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Taking the Planck cosmic microwave background data and the more direct Hubble constant
measurement data as unaffected by systematic offsets, the values of the Hubble constant H0 interpreted
within the ΛCDM cosmological constant and cold dark matter cosmological model are in ∼3.3σ tension.
We show that the Parker vacuum metamorphosis (VM) model, physically motivated by quantum
gravitational effects and with the same number of parameters as ΛCDM, can remove the H0 tension
and can give an improved fit to data (up to a mean Δχ2 ¼ −7.5). It also ameliorates tensions with weak
lensing data and the high redshift Lyman alpha forest data. Considering Bayesian evidence, we found in the
case of the Planck data set alone positive evidence for a VM model against a cosmological constant both
in the six- and nine-parameter framework. When the R16 data set is also considered, we found a strong
evidence for the VM model against a cosmological constant in nine-parameter space. We separately
consider a scale-dependent scaling of the gravitational lensing amplitude, such as provided by modified
gravity, neutrino mass, or cold dark energy, motivated by the somewhat different cosmological parameter
estimates for low and high CMB multipoles. We find that no such scale dependence is preferred.
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I. INTRODUCTION

Cosmic microwave background (CMB) measurements
provide highly precise probes of the conditions and energy
components of the Universe over the entire age of the
Universe. Moreover, they can reveal the total age and scale
of the Universe, and so the present Hubble constant H0.
The Hubble constant can also be determined through local
distance measurements, e.g. through cross-calibration of
Cepheid and type Ia supernova distances [1,2]. The latest
values from these two methods, within the concordance
ΛCDM model with a cosmological constant plus cold dark
matter, are in ∼3σ tension. This is probably the most
relevant tension present between current cosmological data
sets, and several works have recently appeared discussing it
or proposing different theoretical mechanisms as solution
(see e.g. [3–17]).
Taking each set of cosmological data at face value

(cf. [18–21] regarding local H0), we found in [22] that
the H0 values could be consistent in a parameter space
expanded to include further, not unreasonable, cosmological
physics. In particular, altering the mechanism for cosmic

acceleration from a cosmological constant to a particular
form of dynamical dark energy would remove the tension.
However, the form of dark energy required was quite
unusual, not corresponding to the usual scalar field dark
energy models. It needed to be phantom, with equation of
state parameter w < −1, and, moreover, be rapidly evolving.
These properties generally are not held simultaneously

since they tend to exacerbate problems of fine-tuning and
stability. However, there is a model considered in the
early days of dark energy investigations that possesses just
these phenomenological properties, from a sound theoreti-
cal foundation: the vacuum metamorphosis (VM) model
of [23–25], which has a phase transition in the nature of
the vacuum. In this article, we explore the observational
viability of VM in fitting the data simultaneously and
removing the tension in H0 values.
Another peculiarity in the data is that cosmological

parameters estimated from small scales (CMB multipoles
l≳ 1000) are somewhat offset relative to the values
estimated from large scales (l≲ 1000) [26–29]. In particu-
lar, larger scales show some preference for a higher Hubble
constant. We, therefore, separately explore cosmology fitting
in a ΛCDM parameter space extended to allow for a scale-
dependent CMB lensing parameter Alens, reflecting some
(unspecified) nonstandard scale-dependent physics.
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Section II introduces the VM model and lays out the
foundation for using it with CMB and distance data. In
Sec. III, we present the cosmology fitting data and
procedure. We carry out Markov chain Monte Carlo
(MCMC) fits to the data for the VM model in Sec. IV
in the baseline and the extended parameter spaces and
discuss the results. In Sec. V, we investigate an alternative
approach to addressing the tension through the use of a
scale-dependent Alens. We conclude in Sec. VI.

II. VACUUM METAMORPHOSIS

A. Background

The two main data sets in tension on the value of H0 are
the CMB data from the Planck satellite [30] and the distance
measurements from [2], hereafter called R16. Taking the
Planckþ R16 constraints in the w0–wa plane at face value,
[31] found that they prefer the phantom region w < −1 and
more deeply phantom in the past (wa < 0, [22]). A single
canonical scalar field cannot achieve this, and even more
complicated, and effectively arbitrary, fields have difficulty.
While adding the JLA supernova constraints [32] tends to
shift the preferred area out of the phantom region, and
adding baryon acoustic oscillation (BAO) data [33–35] tends
to prefer less negative values of wa, adding weak lensing or
CMB lensing preserves the preference for deep phantom
models. Here we mostly focus on just the Planck or
Planckþ R16 data sets.
It is interesting to consider whether a reasonably physi-

cally motivated model can be found for this unusual region.
The answer is yes: one of the earliest dark energy models,
vacuum metamorphosis [23–25] lives in just this part of
phase space. This model has a sound physical foundation,
taking into account quantum loop corrections to gravity in
the presence of a massive scalar field. In the first order
calculations, this gives rise to R2 terms familiar from,
e.g., Starobinsky gravity and inflation [36], where R is the
Ricci scalar, but Parker and collaborators were able to
nonperturbatively sum the infinite series (under certain
restrictions) and find a closed form solution.
This solution indicates a phase transition in gravity

similar to Sakharov’s induced gravity [37]. The phase
transition is induced once the Ricci scalar curvature R has
evolved to become of order the mass squared of the field,
and thereafter R is frozen to be of order m2. This original
model had one free parameter, m2, which determined the
matter density today, Ωm, giving it the same number of free
parameters as flat ΛCDM.
Some later elaborations added a vacuumexpectationvalue,

somewhat inorganically, acting as a cosmological constant,
but we will focus on the original, more elegant VM model.

B. Relation to w0–wa

A first question might be how to connect the observa-
tional motivation for a particular region in the dark energy

equation of state phase space w0–wa, where w0 is the
present value of the equation of state function wðaÞ and wa
a measure of its time variation, to the theoretical VM
model. It has been well established that the w0–wa para-
metrization provides an excellent fit (at the 0.1% level in
observables) to a broad range of scalar field models [38,39],
but VM has a very rapid time evolution and is not a
standard scalar field model.
In Fig. 1, we illustrate the equation of state behavior for

the original, and some elaborated, VM models. One clearly
sees the phase transition at a fairly recent redshift, where
the dark energy deviates from an effective cosmological
constant behavior of w ¼ −1 (for the elaborated cases) or
newly appears in the phase transition (in the original case).
After the transition the dark energy is highly phantom
(w <− 1) and then rapidly evolves toward w ¼ −1 (with
wa strongly negative) and an eventual de Sitter state as the
Ricci scalar freezes to the value of the field mass squared.
Even for the rapidly evolving case of no cosmological

constant (our preferred case), the observational implica-
tions of the model are well described by the standard w0–wa
parametrization since the phantom nature means that dark
energy diminishes quickly into the past. Figure 2 illustrates
the goodness of fit of the equivalent w0–wa model for the
most extreme case, that without a cosmological constant.
The agreement in the distance-redshift relation is better

FIG. 1. The effective dark energy equation of state evolution is
plotted vs redshift for several values of the mass parameterM, for
Ωm ¼ 0.3. The bold blue curve shows the original case (our
preferred model) where there is no cosmological constant, while
the medium black curves show the elaborated case with an added
cosmological constant, and the dotted red curve shows one with a
negative cosmological constant (causing w to first shoot up to
large positive values before it plummets to highly negative
values).
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than 0.55% at all redshifts (0.2% in the distance to CMB
last scattering), sufficient for current data precision. Note
that w0 ¼ −1.24, wa ¼ −1.5 is a good fit (lying near
68% C.L.) to the Planckþ R16 data, as well as when
adding weak lensing or CMB lensing or shifting the local
distance H0 prior not lower than 70, as seen in [22].

C. VM equations

The phase transition criticality condition is

R ¼ 6ð _H þH2Þ ¼ m2; ð1Þ

and, defining M ¼ m2/ð12H2
0Þ, the expansion behavior

above and below the phase transition is

H2/H2
0 ¼ Ωmð1þ zÞ3 þΩrð1þ zÞ4
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H2/H2
0 ¼ð1 −MÞð1þ zÞ4 þM; z ≤ zt: ð3Þ

The phase transition occurs at

zt ¼ −1þ 3Ωm

4ð1 −MÞ ð4Þ

(for simplicity of the expression we ignore the contribution
of radiation energy density Ωr at z≲ 1).
We see that above the phase transition, the Universe

behaves as onewith matter plus a cosmological constant, and
after the phase transition it effectively has a dark radiation
component (the matter is hidden within this expression) that
rapidly redshifts away leaving a de Sitter phase. The original
model did not include an explicit high redshift cosmological
constant; we see that this implies that

Ωm ¼ 4

3
½3Mð1 −MÞ3�1/4: ð5Þ

So there is only one free parameter in the original model,
eitherM orΩm, the same number as inΛCDM. For example,
Ωm ¼ 0.3 implies M ¼ 0.9017. We emphasize that the de
Sitter behavior at late times is not a result of a cosmological
constant, but rather the intrinsic physics of the model.
The effective dark energy equation of state (i.e. of the

effective component once the matter contribution has been
accounted for) is

wðzÞ ¼ −1 −
1

3

3Ωmð1þ zÞ3 − 4ð1 −MÞð1þ zÞ4
M þ ð1 −MÞð1þ zÞ4 −Ωmð1þ zÞ3 ; ð6Þ

below the phase transition, and simply wðz > ztÞ ¼ −1
above the phase transition. In the case without a cosmo-
logical constant, there is no dark energy above the
transition.
The equation of state behavior is phantom, and more

deeply phantom as the cosmological constant diminishes,
as seen in Fig. 1. Note that for M > 0.9017 (in the Ωm ¼
0.3 case), the cosmological constant can go negative, and
this leads initially to a highly positive equation of state just
after the transition. This is not an observationally viable
region. As M falls below the critical value, the cosmologi-
cal constant smooths out the rapid time variation, leading
to a nearly constant wðaÞ. If M falls too low, then the
transition occurs in the future [see Eq. (4)], and we have
simply the ΛCDM model for the entire history to the
present. Moreover, M then becomes no longer a free
parameter but is given in terms of Ωm by the requirement
that Hðz ¼ 0Þ/H0 ¼ 1. Thus, when considering the elab-
orated VM model with a free parameter M we put a prior
ranging between the lower and upper bounds, correspond-
ing to zt ≥ 0 and Ωdeðz > ztÞ ≥ 0, respectively. But again,
we regard the original VM model without cosmological
constant as the most elegant and theoretically compelling.

III. COSMOLOGICAL PARAMETER FITTING

In order to study the vacuum metamorphosis model we
consider a baseline parameter set plus extended scenarios.
For our baseline, we consider seven cosmological param-
eters: the vacuum metamorphosis scale M, and the six
parameters of the standard analysis, i.e. the baryon energy

FIG. 2. The distance-redshift relation for the vacuum meta-
morphosis model without a cosmological constant—the fastest
evolving one—is well fit by a standard w0–wa model. Here, the
comoving distance, which enters the CMB distance to last
scattering, and weak lensing, BAO, and supernova observations,
is plotted vs redshift.
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density Ωbh2, the cold-dark-matter energy density Ωch2,
the ratio between the sound horizon and the angular
diameter distance at decoupling θs, the amplitude and
spectral index of the primordial scalar perturbations As

and ns (at pivot scale k0 ¼ 0.05h Mpc−1), and the reioni-
zation optical depth τ. All these parameters are varied in a
range of external, conservative, priors listed in Table I. For
the original VM model, M is fixed by Ωm (or v.v.) and so
there are six parameters, as in ΛCDM.
We also consider two more extended scenarios in

addition to our baseline model for testing VM. In the first
scenario we add variations in three more parameters: the
total neutrino mass for the three standard neutrinos Σmν,
the running of the scalar spectral index dns/d ln k, and the
effective number of relativistic degrees of freedom Neff .
Finally, in the last scenario, we also consider variation in
the gravitational lensing amplitude Alens of the CMB
angular power spectra (see e.g. [40]). This scales the
CMB lensing strength on all scales by a constant, relative
to the prediction of the model being considered.

We analyze these cosmological parameters by making
use of the high-l temperature and low-l temperature and
polarization CMB angular power spectra released by
Planck 2015 [30]. We refer to this data set as “Planck
TT,” and it includes the large angular-scale temperature and
polarization anisotropy measured by the Planck LFI experi-
ment and the small-scale temperature anisotropies mea-
sured by Planck HFI. Moreover, we add to Planck TT the
high-l polarization data measured by Planck HFI [30], and
we refer to this data set simply as “Planck.” This is our
baseline data. We sometimes also consider the “R16” data
set in the form of an external Gaussian prior on the Hubble
constant H0 ¼ 73.24� 1.74 km/s/Mpc at 68% C.L., as
measured by [2].
In order to derive constraints on the parameters, we use

the November 2016 version of the publicly available
Monte Carlo Markov chain package cosmomc [41].
This code has a convergence diagnostic based on the
Gelman and Rubin statistic and includes the support for
the Planck data release 2015 Likelihood Code [30] (see
[42]), implementing an efficient sampling by using the
fast/slow parameter decorrelations [43]. We also consider
the impact of CMB foregrounds by including additional
nuisance parameters and marginalizing over them as
described in [31,44].

IV. VACUUM METAMORPHOSIS
COSMOLOGY FITS

A. Original VM

To begin, we consider the original VM model without
cosmological constant. This has the same number of dark
energy parameters as the standard ΛCDM case, and as we
know from Sec. II, it is also consistent with the region in
the w0–wa phase space preferred by the CMB data. The
constraints on cosmological parameters in the case of
variation of the standard six parameters are reported in
Table II for different choices of data sets. As we can see,
assuming VM can indeed raise the Hubble constant but in
fact it overshoots the R16 value, with Planck data alone

TABLE I. Flat priors on the various cosmological parameters
used in this paper. Mlow and Mhigh are given by conditions
described in the text in Eqs. (4) and (5), respectively, as functions
of Ωm.

Parameter Prior

Ωbh2 [0.005, 0.1]
Ωch2 [0.001, 0.99]
τ [0.01, 0.8]
ns [0.8, 1.2]
log½1010As� [2, 4]
Θs [0.5, 10]
M [Mlow, Mhigh]P

mν (eV) [0, 5]
Neff [0.05, 10]
dns
d ln k [−1, 1]
Alens [0, 10]
B [−0.4, 0.4]

TABLE II. 68% C.L. constraints on cosmological parameters in the VM scenario for different combinations of data sets.

Planck TT (VM) Planck TT þR16 (VM) Planck (VM) Planck þR16 (VM)

Ωbh2 0.022 27þ0.000 22
−0.000 25 0.022 12� 0.000 22 0.022 25� 0.000 15 0.022 19� 0.000 16

Ωch2 0.1195� 0.0021 0.1212� 0.0021 0.1198� 0.0014 0.1206� 0.0015
τ 0.075� 0.020 0.068� 0.019 0.075� 0.018 0.070� 0.017
ns 0.9657� 0.0061 0.9616� 0.0060 0.9642� 0.0047 0.9623� 0.0047
logð1010ASÞ 3.084� 0.037 3.073� 0.036 3.085� 0.034 3.077� 0.032
H0 78.69� 0.56 78.22� 0.58 78.61� 0.38 78.39� 0.39
σ8 0.930� 0.018 0.935� 0.017 0.932� 0.016 0.933� 0.15
S8 0.814� 0.022 0.829� 0.022 0.817� 0.022 0.823� 0.017

χ̄2eff 11 279.7 11 287.5 12 964.5 12 972.2
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providing a constraint H0 ¼ 78.61� 0.38 (see Table II).
This, in practice, replaces one 3σ tension with its opposite.
The VM model and ΛCDM give similar results for most

of the parameters, except for H0 and Ωm (and σ8 which
depends on Ωm). This is clearly exhibited in Fig. 3 where
we report the two-dimensional posterior distributions
from Planck on the six cosmological parameters assuming
either VM either a cosmological constant as dark energy

component. The difference in the parameters is mostly
associated with the geometric degeneracy in the distance to
CMB last scattering.
We also report in Table II the constraints for the VM

scenario from the combined Planckþ R16 data set.
However, as we can notice from the last line of the table,
where we report the mean minus log likelihoods, χ̄2eff , the
inclusion of the R16 prior, that consists in one single data

FIG. 3. Triangular plot showing the posteriors of the cosmological parameters for ΛCDM and the original VM model, along with their
two-dimensional joint confidence contour at 68% C.L. and 95% C.L. This is for baseline CMB data only, in the six-parameter space.

VACUUM PHASE TRANSITION SOLVES THE H0 TENSION PHYS. REV. D 97, 043528 (2018)

043528-5



point, results in an increase of Δχ̄2eff ∼ 8, clearly showing a
tension between the Planck data and the R16 prior also in
the VM scenario. However, it is worth noticing that while
the Planck data set alone in the case of a cosmological
constant gives χ̄2eff ¼ 12967.69 (see [44]), here we get
χ̄2eff ¼ 12964.64 for VM, providing a better fit to the same
data set with Δχ̄2eff ∼ −3.
When we include in the parameter space the sum of

neutrino masses (which must exist), the running of the
scalar spectral index, and Neff then VM provides a more
consistent picture. The constraints on this nine-parameter
VM scenario are reported in Table III for three data
combinations (Planck TT, Planck, Planckþ R16) and also,
for comparison, for the cosmological constant scenario for
the Planckþ R16 case.
As we can see, in this case we have that the Planck data

alone provide the constraint H0 ¼ 76.5þ2.3
−1.9 at 68% C.L.,

now in agreement with R16. Moreover, the VM model
provides a better mean fit over ΛCDM by Δχ̄2eff ¼ −7.57
and a value of H0 ¼ 74.8� 1.4 at 68% C.L. for the
Planckþ R16 case. The shift in H0 also leads to a
lowering of the present dimensionless matter density
Ωm ¼ 0.252þ0.011

−0.014 . The long period of matter domination
before the vacuum phase transition enhances growth, and
the strongly negative dark energy equation of state means
that dark energy density only becomes appreciable at
relatively late times. These combine to raise the mass
fluctuation amplitude to σ8 ¼ 0.877þ0.039

−0.031 (see Table III).
However, note that the weak lensing parameter S8 ¼
σ8ðΩm/0.3Þ0.5 actually decreases relative to the ΛCDM
case, from 0.852� 0.018 to 0.803� 0.022, putting it in
better agreement with weak lensing results from the Kilo
Degree Survey [45] and Dark Energy Survey [46,47]. Also,

the reduced high redshift HðzÞ may ameliorate tension in
the Lyman alpha-quasar cross-correlations (see [48]).
As we can see from Table III, the agreement with the

R16 prior comes at the expense of a smaller value of the
neutrino effective number Neff with respect to the standard
Neff ¼ 3.046 at the level of ∼1.5σ. Also the bounds on
neutrino masses are weaker with respect to the cosmologi-
cal constant case, and some hints are present for a neutrino
mass such that Σmν ∼ 0.27 eV, and for a negative running
at the level slightly above 1σ. This should be compared
with the same nine-parameter fit under ΛCDM reported in
the fourth column of Table III in the case of the Planckþ
R16 data set. As we can see, the agreement in this case is
obtained at the expenses of an higher value forNeff at about
1.5σ, Neff ¼ 3.31� 0.18, and with a strong upper limit on
the neutrino mass Σmν < 0.07 eV at 68% C.L..
We can, therefore, state that in the case of a nine-

parameter analysis both a cosmological constant and VM
show some needs for extra physics in order to make the
Planck data compatible with the R16 prior. This extra
physics is mainly connected with the neutrino effective
number Neff that should be larger than the expected value
when a cosmological constant is assumed and smaller in the
case of VM.
However, as also pointed out in the introduction, the

Planck data provides a ∼2.5σ indication for a larger weak
lensing CMB spectrum amplitude Alens (see e.g. [49]).
While the nature of this anomaly is still unclear, it is clearly
interesting to provide constraints also in a further extended
scenario, varying also Alens. We report the results of this
analysis in Table IV. In this ten-parameter framework,
the VM model prefers now a neutrino mass with Σmν ¼
0.51� 0.23 eV at 68% C.L. while the neutrino effective
number is perfectly compatible with the standard value

TABLE III. 68% C.L. constraints on cosmological parameters in the VM scenario, including
P

mν þ Neff þ dns
d ln k, for different

combinations of data sets. For comparison, in the fourth, last, column we report the constraints assuming a cosmological constant for the
Planckþ R16 data set. If only upper limits are shown, they are at 95% C.L.

Planck TT þR16 (VM) Planck (VM) Planck þR16 (VM) Planck þR16 (Λ)

Ωbh2 0.021 97� 0.000 27 0.022 11� 0.000 25 0.021 94� 0.000 20 0.022 57� 0.000 20
Ωch2 0.1146þ0.0038

−0.0043 0.1175� 0.0034 0.1160� 0.0031 0.1223� 0.0031
τ 0.080� 0.022 0.078� 0.020 0.076� 0.019 0.093� 0.019
ns 0.941� 0.012 0.955� 0.012 0.9471� 0.0093 0.9778� 0.0084
logð1010ASÞ 3.081� 0.046 3.085� 0.041 3.078� 0.040 3.127� 0.037
H0 74.0� 1.6 76.5þ2.3

−1.9 74.8� 1.4 69.7� 1.3P
mν [eV] <0.534 <0.503 0.27þ0.10

−0.25 <0.14
Neff 2.57þ0.24

−0.28 2.87� 0.23 2.72� 0.19 3.31� 0.18
dns
d ln k −0.0154� 0.0099 −0.0065� 0.0079 −0.0091� 0.0078 −0.0008� 0.0078
σ8 0.887þ0.041

−0.029 0.900þ0.043
−0.025 0.877þ0.039

−0.031 0.850� 0.019
S8 0.816� 0.026 0.809� 0.020 0.803� 0.022 0.849� 0.018

χ̄2eff 11 281.8 12 966.9 12 968.6 12 976.3
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Neff ¼ 3.046. In the same ten-parameter framework and for
the same Planckþ R16 data set, but assuming a cosmo-
logical constant, we found (see the fourth column in
Table IV) that there is no preference for a neutrino mass,
with a 68% C.L. upper limit of Σmν < 0.149 eV, while we
have an indication for Neff ¼ 3.41� 0.20 at 68% C.L., i.e.
almost 2σ above the standard value. It is, therefore, clear
that in the ten-parameter framework the VM model offers
an important advantage over the cosmological constant
since it solves the tension on the Hubble constant without
the need of a nonstandard value for Neff. In practice, the
Planck data under a VM model prefers a value of the
Hubble constant larger than the R16 value, but this can be
alleviated by introducing a neutrino mass that is well in
agreement with current laboratory data (see e.g. [50]). It is
also worth noticing that the Alens tension seems somewhat
alleviated in the VM scenario and that the value of S8 is

now in even better agreement with the recent cosmic shear
results from the Kilo Degree Survey [45].
We, however, remark that there can be difficulties with

other observational data sets not considered here such as
redshift space distortions and supernova distances. We
leave that for future work. Still, the improvement in χ2,
the defusing of theH0 tension (and possible amelioration of
the weak lensing tension), and of course the strong
theoretical foundation of the model together with it having
no cosmological constant to explain, makes it worthy of
further investigation.

B. Elaborated VM (varying M)

We now consider the more ad hoc VM model that
includes a cosmological constant; i.e., we allow the
vacuum criticality parameter M to float. Constraints are
given in Table V considering a scenario based on 6þ 1

TABLE IV. 68% C.L. constraints on cosmological parameters in the VM scenario, including
P

mν þ Neff þ dns
d ln k þ Alens, for different

combinations of data sets. For comparison, on the fourth, last, column we report the constraints assuming a cosmological constant for the
Planckþ R16 data set. If only upper limits are shown, they are at 95% C.L.

Planck TT þR16 (VM) Planck (VM) Planck þR16 (VM) Planck þR16 (Λ)

Ωbh2 0.022 28� 0.000 31 0.022 31� 0.000 28 0.022 14� 0.000 22 0.022 78� 0.000 22
Ωch2 0.1158þ0.0042

−0.0047 0.1187� 0.0036 0.1172� 0.0032 0.1222� 0.0031

τ 0.064þ0.022
−0.025 0.059� 0.022 0.058þ0.021

−0.024 0.059þ0.021
−0.021

ns 0.959� 0.016 0.966� 0.013 0.958� 0.011 0.986� 0.009
logð1010ASÞ 3.051þ0.045

−0.052 3.050� 0.044 3.043þ0.043
−0.049 3.057þ0.043

−0.043
H0 74.6� 1.6 76.8� 2.3 74.8þ1.3

−1.4 70.5þ1.4
−1.4P

mν [eV] 0.54þ0.25
−0.35 <0.829 0.51� 0.23 <0.298

Neff 2.85þ0.30
−0.37 3.04� 0.26 2.90þ0.21

−0.24 3.41� 0.20
dns
d ln k −0.006þ0.011

−0.013 0.0001� 0.0088 −0.0021� 0.0086 −0.0049� 0.0078

Alens 1.22þ0.12
−0.14 1.17þ0.09

−0.11 1.17� 0.10 1.22þ0.085
−0.097

σ8 0.803� 0.058 0.841þ0.064
−0.052 0.811þ0.047

−0.055 0.806þ0.024
−0.033

S8 0.745� 0.046 0.761� 0.037 0.752� 0.035 0.798� 0.026

χ̄2eff 11 280.3 12 965.3 12 966.2 12 971.2

TABLE V. 68% C.L. constraints on cosmological parameters in the elaborated VM scenario, for different combinations of data sets. If
only lower limits are shown, they are at 95% C.L..

Planck TT Planck TT þR16 Planck Planck þR16

Ωbh2 0.022 24� 0.000 24 0.022 24� 0.000 23 0.022 25� 0.000 16 0.022 24� 0.000 16
Ωch2 0.1197� 0.0022 0.1197� 0.0022 0.1199� 0.0014 0.1199� 0.0014
τ 0.078� 0.019 0.077� 0.020 0.078� 0.017 0.078� 0.017
ns 0.9656� 0.0062 0.9657� 0.0062 0.9644� 0.0048 0.9643� 0.0047
logð1010ASÞ 3.089� 0.037 3.087� 0.037 3.092� 0.033 3.090� 0.033
H0 71.5þ2.8

−5.1 73.3� 1.9 71.6þ2.8
−5.1 73.4� 1.8

M >0.785 0.889þ0.022
−0.012 >0.789 0.891þ0.019

−0.012

σ8 0.867þ0.028
−0.048 0.883� 0.025 0.870þ0.028

−0.045 0.886� 0.021

S8 0.836� 0.026 0.831� 0.022 0.838� 0.022 0.833� 0.017

χ̄2eff 11 281.2 11 282.0 12 966.0 12 966.6
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cosmological parameters. We can immediately see
from the Table that allowing M to float lowers the value
of the Hubble constant from the Planck data, making
it more compatible with the R16 prior, with H0 ¼
71.5þ2.8

−5.1 km/s/Mpc at 68% C.L. Considering the
PlanckþR16 data set we get H0¼73.4�1.8km/s/Mpc
at 68% C.L., with Δχ̄2eff ¼ −5.6 with respect with the fixed
M model reported in Table II, showing that varying M
solves the tensions between Planck and R16. This can also
be clearly seen in Fig. 4 where we plot the two-dimensional
posteriors in the M vs H0 plane from the Planck and
Planckþ R16 data sets. Letting M vary allows for lower
values ofH0 and the R16 prior is now perfectly compatible
with the Planck data. By comparing the χ̄2eff values from the

Planckþ R16 data sets for the nine-parameter case in
Table III and the ten-parameter case in Table IV, we see
that allowing M to float solves the H0 tension better than
the fixed VM or the cosmological constant model, with the
inclusion of one extra parameter (in this 6þ 1 scenario
without a neutrino mass parameter).
It is, however, worthwhile to note that the Planck TT and

Planck data sets provide only a lower limit to M. Since the
maximum theoretical value achievable byM in these runs is
given by Eq. (5), corresponding to the fixed M case, this
means that the Planck data shows no preference for values
of M different from those of the original VM model. This
can be also seen by the fact that we have a worse χ̄2eff value
when varying M with respect to the fixed case. In practice,
the extra parameter space allowed by varying M is not
preferred by the Planck data.
In Table VI and Table VII, we report the constraints

obtained on cosmological parameters in the case of a
varying M model, adding further extra parameters. In
Table VI, we include in the analysis also the neutrino
effective number Neff, the neutrino mass scale Σmν, and the
running of the spectral index dns

d ln k. As we can see, there is
now no indication for values different from the standard
expectations for these parameters. In particular, the neu-
trino effective number Neff is now more compatible with
3.046. But the χ2 improvement does not exceed the number
(one) of extra parameters added to the original VM model,
and the elaborated model suffers from the usual cosmo-
logical constant problem.
In Table VII, we report similar constraints but now also

letting the Alens parameter to vary, for a total variation of 11
parameters. As we can see there is now no indication for
extra physics or neutrino mass different from zero as was
previously the case for theM fixed model. In practice, there
is no need for extra parameters or additional new physics for

FIG. 4. Constraints on the M −H0 space of the elaborated VM
model from the Planck and Planckþ R16 data sets in the 6þ 1
parameters analysis.

TABLE VI. 68% C.L. constraints on cosmological parameters in the elaborated VM scenario, including
P

mν þ Neff þ dns
d ln k, for

different combinations of data sets. If only lower limits are shown, they are at 95% C.L.

Planck TT Planck TT þR16 Planck Planck þR16

Ωbh2 0.021 95þ0.000 40
−0.000 46 0.022 26þ0.000 32

−0.000 38 0.022 06� 0.000 25 0.022 12þ0.000 22
−0.000 25

Ωch2 0.1155� 0.0054 0.1183þ0.0046
−0.0053 0.1175� 0.0033 0.1180� 0.0033

τ 0.083� 0.023 0.086� 0.022 0.082� 0.019 0.080� 0.019
ns 0.940� 0.024 0.959þ0.017

−0.021 0.953� 0.011 0.957� 0.011
logð1010ASÞ 3.090� 0.050 3.104� 0.046 3.093� 0.039 3.090� 0.040
H0 66.1þ5.2

−6.4 73.0� 1.7 68.6þ3.9
−5.3 73.2� 1.7

M >0.742 0.892þ0.030
−0.008 >0.754 0.899þ0.020

−0.009P
mν [eV] <0.640 <0.456 <0.573 <0.428

Neff 2.61þ0.42
−0.49 2.93þ0.33

−0.43 2.84� 0.22 2.90� 0.21
dns
d ln k −0.016� 0.012 −0.009� 0.011 −0.0083� 0.0081 −0.0064� 0.0078
σ8 0.816� 0.057 0.876þ0.035

−0.028 0.830þ0.054
−0.047 0.875þ0.024

−0.030
S8 0.845� 0.031 0.827� 0.024 0.836� 0.026 0.822� 0.022

χ̄2eff 11 282.8 11 282.8 12 968.6 12 968.0
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solving theH0 tension when varyingM. It also important to
note that the Alens anomaly is not present in the Planck CMB
lensing data derived from trispectrum measurements. The
inclusion of the Planck CMB lensing data set could therefore
change the results reported in Table VII.
A summary comparing the χ2 of the VM models with

ΛCDM is given in Table VIII.

C. Bayesian evidence

While the χ2 values reported can give a feeling of the
goodness of fit of one model respect to another it is clearly

interesting to quantify the better accordance of a model
with the data respect to another by using more appropriate
statistical methods. This can be done by considering, for
example, the marginal likelihood also known as the
Bayesian evidence.
Let us remind here some basics of Bayesian parameter

inference. Given a vector of parameters θ of a model M
and a set of data x, the parameters posterior distribution is
given by

pðθjx;MÞ ¼ pðxjθ;MÞπðθjMÞ
pðxjMÞ ð7Þ

where pðxjθ;MÞ is the likelihood and πðθjMÞ is an
assumed prior on the parameters.
The marginal likelihood (or evidence) given by

E≡ pðxjMÞ ¼
Z

dθpðxjθ;MÞπðθjMÞ; ð8Þ

is a fundamental quantity for Bayesian model comparison.
Given two competing modelsM0 andM1 it is indeed useful
to consider the ratio of the likelihood probability (the Bayes
factor):

lnB ¼ pðxjM0Þ/pðxjM1Þ ð9Þ

According to the revised Jeffrey’s scale by Kass and
Raftery [51], the evidence (against M1) is considered as
“positive” if lnB < −1.0, “strong” if lnB < −3.0, and
“very strong” if lnB < −5.0.
In the third column of Table VIII, we report the Bayes

factors for several cases, always considering as reference

TABLE VII. 68% C.L. constraints on cosmological parameters in the elaborated VM scenario, including
P

mν þ Neff þ dns
d ln k þ Alens,

for different combinations of data sets. If only upper or lower limits are shown, they are at 95% C.L.

Planck TT Planck TT þR16 Planck Planck þR16

Ωbh2 0.022 87þ0.000 56
−0.000 69 0.022 97þ0.000 45

−0.000 39 0.022 27� 0.000 28 0.022 39� 0.000 27

Ωch2 0.1214þ0.0056
−0.0071 0.1218þ0.0050

−0.0058 0.1188� 0.0035 0.1195� 0.0034

τ 0.066þ0.023
−0.026 0.067þ0.022

−0.026 0.059� 0.021 0.060� 0.021

ns 0.991þ0.030
−0.035 0.996þ0.023

−0.019 0.964� 0.013 0.969� 0.012

logð1010ASÞ 3.067þ0.048
−0.055 3.070þ0.047

−0.053 3.048� 0.044 3.052� 0.043

H0 71.6þ6.6
−7.7 73.2� 1.7 67.2þ3.8

−5.4 72.9� 1.7

M >0.754 0.856þ0.050
−0.031 >0.724 0.889þ0.027

−0.010P
mν [eV] 0.54þ0.18

−0.50 <1.14 0.51þ0.20
−0.44 <0.847

Neff 3.50þ0.54
−0.75 3.57þ0.43

−0.50 3.04� 0.25 3.11þ0.24
−0.26

dns
d ln k 0.005� 0.015 0.007þ0.012

−0.014 −0.0005� 0.0089 0.0010� 0.0082

Alens 1.35þ0.14
−0.17 1.35þ0.13

−0.17 1.22þ0.10
−0.11 1.195� 0.096

σ8 0.748þ0.080
−0.072 0.764þ0.070

−0.054 0.745� 0.068 0.807þ0.051
−0.044

S8 0.739� 0.051 0.736� 0.047 0.772� 0.037 0.769� 0.037

χ̄2eff 11 279.5 11 279.7 12 965.9 12 966.3

TABLE VIII. Comparison of the beyond standard physics
models with standard ΛCDM. The number of additional param-
eters relative to ΛCDM is ΔNpar, and the improvement in the fit
relative to ΛCDM is Δχ̄2eff In the third column, we provide the
bias factor lnB computed assuming a cosmological constant as
reference model.

Model ΔNpar Δχ̄2eff lnB

Planck only, minimal six parameters:
ΛCDM � � � � � � 0
Vacuum Metamorphosis 0 −3.2 þ1.3
VM elaborated 1 −1.7 −1.3

Planck only, þmν, Neff ,
dns
d ln k:

ΛCDM � � � � � � 0
Vacuum Metamorphosis 0 −2.1 0.8
VM elaborated 1 −0.4 −2.2

Planckþ R16, þmν, Neff ,
dns
d ln k:

ΛCDM � � � � � � 0
Vacuum Metamorphosis 0 −7.7 4.9
VM elaborated 1 −8.3 2.0
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case (lnB ¼ 0, or M0 as in the previous definition) the
model where the dark energy component is given by a
cosmological constant. The evidence is computed from
our MCMC chains using the MCEvidence code described
in [52,53].
As we can see, when considering the minimal six

parameters model we found positive evidence for the
vacuum metamorphosis model against a cosmological
constant (lnB½VM;Λ� ¼ −1.3). At the same time, we found
positive evidence for a cosmological constant against the
VM elaborated model despite its better χ2 value. This can
be explained by the extra parameter present in the VM
elaborated model since additional parameters are penalized
in Bayes comparison.
In extended nine-parameter space, the Planck data alone

does not provide a significant evidence for a cosmological
constant against a VM model. However, we again found
positive evidence against a VM elaborated model both with
respect a cosmological constant and the VM model.
Finally, when considering the Planck data set in combi-

nation with the R16 value in nine-parameter space, we
found a strong evidence for the VM model against a
cosmological constant and positive evidence for a VM
elaborated model also against a cosmological constant.

V. SCALE-DEPENDENT LENSING AMPLITUDE

In a second approach to beyond standard physics, we
test the “Planck” data set with a scale-dependent scaling of
the gravitational lensing amplitude. This seeks to explore
indications that cosmological parameters derived from the
lower multipole (l≲ 1000) data and the higher multipole
(l ≳ 1000) data can differ by ∼1σ. In this case, in addition
to the six parameters of the standard ΛCDM model (VM is
not used in this section), we reparametrize Alens from a
constant (seventh parameter) to both an amplitude and a
slope, giving eight parameters in total.
Specifically,

Alens ¼ Alens;0 ×

�
1þ Blog10

�
l
300

��
: ð10Þ

This form is motivated by the behavior of various beyond
standard scale-dependent physics, such as modified gravity,
neutrino mass, and cold dark energy, investigated in [54].
The amplitude Alens;0 is the value at l ¼ 300, in the vicinity

of the first acoustic peak, and roughly represents the mean
over the full multipole range.
The constraints on Alens;0 and B are reported in Table IX

for several combinations of data sets. The Planck TT and
Planck data sets both favor a value for Alens;0 larger than the
expected value, while the B parameter is unconstrained.
Comparing to the standard ΛCDM case, the parameter
values do not shift appreciably and the χ2 improves by less
than 0.4 (at the cost of 1 more parameter). However, we
found that these mild shifts are in the right direction to
alleviate the several tensions. We found that for the Planck
data set the Hubble constant is now constrained to be
H0 ¼ 67.86� 0.74 km/s/Mpc at 68% C.L., i.e. bringing
the tension with the R16 prior from 3.24 standard devia-
tions to 2.87. Also the S8 parameter is smaller and now
constrained from the Planck data set to be S8 ¼ 0.818�
0.024 at 68% C.L., in better agreement with cosmic shear
measurements.
The one additional parameter B cannot be determined

with the “Planck” data set alone. To constrain the scale
dependence of the lensing amplitude, we must include CMB
lensing data, i.e. use the lensing potential power spectrum
derived from the CMB trispectrum analysis; we refer to this
as “Planckþ lensing.” Table IX summarizes the results, and
Fig. 5 shows the one-dimensional and joint probability
distributions of the lensing amplitude parameters.
The positive correlation between Alens;0 and B can be

understood as preserving the CMB lensing power spectrum
amplitude where it has the most power, at l < 300.
The inclusion of the lensing data brings the value of

Alens;0 back in agreement with the standard value, and it
now constrains the slope to B ¼ −0.076þ0.11

−0.099. We find
negligible shift in the cosmological parameters. Thus, this
form of scale dependence (linear in logl) cannot solve the
H0 tension.1

We remark, however, by looking at the last line in
Table IX, that the inclusion of CMB lensing to the Planck
data set significantly increases the χ̄2eff by ∼16. Since the
CMB lensing consists of about eight data points, this
clearly shows a significant tension between the Planck and

TABLE IX. 68% C.L. constraints on the amplitude and slope of the scale-dependent scaling of the gravitational
lensing amplitude [Eq. (10)], using different data sets.

Planck TT Planck TTþ lensing Planck Planck þlensing

B Unconstrained −0.07� 0.10 Unconstrained −0.076þ0.11
−0.099

Alens;0 1.22þ0.13
−0.17 1.014þ0.068

−0.080 1.17þ0.12
−0.15 0.994þ0.061

−0.061

χ̄2eff 11 276.9 11 293.7 12 963.6 12 979.6

1Note that the scale-dependent physics considered in [54] does
lead to a negative value of B ≈ −0.015 for the massive neutrino
and cold dark energy cases (while B has a positive sign for the
fðRÞ gravity case). Current experimental precision is insufficient
to constrain such scale-dependent physics.
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lensing data sets that not even a scale dependence for Alens
seems able to solve.

VI. CONCLUSIONS

Current CMB and local Hubble constant data, taken at
face value and interpreted within a ΛCDM cosmological
model, show a tension in the value of H0. This tension can
be removed by taking the dark energy not to be near
cosmological constant behavior but with a very unusual
nature—deeply phantom and rapidly evolving. Rather than
treating this phenomenologically, we resuscitate the vac-
uum metamorphosis theory of Parker and collaborators,
involving a phase transition in the nature of gravity and the
vacuum, based on calculations within quantum gravity.
We demonstrate that vacuum metamorphosis provides a

solution to the H0 tension, and indeed yields an improve-
ment in χ2 by 7.5 over ΛCDM with the same number of
parameters. Moreover, it can also ameliorate possible
tension in the weak lensing amplitude S8 seen between

Planck and some ground based surveys. Given the theory’s
robust foundation and reasonable motivation, including no
explicit or implicit cosmological constant, it is worthwhile
to investigate it further in future work, in particular
examining consistency with further data sets such as baryon
acoustic oscillations and supernova distances.
Considering Bayesian evidence, we found, for the

Planck data set alone, positive evidence for a VM model
against a cosmological constant both in the six- and nine-
parameter framework. When the R16 data set is considered,
we found a strong evidence for the VM model against a
cosmological constant in nine-parameter space.
Another extension of the standard model involves scale

dependence of the CMB lensing amplitude Alens, beyond
what exists in the standard model. This has a more modest
motivation, from the lesser apparent tension between
cosmological parameters derived from CMB data at high
and low multipoles (roughly less than and greater than
l ≈ 1000). Such scale dependence could arise from beyond
standard model physics such as modified gravity, cold dark
energy, or massive neutrinos. We do not find any evidence
for a tilt in the CMB lensing amplitude, though the Planck
lensing data is not precise enough to constrain this tightly.
Future CMB data from stage 3 experiments, and par-

ticularly from a CMB stage 4 experiment, can continue to
test the nature of dark energy, beyond standard physics, and
consistency between the high and low redshift universe.
Any solution must fit the rich array of data. All together
will evaluate tensions and anomalies and shed light on
whether we are seeing systematics, statistical excursions, or
indeed new physics, perhaps even definite signs of quan-
tum gravity.
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