDE models all favor a crossing of the phantom
divide line. The mean values and the best fit values of
the dark-energy equation of state all cross the −1 boundary.
A striking feature of all of these interaction models is the
alleviation of the tension between the different values ofH0

deduced from the local [75] and global measurements [1].
We find that the allowance of coupling in the dark sector
is the main factor that shifts the Hubble parameter values
toward its local measurement [75]. We note also that the
alleviation of the tension on H0 has been found earlier in
the context of interacting dark energy [21,79,80] with some
specific models. This might be considered one of the most
interesting features of interacting dark-energy models.
From the analysis of large-scale structure it is seen from

the evolution of the matter power spectra (see the right
panel of Fig. 14) or the CMB temperature anisotropy (see
the left panel of Fig. 14) that the models do not show any
remarkable deviation from each other. Within 68.3% C.L.,
the current interacting models are very close to ΛCDM

cosmology. Moreover, in Fig. 15 we have shown the
qualitative evolution of the ratio Ωm/Ωr for all interacting
models, and we have also compared the same evolution with
the Λ-cosmology. We find that for very small coupling
parameter values, the evolution of the quantityΩm/Ωr is very
close to that of ΛCDM cosmology. However, for larger
values of ξð< 1Þ, the deviation of course increases. This is
prominent for IDE 3, and then for IDE 1, and after that for
IDE 2 (see the subfigures in Fig. 15). But, the deviations
for all three models are not significant enough to draw a
decisive conclusion against the Λ-cosmology. We note that
the evolution of Ωm/Ωr also tells us that IDE 3 is slightly
different from the other two IDE models. We recall from the
temperature and matter power spectra displayed in Figs. 10
and 11 that we noticed similar findings about IDE 3.
From the temperature anisotropy in the CMB TT spectra

and also from the matter power spectra displayed for all
models, the differences between the different models, as
well as from the pureΛ-cosmology, are not strong. But, one
can clearly show the differences between the models using

FIG. 13. The figure displays the 68.3% and 95.4% confidence-region contour plots for three interacting dark-energy models, namely,
IDE 1, IDE 2, and IDE 3 using the combined analysis CMBþ BAOþ JLAþ RSDþWLþ CCþH0. Here Ωm0 ¼ Ωc0 þ Ωb0.
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FIG. 14. CMB temperature anisotropy (left panel) and the matter power spectra (right panel) have been shown for three IDE models
compared to the ΛCDM model, using the mean values of the free parameters obtained from the combined analysis
CMBþ BAOþ JLAþ RSDþWLþ CCþH0.

FIG. 15. The qualitative evolution of the ratio Ωm/Ωr (here Ωm ¼ Ωc þΩb) for the three IDE models has been shown for different
values of the coupling parameter ξ and compared with the ΛCDM evolution. We note that the values ξ ¼ 0.0360, ξ ¼ 0.0432, and
ξ ¼ 0.164 are, respectively, the mean values of the coupling parameters obtained from the models IDE 1, IDE 2, and IDE 3 using the
combined observational analysis CMBþ BAOþ JLAþ RSDþWLþ CCþH0.

FIG. 16. The relative deviations of the IDE models from the Λ-cosmology through the CMB TT and matter power spectra have been
shown using the mean values of the model parameters from the combined analysis CMBþ BAOþ JLAþ RSDþWLþ CCþH0.
One may notice that the models are also distinguished from one another.
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the relative deviations of the models with respect to the base
Λ-cosmological model. In order to depict the differences
between the models, in Fig. 16 we have shown the relative
deviations of the models from the pure Λ-cosmology in
terms of the CMB TT spectra (left-hand panel of Fig. 16)
and the matter power spectra (right-hand panel of Fig. 16)
as well. One can clearly see that the deviations between the
models exist, but such deviations are small.
Finally, we complete our comparisons with a brief

remark. In Figs. 4, 8, and 12, we display the two-
dimensional marginalized posterior distribution for the
parameters ðwx; ξÞ using the combined analysis of CMBþ
BAOþ JLAþ RSDþWLþ CCþH0. The points in
Figs. 4, 8, and 12 are the samples from the chains of
the combined analysis that have been colored by the values
of H0. We find that for all models, the higher values of H0

favor the phantom regime wx < −1, while the lower values
of H0 favor a quintessence dark energy, i.e., wx > −1.
A striking feature allowed by all the interacting fluid
models is that, as the values of H0 decrease, a clear shift
in the dark-energy behavior, from phantom to quintessence,
is observed, although the dark-energy equation of state still
remains very close to the cosmological constant boundary.

V. SUMMARY AND CONCLUSIONS

Phenomenological interaction models for the transfer of
energies in cosmological models have been widely inves-
tigated in recent years. They include a wide range of
assumed interaction dependences, such as Q ∝ ρc, Q ∝ ρx,
Q ∝ ðρc þ ρxÞ, and others. In order to impose observational
constraints on these scenarios and evaluate the stability of
the expanding universe models they require, some specific
parametric space needs to be considered. For instance, if the
dark-energy equation of state is described by wx and the
coupling parameter of the interaction is ξ, then the model
is generally tested within two separate intervals, namely,
wx ≥ −1 and ξ ≥ 0 or wx ≤ −1 and ξ ≤ 0. So, there exists
a discontinuity in the testable range of the dark-energy
equation of state.
In this paper we have provided a new technique to test

some interacting models without restriction to any specific
subintervals of the parameter space defining them. We
carried out a general analysis of the inhomogeneous
perturbations of a general interaction model linking dark
energy and dark matter. We found that with the introduction
of a new factor (1þ wx) in the background energy transfer,
it is possible to test the whole space of the equation of
state for dark energy with the observational data. We tested
the scenarios using three different interaction models:
Q ¼ 3Hξð1þ wxÞρx, Q ¼ 3Hξð1þ wxÞρcρx/ðρc þ ρxÞ,
andQ ¼ 3Hξð1þ wxÞρ2x/ρc. One can say that the inclusion
of (1þ wx) into the energy transfer rateQ can be viewed as
a transformation of the coupling parameter as ξ → ξ̄ ¼
ξð1þ wxÞ. Following this, the models can be viewed
in terms of the transformed coupling parameter ξ̄ as

Q ¼ 3Hξ̄ρx, Q¼3Hξ̄ρcρx/ðρcþρxÞ, and Q ¼ 3Hξ̄ρ2x/ρc.
We employed the latest astronomical data from several
independent sources, namely, the Planck 2015 cosmic
microwave background anisotropy, baryon acoustic oscil-
lation, joint light curves from type Ia supernovae, redshift-
space distortions, weak gravitational lensing, and cosmic
chronometers, together with the best local value of the
Hubble constant. Using the Markov chain Monte Carlo
algorithm we have constrained all three interaction scenar-
ios. We find that in all three scenarios, the observational
data favor a nonzero interaction between the dark sectors.
In particular, for the first two IDE models, the observational
data favor an almost zero interaction (the 68.3% C.L.
constraints are ξ ¼ 0.0360þ0.0091

−0.0360 for IDE 1 and ξ ¼
0.0433þ0.0062

−0.0433 for IDE 2), while the third one suggests
a slightly higher interaction coupling strength (ξ ¼
0.1064þ0.0437

−0.1064 at 68.3% C.L.) in comparison to the IDE 1
and IDE 2 models. However, it is clear that within
68.3% C.L., all interaction models recover the no-
interaction scenario (i.e., ξ ¼ 0). This means that the
observational data allow all IDE models to converge to
the noninteracting wxCDM model. Furthermore, the obser-
vational data also predict that the mean value, as well as
the best fit value, of the dark-energy equation of state, wx,
both cross the phantom divide line. More precisely, the
68.3% C.L. constraints on the dark-energy equation of state
for the IDE models are wx ¼ −1.0230þ0.0329

−0.0257 (for IDE 1),
wx ¼ −1.0247þ0.0289

−0.0302 (for IDE 2), and wx ¼ −1.0275þ0.0228
−0.0318

(for IDE 3). As one can see, within 68.3% C.L., wx is not
so far from the cosmological constant boundary −1. We
also observe that not all models exclude the possibility
of wx > −1. For IDE 1 and IDE 2, wx > −1 is allowed in
the 68.3% C.L., while for IDE 3, 95.4% C.L. shows this
possibility. Overall, a significant feature of all these
interaction models we find is that, from the analysis at
the background level, none of our three interaction models
can be distinguished from the Λ-cosmology. In fact, from
the perturbative analysis, it is also quite difficult to
distinguish between the models as well as distinguish them
from theΛ-cosmology; of course, small deviations between
any two models do exist, and all the models also differ from
Λ-cosmology. Moreover, in all such models, we observe
that the current tension on H0 from different data sets can
be relieved. This property of the interacting models could
be a general one since some other recent articles make the
same suggestion [79,80]. Finally, we found that a character-
istic feature of all IDE models is that as the value of the
Hubble constant decreases, the behavior of the dark-energy
equation of state is shifted from phantom to quintessence
type, with its equation of state very close to that of a simple
cosmological constant at the present time.
We conclude our analysis with a comparison of the

observational constraints with some of the proposed
models, specifically with Q∝ρx and Q ∝ ρcρx/ðρc þ ρxÞ.
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We note that the analysis including the cosmological per-
turbations for the model Q ∝ ρ2x/ρc has not been performed
in the past. The difference between the past and current
analyses is that here we vary the dark-energy equation of
state wx within the interval ½−2; 0�, and hence, it is expected
to have slightly different results compared to the past
analyses. In [30–33], the authors performed analyses
for wx > −1, which estimated the coupling parameter
for the interaction model Q ¼ 3Hξρx. In [30], the authors
reported the coupling parameter ξ for two different sets of
the combined analyses, which measured ξ ¼ 0.209þ0.0711

−0.0403
at 1σ confidence level (for PlanckþWMAP9þ
SNIaþ BAO) and ξ ¼ 0.00372þ0.00768

−0.00372 at 1σ confidence
level (for PlanckþWMAP9þ SNIaþ BAOþ RSD)
where the observational data are described in [30]. Thus,
one can see that the inclusion of RSD into the other data
significantly decreases the coupling strength. Similar
analyses can be found in [31–33]. On the other hand, a
recent analysis with Q ∝ ρx, where the dark-energy equa-
tion-of-state parameter is constant and allowed to cross the
phantom divide line (i.e., wx < −1) [80], shows that within
2σ confidence level, the coupling parameter is nonzero
(ξ ¼ −0.26þ0.16

−0.12 ). Additionally, the interaction model
Q ∝ ρx is tested when the dark energy represents the
cosmological constant, i.e., for wx ¼ −1 (see the details
in [81]). The analysis in [81] returned different fits
from different observational data; in particular, within 1σ
confidence level, ξ ¼ 0.036þ0.114

−0.039 (Planck), ξ ¼ 0.020þ0.048
−0.053

(Planckþ BAOþ SNIa), ξ ¼ −0.026þ0.036
−0.053 (Planckþ

WLþ BAO). In fact, when lensing is added to those data,
it is found that the strength of the interaction decreases
for the vacuum interaction scenario (see Table I of [81]

for the details). In the current analysis for wx varying in the
interval ½−2; 0�, we obtain similar results to those obtained
in [30,80,81]. But, indeed, the results should not exactly
match those in Refs. [30,80,81] since the astronomical
data do not exactly match ours. Next we considered the
interaction Q ∝ ρcρx/ðρc þ ρxÞ constrained in [62] for
wx > −1, and the interaction was found to be stable on
large scales provided the coupling parameter was positive.
The analysis [62] found that this nonzero coupling in the
dark sector is favored with ξ ¼ 0.178þ0.081

−0.097 at 1σ confi-
dence level (PlanckþWMAP9þ BAOþ SNIaþH0).
The estimation of the coupling parameter in [62] is slightly
greater than our estimate for wx ∈ ½−2; 0�. However, we
note that the astronomical data in [62] and in the current
work do not match exactly; thus, the differences may
simply be due to the slightly different astronomical data
under consideration. Finally, it might be interesting to make
a detailed comparison with the well-known, stable, inter-
acting, dark-energy models using the same astronomi-
cal data.
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