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We consider an open universe created by bubble nucleation, and study possible effects of our “ancestor
vacuum,” a de Sitter space in which bubble nucleation occurred, on the present universe. We compute
vacuum expectation values of the energy-momentum tensor for a minimally coupled scalar field, carefully
taking into account the effect of the ancestor vacuum by the Euclidean prescription. We pay particular
attention to the so-called supercurvature mode, a non-normalizable mode on a spatial slice of the open
universe, which has been known to exist for sufficiently light fields. This mode decays in time most slowly,
and may leave residual effects of the ancestor vacuum, potentially observable in the present universe. We
point out that the vacuum energy of the quantum field can be regarded as dark energy if mass of the field is
of order the present Hubble parameter or smaller. We obtain preliminary results for the dark energy
equation of state wðzÞ as a function of the redshift.
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I. INTRODUCTION

In a theory with multiple vacua, nucleation of bubbles of a
true vacuum can occur due to quantum tunneling. If such a
theory is coupled to gravity, bubble nucleation provides a
mechanism for the creation of an FLRW(Fiedmann-
Lemaître-Robertson-Walker) universe. Superstring theory
is expected to have a large number of metastable vacua
[1–3] including positive energy de Sitter vacua [4,5], accord-
ing to the proposal of the “string landscape” (see e.g., [6] for a
review). Although the existence of such vacua has not been
proven yet, we consider bubble nucleation to be a viable
mechanism to determine initial conditions for our universe.
Understanding of the characteristic features of the

universe created by bubble nucleation is of great impor-
tance. One of such features is negative spatial curvature [7].
The Coleman-De Luccia instanton [8], which is a semi-
classical description of the creation and evolution of a

bubble, shows that the universe inside the bubble should
have negative curvature. Even though our universe is
known to be flat within the margin of error, it is logically
possible that there is a finite radius Rc of negative
curvature. The bound is roughly Rc ≳ 10H−1

0 where H0

is the current Hubble parameter [9].
Another feature would be the possible signatures in

the cosmic microwave background radiation (CMB). The
spectrum of the CMB temperature fluctuations is consistent
with the nearly scale-invariant spectrum of primordial
fluctuations predicted by inflation [10]. However, if the
number of e-folds of inflation is finite,wemight be able to see
deviations from scale invariance due to the evolution of the
universe before inflation. Such effects are expected to affect
the low-l (angular momentum) modes of the power spec-
trum. The CMB spectrum in the universe created by bubble
nucleation has been understood in the 1990’s1 [11–17]. The
studies on the CMB spectrum after the advent of string
landscape include [18–22]. Although no signature of bubble
nucleation has been found in the CMB yet, theoretical study
for seeking such a signature is undoubtedly important.
In this paper, we will focus on a third possible feature,

related but different from the above two. We will consider
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1Although it was often assumed at that time that the energy
density from the spatial curvature is as large as what we now
know to be dark energy (since the observational evidence for the
cosmic acceleration has not been established yet), essential
features of the spectrum has been understood.
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how the quantum fluctuations generated before bubble
nucleation affect the vacuum energy in the present universe.
The universe created by bubble nucleation is surrounded by
a parent de Sitter space, which we call the ancestor vacuum
(See Fig. 1). The Hubble parameter HA for the ancestor
vacuum is typically larger than the value HI for inflation
after tunneling. On dimensional grounds, large fluctuations
will be generated in the ancestor vacuum. In this paper, we
will compute the vacuum expectation value of the energy-
momentum tensor of a free scalar field, carefully taking into
account the effect of the ancestor vacuum.
To find the vacuum expectation value of the energy-

momentum tensor, which is quadratic in the quantum field,
we compute the two-point functions of the field and take
the coincident-point limit. The two-point functions at early
time (in our universe) are obtained by the Euclidean
prescription, and their subsequent time-evolution can be
studied using the equation of motion for the scalar field.
We will be particularly interested in the contribution

from a special mode of fluctuations, the so-called
“supercurvature mode,2” originally found by M. Sasaki,

T. Tanaka and K. Yamamoto [11–13].3 This mode decays
more slowly than e−R at large R where R is the geodesic
distance, and is not normalizable on the spatial slice H3 in
the open universe. The supercurvature mode appears if the
mass of the scalar field in the ancestor vacuum is small
enough. For example, for exactly massless fields, two-point
functions remain finite even when two points are infinitely
separated on H3. Heuristically, such fluctuations can be
considered as the superhorizon fluctuations in the ancestor
(de Sitter) vacuum, seen from the inside of the bubble [27].
Mathematical reason that a non-normalizable mode can
exist in the open universe is that the spatial slice H3 is not
a global Cauchy surface (see Fig. 1). To quantize the
fluctuations, one needs to take a complete set of normal-
izable modes on a Cauchy surface, such as the surface on
the horizonal brown line in Fig. 1. The supercurvature
mode appears as a result of analytic continuation of the
correlator to the open universe, as we will review in Sec. III.
Supercurvature modes decay more slowly than normal-

izable modes, not only in space but also in time. Thus, it
may have a chance to affect our current universe. In
previous papers by some of the present authors [28,29],4

the evolution of vacuum fluctuations generated during
and before inflation has been studied, without taking

FIG. 1. Left panel: The potential for the fieldΦ. The local minimum atΦ ¼ ΦA is the false vacuum, whose geometry is de Sitter space
(the ancestor vacuum). On the true vacuum side, it is assumed that a plateau region exists, on which slow-roll inflation occurs. The true
minimum of the potential is taken to be zero, since we expect the present cosmological constant to be realized as the vacuum energy of a
quantum field on this background. Right panel: Penrose diagram for the Coleman-De Luccia geometry. The spacetime is divided into
five regions by the red lines. Region I is an open FLRWuniverse. The green line represents the bubble wall. On its left (right) is the true
(ancestor) vacuum. The blue curves indicate orbits of the SOð3; 1Þ symmetry. The directions of the coordinates (η, R for Region I; τ, X
for Region III) are indicated by arrows. Region I is drawn with the future null infinity, because the present cosmological constant will
relax to zero in the future if it is due to the vacuum energy of a quantum field.

2It is difficult to find a situation in which the supercurvature
mode affects the CMB. Fluctuations of the tunneling field should
have large mass in order for the Coleman-De Luccia instanton
to exist [8], thus they will not have a supercurvature mode.
Multifield models (the tunneling and inflaton fields being differ-
ent) have a potential problem as pointed out in [23], but there is a
recent attempt [24,25] at explaining a “dipolar anomaly” in the
CMB using a supercurvature mode in curvaton models. Gravitons
(tensor modes) are massless, but their supercurvature modes are
pure gauge [14].

3The supercurvature mode has played an important role in an
attempt to construct holographic dual for universe created by
bubble nucleation [26,27]. In these papers, the supercurvature
mode was called the non-normalizable mode.

4See also [30–34] for related work.
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bubble nucleation into account. The emergence of the
supercurvature mode is an interesting phenomenon, special
to the universe created by bubble nucleation.
As long as the mass of the scalar field is smaller than

the Hubble parameter in our universe, the field value for the
supercurvature mode remains nearly constant. This is the
well-known freezing of the superhorizon fluctuations;
supercurvature modes can always be considered to be
outside the horizon. The energy-momentum tensor for this
mode behaves similarly to that for cosmological constant.
After the Hubble parameter decreases below the mass, the
field begins to oscillate, and its energy decays.5 If there is a
field with mass of order the present Hubble parameter H0

or smaller, the supercurvature mode of this field will be
essentially frozen until today. This gives us an interesting
possibility for the realization of dark energy.
The primary purpose of this paper is to explain how to

calculate the vacuum expectation value of the energy-
momentum tensor in the background with bubble nucle-
ation. To the best of our knowledge, this calculation has not
been done before. Another purpose is to show that dark
energy can be obtained as a contribution from the super-
curvature mode to the vacuum energy.
We consider the fluctuations of a minimally coupled

scalar field ϕ, which is different from the tunneling field Φ.
The field ϕ does not have the vacuum expectation value,
and is treated as a free field in the curved spacetime.
We assume the mass mA of ϕ in the ancestor vacuum to
be sufficiently small relative to the Hubble parameter,
mA ≪ HA, so that a supercurvature mode exists. We allow
a possibility that mass m0 of ϕ in the true vacuum is
different from mA. (This can be realized e.g., if there is a
coupling of the form Φ2ϕ2, and the expectation value of Φ
is large in the false vacuum and small in the true vacuum.) It
would be natural to assume m0 ≪ mA, since the energy
scale in the true vacuum will be typically lower than in the
false vacuum.
The order of magnitude of the vacuum energy (derived

rigorously below) can be estimated as follows. The
expectation value of the field squared hϕ2i in the ancestor
vacuum goes as hϕ2i ∼H4

A=m
2
A. This is essentially the

same as the well-known expression in pure de Sitter
space, which becomes infinitely large in the massless and
infinite e-folds limit (see e.g., [35,36]).6 If we assume
m0 ≲H0, the field value hϕ2i is nearly frozen until now,
apart from its weak time dependence due to the non-zero
mA that may play an important role in observationally
distinguishing our mechanism from others. The dominant

part of the energy-momentum tensor for the field ϕ is
the mass term, ρ ∼m2

0hϕ2i ∼ ðm0=mAÞ2H4
A. Then, it is

possible to make this of the same order as dark energy,
ρ ∼H2

0M
2
P where MP is the (reduced) Planck mass. For

instance, if there is a field with m0 ∼H0, we need
MP=HA ∼HA=mA (i.e., HA being the geometric mean
ofMP and mA), which does not seem particularly difficult
to satisfy.
In this scenario we need an ultralight field with mass

m0 ∼H0 ∼ 10−33 eV. Thus, this may not be regarded as
a “natural” solution to the cosmological constant
problem [37]. Nevertheless, we believe the detailed study
is worthwhile, especially in view of the proposal of the
“string axiverse,” which states that there is a large number
of axionlike particles7 with mass ranging down to
m0 ∼H0 [38].
The idea of realizing dark energy as the vacuum energy

of an ultralight field is not essentially new. See e.g.,
[29,30,33,38–41] for previous works. Summaries of this
topic can be found in review articles [42,43]. The effect of
bubble nucleation has not been considered previously. At
the end of this paper, we will comment on the possible
observable effects, which could be regarded as a signature
of our mechanism.
This paper is organized as follows. In Sec. II, we review

the Coleman-De Luccia instanton, which describes the
nucleation and the evolution of a bubble in de Sitter space
(the ancestor vacuum). In Sec. III, we review the calcu-
lation of correlation functions of a scalar field based on
analytic continuation from the Euclidean space. Using
this prescription, we obtain the correlators in the early-
time limit in the open universe. In Sec. IV, we compute the
expectation value of the energy-momentum tensor by
taking the coincident-point limit of the two-point function
obtained in the previous section. In particular, we study the
mass term in the energy-momentum tensor in the limit of
small mass. In Sec. V, we consider the evolution of the
energy density in the open universe. We first obtain the
scale factor for the open FLRW universe in the eras of
curvature domination, inflation, radiation and matter domi-
nation. We then solve the equation of motion for the scalar
field in each era, and find the wave function by smoothly
connecting the solution to the wave function in the early-
time limit. Using this wave function, we obtain the expect-
ation value of the energy-momentum tensor at late times. In
Sec. VI, we will summarize our results and comment on the
directions for future work. In Appendix A, we describe the
harmonics onH3. In Appendix B, we calculate hϕ2i in pure
de Sitter space using our method, and show that it agrees
with the known value obtained by standard techniques. In

5The energy density of a homogeneous field oscillating in time
(averaged over the period) decays at the same rate as matter
energy density as universe expands, ρ ∼ a−3.

6In the case of an inflation with a finite e-folds N, we instead
have hϕ2i ∼ NH2, where H is the Hubble parameter for inflation.
See, e.g., [28,29] and references therein.

7The statement of the string axiverse is that if the QCD axion,
responsible for the solution of the strong CP problem, exists in
string theory, one should also expect many other axionlike light
particles.
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Appendix C, we find the scale factor for an open universe
which contains both matter and radiation. In Appendix D,
we present the details on the matching of the wave
functions of the scalar field across different eras.

II. THE CDL GEOMETRY

As a model of bubble nucleation, we consider a scalar
field Φ with a potential which has two minima, like the one
depicted in Fig. 1. This fieldΦ goes through tunneling from
the false vacuum to the true vacuum (Φ should not be
confused with the field ϕ, which will be introduced later
and has the zero expectation value). For phenomenological
reasons, we need inflation after tunneling. Thus, we assume
the potential has a plateau region on the true vacuum side,
on which slow-roll inflation occurs. We assume the
potential at the true vacuum is zero, since we expect the
present cosmological constant (dark energy) to be solely
due to the vacuum energy of a quantum field.8

In the theory with gravity, the geometry for the false
vacuum with a positive vacuum energy is de Sitter space.
We assume that there is a global surface without bubbles
at some time in de Sitter space.9 Then, bubbles of true
vacuum will form inside the “ancestor vacuum” (parent de
Sitter space). This process is described by the Coleman-De
Luccia (CDL) instanton [8].
Even though our goal is to explore the evolution of the

universe that results from the scalar potential in Fig. 1, we
first study the thin-wall limit, in which the transition occurs
sharply from a false vacuum with positive vacuum energy
to a true vacuum with zero vacuum energy. The purpose
of this analysis is to understand the early-time behavior in
the FLRW universe inside the bubble. The universe at
early times is dominated by the spatial curvature, thus the
constant vacuum energy is unimportant and can be set to
zero. In principle, one should be able to obtain the entire
evolution of our universe by analytic continuation from
Euclidean. However, for that purpose one needs to know
the corresponding Euclidean metric to an infinite precision,
which is clearly an intractable task. Thus we will use
analytic continuation to obtain the early-time behavior
only, and solve the equation of motion for the scalar field
to obtain the subsequent evolution in the FLRW universe.
The latter analysis will be done in Sec. V.

A. Causal structure

The Penrose diagram for the spacetime containing
one bubble is depicted in Fig. 1. Our Universe is an open
FLRW universe inside the bubble (Region I). The begin-
ning of the FLRW time is the 45-degree line shown in red.

Even though the scale factor vanishes there, it is merely a
coordinate singularity.
The constant-time slices in Region I are 3-hyperboloids,

H3, represented by blue lines. The bubble wall is repre-
sented by the green line in Region III. On the right of the
domain wall is the ancestor vacuum. We have depicted
the time-reversal symmetric Penrose diagram to make the
symmetry orbits clearer, but the lower half part of the
diagram should be considered to be unphysical, and
replaced by pure de Sitter space.
The Penrose diagram in Fig. 1, which has null future

infinity in Region I, is for the case of the zero final
cosmological constant (c.c.). We do not know whether the
present c.c. (dark energy) persists into the infinite future. If
dark energy is due to the vacuum energy of a quantum field
as proposed later in this paper, it will relax to zero in the
future, thus we draw the Penrose diagram for this case.
If the final c.c. is positive, the 45 degree line for the null
infinity is replaced by a more horizontal curve which
represents spacelike infinity.
The whole geometry and the configuration of the field Φ

have the SOð3; 1Þ symmetry. The surfaces of constant Φ
are the slices on which the SOð3; 1Þ symmetry acts as
isometries. In Region III, these surfaces are timelike, and
are (2þ 1) dimensional de Sitter spaces. In particular, the
world volume of the bubble has this symmetry. The bubble
wall is the “vacuum domain wall,” which has no structure,
and is invariant under the Lorentz boost. On the other
hand, in Region I the SOð3; 1Þ symmetric surfaces are
spacelike, H3. In the thin-wall limit with the zero c.c.,
Region I is nothing but part of Minkowski space in the open
slicing (known as the Milne universe).

B. Euclidean metric and its analytic continuation

The geometry containing one bubble of the true vacuum
is obtained by analytic continuation from the Euclidean
geometry (Coleman-De Luccia [CDL] instanton), which is
believed to contribute dominantly to the path integral of
quantum gravity.
Let us first describe the Euclidean geometry. The

Euclidean version of the 3þ 1 dimensional de Sitter space
is a sphere S4, while the CDL instanton is a deformed
sphere described by the metric of the following form,

ds2E ¼ a2ðXÞðdX2 þ dθ2 þ sin2 θdΩ2
2Þ: ð2:1Þ

This geometry is topologically S4, but is deformed in the X
direction. It has an S3 factor parametrized by θ andΩ2, so it
preserves the SOð4Þ subgroup of SOð5Þ. The scale factor
aðXÞ behaves as aðXÞ ¼ c�e�X with some constant c� for
X →∓ ∞ due to the fact that the geometry is smooth (i.e.,
locally flat) at both ends. We will mostly consider the case
where the true vacuum has zero c.c., since this is sufficient
for the study of the early time limit in the open FLRW
universe (as explained below). In the thin-wall limit for the

8The study of the backreaction to the geometry from the
quantum vacuum energy thus obtained is left for future work.

9Without this assumption, the whole de Sitter space would be
swallowed by bubbles nucleated in the past.
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true vacuum with a zero c.c., the geometry is S4 patched
with a flat disk at the domain wall located at X ¼ X0, and
the scale factor takes the form,

aðXÞ ¼ H−1
A

eX−X0

coshX0

ðX ≤ X0Þ;

¼ H−1
A

coshX
ðX0 ≤ XÞ: ð2:2Þ

The natural length scale associated with this scale factor is
the inverse Hubble parameter H−1

A of the ancestor vacuum.
We can analytically continue the geometry from the

reflection symmetric surface, namely an equator of the S3.
With

θ → iτ þ π

2
; ð2:3Þ

we obtain the metric covering Region III in Fig. 1,

ds2 ¼ a2ðXÞðdX2 − dτ2 þ cosh2 τdΩ2
2Þ: ð2:4Þ

This has a factor of (2þ 1)-dimensional de Sitter space,
parametrized by τ and Ω2. The SOð4Þ symmetry of the
Euclidean space becomes SOð3; 1Þ after analytic continu-
ation. This symmetry acts as the isometry group of the
(2þ 1) dimensional de Sitter space. The coordinate X
parametrizes the spatial direction transverse to these de
Sitter spaces. The X-direction for τ ¼ 0 is represented by
the horizontal line in Fig. 1.
Region III is not geodesically complete. The spacetime

can be extended past the horizons (X → �∞, τ → �∞),
represented by the 45 degree red lines in Fig. 1, which are
locally equivalent to the Rindler horizon. By continuing
past X → −∞, τ → þ∞, we obtain an open FLRW
universe (Region I) described by the metric

ds2 ¼ a2ðηÞð−dη2 þ dR2 þ sinh2 RdΩ2
2Þ: ð2:5Þ

The spatial sections areH3, parametrized by R and Ω2 with
the isometry group SOð3; 1Þ. This metric (2.5) is most
easily obtained by an analytic continuation,

X → ηþ π

2
i; θ → iR; ð2:6Þ

from the Euclidean metric (2.1). The scale factor behaves as

aðηÞ ∼ eη ð2:7Þ

in the early-time limit η → −∞. In the thin-wall limit
with the zero final c.c., the scale factor is exactly
aðηÞ ¼ const × eη.
One way to understand the relation between the coor-

dinates in (2.4) and (2.5) is to note that the geometry
near the light cone is locally flat. One can use the
coordinates t̂, r̂ to cover the global Minkowski space,

ds2flat ¼ −dt̂2 þ dr̂2 þ r̂2dΩ2
2. The metric (2.4) with

aðXÞ ¼ eX is obtained by

t̂ ¼ eX sinh τ; r̂ ¼ eX cosh τ; ð2:8Þ
whereas the metric (2.5) with aðηÞ ¼ eη is obtained by

t̂ ¼ eη coshR; r̂ ¼ eη sinhR: ð2:9Þ

C. The open FLRW universe

The open FLRWuniverse (Region I) is entirely inside the
bubble, and the CDL instanton sets its initial condition. The
scale factor has to behave as (2.7) in the early-time limit.
The evolution afterwards can be found by solving the
Friedmann equation,

ða0Þ2
a4

¼ 1

3M2
P
ρþ 1

a2
; ð2:10Þ

where the prime denotes the derivative with respect to the
conformal time η, andMP is the reduced Planck scale. The
last term in (2.10) is the contribution from the negative
spatial curvature. The energy density ρ and pressure p
satisfy the conservation equation,

ρ0 þ 3
a0

a
ðρþ pÞ ¼ 0: ð2:11Þ

If the energy density of the universe is dominated by that of
a classical scalar field ΦðηÞ which depends only on time,
we have

ρ¼ 1

2a2
ðΦ0Þ2þVðΦÞ; p¼ 1

2a2
ðΦ0Þ2−VðΦÞ: ð2:12Þ

Just after the beginning of the FLRW time, there is a
curvature dominated era in which the scale factor is
approximately (2.7). (The spacetime curvature is zero in
the early-time limit, and the universe is dominated by the
spatial curvature.) This era will continue until the vacuum
energy for inflation ρ ¼ VI starts to dominate over the
contribution from the curvature VI ∼M2

P=a
2. The conse-

quences of this curvature dominated era have been dis-
cussed in detail in [18].
Then, slow-roll inflation occurs. For simplicity, we

ignore the gradient of the potential in the plateau region
in Fig. 1, and assume that there is a constant energy density
ρ ¼ VI ≡ 3M2

pH2
I from the beginning of the FLRW time

until the end of slow-roll inflation. We will also ignore a
possible fast-rolling phase after tunneling and before slow-
roll inflation.10 We expect these features will give only
small corrections to our main result.

10The consequences of a fast-rolling phase after tunneling have
been discussed e.g., in [17,19–22].
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The solution of (2.10) with ρ ¼ 3M2
pH2

I is

aðηÞ ¼ H−1
I

sinhð−ηÞ ; ð2:13Þ

up to a shift of η. We could replace η in (2.13) by η − ~η1
where

e~η1 ¼ HA

HI
ð1þ e2X0Þ; ð2:14Þ

so that (2.13) becomes aðηÞ ¼ H−1
A eη−X0= coshX0 in the

early-time limit η → −∞, to match the normalization of the
Euclidean scale factor (2.2), but we will not do this in the
following. Instead, we will use (2.13) in the FLRW
universe, and replace η by ηþ ~η1 in the correlators obtained
by analytic continuation from the Euclidean space. See
Eq. (4.4) below.
After the slow-roll inflation, reheating occurs, and the

radiation and matter dominated eras will follow. The
evolution through these eras until the present time will
be studied in Sec. V.

III. CORRELATION FUNCTIONS

We now start to calculate the two-point functions in the
early-time limit in the FLRWuniverse. We will first find the
correlator in the Euclidean space (2.1), and analytically
continue it to the Lorentzian spacetime. The essential part
of the calculation is the decomposition of the field into a
complete set of states in the X direction (along the
horizontal line in Fig. 1). For more details of this calcu-
lation, see the Appendix of [26].

A. Calculation in Euclidean space

We consider the Euclidean CDL geometry, and compute
correlation functions of a minimally coupled scalar field ϕ,
which is described by the action,

S ¼
Z

d4x
ffiffiffi
g

p 1

2
ðgμν∂μϕ∂νϕþm2ϕ2Þ: ð3:1Þ

The field ϕ is different from the tunneling field Φ. We
assume ϕ to have the zero expectation value, and can be
treated as a free field on the curved (CDL) background.
It is convenient to define a field χðX;Ω3Þ ¼ aðXÞϕðX;Ω3Þ,
for which the kinetic term is independent of aðXÞ,
S ¼ R

dXdΩ3ð∂XχÞ2 þ � � �.
We would like to obtain the two-point function that

satisfies the equation of motion with a delta-function
source,

�
−∂2

X þ a00ðXÞ
aðXÞ þm2a2ðXÞ −∇2

S

�
hχðX;Ω3ÞχðX0; 0Þi

¼ δðX − X0Þδ3ðΩ3Þ; ð3:2Þ

where ∇2
S and δ3ðΩ3Þ are the Laplacian and delta function,

respectively, on S3.
We will obtain the correlator as an expansion in the

complete basis in the X direction. In the Lorentzian
geometry, the X direction lies along a global Cauchy surface
(See Fig. 1). The complete basis is formed by the eigen-
functions uIkðXÞ of the following differential operator,

�
−∂2

X þ a00ðXÞ
aðXÞ þm2a2ðXÞ

�
uIkðXÞ ¼ ðk2 þ 1ÞuIkðXÞ;

ð3:3Þ

where k labels the eigenvalue, and I is either L (R) for waves
coming from the left (right), or B for the bound state. This
equation is of the form of the time-independent Schrödinger
equation in one dimension. The potential a00=aþm2a2

approaches þ1 for X → �∞ (see Fig 2). Thus, the modes
for real kð> 0Þ with the eigenenergy larger than þ1 are the
waves oscillating in X. The orthogonal set consists of the

FIG. 2. Left panel: The Euclidean geometry for a CDL instanton in the thin-wall limit. A flat space for the true vacuum (whose vacuum
energy is assumed to be zero) is patched to a piece of a sphere S4 for the false vacuum with a positive vacuum energy. The S3 part is
represented by S1 in the figure. Right panel: The potential a00=a in the massless scalar equation of motion (3.3) on a CDL background in
the thin-wall limit. Asymptotically, a00=a → 1 for X → �∞. On the true-vacuum side (X < X0), the potential is flat. At the bubble wall
(X ¼ X0), there is a negative delta function. If mass is nonzero, the potential will be lifted by the additional term þm2a2.

AOKI, ISO, LEE, SEKINO, and YEH PHYS. REV. D 97, 043517 (2018)

043517-6



waves coming from the left uLk ðXÞ, and those from the right
uRk ðXÞ, which satisfy

uLk ðXÞ → eikX þRðkÞe−ikX ðX → −∞Þ;
→ T ðkÞeikX ðX → ∞Þ; ð3:4Þ

and

uRk ðXÞ → T RðkÞe−ikX ðX → −∞Þ;
→ e−ikX þRRðkÞeikX ðX → ∞Þ: ð3:5Þ

RðkÞ and T ðkÞ are the reflection and transmission coef-
ficients for the scattering from the left, and RRðkÞ and
T RðkÞ are those for the scattering from the right. They are
related by T ðkÞ ¼ T RðkÞ,RðkÞ=RRðkÞ� ¼ −T ðkÞ=T ðkÞ�.
For negative real k, we define Rð−kÞ ¼ R�ðkÞ, T ð−kÞ ¼
T �ðkÞ. From the conservation of the probability current, we
have RðkÞR�ðkÞ þ T ðkÞT �ðkÞ ¼ 1. (See e.g., [44] for
basic facts about the scattering problem in one dimension.)
These modes satisfy the orthogonality property

Z
∞

−∞
dXuIkðXÞu�Jk0 ðXÞ ¼ 2πδIJδðk − k0Þ; ð3:6Þ

where I, J are either L or R.
If there are bound states in (3.3), one has to include them

in the complete set. Bound states occur at discrete imagi-
nary values of the momentum k ¼ kB with ImðkBÞ > 0.
At k ¼ kB, both RðkBÞ and T ðkBÞ have a pole. This
means that e�ikBX in uL=Rk ðXÞ is negligible compared to
RðkBÞe∓ikBX and T ðkBÞe�ikBX, thus the wave function
(3.4) with k ¼ kB decays at both ends X → �∞, and is
normalizable.
Let us first consider the massless case. In this case, one

can easily see that

uBk¼iðXÞ ¼ NHAaðXÞ ð3:7Þ

satisfies (3.3) with k ¼ i where N is a dimensionless
constant. An example of the potential a00=a for the
Schrödinger equation (3.3) is depicted in Fig. 2. The bound
state is essentially supported at the dip of the potential. If
the geometry is compact in the X direction (which is the
case for de Sitter space or the CDL geometry, but not for
anti-de Sitter space or Minkowski space), this mode is
normalizable and should be included in the complete set.
It can be shown that there is at most one bound state in
3þ 1 dimensions [16,26].11 Normalization factor N in the
thin-wall limit (2.2) is

N −2 ¼
Z

∞

−∞
dXðHAaÞ2ðXÞ

¼
Z

X0

−∞
dX

�
eX−X0

coshX0

�
2

þ
Z

∞

X0

dX
1

cosh2 X
ð3:8Þ

¼ 1

2 cosh2 X0

þ 1 − tanhX0: ð3:9Þ

In the limit of X0 → −∞ (the limit of the small bubble), we
get a finite value N → 1=

ffiffiffi
2

p
, which agrees with the case

for the pure de Sitter.
When the scalar field has mass, the additional term

þm2a2ðXÞ lifts the potential, and the dip in the potential
becomes shallow. The energy of the bound state (as long
as exists) increases, shifting the pole from kB ¼ i in the
massless case to

kB ¼ ið1 − ϵÞ: ð3:10Þ

If mass is larger than a certain value (which is of orderHA),
the bound state disappears.
We will consider the possibility that mass of the field ϕ is

different in the true and the false vacuum,

m ¼
�
mA ðFalse vacuumÞ
m0 ðTrue vacuumÞ ; ð3:11Þ

where mA and m0 are assumed to be constant. The case of
our interest is mA ≪ HA and m0 ∼H0 ≪ mA. In this case
we can setm0 ¼ 0 in the analysis of the early-time behavior
performed in this section, since such a tinym0 as compared
to the natural scale (the Hubble parameter at the time in
question) will not affect the dynamics.
It is not easy to calculate ϵ (i.e., the bound state energy)

in general,12 but whenmAH−1
A is small, as in the case of our

interest, it can be evaluated by the first-order perturbation
theory. We take (3.7) as the zeroth-order wave function
and m2a2ðXÞ as perturbation Hamiltonian in the one-
dimensional Schrödinger-like equation (3.3). The eigene-
nergy E ¼ ðk2B þ 1Þ ¼ 1 − ð1 − ϵÞ2 is zero at the zeroth
order. The first-order eigenenergy, Eð1Þ ¼ 2ϵ, is

Eð1Þ ¼
Z

∞

−∞
dXðψ ð0ÞðXÞÞ2m2a2ðXÞ: ð3:12Þ

with the zeroth-order (massless) wave function,

ψ ð0ÞðXÞ ¼ NHAaðXÞ: ð3:13Þ

Thus, for the case of m2
0 ¼ 0, we obtain

11In higher dimensions, it is possible to have more than one
bound states.

12The general expression in the thin-wall limit can be written in
terms of hypergeometric functions.
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ϵ ¼ N 2

2
m2

AH
−2
A

Z
∞

X0

dX
1

cosh4 X

¼ N 2

2

�
2

3
−
1

3
ð2þ sech2X0Þ tanhX0

�
m2

AH
−2
A

¼ 2 − ð2þ sech2X0Þ tanhX0

3ð2þ sech2X0 − 2 tanhX0Þ
m2

AH
−2
A : ð3:14Þ

The reflection coefficient RðkÞ for (3.3) with
mA ¼ m0 ¼ 0 in the thin-wall limit (2.1) can be obtained
exactly [26],

RðkÞ ¼ γie2ikX0

ðkþ γiÞ
ðkþ iÞ
ðk − iÞ ; ð3:15Þ

where γ is given by

γ ¼ 1

1þ e−2X0
; ð3:16Þ

and takes a value 0 < γ < 1. The k ¼ i pole corresponds to
the bound state. The pole in the lower half plane (k ¼ −iγ)
does not correspond to a physical mode for (3.3), since
the wave function blows up at X → �∞ and is not
normalizable.
Using this complete set, the correlation function satisfy-

ing (3.2) can be expressed as

hχðX; θÞχðX0; 0Þi ¼
Z

∞

0

dk
2π

ðuLk ðXÞuL�k ðX0Þ

þ uRk ðXÞuR�k ðX0ÞÞGkðθÞ
þ uBk ðXÞuB�k ðX0ÞGkðθÞ; ð3:17Þ

where GkðθÞ is the Green’s function on S3 for a field with
the effective mass ðk2 þ 1Þ,

½−∇2
S þ ðk2 þ 1Þ�GkðθÞ ¼

δðθÞ
4π sin2 θ

: ð3:18Þ

GkðθÞ is a function of the geodesic distance θ on S3, and
given by

GkðθÞ ¼
sinh kðπ − θÞ
4π sinh kπ sin θ

: ð3:19Þ

We can see that GkðθÞ is the correct Green’s function on S3
by noting the following facts. GkðθÞ satisfies the Laplace
equation, and is regular everywhere on S3 except for the
source θ ¼ 0 with the correct singularity GkðθÞ ∼ 1=ð4πθÞ
at θ ¼ 0.
There is a subtlety when the mass of the scalar field ϕ

is exactly zero. We have a bound state with k ¼ i, and the
effective mass on S3 becomes zero, k2 þ 1 ¼ 0. But there
does not exist such a Green’s function on a compact space,
since the flux cannot extend to infinity and the Gauss law
cannot be satisfied. (In other words, the differential
operator in the equation of motion cannot be inverted
in this case,13 since the equation is unchanged under the
constant shift of ϕ). See [26] for how to deal with this case.
In this paper, we will not have this problem, since we will
always consider the massive field.
The correlation function in the X → −∞ limit (i.e., on

the true vacuum side) when m0 ¼ 0, can be written as

hχðX; θÞχðX0; 0Þi ¼
Z
C1

dk
8π2

ðeikðX−X0Þ þRðkÞe−ikðXþX0ÞÞ

×
sinh kðπ − θÞ
sinh kπ sin θ

: ð3:20Þ

If we take the thin-wall limit, (3.20) is valid throughout the
X < X0 region. The integration contour C1 is defined in
Fig. 3. This contour is basically along the real axis but is
deformed near the origin so that it goes above the bound
state pole. This deformation amounts to adding a discrete
mode due to the bound state.

FIG. 3. Left panel: The definition of the contour C1 for the k-integration. Middle panel: A contour equivalent to C1. The residue at the
k ¼ ð1 − ϵÞi pole is equal to the bound state contribution (the second line) in (3.17). Right panel: The contour C2 used at the end of
Section IV to show the finiteness of hϕ2i in the early-time (η; η0 → −∞) limit. By deforming C1 to C2, the k-integral is expressed as a sum
over the residues at k ¼ in (n ¼ 1; 2;…).

13In noncompact spaces, this does not cause a problem, since
the zero mode is measure zero.

AOKI, ISO, LEE, SEKINO, and YEH PHYS. REV. D 97, 043517 (2018)

043517-8



Note that the normalization factor 1= sinh kπ for the S3

Green’s function GkðθÞ introduces poles at integer multiple
of k ¼ i. Thus, if the mass is exactly zero, the pole at k ¼ i
becomes a double pole. As mentioned above, we will
always consider the massive case, so the contour C1 passes
between k ¼ ið1 − ϵÞ and k ¼ i. We can take the massless
limit starting from this expression, if necessary.

B. Analytic continuation to Lorentzian

We perform the analytic continuation (2.6) on (3.20), and
obtain the correlation function in the FLRW universe,14

hχðη; RÞχðη0; 0Þi ¼
Z

∞

−∞

dk
8π2

eikðη−η0Þ
sinh kðπ − iRÞ
i sinh kπ sinhR

þ
Z
C1

dk
8π2

RðkÞe−ikðηþη0Þ sin kR
sinh kπ sinhR

:

ð3:21Þ

This is valid in the early-time limit η; η0 → −∞ (i.e., the
curvature dominated era), and can be regarded as the initial
condition for the correlator in the FLRW universe. The
correlator at later times will be obtained in Sec. V.
A subtle prescription for analytic continuation has been

used to obtain the second term in (3.21). If we naively made
the substitution (2.6) in the second term in (3.20), we would
have gotten

e−ikðXþX0Þ sinh kðπ − θÞ
sinh kπ

→ e−ikðηþη0Þ ðe2kπ−ikR − eikRÞ
2 sinh kπ

;

ð3:22Þ

but the first term in the numerator on the right-hand side of
(3.22) diverges for k → ∞, so the k integral along the real
axis does not converge. To get a convergent integral, we
should make a replacement

sinh kðπ − θÞ → e−kπ sinh θ ð3:23Þ

in (3.20) before the analytic continuation. This is allowed,
since the replacement (3.23) does not change the result of
the integration in (3.20). The integral can be evaluated by
deforming the contour and summing up the residues of
the poles at k ¼ ni with n ¼ 1; 2;…. As a result, multi-
plication by e2kπ amounts to multiplication of each residue
by unity, so the answer does not change. By performing
analytic continuation after the replacement (3.23), we
obtain the second term in (3.21). On the other hand, for
the first term in (3.20), analytic continuation should be
done using the original expression. The k-integral

converges with this integrand, but does not converge if
we make the replacement (3.23).
In fact, evaluating the integral (3.20) as sum over the

poles at k ¼ ni (n ¼ 1; 2;…) is equivalent to expanding
the correlator into spherical harmonics on S3. Total angular
momentum L on S3 is related to the position of the pole by
L ¼ n − 1. For the calculation of the correlator starting
from this representation of discrete sum, and using Watson-
Sommerfeld transformation to convert it into an integral,
see e.g., [45,46].
The correlator (3.21) is a function of the geodesic

distance R on H3. In other words, one point is set at the
origin and the other point is at a radial distance R from the
origin. When two points are at general positions on H3, we
can rewrite the correlator using the relation

coshR¼ coshR1 coshR2 − sinhR1 sinhR2 cosψ : ð3:24Þ

where R1 and R2 are the radial coordinates of the two
points, and ψ is the angle on S2 between them.
The correlator can also be expressed as a sum over

products of harmonics fðl;mÞ
k ðR;Ω2Þ at the two points.

Harmonics on H3 are the eigenfunctions of Laplacian,

∇2
Hf

ðl;mÞ
k ðR;Ω2Þ ¼ −ðk2 þ 1Þfðl;mÞ

k ðR;Ω2Þ: ð3:25Þ

The modes with real k are normalizable on H3,

Z
∞

0

dR sinh2 R
Z

dΩ2f
ðl;mÞ
k ðR;Ω2Þfðl

0;m0Þ�
k0 ðR;Ω2Þ

¼ δðk − k0Þδl;l0δm;m0 : ð3:26Þ

The l ¼ 0 mode, which is homogeneous on S2, is a
function of only the radial coordinate,

fðl¼0Þ
k ðRÞ ¼ 1ffiffiffi

2
p

π

sin kR
sinhR

: ð3:27Þ

When one point is at the origin R1 ¼ 0 or R2 ¼ 0, only the
l ¼ 0 mode contributes to the two-point functions (as is
familiar in the harmonic expansion in quantum mechanics
in flat space). The factor sinhR in the denominator of (3.27)
compensates for the exponential growth of the volume for
large R on the hyperboloid. For the explicit form of the
harmonics with l ≠ 0, see Appendix A and [11–13].
Note that a constant function on H3 is not normalizable.

To express non-normalizable functions, which decay more
slowly than e−R as R → ∞ (with arbitrary dependence
on S2), we need the modes with imaginary k. As indicated
by the integration contour C1, the correlator (3.21) contains
a discrete non-normalizable mode on H3, which is called
the “supercurvature mode” [11–13]. As we have seen, a
bound state in the Euclidean problem is in one-to-one
correspondence with a supercurvature mode on H3.

14In (3.21), the integration contour for the first term has been
deformed from C1 to the real k axis. Since this term does not have
a bound state pole, one can freely make this deformation.
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The first term in (3.21), which is a function of η − η0, is
nothing but the correlator in global Minkowski space
written in the open slicing. This can be seen by rewriting
the massless correlator in terms of Minkowski coordinates
t̂, r̂, and performing the coordinate transformation (2.9),

hϕðη; RÞϕðη0; 0Þi ¼ 1

ð−ðt̂ − t̂0Þ2 þ r̂2Þ
¼ 1

2eηþη0 ðcoshR − coshðη − η0ÞÞ ;

ð3:28Þ

where we have put one point at the origin r̂0 ¼ 0. Carrying
out the k integral for the first term in (3.21) as a sum over
the residues from the poles, we recover the r.h.s. of (3.28).
The second term, which is a function on ηþ η0 and

depends on the reflection coefficient RðkÞ, carries the
information about the ancestor vacuum. This term is finite
in the coincident-point limit R → 0, η − η0 → 0.

IV. ENERGY-MOMENTUM TENSOR

We now compute the contribution of a quantum field to
the energy-momentum tensor, by taking the coincident-
point limit of the two-point function obtained in the
previous section.

A. General remarks

The energy-momentum tensor for a minimally coupled
scalar field is

Tμν ¼ ∂μϕ∂νϕ −
1

2
gμνð∂ρϕ∂ρϕþm2ϕ2Þ: ð4:1Þ

The energy density ρ ¼ −hTη
ηi and pressure p ¼ hTi

ii,
where i’s are not summed over, are obtained by taking
the vacuum expectation value of (4.1):

ρ ¼ 1

a2

�
1

2
ϕ02 þ 1

2
ð∇ϕÞ2 þ 1

2
m2a2ϕ2

	
; ð4:2Þ

p ¼ 1

a2

�
1

2
ϕ02 −

1

6
ð∇ϕÞ2 − 1

2
m2a2ϕ2

	
: ð4:3Þ

They can be computed from the two-point function in the
coincident-point limit.
The two-point function (3.21) consists of two terms.

The first term is independent of the ancestor vacuum. In the
early-time limit, it coincides with the correlator in the
global Minkowski space. We will touch on this term only
briefly in this paper, since the analysis of this term is
essentially contained in the previous work [28,29].
The second term in (3.21) depends on the properties of

the ancestor vacuum. The supercurvature mode is involved
in this term. We will mostly focus on this second term,

which is larger than the first term in the cases of interest, as
we will see later. The value of the second term is found to
be finite in the coincident-point limit, and thus is inde-
pendent of the renormalization prescription for the UV
divergence.
The wave functions in the ancestor vacuum are of order

HA, the naturalmass scale in deSitter space. Aswewill see in
detail in Section V, the continuous modes have the time
dependence e−η, and they decreases to orderHI, which is the
natural magnitude of fluctuations in slow-roll inflation with
the Hubble parameter HI, by the end of the curvature
domination [18]. The supercurvature mode has the time
dependence e−ϵη, and decays more slowly than the continu-
ousmodes. Furthermore, its contribution to hϕ2i is enhanced
by an extra factor ϵ−1 ∼H2

A=m
2
A, as we will see shortly.

The continuous modes are different from the modes in
the flat FLRW cosmology, in the sense that the infrared
modes are cut off by the spatial curvature. We can see this
e.g., in (3.27) where the mode with real k decays exponen-
tially for R≳ 1.

B. Mass term in the limit of small mass

Let us study the mass term in the limit of small mass (ϵ),
which will be the most dominant term in the energy density
of the scalar field.
The correlation function in the early time limit

η; η0 → −∞ is

hχðη; RÞχðη0; 0Þi

¼
Z

∞

−∞

dk
8π2

eikðη−η0Þ
sinh kðπ − iRÞ
i sinh kπ sinhR

þ
Z
C1

dk
8π2

RðkÞe−ikðηþη0þ2~η1Þ sin kR
sinh kπ sinhR

; ð4:4Þ

where we have made the shift η → ηþ ~η1 with ~η1 defined in
(2.14) (similarly for η0) in (3.21), to account for the
difference in the definition of η mentioned in Sec. II.
The contribution from the k ¼ ið1 − ϵÞ pole is

hχðη; RÞχðη0; 0Þiðs:c:m:Þ

¼ ð−2πiÞ
8π2

· Resðið1 − ϵÞÞ

× eð1−ϵÞðηþη0þ2~η1Þ 1

sin ϵπ
sinhð1 − ϵÞR

sinhR
; ð4:5Þ

where Resðið1 − ϵÞÞ denotes the residue of RðkÞ at
k ¼ ið1 − ϵÞ. This gives the contribution from the super-
curvature mode on H3. Dividing (4.5) by aðηÞaðη0Þ, and
taking the coincident-point limit η → η0, R → 0, we obtain
the expectation value hϕ2ðηÞiðs:c:m:Þ.
Let us explicitly evaluate hϕ2ðηÞiðs:c:m:Þ in the ϵ → 0

limit. In this limit, one can use the residue of RðkÞ for
ϵ ¼ 0, given by (3.15), and obtain

AOKI, ISO, LEE, SEKINO, and YEH PHYS. REV. D 97, 043517 (2018)

043517-10



hϕ2ðηÞiðs:c:m:Þ ¼ 1

4π2ϵ
AðX0Þe−2ϵðηþ~η1ÞH2

A; ð4:6Þ

where AðX0Þ depends on X0 (i.e., the size of the bubble),

AðX0Þ ¼
ð1þ e2X0Þ2
2ð1þ 2e2X0Þ : ð4:7Þ

We have kept ϵ in the denominator and in the time-
dependent function e−2ϵðηþ~η1Þ, but have replaced the term
e2ð1−ϵÞX0 by e2X0, since this difference will not have a large
effect. Using the value of ϵ obtained by the first-order
perturbation theory in (3.14), the expectation value (4.6)
becomes

hϕ2ðηÞiðs:c:m:Þ ¼ 1

2π2
·

3e−2ϵðηþ~η1Þ

2 − ð2þ sech2X0Þ tanhX0

·
H4

A

m2
A
:

ð4:8Þ

In the limit of the small bubble X0 → −∞, (and ϵ → 0),

(4.8) approaches 3
8π2

H4
A

m2
A
. This agrees with the well-known

result in pure de Sitter space obtained by the standard
techniques (see e.g., [35,36]). For the convenience of the
reader, we summarize the calculation of hϕ2i for the pure de
Sitter case in Appendix B.
One may worry that hϕ2ðηÞiðs:c:m:Þ given in (4.6) or (4.8)

diverges in the early-time limit η → −∞. In fact, the full
expression hϕ2ðηÞi also including the continuous modes
is regular, as can be shown by deforming the contour for
the k-integration: At early times, the e−ikðηþη0Þ factor in
hχðηÞχðη0Þi gives a converging factor for ImðkÞ > 0,
allowing us to deform the contour C1 into C2 defined on
the right panel in Fig. 3. Then the k-integral is represented
as a sum over the residues at the poles at k ¼ in
ðn ¼ 1; 2;…Þ. The time-dependence of each residue in
hχðηÞχðη0Þi is given by e−ikðηþη0Þ ¼ enðηþη0Þ. The leading
term in the early-time limit comes from n ¼ 1, giv-
ing hϕ2ðηÞi ¼ hχ2ðηÞi=a2ðηÞ ∼ const.

V. EVOLUTION OF VACUUM ENERGY

Having obtained the vacuum expectation value of the
energy-momentum tensor in the early-time limit in the
FLRW universe, we now study its time evolution. First, in
Sec. VA, we determine the scale factor for the background
open universe. Then, in Sec. V B, we obtain the wave
function by solving the equation of motion for the scalar
field, and in Sec. V C, we study the evolution of the vacuum
expectation value of the energy-momentum tensor.
Although our analysis is general, we will mostly focus
on the supercurvature mode. Finally, in Sec. V D, we
consider the possibility that the vacuum energy gives the
present dark energy.

A. The scale factor

The scale factor for an open universe can be found by
solving the Friedmann equation,

ða0Þ2
a4

¼ 1

3M2
P
ρþ 1

a2
; ð5:1Þ

with the energy density ρ appropriate for each era.
The universe at early times is curvature dominated (CD).

As we mentioned in section II C, when the vacuum energy
of inflation dominates over the curvature contribution, the
slow-roll inflation occurs. The scale factor in the CD and
inflation eras is given in (2.13). After reheating, the
universe becomes radiation dominated (RD). For simplic-
ity, we assume the reheating occurs instantaneously. In fact,
the reheating process takes place for producing the par-
ticles, mainly of subhorizon modes, which the inflation
field is coupled to. Thus the detailed dynamics of particle
production will be irrelevant to our main concern on the
energy density given by the supercurvature mode. Then,
after the matter-radiation equality, the universe becomes
matter dominated (MD).
The scale factors in each era are obtained by solving

(5.1) as

aðηÞ ¼

8>><
>>:

aCDInfðηÞ ¼ − 1
HI sinhðηÞ ð−∞ < η < η1 < 0Þ ðCD-InflationÞ

aRDðηÞ ¼ α sinhðηÞ ð0 < η2 < η < η3Þ ðRDÞ
aMDðηÞ ¼ βsinh2ðη=2Þ ðη4 < η < η0Þ ðMDÞ

ð5:2Þ

with ρ ¼ 3M2
pα

2=a4 for the RD era and ρ ¼ 3M2
pβ=a3 for the MD era.15 We will connect them by requiring aðηÞ and a0ðηÞ

are continuous across each era. Here, we closely follow the convention of ref. [28].16 Namely, we introduce the different
shift of η in each era, to keep the expression of aðηÞ simple. The conformal time at present is η ¼ η0. We ignore the present
cosmological constant (dark energy) and assume the MD era continues until now.

15The solution for the scale factor when ρ contains both radiation and matter is described in Appendix C.
16β here corresponds to 4β in [28].
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The continuity conditions for a and a0 give the following
relations among the parameters in (5.2):

η1 ¼ −η2; ð5:3Þ

sinh2ðη1Þ ¼
1

αHI
; ð5:4Þ

η3 ¼
η4
2
; ð5:5Þ

sinhðη3Þ ¼
α

β
: ð5:6Þ

The Hubble parameter in each era is calculated from (5.2)
as

H ¼ a0

a2
¼

8>><
>>:

HI coshðηÞ ðCD-InflationÞ
coshðηÞ
α sinh2ðηÞ ðRDÞ
coshðη=2Þ
β sinh3ðη=2Þ ðMDÞ

: ð5:7Þ

Comparing the Hubble parameters at the beginning and the
end of each era, we obtain a relation

sinh2ðη2Þ sinhðη3Þ
coshðη0=2Þ
sinh3ðη0=2Þ

¼ H0

HI
; ð5:8Þ

whereH0 is the present Hubble parameter. This can also be
obtained by multiplying (5.4), (5.6), and (5.7) at present
time. From observations [9], we know

H0 ≃ 67 km s−1Mpc−1 ≃ 1.4 × 10−30 meV; ð5:9Þ

HI ≲ 3.6 × 10−5MP ≃ 8.8 × 1025 meV; ð5:10Þ

where meV ¼ 10−3 eV, and MP ¼ ð8πGNÞ−1=2 ≃
2.4 × 1030 meV is the (reduced) Planck scale.
The ratio of the curvature radius Rc ¼ a (note that

curvature radius is unity in the comoving coordinate) to
the Hubble radius H−1 ¼ a2=a0 is

rc ≡ Rc

H−1 ¼
a0

a
¼

8<
:

− cothðηÞ ðCD-InflationÞ
cothðηÞ ðRDÞ
cothðη=2Þ ðMDÞ

: ð5:11Þ

This ratio grows during inflation, and decreases during the
RD and the MD eras. rc is a huge number at the end of
inflation, and remains large until now due to the observa-
tional bound at present time [9],

rc0 ≳ 10 ðnowÞ: ð5:12Þ

The redshift parameter at the matter-radiation equality is

zeq ≃ 3.4 × 103; ð5:13Þ

and thus we have

1þ zeq ¼
a0
a4

¼ sinh2ðη0=2Þ
sinh2ðη4=2Þ

: ð5:14Þ

Using the above relations, we now estimate the values
of the parameters η1, η2, η3, η4, η0, α and β in (5.2). From
(5.11) at present and (5.14), the values of η0 and η4 are
constrained as

η0 ≃ 2r−1c0 ≲ 0.2; ð5:15Þ
η4
η0

≃ z−1=2eq ≃ 1.7 × 10−2; ð5:16Þ

where (5.12) and (5.13) are used. Then, from (5.6), and
(5.7) at present, the values of α and β are obtained,

α

β
≃ η4

2
≃ r−1c0 z

−1=2
eq ≲ 2 × 10−3; ð5:17Þ

βH0 ≃
�
η0
2

�
−3 ≃ r3c0 ≳ 1 × 103: ð5:18Þ

Finally, with (5.4), the value of η2 is estimated as

η2≃
�
β

α

1

βH0

H0

HI

�
1=2≃r−1c0 z

1=4
eq

�
H0

HI

�
1=2

∼10−28; ð5:19Þ

where the lower bound for rc0 and the upper bound for HI
are applied in the last equality.
Slow-roll inflation starts when the inflaton potential

starts to dominate over the curvature term, i.e., at η∼−1.
The e-folds Ne of the slow-roll inflation is

Ne ¼ log

�
aCDInfðη1Þ
aCDInfð−1Þ

�
∼ 64.6; ð5:20Þ

where we have used (5.19) for the value of η1 ¼ −η2. If we
take larger values for rc0 (the ratio between the curvature
radius and Hubble radius at present), Ne becomes larger.
Since the value (5.20) roughly coincides with the value
derived from an anthropic bound for the spatial curvature
[18], it would be reasonable to adopt these minimal values
for rc0 and Ne.

B. Wave functions

1. Equation of motion

We now consider a minimally coupled scalar field ϕ in
the open FLRW universe. The equation of motion for χ,
which is defined as ϕ ¼ χ=a, is
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�
−∂2

η þ
a00

a
þ∇2

H −m2
0a

2

�
χðη;HÞ ¼ 0; ð5:21Þ

where H and ∇2
H denote the coordinates and Laplacian,

respectively, onH3. The mass term in (5.21) is the massm0

after tunneling.
We expand the field into harmonics on H3, defined

in (3.25),

χðη;HÞ ¼
Z

∞

0

dk
X∞
l¼0

Xl
m¼−l

vkðηÞfðl;mÞ
k ðHÞ

þ
X∞
l¼0

Xl
m¼−l

v�ðηÞfðl;mÞ
kB

ðHÞ; ð5:22Þ

where the first term is the contribution from the continuous
modes and the second term is from the supercurvature
mode. vkðηÞ and v�ðηÞ are the time-dependent part of
the wave functions for the continuous modes and the
supercurvature mode. (The corresponding parts in ϕ will
be called φk ¼ vk=a and φ� ¼ v�=a.) The harmonics are
the eigenfunctions of Laplacian with eigenvalues ∇2

H →
−ðk2 þ 1Þ. For the supercurvature mode, we have k ¼
kB ≡ ið1 − ϵÞ, where ϵ depends on the mass mA in the
ancestor vacuum, and is of order m2

AH
−2
A in the small ϵ

limit, as explained in Sec. III A.
Each mode on H3 is independent at the linearized level.

Thus, we will concentrate on the supercurvature mode. The
wave function v�ðηÞ satisfies

�
−∂2

η þ
a00

a
− 1þ ð1 − ϵÞ2 −m2

0a
2

�
v�ðηÞ ¼ 0: ð5:23Þ

This is of the form of the time-independent Schrödinger
equation, like the Euclidean equation of motion studied in
Sec. III.
From (2.10) and (2.11), we find

a00

a
− 1 ¼ a2

6M2
p
ðρ − 3pÞ ¼ a2

6M2
p
ð1 − 3wÞρ: ð5:24Þ

Thus, as long as w ≤ 1=3, which is the case for the CD era,
inflation, the RD and the MD eras, the “potential” in (5.23)
is non-negative, a00=a − 1 ≥ 0. The “eigenenergy” of the
supercurvature mode, k2 ¼ −ð1 − ϵÞ2, is negative and is
always below the potential. Thus the massless wave
function is not oscillating.
In Secs. V B 2 and V B 3 below, we will study Eq. (5.23)

by making an approximation, retaining the relevant two
terms from the following three terms, a00=a, 1 − ð1 − ϵÞ2 ¼
2ϵ − ϵ2, and m2

0a
2. Since a00=a > 1 is satisfied in all the

eras of interest [as shown in (5.24) and also in (5.27)
below], a00=a > 2ϵ − ϵ2 is always satisfied. Thus, there are
the following three cases to be considered:

(i) m2
0a

2 < 2ϵ − ϵ2 < a00=a
(ii) 2ϵ − ϵ2 < m2

0a
2 < a00=a

(iii) 2ϵ − ϵ2 < a00=a < m2
0a

2

As time passes and the scale factor a increases, the universe
undergoes the periods (i), (ii) and (iii) in turn.
Before starting the analysis, let us recall the well-known

qualitative properties of Eq. (5.23). In the periods (i) and
(ii), the term a00=a is the largest in comparison with 2ϵ − ϵ2

and m2
0a

2. If we keep only this term in (5.23), the general
solution is

φ� ¼
v�
a

¼ c1 þ c2

Z
dη
a2

; ð5:25Þ

where c1 and c2 are integration constants. The first term
shows frozen behavior of the wave function while the
second term describes a decaying mode. Thus, for general
cases with c1 ≠ 0, after a sufficiently long duration, the
wave function becomes frozen. On the other hand, in the
period (iii), the term m2

0a
2 is the most relevant. If we only

keep this term in (5.23), the solution is

φ� ¼
v�
a
≃ 1

a3=2
e�im0

R
dηa ¼ 1

a3=2
e�im0t: ð5:26Þ

The wave function is oscillating and decreasing. Owing to
the frozen behavior of the wave function in the periods (i)
and (ii), vacuum fluctuations generated in the ancestor
vacuum remain until late times, and may provide the
present dark energy. At later times, in the period (iii),
the mass term will be relevant, and the vacuum energy will
diminish.
In the following, we will study Eq. (5.23) in more detail

by taking into account not only the first but also the second
largest of the three terms, a00=a, 2ϵ − ϵ2, and m2

0a
2.

2. The massless approximation

In the period (i), we approximate (5.23) by neglecting
the mass term. The scale factor (5.2) gives rise to the
following potential in the Schrödinger-like equation (5.23)
in each era,

a00

a
− 1 ¼

8>><
>>:

2
sinh2ðηÞ ðCD-InflationÞ
0 ðRDÞ

1
2sinh2ðη=2Þ ðMDÞ

: ð5:27Þ

Then, the solutions are given by
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v� ¼

8>>><
>>>:



�ð1 − ϵÞ − 1

tanhðηÞ
�
e�ð1−ϵÞη ðCD-InflationÞ

e�ð1−ϵÞη ðRDÞ

�2ð1 − ϵÞ − 1

tanhðη=2Þ
�
e�ð1−ϵÞη ðMDÞ

;

ð5:28Þ

where the normalization of the wave function will be
considered later. These solutions can also be obtained
simply by the replacement k → ið1 − ϵÞ from the wave
function solutions of the continuous modes,

vk ¼

8>>><
>>>:



∓ ik − 1

tanhðηÞ
�
e∓ikη ðCD-InflationÞ

e∓ikη ðRDÞ

∓ 2ik − 1

tanhðη=2Þ
�
e∓ikη ðMDÞ

: ð5:29Þ

We require the solution (5.28) to match smoothly onto
(4.8) found from the CDL geometry. This selects the solution
with eþð1−ϵÞη in the CD-Inflation era in (5.28). The wave
functions in the RD and the MD eras are obtained by
requiring continuity conditions for v� and v0� across each era.
We thus have the following normalized wave functions:

v� ¼

8>>><
>>>:

N�


1 − ϵ − 1

tanhðηÞ
�
eð1−ϵÞη ðCD-InflationÞ

Aeð1−ϵÞη þ Be−ð1−ϵÞη ðRDÞ
C


2ð1 − ϵÞ − 1

tanhðη=2Þ
�
eð1−ϵÞη þD



−2ð1 − ϵÞ − 1

tanhðη=2Þ
�
e−ð1−ϵÞη ðMDÞ

: ð5:30Þ

To obtain the two-point function hϕϕis:c:m:, we replace
the factor e−ϵη in the early time expression (4.8), by the
solution v�=a at late times with a suitable normalization
explained below. We determine the coefficients A to D and
obtain the wave functions v� in the RD and MD eras in
Appendix D.
We now summarize the wave functions φ� ¼ v�=a.

In the CD and inflation eras, the wave function is given
by (5.30) with a ¼ −ðHI sinhðηÞÞ−1. Choosing N� ¼ H−1

I ,
we have

φ� ¼ sinhð−ηÞ
�
1 − ϵ −

1

tanhðηÞ
�
eð1−ϵÞη: ð5:31Þ

In the early time limit (η → −∞), φ� ≃ 2−ϵ
2
e−ϵη. Therefore,

the two-point function is obtained by replacing the factor
e−ϵη in (4.8) by 2

2−ϵ φ�.
Near the end of inflation (η → −0), (5.31) approaches

a constant φ� ≃ 1. The two-point function in this limit
(and in the small ϵ limit) becomes17

hϕϕis:c:m: ¼ c�
H4

A

m2
A

�
HI

HA

�
2ϵ

ð5:32Þ

with an X0-dependent constant

c� ¼
1

2π2
3

2 − ð2þ sech2X0Þ tanhX0

1

ð1þ e2X0Þ2ϵ : ð5:33Þ

This has been obtained by using the expression (4.8) for ϵ
in the first-order perturbation theory.
In the RD era, v� is given by (D6). Using (5.2) and (5.4),

and setting N� ¼ H−1
I again, φ� ¼ v�=a becomes

φ� ≃ sinh ðð1 − ϵÞηÞ
ð1 − ϵÞ sinhðηÞ ; ð5:34Þ

where the terms in (D6) of order OðϵÞOðη32Þ are ignored.
In the RD era, the conformal time takes values between η2
and η3, and thus it is tiny, η ≪ 1 (See Sec. VA). Thus, the
value of φ� ¼ 1 − 1

6
ϵð2 − ϵÞη2 þOðϵÞOðη4Þ does not

change much, and the two-point function (5.32) receives
only small corrections of order OðϵÞOðη2Þ.
In the MD era, φ� ¼ v�=a can be found from (D7), (5.2),

(5.4) and (5.6),

φ� ≃ 3

ð8ð1 − ϵÞ2 − 2Þð1 − ϵÞ2

×
1

sinh2ðη=2Þ
�
2ð1 − ϵÞ coshðð1 − ϵÞηÞ

−
sinhðð1 − ϵÞηÞ
tanhðη=2Þ

�
; ð5:35Þ

where again we neglect the terms of order OðϵÞOðη3Þ,
OðϵÞOðη63Þ and OðϵÞOðη32Þ in (D7). As in the RD era, the
conformal time stays small in the MD era. Thus, the value
of the wave function φ� does not have significant change
[see (D9)], and the two-point function remains to be (5.32)
except for small corrections of order OðϵÞOðη2Þ.
Therefore, even though the nonzero ϵ introduces some

time dependence for the wave function, we can conclude
that this effect is not large for small ϵ and η.

17We have kept ϵ in the exponent of the factor ðHI=HAÞ2ϵ,
since we do not know the magnitude of ðHI=HAÞ. We have also
kept the factor ð1þ e2X0Þ−2ϵ in (5.33).
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3. The ϵ= 0 approximation

In the periods (ii) and (iii), the term 2ϵ − ϵ2 is the least
relevant, and Eq. (5.23) is approximated by neglecting this
term. In terms of φ� ¼ v�=a, this equation is rewritten as

½∂2
t þ 3H∂t þm2

0�φ�ðtÞ ¼ 0; ð5:36Þ

where we have used the physical time t instead of the
conformal time η (where dt=dη ¼ a), andH ¼ ∂ta=a is the
Hubble parameter. This equation has the same form as
the zero-modes in the flat-space case.
Throughout the RD and MD eras (until today and

perhaps much later), the spatial curvature can be neglected,
as one can see from (5.11). In the case of spatially flat
universe, the Hubble parameter behaves as H ∝ t−1. For
H ¼ p=t with p being a constant parameter, the solutions
(5.36) are expressed in terms of the Bessel function as

φ� ¼ ðm0tÞ−νðFJνðm0tÞ þGYνðm0tÞÞ; ð5:37Þ

where

ν ¼ 3

2
p −

1

2
; ð5:38Þ

and F and G are arbitrary constants. In the MD period,
p ¼ 2=3 and ν ¼ 1=2. Then (5.37) becomes

φ� ¼ ðm0tÞ−1ðF sinðm0tÞ þ G cosðm0tÞÞ: ð5:39Þ

By smoothly connecting it to the frozen wave function in
the previous subsection, we find

φ� ≃ ðm0tÞ−1 sinðm0tÞ: ð5:40Þ
In the period (ii), m0t≲ 1 (or m0H−1 ≲ 1), and the wave
function (5.40) is frozen. In the period (iii), m0t≳ 1 (or
m0H−1 ≳ 1), and then the wave function starts oscillating.
Note that at later times η≳ 1, we have to take spatial curvature
into account, which will modify the wave function (5.37).

C. Time evolution of energy density and pressure

Let us now consider the expectation value of the energy-
momentum tensor. First note that the continuous modes are
expected to give negligible contributions. As mentioned
in Sec. IV, the wave functions for the continuous modes
decreases to order HI by the end of the curvature domi-
nation, due to the time dependence e−η, while the super-
curvature mode decays only as e−ϵη. The continuous modes
do not receive the enhancement factor ϵ−1=2 either. Thus,
they are smaller by a factor mA

HA
ðHI
HA
Þ1−ϵ relative to the

supercurvature mode.
One may worry about the divergence in the coincident-

point limit. Such divergence appears in the continuous
modes where the renormalization/regularization is needed

to introduce the counter terms to cancel divergent pieces,
resulting in the finite terms in the energy-momentum tensors.
Nevertheless, they can be safely ignored due to the fact that
these terms will be a combination of curvature tensors
because the renormalization is done in a local and covariant
manner. In the present universe, such terms in the energy-
momentum tensor will be of orderH4

0, which is smaller than
the contribution from the supercurvature mode.
Thus, we concentrate on the contribution from the

supercurvature mode. We will estimate the energy density
(4.2) and pressure (4.3), by comparing the magnitude
of each term. Note that the spatial-derivative term is
hð∇ϕÞ2i ¼ −hϕ∇2ϕi ¼ ð2ϵ − ϵ2Þhϕϕi ¼ OðϵÞ.
In the period (i), the time-derivative term is

hφ�02i ¼ Oðϵ2Þ, since the wave function is almost frozen
and φ�0 ¼ OðϵÞ. Hence, the spatial-derivative term is
dominant in (4.2) and (4.3), and then

ρ≃ c�
H4

A

m2
A

�
HI

HA

�
2ε ε

a2
∼H2

A

�
HI

HA

�
2ε 1

a2
; ð5:41Þ

p≃ −
1

3
ρ; ð5:42Þ

where c� is given in (5.33). The equation of state is
w≃ −1=3.
In the period (ii), the wave function is almost frozen, and

the time-derivative term in (4.2) and (4.3) is smaller than
the mass term by a factor of order ðm0tÞ2 (or ðm0=HÞ2).
From (5.40), we see φ� ≃ 1 − ðm0tÞ2=6 and φ0�=a ¼
∂tφ� ≃ −ðm0tÞ=3 ·m0φ�. Then, the mass term is dominant
in (4.2) and (4.3), and we find

ρ≃ 1

2
c�m2

0

H4
A

m2
A

�
HI

HA

�
2ϵ

; ð5:43Þ

p≃ −ρ: ð5:44Þ
The equation of state is w≃ −1, and it gives a dark energy
candidate.
The wave function (5.40) is valid over the periods (ii)

and (iii). With this wave function, the energy density (4.2)
and pressure (4.3) are estimated as

ρ≃ c�
H4

A

m2
A

�
HI

HA

�
2ϵ m2

0

2ðm0tÞ2
·

�
1 −

1

m0t
sinð2m0tÞ

þ 1

2ðm0tÞ2
ð1 − cosð2m0tÞÞ

�
; ð5:45Þ

p≃ c�
H4

A

m2
A

�
HI

HA

�
2ϵ m2

0

2ðm0tÞ2
·

�
cosð2m0tÞ −

1

m0t
sinð2m0tÞ

þ 1

2ðm0tÞ2
ð1 − cosð2m0tÞÞ

�
: ð5:46Þ

They can be rewritten as a function ofm0=H instead ofm0t,
with the relation between time and the Hubble parameter
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t ¼ 2
3
H−1 in the MD era. In the period (ii), m0t≲ 1 (or

m0=H ≲ 1), and (5.45) and (5.46) reduce to (5.43) and
(5.44) respectively, as we can see by considering the
leading terms in the expansion in m0t. In the period
(iii), m0t≳ 1 (m0=H ≳ 1), and the energy density and
pressure show the oscillating and decreasing behavior.
We now summarize the time evolution of the energy

density and pressure.
(i) When m2

0a
2 < 2ϵ − ϵ2 is satisfied, the energy den-

sity is given by (5.41), and the equation of state
is w ¼ −1=3.

(ii) When 2ϵ − ϵ2 < m2
0a

2 < a00=a, assumed to be sat-
isfied in the present universe, the energy density is
given by (5.43), leading to w ¼ −1.

(iii) When a00=a < m2
0a

2 occurs as m0=H ≳ 1, the en-
ergy density and pressure oscillate as in (5.45) and
(5.46). If we take an average over the period of
oscillation (using the Virial theorem), we obtain
w ¼ 0. Thus, the energy density will decay as fast
as the energy density of matter.18

We finally give some comments about the continuous
modes. The wave functions with k≳ 1 (or kphys ¼
k=a≳ R−1

c ) do not have much change from those in the
flat-space geometry, studied in [28,29], where modes with
k ∼ 1=η (or kphys ∼H) mainly contribute to the derivative
terms of the energy-momentum tensor. Then, as long as
η≲ 1 (or H−1 ≲ Rc) (i.e., throughout the RD and MD eras
until today and later times), the results for the flat-space
geometry obtained in [28,29] can be applied:

ρ ∼H2
IH

2 ð5:47Þ

with the equation of state w ¼ 1=3 in the RD era and w ¼ 0
in the MD era. At earlier times, (5.47) is dominant over
the supercurvature-mode contributions. The transition from
this epoch to the period (i) occurs when (5.41) dominates
over (5.47). Neglecting the numerical factors, and solving
H2

Aa
−2 ¼ H2

IH
2 with the use of H2 ¼ α2a−4 in the RD era

andH2 ¼ βa−3 in the MD era, we find the transition occurs
when

H ∼
1

αH0

�
HA

HI

�
2

H0 ð5:48Þ

if it happens in the RD era, and

H ∼
1

βH0

�
HA

HI

�
3

H0 ð5:49Þ

if it happens in the MD era. The prefactors are constrained
by 1=ðαH0Þ≲ 1=2 and 1=ðβH0Þ≲ 10−3 using (5.17)
and (5.18).

D. Vacuum energy as dark energy

To interpret the vacuum energy in the period (ii) as the
present dark energy, the following three conditions are
necessary. One is that the vacuum energy (5.43) has
the same order of magnitude as dark energy, written
explicitly as

1

2
c�m2

0

H4
A

m2
A

�
HI

HA

�
2ϵ ≃ 3ΩΛH2

0M
2
p; ð5:50Þ

⇔
m0

H0

HA

mA

HA

Mp
≃

�
6ΩΛ

c�

�
1=2

�
HA

HI

�
ϵ

; ð5:51Þ

with ΩΛ ∼ 0.7. The second and third conditions are that the
present moment is in the period (ii):

2ϵ − ϵ2 < m2
0a

2
0 <

a000
a0

: ð5:52Þ

With the scale factor (5.2) in the MD era, they become

2cϵ

�
mA

HA

�
2

<
�
m0

H0

�
2

coth2ðη0=2Þ <
1

2 sinh2ðη0=2Þ
þ 1;

ð5:53Þ

where we assume ϵ ≪ 1, and cϵ is a constant of order unity,
defined by ϵ ¼ cϵm2

AH
−2
A . From (3.14),

cϵ ¼
2 − ð2þ sech2X0Þ tanhX0

3ð2þ sech2X0 − 2 tanhX0Þ
: ð5:54Þ

To obtain (5.53), (5.11) and (5.27) have been applied.
With (5.15), (5.53) can be further rewritten as

2cϵ

�
mA

HA

�
2

<

�
m0

H0

�
2

r2c0 <
1

2
r2c0: ð5:55Þ

Let us heuristically explain the conditions in (5.55). The
first inequality requires that the eigenvalue of Laplacian is
smaller than the mass. Laplacian is associated with the
inverse scale factor squared, and ϵa−20 < m2

0. Recalling the
fact that the present curvature radius is equal to a0, we can
rewrite the first inequality using a0 ¼ rc0H−1

0 . The second
inequality is the condition for nonoscillation of the wave
function, and gives m0 < H0.

18If dark energy eventually decays as assumed in this paper, the
universe will be curvature dominated again at very late times,
since the energy density of curvature decays more slowly than the
one for matter. To study that regime, we will have to use the wave
function of the scalar field on the curvature-dominated back-
ground, and also may have to consider the backreaction from the
scalar field to the geometry.
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The conditions (5.51) and (5.55) can be satisfied by
physically acceptable values of the parameters,19 for
example,

HA ∼Mp;
mA

HA
∼
m0

H0

< 1: rc0 > 1 ð5:56Þ

One could also consider the case that the second inequality
of (5.55) is barely satisfied, m0 ∼H0, leading to

HA

MP
∼
mA

HA
< rc0; ð5:57Þ

which means HA is the geometric mean of MP and mA.
The transition from the period (i) with w ¼ −1=3 to the

period (ii) with w ¼ −1 is an interesting signature of our
mechanism for the realization of dark energy. The transition
occurs at the time when 2ϵ − ϵ2 ¼ m2

0a
2, i.e., at

1þ z ¼ a0
a
≃ 1ffiffiffiffiffi

2ϵ
p m0

H0

rc0: ð5:58Þ

Let us compute wðzÞ as a function of the redshift z,
assuming that the time derivative terms in ρ and p can be
ignored. This should be a good approximation in the period
(i) and (ii), though the precision of the approximation will
depend on the choice of the parameters. In this case, we get
a very simple expression,

wðzÞ ¼ −
2
3
ϵþm2

0a
2

2ϵþm2
0a

2
¼ −

1þ 2
3
~ϵð1þ zÞ2

1þ 2~ϵð1þ zÞ2 ; ð5:59Þ

where the above ~ϵ is defined as

~ϵ ¼ ϵ

ðm0=H0Þ2r2c0
: ð5:60Þ

Here we have used a ¼ rc0H−1
0 ð1þ zÞ−1 to obtain the

right-hand side of (5.59). When this approximation is valid,

wðzÞ depends only on ~ϵ, as it can be seen in (5.59).
The deviation of the present equation of state w0 ¼ wð0Þ
from −1 is

w0 þ 1 ¼
4
3
~ϵ

1þ 2~ϵ
≈
4

3
~ϵ: ð5:61Þ

The last approximation is for ~ϵ ≪ 1 to be satisfied in most
cases of our study here. The derivative of w with respect to
the scale factor (evaluated at present), which is sometimes
called w1, (see e.g., [9]), is

w1 ¼ −a
dw
da

����
a¼a0

¼ 8

3

~ϵ

ð1þ 2~ϵÞ2 ≈
8

3
~ϵ: ð5:62Þ

Thus, as long as our approximation of neglecting the time
derivative and taking ~ϵ ≪ 1 is valid, there is a simple
relation between w0 and w1, namely, w1 ¼ 2ðw0 þ 1Þ.
In Figure. 4, we show the plot of wðzÞ for two choices of

the set of parameters ϵ, m0=H0, rc0. These parameters have
been chosen so that the time derivative terms in ρ and p can
be safely ignored. The validity of this approximation was
confirmed by studying the time dependence of the solutions
obtained in Sections V B 2 and V B 3, where the dominant
term of 2ϵ andm2

0a
2 have been kept to solve the equation of

motion. It is an important subject for future investigations
to obtain wðzÞ for more general choices of parameters
without introducing an approximation.

VI. CONCLUSIONS

Let us summarize our results. We have calculated the
vacuum expectation value of the energy-momentum tensor
for a scalar field in an open universe created by bubble
nucleation. We pay particular attention to the contribution
from the supercurvature mode, a non-normalizable mode on
H3, which appearswhen themassmA in the ancestor vacuum
is small enough. The vacuum expectation value
of the energy-momentum tensor in the early-time limit is
obtained by the Euclidean prescription. Then, its time
evolution is studied using the equation of motion for the
scalar field. The supercurvature mode decays more slowly

FIG. 4. The equation of state wðzÞ as a function of the redshift z. The parameters for the left panel are ϵ ¼ 0.1,m0=H0 ¼ 0.1, rc0 ¼ 20,
for which the present equation of state is w0 ¼ −0.968. Those for the right panel are ϵ ¼ 0.1, m0=H0 ¼ 0.1, rc0 ¼ 40, for which
w0 ¼ −0.992. Note that these are preliminary results, obtained by ignoring the time derivative terms in ρ and p (though this
approximation can be justified for these choices of parameters).

19Here, the right-hand side of (5.51) and cϵ in (5.55) are
considered to be of order unity.
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than the continuous modes, thus it gives the most important
contribution at late times. We have shown that the vacuum
energy for a minimally coupled scalar field can be regarded
as dark energy. For this interpretation, it is needed that there is
a field withmass (in the true vacuum)m0 of order the present
Hubble parameterH0 or smaller, and the ratios ofm0,mA and
the Hubble parameter in the ancestor vacuum HA satisfy
certain inequalities. The latter condition does not seem
difficult to satisfy. As long as m0 ≲H, the field value is
essentially frozen (though there isweak time dependence due
to nonzero mA). In the future, when the Hubble parameter
decreases so that m0 ≳H, the energy density decays.
A nice point about our analysis is that the main result is

free of theoretical uncertainties in the following senses.
First, our result does not depend on the renormalization
prescription for the UV divergence, since the supercurva-
ture mode is non-singular in the coincident-point limit.
Vacuum energy is often considered to be ambiguous due
to the UV divergence, but we believe our finite result
has the intrinsic physical meaning. Second, the change of
mass from mA to m0, which is assumed to occur during
tunneling, does not give rise to complicated non-
equilibrium processes. This change occurs in the spatial
direction in Region III in Fig. 1, with its effect essentially
encoded in the initial condition in the FLRWuniverse, such
as the position of the pole for the bound states in the
Euclidean problem. Third, we treat the field ϕ fully
quantum mechanically, and do not have to assign a random
classical value for the field ϕ. In the study of axions, one
sometimes has to set the misalignment angle by hand, but
we do not have that kind of ambiguity.
We do not expect the fields other than scalars to give

contributions of the type studied in this paper. Massless
vectors (spin 1) areWeyl invariant in 3þ 1 dimensions, and
so are massless spinors (spin 1=2) in any dimensions. A
supercurvature mode appears when there is a bound state in
the complete set in the X direction (see Fig. 1). For the
scalar case, the presence of the bound state is due to the
nontrivial potential a00=a in the equation of motion arising
from the coupling with the curved background. Weyl-
invariant fields have the same equation of motion as in the
flat spacetime, and there is no supercurvature mode.20

Gravitons (spin 2) behave similarly to the massless scalar,
but the counterpart of the k ¼ i supercurvature mode in the
scalar case is known to be pure gauge in the spin 2 case
[14]. Furthermore, we cannot give mass to gravitons, so
there is no mechanism for generating the vacuum energy
from the mass term. The remaining field is gravitino (spin
3=2). This field has not been studied in the context of
bubble nucleation, and it is an interesting question on how
the correlation functions and the vacuum energy of grav-
itino behave. However, it is not likely that the mass of

gravitino is of orderH0, since its mass is related to the scale
of supersymmetry breaking, and as we know, there is no
supersymmetry at such a low energy scale.
In this paper,we have not discussed the origin of the scalar

fieldϕwithmass of orderm0 ∼H0 ∼ 10−33 eV.We expect it
to be one of the many axion-like particles that have been
proposed to exist in superstring theory according to the idea
of “string axiverse” [38]. String axiverse have been studied
in the framework of type IIB string theory [48,49] and M-
theory [50]. These studies will serve as a starting point for an
explicit construction of the field ϕ considered in this paper.
One interesting possibility is that the field ϕ simultaneously
gives dark energy and dark matter. To serve as dark matter,
axions should have mass mDM ≳ 10−22 eV (See e.g.,
[40,43,51]).21 If the mechanism for generating the mass
mDM is given by the local dynamics inside our universe, it
could be that while the continuousmodes get massmDM, the
supercurvature mode is unaffected to still have mass m0,
because the latter mode is essentially determined in the
ancestor vacuum. This point needs further study.
It is highly important to test observationally whether

dark energy has been produced by our mechanism or not.
According to our proposal, the equation of state of dark
energy will deviate from w ¼ −1 as we go back in the past,
and will approach w ¼ −1=3. The transition occurs when
the spatial derivative term (of order ϵ) becomes dominant
over the mass term m2

0a
2 in the energy density (4.2) and

pressure (4.3). The time of this transition depends on the
parameters rc0 (the ratio of the curvature radius to H−1

0 ),
m0=H0 and ϵ, but there is a characteristic behavior of wðzÞ,
which seems to be rather general as mentioned at the end
of Sec. V. The observational determination of the dark
energy equation of state wðzÞ as a function of z would be a
great challenge,22 and it would be especially difficult to
obtain wðzÞ for high redshift, since dark energy will be less
and less important than the energy density of matter at early
times. Nevertheless, confirmation (or rejection) of the
pattern like the one shown in Fig. 4 might be within reach
of the observations in the near future. One of such
observational projects would be the multi radio telescope,
Square Kilometre Array (SKA) [53], which is expected to
deliver precise cosmological measurements through the
survey of a large number of distant galaxies using the
21 cm hydrogen line [54,55]. Giving detailed theoretical
predictions for wðzÞ for comparison with observations is an
important subject for future studies.

20See [47] for recent work on the absence of supercurvature
modes for vector fields.

21Dark matter with an extremely low mass mDM ∼ 10−22 eV,
sometimes called “fuzzy” dark matter having de Broglie wave-
length λ ∼ 1 kpc, has attracted attention recently. It is considered
as a possible resolution of the apparent inconsistencies of the cold
dark matter (CDM) model with the observations of galaxies at
length scales below 10 kpc (overabundance of the structure on
small scales in CDM) [40,43,51].

22See [52] for a review on the observational probes of cosmic
acceleration.
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APPENDIX A: HARMONICS ON H3

The eigenvalue equation in (3.25) can be written down
explicitly as

�
1

sinh2R
∂Rðsinh2R∂RÞ þ

∇2
S2

sinh2R

�
fðlmÞ
k ðR;Ω2Þ

¼ −ðk2 þ 1ÞfðlmÞ
k ðR;Ω2Þ; ðA1Þ

where ∇2
S2 is the Laplacian on S2. Solutions are given as

fðlmÞ
k ðR;Ω2Þ ¼ ΠðklÞðRÞYðlmÞðΩ2Þ; ðA2Þ

where YðlmÞðΩ2Þ is the spherical harmonics on S2, which
satisfy ∇2

S2Y
ðlmÞ ¼ −lðlþ 1ÞYðlmÞ. The function ΠðklÞðRÞ

with the normalization condition (3.26) can be written as
(for 0 < k < ∞),

ΠðklÞðRÞ ¼
ffiffiffi
2

π

r �Yl
n¼0

ðk2 þ n2Þ
�−1=2

× sinhl R

�
−1

sinhR
d
dR

�
lþ1

cosðkRÞ ðA3Þ

APPENDIX B: CALCULATION OF hϕ2i
IN PURE DE SITTER SPACE

In this Appendix, we will calculate hϕ2i in pure de Sitter
space in the massless limit. The derivation is somewhat
simpler than the one presented in Sec. IV, where the result
was obtained by taking the limit of small bubble. The
calculation will be performed in the Euclidean space. We
will see that the contribution from the supercurvature mode
(i.e., the bound state in the Euclidean problem) reproduces
the result obtained by the standard techniques.
We start from the expression (3.17) for the Euclidean

two-point function hχðX; θÞχðX0; 0Þi. We take the bound
state contribution, divide it by the scale factors to
obtain hϕðX; θÞϕðX0; 0Þi, take the massless (ϵ → 0) and
coincident-point (X → X0, θ → 0) limit, and obtain

hϕ2i ¼ lim
ϵ→0

lim
X0→X

lim
θ→0

uBkBðXÞuB�kB ðX0Þ
aðXÞaðX0Þ GkBðθÞ; ðB1Þ

where kB ¼ ð1 − ϵÞi denotes the position of the bound
state pole.
The function GkðθÞ is the Green’s function on S3 with

the effective mass k2 þ 1. It is the solution of (3.18), given
explicitly by (3.19). It is singular in the ϵ → 0 (k → i) limit.
We will be interested in the leading singularity, propor-
tional to 1=ϵ. Let us rewrite (3.19) as

GkðθÞ ¼
1

4π sinh kπ sin θ
ðsinhðkπÞ coshðkθÞ

− coshðkπÞ sinhðkθÞÞ: ðB2Þ

The first term is singular in the θ → 0 limit, but the
coefficient of this singularity is independent of ϵ. This
term represents the UV divergence which exists generally
in quantum field theory, thus can be discarded.23

Renormalization of this term will give rise to finite terms
expressed in terms of local curvature tensors, but we will not
consider such terms here. The second term is regular in the
θ → 0 limit, but diverges as 1=ϵ in the ϵ → 0 limit. This term
gives the dominant contribution that we are interested in,

lim
ϵ→0

lim
θ→0

GkBðθÞ ¼
1

4π2ϵ
: ðB3Þ

To compute the factors multiplying (B3) to obtain (B1),
we can substitute k ¼ i for the bound state wave function
uk¼iðXÞ, since this function is regular in the ϵ → 0 limit.
The wave function with k ¼ i is proportional to the scale
factor aðXÞ, as explained in (3.7). For pure de Sitter space,
we have aðXÞ ¼ H−1

A = coshX, and

uBk¼iðXÞ ¼ N
1

coshX
; ðB4Þ

where

N ¼
�Z

∞

−∞
dX

1

cosh2 X

�
−1=2

¼ 1ffiffiffi
2

p : ðB5Þ

The parameter ϵ can be obtained by the first-order
perturbation (2ϵ being the eigenenergy) as explained in
Sec. III,

ϵ ¼ 1

2

Z
∞

−∞
dXm2

Aa
2ðXÞðuBk¼iðXÞÞ2

¼ 1

2
m2

AH
−2
A N 2

Z
∞

−∞
dX

1

cosh4 X

¼ 1

3
m2

AH
−2
A : ðB6Þ

23If we analytically continue to the open FLRW universe
following the prescription described in Sec. III B, this UV
divergence disappears from the supercurvature mode. See (4.5).
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Putting these factors together, the expectation value (B1)
becomes

hϕ2i ¼ 3

8π2
H4

A

m2
A
; ðB7Þ

which agrees with the known value (apart from the finite
contribution due to renormalization) in pure de Sitter space
(see e.g., [35,36]).

APPENDIX C: SCALE FACTOR FOR OPEN
UNIVERSE WITH BOTH MATTER

AND RADIATION

We consider the cases where the energy density contains
both radiation and matter component,

ρ ¼ 3M2
p

�
α2

a4
þ β

a3

�
: ðC1Þ

Solutions of the Friedmann equation (2.10) with this energy
density are

aðηÞ ¼ −
β

2
�
�
α2 −

β2

4

�
1=2

sinhðηÞ ðC2Þ

for α2 − β2

4
> 0, and

aðηÞ ¼ −
β

2
�
�
β2

4
− α2

�
1=2

coshðηÞ ðC3Þ

for β2

4
− α2 > 0, up to a shift in η. The scale factors in the

RD and the MD eras, given in (5.2), are reproduced from
the above solutions by setting β ¼ 0 (RD) and α ¼ 0 (MD),
respectively.

APPENDIX D: MATCHING OF THE
WAVE FUNCTIONS

Requiring the continuity conditions of the wave func-
tions (5.30) across the eras, the coefficients A, B, C and D
are determined as

�
A

B

�
¼ N�

2ð1 − ϵÞs22

� ½1þ 2ð1 − ϵÞs2c2 þ 2ð1 − ϵÞ2s22�e−2ð1−ϵÞη2
−1

�
; ðD1Þ

with s2 ¼ sinhðη2Þ, c2 ¼ coshðη2Þ, and
�

C

D

�
¼ 1

8ð1 − ϵÞ2 − 2
·

1

2ð1 − ϵÞs23
·

� ½1þ 4ð1 − ϵÞs3c3 þ 8ð1 − ϵÞ2s23�e−13 e−33
−e33 −½1 − 4ð1 − ϵÞs3c3 þ 8ð1 − ϵÞ2s23�e3

��
A

B

�
; ðD2Þ

with s3 ¼ sinhðη3Þ, c3 ¼ coshðη3Þ, e3 ¼ eð1−ϵÞη3 .
We are mostly interested in the case of small ϵ (i.e.,

mA ≪ HA). Also note that η2 and η3, which were
determined in Sec. VA, are tiny numbers. Expanding
the upper element of (D1) with respect to ϵ and η2, we
obtain

A ¼ N�
2ð1 − ϵÞs22

�
1þ 4

3
ð2ϵ − 3ϵ2 þ ϵ3Þη32 þOðϵÞOðη42Þ

�
:

ðD3Þ

Then, by expanding the matrix elements of (D2) with
respect to ϵ and η3, we find

CþD ¼ 1

8ð1 − ϵÞ2 − 2
·

N�
4ð1 − ϵÞ2s22s23

·

�
16

45
ϵð1 − ϵÞ2ð6 − 19ϵþ 16ϵ2 − 4ϵ3Þη63

þOðϵÞOðη83Þ þOðϵÞOðη32Þ
�
; ðD4Þ

C −D ¼ 1

8ð1 − ϵÞ2 − 2
·

N�
4ð1 − ϵÞ2s22s23

·

�
12 sinhðη3Þ þ ϵ

�
−12η3 þ

14

3
η33 þOðη53Þ

�

þOðϵ2ÞOðη33Þ þOðϵÞOðη32Þ
�
: ðD5Þ

Substituting these coefficients back into (5.30), we
obtain the wave function
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v� ¼
N�

2ð1 − ϵÞs22
½2 sinh ðð1 − ϵÞηÞ þOðϵÞOðη32Þ� ðD6Þ

in the RD era, and

v� ¼
1

8ð1 − ϵÞ2 − 2
·

N�
4ð1 − ϵÞ2s22s23

·

�
ð12s3 þOðϵÞOðη3Þ þOðϵÞOðη32ÞÞ

×

�
2ð1 − ϵÞ coshðð1 − ϵÞηÞ − sinhðð1 − ϵÞηÞ

tanhðη=2Þ
�

þOðϵÞOðη63Þ þOðϵÞOðη32Þ
�

ðD7Þ

in the MD era.

We finally add a comment about the MD-era wave
function φ� ¼ v�=a, given in (5.35). Expanding (5.35) in
terms of ϵ and η, we obtain

φ� ¼
1

1 − ϵ

�
1 −

1

10
ϵð2 − ϵÞη2 þOðϵÞOðη4Þ

�
: ðD8Þ

If we estimate the coefficient C −D more precisely, taking
into account the term of order ϵ in (D5) as well, we find

φ� ¼
�
1þ5

9
ϵη23þOðϵÞOðη43ÞþOðϵ2ÞOðη23ÞþOðϵÞOðη32Þ

�

·

�
1−

1

10
ϵð2−ϵÞη2þOðϵÞOðη4Þ

�
: ðD9Þ

[1] R. Bousso and J. Polchinski, Quantization of four form
fluxes and dynamical neutralization of the cosmological
constant, J. High Energy Phys. 06 (2000) 006.

[2] M. R. Douglas, The statistics of string / M theory vacua, J.
High Energy Phys. 05 (2003) 046.

[3] L. Susskind, The anthropic landscape of string theory,
arXiv:hep-th/0302219.

[4] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, De
Sitter vacua in string theory, Phys. Rev. D 68, 046005
(2003).

[5] V. Balasubramanian, P. Berglund, J. P. Conlon, and F.
Quevedo, Systematics of moduli stabilisation in Calabi-
Yau flux compactifications, J. High Energy Phys. 03 (2005)
007.

[6] F. Denef, M. R. Douglas, and S. Kachru, Physics of string
flux compactifications, Annu. Rev. Nucl. Part. Sci. 57, 119
(2007).

[7] M. Kleban and M. Schillo, Spatial curvature falsifies eternal
inflation, J. Cosmol. Astropart. Phys. 06 (2012) 029.

[8] S. R. Coleman and F. De Luccia, Gravitational effects
on and of vacuum decay, Phys. Rev. D 21, 3305 (1980).

[9] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XIII. Cosmological parameters, Astron. Astrophys.
594, A13 (2016).

[10] P. A. R. Ade et al. (Planck Collaboration), Planck 2015
results. XX. Constraints on inflation, Astron. Astrophys.
594, A20 (2016).

[11] M. Sasaki, T. Tanaka, and K. Yamamoto, Euclidean vacuum
mode functions for a scalar field on open de Sitter space,
Phys. Rev. D 51, 2979 (1995).

[12] K. Yamamoto, M. Sasaki, and T. Tanaka, Large angle CMB
anisotropy in an open universe in the one bubble inflationary
scenario, Astrophys. J. 455, 412 (1995).

[13] K. Yamamoto, M. Sasaki, and T. Tanaka, Quantum fluctua-
tions and CMB anisotropies in one bubble open inflation
models, Phys. Rev. D 54, 5031 (1996).

[14] T. Tanaka and M. Sasaki, The spectrum of gravitational
wave perturbations in the one bubble open inflationary
universe, Prog. Theor. Phys. 97, 243 (1997).

[15] J. Garriga, X. Montes, M. Sasaki, and T. Tanaka, Canonical
quantization of cosmological perturbations in the one-
bubble open universe, Nucl. Phys. B513, 343 (1998);
Erratum, Nucl. Phys. B551, 511 (1999).

[16] J. Garriga, X. Montes, M. Sasaki, and T. Tanaka, Spectrum
of cosmological perturbations in the one bubble open
universe, Nucl. Phys. B551, 317 (1999).

[17] A. D. Linde, M. Sasaki, and T. Tanaka, CMB in open
inflation, Phys. Rev. D 59, 123522 (1999).

[18] B. Freivogel, M. Kleban, M. Rodriguez Martinez, and L.
Susskind, Observational consequences of a landscape, J.
High Energy Phys. 03 (2006) 039.

[19] B. Freivogel, M. Kleban, M. R. Martinez, and L. Susskind,
Observational consequences of a landscape: Epilogue,
arXiv:1404.2274.

[20] D. Yamauchi, A. Linde, A. Naruko, M. Sasaki, and T.
Tanaka, Open inflation in the landscape, Phys. Rev. D 84,
043513 (2011).

[21] R. Bousso, D. Harlow, and L. Senatore, Inflation after false
vacuum decay: Observational prospects after Planck, Phys.
Rev. D 91, 083527 (2015).

[22] R. Bousso, D. Harlow, and L. Senatore, Inflation after false
vacuum decay: New evidence from BICEP2, J. Cosmol.
Astropart. Phys. 12 (2014) 019.

[23] M. Sasaki and T. Tanaka, Can the simplest two field
model of open inflation survive?, Phys. Rev. D 54,
R4705 (1996).

[24] A. R. Liddle and M. Cortês, Cosmic Microwave Back-
ground Anomalies in an Open Universe, Phys. Rev. Lett.
111, 111302 (2013).

[25] S. Kanno, M. Sasaki, and T. Tanaka, Aviable explanation of
the CMB dipolar statistical anisotropy, Prog. Theor. Exp.
Phys. 2013, 111E01 (2013).

VACUUM FLUCTUATIONS IN AN ANCESTOR VACUUM: A … PHYS. REV. D 97, 043517 (2018)

043517-21

https://doi.org/10.1088/1126-6708/2000/06/006
https://doi.org/10.1088/1126-6708/2003/05/046
https://doi.org/10.1088/1126-6708/2003/05/046
http://arXiv.org/abs/hep-th/0302219
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1088/1126-6708/2005/03/007
https://doi.org/10.1088/1126-6708/2005/03/007
https://doi.org/10.1146/annurev.nucl.57.090506.123042
https://doi.org/10.1146/annurev.nucl.57.090506.123042
https://doi.org/10.1088/1475-7516/2012/06/029
https://doi.org/10.1103/PhysRevD.21.3305
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525830
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1051/0004-6361/201525898
https://doi.org/10.1103/PhysRevD.51.2979
https://doi.org/10.1086/176588
https://doi.org/10.1103/PhysRevD.54.5031
https://doi.org/10.1143/PTP.97.243
https://doi.org/10.1016/S0550-3213(97)00780-3
https://doi.org/10.1016/S0550-3213(99)00287-4
https://doi.org/10.1016/S0550-3213(99)00181-9
https://doi.org/10.1103/PhysRevD.59.123522
https://doi.org/10.1088/1126-6708/2006/03/039
https://doi.org/10.1088/1126-6708/2006/03/039
http://arXiv.org/abs/1404.2274
https://doi.org/10.1103/PhysRevD.84.043513
https://doi.org/10.1103/PhysRevD.84.043513
https://doi.org/10.1103/PhysRevD.91.083527
https://doi.org/10.1103/PhysRevD.91.083527
https://doi.org/10.1088/1475-7516/2014/12/019
https://doi.org/10.1088/1475-7516/2014/12/019
https://doi.org/10.1103/PhysRevD.54.R4705
https://doi.org/10.1103/PhysRevD.54.R4705
https://doi.org/10.1103/PhysRevLett.111.111302
https://doi.org/10.1103/PhysRevLett.111.111302
https://doi.org/10.1093/ptep/ptt093
https://doi.org/10.1093/ptep/ptt093


[26] B. Freivogel, Y. Sekino, L. Susskind, and C.-P. Yeh, A
holographic framework for eternal inflation, Phys. Rev. D
74, 086003 (2006).

[27] Y. Sekino and L. Susskind, Census taking in the hat: FRW/
CFT duality, Phys. Rev. D 80, 083531 (2009).

[28] H. Aoki, S. Iso, and Y. Sekino, Evolution of vacuum
fluctuations generated during and before inflation, Phys.
Rev. D 89, 103536 (2014).

[29] H. Aoki and S. Iso, Evolution of vacuum fluctuations of an
ultra-light massive scalar field generated during and before
inflation, Prog. Theor. Exp. Phys. 2015, 113E02 (2015).

[30] C. Ringeval, T. Suyama, T. Takahashi, M. Yamaguchi, and
S. Yokoyama, Dark Energy from Primordial Inflationary
Quantum Fluctuations, Phys. Rev. Lett. 105, 121301 (2010).

[31] D. Glavan, T. Prokopec, and V. Prymidis, Backreaction of a
massless minimally coupled scalar field from inflationary
quantum fluctuations, Phys. Rev. D 89, 024024 (2014).

[32] D. Glavan, T. Prokopec, and D. C. van der Woude, Late-
time quantum backreaction from inflationary fluctuations of
a nonminimally coupled massless scalar, Phys. Rev. D 91,
024014 (2015).

[33] D. Glavan, T. Prokopec, and T. Takahashi, Late-time
quantum backreaction of a very light nonminimally coupled
scalar, Phys. Rev. D 94, 084053 (2016).

[34] D. Glavan, T. Prokopec, and A. A. Starobinsky, Stochastic
dark energy from inflationary quantum fluctuations, arXiv:
1710.07824.

[35] N. D. Birrell and P. C. W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, Cambridge,
England, 1984).

[36] A. D. Linde, Particle physics and inflationary cosmology
(CRC press, Boca Raton, Florida, 1990).

[37] S. Weinberg, The cosmological constant problem, Rev.
Mod. Phys. 61, 1 (1989).

[38] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and
J. March-Russell, String axiverse, Phys. Rev. D 81, 123530
(2010).

[39] J. A. Frieman,C. T.Hill,A. Stebbins, and I.Waga,Cosmology
with Ultralight Pseudo Nambu-Goldstone Bosons, Phys. Rev.
Lett. 75, 2077 (1995).

[40] R. Hlozek, D. Grin, D. J. E. Marsh, and P. G. Ferreira, A
search for ultralight axions using precision cosmological
data, Phys. Rev. D 91, 103512 (2015).

[41] D. S. Lee, W. l. Lee, and K.W. Ng, Primordial magnetic
fields from dark energy, Phys. Lett. B 542, 1 (2002).

[42] E. J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of
dark energy, Int. J. Mod. Phys. D 15, 1753 (2006).

[43] D. J. E. Marsh, Axion cosmology, Phys. Rep. 643, 1
(2016).

[44] G. Barton, Levinson’s theorem in one dimension: Heuris-
tics, J. Phys. A 18 (1985) 479.

[45] S. Gratton and N. Turok, Cosmological perturbations from
the no boundary Euclidean path integral, Phys. Rev. D 60,
123507 (1999).

[46] S.W. Hawking, T. Hertog, and N. Turok, Gravitational
waves in open de Sitter space, Phys. Rev. D 62, 063502
(2000).

[47] D. Yamauchi, T. Fujita, and S. Mukohyama, Is there
supercurvature mode of massive vector field in open
inflation?, J. Cosmol. Astropart. Phys. 03 (2014) 031.

[48] M. Cicoli, M. Goodsell, and A. Ringwald, The type IIB
string axiverse and its low-energy phenomenology, J. High
Energy Phys. 10 (2012) 146.

[49] M. Cicoli, K. Dutta, and A. Maharana, N-flation with
hierarchically light axions in string compactifications, J.
Cosmol. Astropart. Phys. 08 (2014) 012.

[50] B. S. Acharya, K. Bobkov, and P. Kumar, An M theory
solution to the strong CP problem and constraints on the
axiverse, J. High Energy Phys. 11 (2010) 105.

[51] L. Hui, J. P. Ostriker, S. Tremaine, and E. Witten, Ultralight
scalars as cosmological dark matter, Phys. Rev. D 95,
043541 (2017).

[52] D. H. Weinberg, M. J. Mortonson, D. J. Eisenstein, C.
Hirata, A. G. Riess, and E. Rozo, Observational probes of
cosmic acceleration, Phys. Rep. 530, 87 (2013).

[53] https://skatelescope.org/.
[54] D. Yamauchi et al. (SKA-Japan Consortium Cosmology

Science Working Group), Cosmology with the Square
Kilometre Array by SKA-Japan, Proc. Sci., DSU 2015
(2016) 004 [arXiv:1603.01959]; Cosmology with the square
kilometre array by SKA-japan, Publ. Astron. Soc. Jpn. 68,
R2 (2016).

[55] K. Kohri, Y. Oyama, T. Sekiguchi, and T. Takahashi,
Elucidating dark energy with future 21 cm observations
at the epoch of reionization, J. Cosmol. Astropart. Phys. 02
(2017) 024.

AOKI, ISO, LEE, SEKINO, and YEH PHYS. REV. D 97, 043517 (2018)

043517-22

https://doi.org/10.1103/PhysRevD.74.086003
https://doi.org/10.1103/PhysRevD.74.086003
https://doi.org/10.1103/PhysRevD.80.083531
https://doi.org/10.1103/PhysRevD.89.103536
https://doi.org/10.1103/PhysRevD.89.103536
https://doi.org/10.1093/ptep/ptv150
https://doi.org/10.1103/PhysRevLett.105.121301
https://doi.org/10.1103/PhysRevD.89.024024
https://doi.org/10.1103/PhysRevD.91.024014
https://doi.org/10.1103/PhysRevD.91.024014
https://doi.org/10.1103/PhysRevD.94.084053
http://arXiv.org/abs/1710.07824
http://arXiv.org/abs/1710.07824
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/RevModPhys.61.1
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevD.81.123530
https://doi.org/10.1103/PhysRevLett.75.2077
https://doi.org/10.1103/PhysRevLett.75.2077
https://doi.org/10.1103/PhysRevD.91.103512
https://doi.org/10.1016/S0370-2693(02)02264-5
https://doi.org/10.1142/S021827180600942X
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1016/j.physrep.2016.06.005
https://doi.org/10.1088/0305-4470/18/3/023
https://doi.org/10.1103/PhysRevD.60.123507
https://doi.org/10.1103/PhysRevD.60.123507
https://doi.org/10.1103/PhysRevD.62.063502
https://doi.org/10.1103/PhysRevD.62.063502
https://doi.org/10.1088/1475-7516/2014/03/031
https://doi.org/10.1007/JHEP10(2012)146
https://doi.org/10.1007/JHEP10(2012)146
https://doi.org/10.1088/1475-7516/2014/08/012
https://doi.org/10.1088/1475-7516/2014/08/012
https://doi.org/10.1007/JHEP11(2010)105
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1103/PhysRevD.95.043541
https://doi.org/10.1016/j.physrep.2013.05.001
https://skatelescope.org/
https://skatelescope.org/
http://arXiv.org/abs/1603.01959
https://doi.org/10.1093/pasj/psw098
https://doi.org/10.1093/pasj/psw098
https://doi.org/10.1088/1475-7516/2017/02/024
https://doi.org/10.1088/1475-7516/2017/02/024

