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Calculations of the cosmic microwave background (CMB) lensing power implemented into the standard
cosmological codes such as CAMB and CLASS usually treat the surface of last scatter as an infinitely thin
screen. However, since the CMB anisotropies are smoothed out on scales smaller than the diffusion length
due to the effect of Silk damping, the photons which carry information about the small-scale density
distribution come from slightly earlier times than the standard recombination time. The dominant effect is
the scale dependence of the mean redshift associated with the fluctuations during recombination. We find

that fluctuations at k = 0.01 Mpc~! come from a characteristic redshift of z &~ 1090, while fluctuations at
k = 0.3 Mpc~! come from a characteristic redshift of z ~ 1130. We then estimate the corrections to the
lensing kernel and the related power spectra due to this effect. We conclude that neglecting it would result
in a deviation from the true value of the lensing kernel at the half percent level at small CMB scales. For an
all-sky, noise-free experiment, this corresponds to a ~0.1¢ shift in the observed temperature power

spectrum on small scales (2500 < I < 4000).
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I. INTRODUCTION

Density fluctuations along the line of sight distort the
images of observed galaxies. This effect is generally known
as gravitational lensing. By analyzing such distorted
images, one can obtain a map of the lensing potential,
which can then be related to the matter power spectrum at a
given redshift. In the case of cosmic microwave back-
ground (CMB) photons, these lensing distortions encode
information about the density fluctuations between the
early universe at z =~ 1100 and the present-day Universe.
We observe them in the CMB anisotropies as slight
modifications to their statistical properties [1-3]. Over
the past decade, cosmologists have measured the CMB
lensing signal through both autocorrelations and cross-
correlations with other density probes (e.g., cosmic infrared
background, galaxy lensing, galaxy counts, 21 cm probes)
[3-8]. Lensing measurements can put constraints on the
nature of dark energy and the expansion history of the
Universe [9-11].

Lower-redshift information can be inferred from weak
lensing studies, which measure the distortions of the
shapes of galaxies caused by lensing. In both cases, the
goal is to reconstruct the convergence field, which can be
directly related to the projected matter density by measur-
ing the magnification and shear effects from either dis-
tribution [12]. Since the lensing reconstruction information
is encoded mostly in the smallest scales observed,
high resolution and sensitivity are crucial for such mea-
surements [13].
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With the improvement in sensitivity expected in future
experiments [14-16], it is becoming increasingly more
important to take into consideration corrections to the
observed power spectra, which have until now been
negligible. One such effect comes from the fact that on
scales smaller than the diffusion length, the density
anisotropies are smoothed out due to photon diffusion
damping. This means that photons carrying small-scale
information need to have come from slightly earlier times
than the standard recombination time [17,18]. The dom-
inant effect is the scale dependence of the mean redshift
associated with the fluctuations during recombination.

The standard calculation of the CMB lensing power
implemented into numerical codes such as caAMB [19] and
CLASS [20] treats the surface of last scatter as an infinitely
thin screen. In this paper, we provide a modified estimation
of the distance to last scattering as a function of scale. This
correction takes into account the scale dependence of the
recombination redshift in the calculation of the lensing
kernel, which is needed to obtain the lensing power
spectrum. We finally evaluate the percentage difference
in the lensing kernel resulting from this modification and
discuss its significance given the expected sensitivity of
future experiments.

II. EFFECT ON LENSING KERNEL

The weighted projection of the matter density contrast J,
known as the convergence field, encodes information about
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the density fluctuations in the Universe since the period of
recombination and is expressed as

K(R) = / ® dW(2)5(,()h. 2). (1)

0

where y(z) is the conformal distance between us and some
event at redshift z [21]. In a flat universe, the lensing kernel
W* is given by

(2)

where p,(z) is the normalized distribution of sources as a
function of redshift.

In the case of the CMB, it is standard to assume that
the photons come predominantly from the redshift of
recombination z(#,) = z,, so that one can approximate
the source distribution as p, ~ 5p(z — z,) and thus obtain
the kernel [12]:

W(z) = %QmH% ;I-(sz)((cz)x(z})(z—j(z) . 3

We, thus, see that the usual approach for calculating the
lensing kernel, also employed by the cosmological codes
cLASS and CAMB, treats the surface of last scatter as an
infinitely thin screen. However, the CMB photons come
from a range of redshifts which peaks at the period of
recombination. The photons which last scattered at earlier
times contain more small-scale information than those
coming from later times because as the diffusion damping
scale increases with time, anisotropies are smoothed out
and information on small scales is lost [17,18]. The main
effect is that the mean redshift associated with the fluctua-
tions during recombination becomes scale dependent. This
effect is illustrated in Fig. 1.

This claim can be supported quantitatively by consid-
ering the visibility function v(#), which expresses the most
probable time at which a CMB photon last scattered, and
the damping factor exp[—k?/kp(1)?], which measures how
much the growth of a given mode is suppressed as a
function of time [22]. Their product, computed for each
mode, informs us about the most likely time at which the
photons encoding information on the given mode last
scattered:

o (7). (4)

As seen in the lowest panel in Fig. 2, for small-scale
modes, the product between the visibility function and the
damping factor peaks at earlier times than the standard

recombination time #,, which shows that the CMB
photons providing information on small-scale anisotropies
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FIG. 1. The CMB anisotropies can be broken into small scale,
intermediate scale and large scale. Due to diffusion damping, the
small-scale information is provided by photons which last
scattered at redshifts larger than the redshift of recombination.
In contrast, at smaller redshifts, the information on small
scales is lost, and large-scale information is provided by late-

time photons.
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FIG. 2. Top two panels: Damping scale and visibility function
as a function of conformal time. Bottom two panels: Damping
factor and the normalized product between the damping factor
and the visibility function for different wave numbers k. Smaller-
scale modes are most likely to have scattered at earlier times.
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(k= 0.1 Mpc™') are more likely to have come from an
earlier time than the mean recombination time. On even
smaller scales (k = 0.3 Mpc~!), where the primary anisot-
ropies are washed out, the effective emission time is shifted
to later times, as the motion of the photon-baryon fluid
starts to be dominated by its infall into the CDM potential
wells during matter domination. In this regime, the
approximation which we are adopting breaks down and
more careful analysis is needed. However, since we are
interested in the effect on the temperature and the polari-
zation power spectra for [ <4000, we can neglect the
baryon effect.

A plot of conformal time 7.(k) [Mpc] versus wave
number k [Mpc~!] obtained by numerically computing the
peak position for each mode is shown in Fig. 3. We fit a
cubic polynomial to this function, finding the form:

1, (k) = =2.14[In(k)]* — 15.67[In(k)]?
—42.46[In(k)]> — 50.77[In(k)] + 257.76.  (5)

We can now incorporate the scale dependence of 7, (k)
into the kernel and obtain its form as a function of both
redshift and CMB scale k, assuming that for each k,
the source distribution can be approximated by p~

50('7 - ’/l*(k))

. 3 14+ z2x(2) y(zs, k
)14 (Z,k) :—QmH%H(Z) (c> ( )

-x(2)
2z k) (6)

We show the impact on the lensing kernel as a function
of CMB scale (k) in three panels (Fig. 4), each of which is a
snapshot at a given redshift: z =1, z =15, and z = 10,
respectively. One sees that the fractional difference is
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FIG. 3. Time of the last scattering of photons as a function of
CMB scale. The blue curve is derived numerically by computing
the peak of the product g(k,n) = D(k,n)v(n) for each wave
number k. The orange curve uses our approximate result
from Eq. (4).
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FIG. 4. Fractional difference in the lensing kernel at redshifts
z=1, z=5 and z =10 assuming that the distance to last
scattering depends on the CMB scale k. The deviations from
the standard value of the kernel increase with redshift and
decrease with scale.

increasing approximately linearly with k& due to the fact
that the largest deviations of #, (k) from the standard value
arise at the smaller scales (k ~ 0.3 Mpc~'). Another obser-
vation is that the deviation from the standard value of the
kernel increases with redshift: at redshift z = 1, the frac-
tional difference is merely 0.01% on small scales, but it
reaches 0.1% for redshift z = 10.

Using the Limber approximation [23,24], the modified
equation for the power spectrum of the convergence field
due to CMB lensing becomes

043521-3



HADZHIYSKA, SPERGEL, and DUNKLEY

PHYS. REV. D 97, 043521 (2018)

0.010 . . . . . . . -
= 0005
g
S
=
% 0.000
|
&
=)
-0.005}
_0010 L L L L L n n i
0 500 1000 1500 2000 2500 3000 3500 4000
l
FIG. 5. Percentage difference in the lensed temperature power

spectrum assuming a scale-dependent distance to last scattering.
This result is derived by using the full-sky nonperturbative
approximation in Ref. [25] to second order.

o dz H
ety = [T EL G Wik — e ppk = ). ()
’ o ¢ x(z)

where y. is the mean distance to the last scattering surface.
Note that in contrast with the standard calculation, here the
lensing power spectrum depends on the two scales / (k) and
' (K". Thus, Cyy effectively describes how much our signal
will be lensed for a lens of size [ (k) and a given size of the
CMB anisotropy ' (k).

Since we expect very high sensitivity in the future
measurements of the temperature power spectrum, an

interesting observable to consider is the lensed temperature

power spectrum C[TT, which is approximately given by the
following modified equation:

cirn [EVAN-Q-1P
l (2”)2 |l _ l/|4 1=,

L, [dl
—l—ClTT[l—;lz/T 7,'51]. (8)

The resulting fractional difference in the temperature
power spectrum is shown in Fig. 5, where we use a full-sky
nonperturbative approximation [25]. As we increase !’ and
thus the distance to the source (small scales come from
earlier times), the overall amplitude of the difference also
gets larger, as expected in lensing theory. The average
percentage difference across the small-scale modes 2500 <
[ <4000 is 0.004%. Consequently, the measured temper-
ature power spectrum in an idealized all-sky, noise-free
experiment with a signal-to-noise ratio of 2200 on these

i

scales would be shifted by ~0.1¢ from the theoretically
predicted one.

The corresponding equation for the lensed B-mode
polarization power spectrum is

. VAN -(1-1)2 . »
[ G o A O

Since the B-mode power spectrum gives us a direct
probe of the lensing amplitude, the resulting fractional
difference is larger than in the case of temperature, peaking
at roughly /~ 3000 with ACPB/CE® ~0.03%. However,
this deviation would be harder to measure in the near future
due to the lower sensitivity of the polarization measure-
ments compared with the temperature.

ITII. CONCLUSION

The smaller-scale anisotropies observed in the CMB
come from slightly earlier times, which implies that the
time of photon last scattering is dependent on the physical
scale. This has important implications for the lensing kernel
used to compute the observable power spectra. We found
differences in the lensing kernel of ~0.1% at redshift z =
10 and of ~0.06% at redshift z = 5 for the smaller scales
(k ~0.3 Mpc™"). Consequently, this leads to an average
deviation of 0.004% in the temperature power spectrum on
small scales 2500 </ <4000. In the future, experiments
will ideally only be limited by cosmic variance and will
thus measure the temperature power spectrum with a
signal-to-noise ratio of =2200 on scales 2500 < IS
4000. Neglecting the scale dependence of recombination
then would lead to a measurable deviation from the
predicted power spectrum of about ~0.1c on these scales.
An observable for which we expect the effect to be more
prominent in the near future is the reconstructed lensing
power spectrum, as it depends on the 4-point function of the
lensed temperature map. We are hoping to look into it in a
future paper. In the current age of precision cosmology,
implementing such subpercent modifications to the observ-
able power spectra is becoming increasingly important.
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