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The decay of gravitational potentials in the presence of dark energy leads to an additional, late-time
contribution to anisotropies in the cosmic microwave background (CMB) at large angular scales. The
imprint of this so-called integrated Sachs-Wolfe (ISW) effect to the CMB angular power spectrum has been
detected and studied in detail, but reconstructing its spatial contributions to the CMB map, which would
offer the tantalizing possibility of separating the early- from the late-time contributions to CMB
temperature fluctuations, is more challenging. Here, we study the technique for reconstructing the
ISW map based on information from galaxy surveys and focus in particular on how its accuracy is impacted
by the presence of photometric calibration errors in input galaxy maps, which were previously found to be a
dominant contaminant for ISW signal estimation. We find that both including tomographic information
from a single survey and using data from multiple, complementary galaxy surveys improve the
reconstruction by mitigating the impact of spurious power contributions from calibration errors.
A high-fidelity reconstruction further requires one to account for the contribution of calibration errors
to the observed galaxy power spectrum in the model used to construct the ISW estimator. We find that if the
photometric calibration errors in galaxy surveys can be independently controlled at the level required to
obtain unbiased dark energy constraints, then it is possible to reconstruct ISW maps with excellent accuracy
using a combination of maps from two galaxy surveys with properties similar to Euclid and SPHEREX.
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I. INTRODUCTION

Cosmic microwave background (CMB) photons undergo
a frequency shift as they travel to us from the last scattering
surface. On top of the redshift due to the expansion of the
Universe, an additional contribution to the temperature
anisotropy is introduced whenever the Universe is not
matter dominated—for example, right after recombination
when radiation contributes non-negligibly or at late times
when dark energy becomes important. This so-called
integrated Sachs-Wolfe (ISW) effect is given by [1,2]

where 1, is the present time, 7, is that of recombination, ¢ is
the speed of light, r is the position in comoving coordinates,
and @ is the gravitational potential. The late-time ISW signal
(referred to hereafter simply as “ISW”) has been statistically
detected via measurements of the cross-correlation of
CMB temperature maps with galaxy maps [3—18] and, more
recently, with maps of CMB-lensing convergence [17,18].
These detections serve as an important consistency test of the
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standard model of cosmology and can help constrain the
properties of dark energy.

The ISW can provide additional information beyond
its power spectrum if its map can be reconstructed with
sufficient accuracy. Since the total large-angle CMB
temperature anisotropy is the sum of early- (hereafter
“primordial”’) and late-time contributions,
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(h) = 5

reconstructing the ISW map would allow us to isolate the
primordial-only anisotropy. This separation of the CMB
into early- and late-time contributions can also be useful for
a variety of cosmological tests. For example, one could
study the temporal origin of the large-angle CMB anoma-
lies reported in, e.g., Ref. [19]. One could also subtract the
realization-specific contaminating ISW contribution to
estimation of primordial non-Gaussianity [20], something
that is currently done using theoretical templates for the
ISW-lensing bispectrum [21]. Motivated by these consid-
erations, reconstruction of the ISW map has been the focus
of a number of recent analyses [17,18,22-30].

In this paper, we study how ISW map reconstruction is
affected by a class of observational and astrophysical
systematic errors which we will refer to broadly as
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photometric calibration errors or, for conciseness, calibra-
tion errors. These systematics afflict all galaxy surveys at
large angular scales, contributing to the significant excess
of power at large scales found in many recent surveys,
including the Sloan Digital Sky Survey (SDSS) [16,31-37],
MegaZ [38], WISE-AGN and WISE-GAL [17], and NVSS
[14,16,39,40]. Calibration errors are thus already estab-
lished as one of the most significant systematics impacting
large-angle measurements of galaxy surveys, a fact that has
broad implications, such as for measuring scale-dependent
bias as a signal of primordial non-Gaussianity. As the
statistical power of galaxy surveys continues to grow, the
control and understanding of systematics like calibration
errors is becoming even more important.

There is a variety of ways in which modern photometric
surveys assess and mitigate contamination from systemat-
ics, many of which rely on cross-correlating galaxy maps
with known systematics templates. This can be used to
identify contaminated regions, which are then masked or
excluded from the analysis (as in Ref. [41]). Alternatively,
one can use these templates to subtract or marginalize over
systematics-induced spatial variations in the calculation of,
for example, the two-point clustering signal [37,42—47].
Such an approach was taken in Ref. [37] to study the
overall detection significance of the ISW effect in SDSS
data. The authors found results similar to Ref. [16], the
authors of which instead accounted for excess power by
adding a low-redshift spike in the source distributions.
Most of these correlation corrections are perturbative,
however, and therefore require fairly clean maps in which
systematic effects are minor to begin with. Additionally,
while corrections to the two-point statistics are important
for the inference of cosmological parameters, they do not
remove the systematics from the maps themselves. Suchyta
et al. [48] propose an alternative approach, wherein
measurement biases are characterized by injecting fake
objects into Dark Energy Survey images. This neatly avoids
the reliance on having small levels of contamination in the
input maps, but it still cannot account for certain system-
atics, such as dust or flux calibration. Whatever the
approach taken, some level of residual calibration error
will remain.

Some of us previously showed that at levels of calibra-
tion control consistent with current and near-future surveys,
residual calibration errors are by far the dominant system-
atic for ISW signal reconstruction [29]. This motivates us to
study their impact in more detail. Namely, we would like to
study whether the presence of residual calibration errors
can be mitigated by combining information from multiple
input maps or through better modeling of the contributions
of systematics to observed galaxy power. We also wish to
investigate to what extent residual calibration errors sim-
ilarly impact the signal-to-noise ratio of galaxy-CMB
cross-correlation and, in turn, the significance of ISW
detection. With this aim, we use ensembles of simulated

maps to characterize the performance of ISW
reconstruction based on surveys like FEuclid and
SPHEREX, two proposed wide-angle surveys of which
the properties are expected to be good for ISW detection
and reconstruction. We also consider the benefits of
including Planck-like simulations of CMB intensity in
the reconstruction effort.

We begin in Sec. II by describing our model for calibra-
tion errors, how we reconstruct the ISW map and evaluate its
quality, and which input data sets we use. In Sec. III, we
compare the performance of ISW reconstruction when using
one versus multiple surveys and investigate the impact
different assumptions have on the results. In Sec. IV, we
relate map reconstruction to the total signal-to-noise ratio of
ISW detection, and we conclude in Sec. V.

II. METHODOLOGY

A. Modeling calibration errors

Photometric calibration is a challenge faced by all
photometric galaxy surveys. It refers to the adjustments
required to establish a consistent spatial and temporal
measurement of flux of the target objects in different
observation bands. A number of different systematics must
be accounted for in calibration, including but not limited to
detector sensitivity variation on the focal plane, variation in
observing conditions, the presence of foreground stars (as
galaxies near them are less likely to be detected), and
extinction by dust. Calibration errors are introduced if these
systematics are incompletely or inaccurately accounted for.

Our focus is on how calibration errors affect galaxy
number counts. To illustrate this, imagine that a perfectly
uniform screen (of, e.g., dust) blocks some light from all
galaxies. This pushes the faintest galaxies below the survey’s
flux limit and leads to observation of fewer galaxies in all
directions. A pure monopole change such as this increases
shot noise but does not affect the angular clustering signal of
galaxies. In contrast, in a more realistic scenario where the
opacity of this “screen” depends on direction, it affects the
observed galaxy clustering signal by adding spurious power
and by coupling different multipoles of the measured power
spectrum [49,50]. The presence of unaccounted-for calibra-
tion errors can thus introduce biases in cosmological
parameter estimates from large scale structure (LSS) surveys.
These are particularly severe for the ISW effect and other
measurements based on signals that, like calibration errors,
enter primarily at large angular scales.

In keeping with the picture of calibration errors as a
direction-dependent screen, we model them as a modulation
of the true galaxy number counts N (i), where fi is the dir-
ection on the sky. The observed, modulated counts are [49]

Nops () = [1 + c()]N(f), (3)

where the field c(fi) describes the screening effect of
calibration errors. While we will generally refer to this kind
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of modulation as the result of “calibration errors,” as Eq. (3)
makes clear, this formalism can describe any residual effect
that modulates a survey’s selection function.

Though the expression in Eq. (3) will necessarily couple
different multipoles, at low ¢, the impact of calibration
errors on the observed galaxy power spectrum is well
approximated by

C® m C 4 €, (4)

neglecting multiplicative terms.

Following Muir and Huterer [29], we model the cali-
bration error field c¢(fi) as a Gaussian random field with
power spectrum C}al and quantify the level of residual
calibration errors using its variance,

. 227 + 1
o2 = Var(e(i) = Y=
=0

Cy. (5)

While the conversion between o, and the rms magnitude
error depends on the faint-end slope of the luminosity
function of tracers in the survey, they can be related roughly
as (6m)™ ~oy [49]. Thus, a survey with residual
calibration errors of 62, = 10™° has been calibrated to
roughly a millimagnitude.

Motivated by power spectrum estimates for maps of dust
extinction corrections and magnitude limit variations in
existing surveys (see Figs. 5 and 6 in Ref. [49]), we choose
the fiducial calibration error power spectrum to be

Cot = o exp [~ (£w)?), (6)

with we = 10. The normalization constant a° is varied to

achieve the desired 62, Figures 1 and 2 show the impact of

calibration errors of this form on the angular power
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FIG. 1. Effects of calibration errors on galaxy power. The solid

curve shows the theoretical angular power spectrum for the
NVSS survey [17,18]. The colored dashed curves show the
theoretical spectrum with two representative levels of calibration
error. The shaded region is the 1o uncertainty from the survey’s
sample variance, and the dotted curves indicate the ideal, all-sky
cosmic variance.
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FIG. 2. Same as Fig. 1, but for the SDSS MphG catalog,
following Refs. [17,18]. In this case, the sample variance is driven
by sky coverage (fq, = 0.22) as opposed to number density as
for NVSS.

spectrum of the NVSS and SDSS MphG galaxy surveys,
which have been used to reconstruct the ISW map in
previous studies [17,18,27].

For our fiducial model, we assume that calibration error
maps for different redshift bins and surveys are uncorre-
lated with one another. We briefly examine the impact of
relaxing such an assumption in Sec. III D.

B. ISW estimator

Similarly to Muir and Huterer [29], we work with the
optimal estimator derived by Manzotti and Dodelson [27].
It takes as input n maps, which can include any tracers that
carry information about the ISW signal, namely LSS,
CMB, or lensing convergence maps. Letting gi,m represent
the spherical components of the ith input map, where
ie{l,...,n}, the optimal estimator for the spherical
component of the ISW signal is

n
i=1
The operator
R, = =N[D;'|isw—; (8)

1s a reconstruction filter derived from the covariance matrix,

ISW,ISW ISW.1 ISW,n
Cf Cf Cf
C;,ISW C}l . C;,n
De=1 . A )
n,ISW n,1 n,.n
Cf Cf e Cf

In this expression, superscript numbers label the input
maps, and N, = 1/[D;'|;gw_isw €stimates the variance of
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the reconstruction at multipole #. When a single input map,
A, is used, this expression reduces to a simple Wiener filter,

ISW-A
Cf

AISW single map A
Afm CA—A Jtm- (10)
¢

We demonstrate in Appendix A that Eq. (7) is equivalent
to the estimator by Manzotti and Dodelson [27], where the
CMB temperature map is treated separately from LSS
maps, and show that it reduces to the linear-covariance-
based filter first proposed by Barreiro et al. [22].

In constructing this ISW estimator, one must make a
choice about how to obtain the necessary angular power and
cross-power spectra in the covariance matrix. The C,’s can
either be extracted from observations (as in Refs. [24,26]) or
computed analytically for an assumed cosmology (as in
Refs. [17,18,27,29,30]). Analytic calculation is straight-
forward but introduces a model dependence which can
potentially bias results if, for example, calibration error
contributions are not modeled correctly [29]. Measuring C,
from observations produces a model-independent estimator
and so can help in the case where the theory spectra are
inaccurate, but at the expense of limited precision due to
sample variance, especially at large scales, scales with low
power, or for map combinations that have little correlation.'
Hybrid methods can also be used, as in Ref. [25], where
Barreiro et al. account for observed excesses in the auto-
power of NVSS data by using a smoothed fit to data to get the
galaxy map’s autopower but analytically compute its cross-
correlation with the ISW signal.

We therefore consider two limiting cases of constructing
the estimator in order to investigate how calibration errors
impact the ISW reconstruction:

(1) a “worst” case estimator filter, R,(C%), where we
use the fiducial theory C,’s in the estimator, in
which calibration errors’ power contributions are not
modeled at all, and

(2) a “best” case estimator filter, Rf(Csfky), in which
calibration error power contributions are modeled
perfectly (i.e., the covariance matrix is known). This
case may be approximated by, e.g., a smoothed fit of
the observed LSS power.

The theoretical spectra are related simply through the
expression

CF =t e, (11)
where C$! is the power spectrum of the calibration error
field described in Sec. Il A. We consider these cases in
Secs. III A and III B, respectively.

'Using the observed spectra also violates an assumption in the
maximum likelihood derivation of the estimator, in which
the covariance is assumed to be known (i.e., independent of
the measured signal).

C. Quality statistic

To quantify the accuracy of a given reconstruction, we
use the correlation coefficient between the temperature
maps of the true [TV (fi)] and reconstructed [77¢ ()] ISW
signal,

NliX ZivpiX(T}(SW _ TISW)(T};CC _ Trec)
D
p= . (12)

O1SWOrec

where T and 6% are the mean and variance of map 7% (fi),
respectively.2 We do not include pixel weights in our
calculation of p, as is done to account for masking effects
in Ref. [30]. This is because we work with only full-sky
maps, as will be discussed in the next section.

The correlation coefficient can be rewritten in terms of
the cross-power between the true ISW map realization and
the input tracers,

_ 3,2 + 1)RLC,SV

O1SWOrec

, (13)

where the tilde denotes pseduo-C, measured from a given
map realization, and we have used Eq. (7) to write

~ —rec 1 * DIl
Ve = sz 1 Z[ai’sny] Ry G (14)
=Y RLCEV (15)

Because the measured correlation coefficient depends on
the specific realization, we assess reconstruction accuracy
for a given set of input map properties as follows. We
simulate a large number of realizations of correlated maps,
then apply the ISW estimator to obtain associated recon-
structed ISW maps, and by comparing these with the true
ISW maps, we obtain a sample distribution for p. Its mean
value p, which in the limit of an infinitely large ensemble
will approach an expectation value (p), provides a stat-
istical measure of how accurately the estimator can repro-
duce the true ISW signal. Studying how p changes in
response to variations in survey properties and modeling
choices therefore allows us to understand which factors
are most important for obtaining an accurate ISW
reconstruction.

We can avoid the computational cost of generating many
simulation ensembles by noting that we can obtain a good
estimate for the expectation value of p if we make the
approximation

2We also considered s, which measures the rms error between
true and reconstructed ISW maps as a complementary quality
statistic, but found that for the cases studied here, the information
it provided was largely redundant to that given by p.
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LS (26 + 1)RLC,SV

(p) = <4” %, ¢ > (16)
O1SWOrec

Y2+ R,V -

O1SWOrec

that is, we replace the pseudo-C,’s with their expectation
value across realizations, C, — C,. We will refer to the
quantity in Eq. (17) as p, defining

X 1
bisw = \/EZ(M +1)CBV (18)
4

1 -
S _ i plJ ot
Brec = ¢E ;{i(zm 1)RLRLCY, (19)

to approximate the rms fluctuations in the true and
reconstructed ISW maps. Here, the indices i and j label
the input tracer maps and the sum over ¢ runs over the
multipoles ¢ € [2,95], a range chosen to conservatively to
include all scales where the ISW signal is important.

We have tested the approximation p = (p) in Eq. (17)
extensively and found it works well when the estimator
filter R, is built from analytically computed spectra but can
break down if R, is composed of C,’s extracted from map
realizations. This behavior is related to the way in which
using measured C,’s makes p depend on C,, such that
p = p((C,)) is no longer a good approximation of (p(C,)).
Appendix B discusses this in more detail.

D. Simulated surveys

By working with simulated maps, we are able to study in
detail how calibration error levels and modeling choices
affect ISW signal reconstruction.

Since we are concerned only with large scales, we model
the ISW signal, total CMB temperature anisotropy, and
galaxy number density fluctuations as correlated Gaussian
fields. We use HEALPY [51] to generate map realizations
based on input auto- and cross-power spectra which we
compute analytically following the standard expressions
given, e.g., in Ref. [29]. We use the Limber approximation
for # > 20, having verified that this affects p at the level of
0.1% or less for the surveys and range of 62, considered
here. We compute C, for multipoles with £ < 95, as this
range contains almost all of the ISW signal [52].
Accordingly, our simulations are sets of HEALPIX maps
of resolution NSIDE = (£, + 1)/3 = 32. We refer the
reader to Ref. [29] for a more detailed description of the
reconstruction pipeline.

Because our goal is to study the impact of calibration
errors and not survey geometry, we assume full-sky cover-
age in all of our analyses. Bonavera et al. [30] found that in
overlapping regions of partial sky LSS surveys, ISW

reconstruction quality degrades only slightly compared
to the full-sky case. Therefore, the performance of a given
estimator using full-sky maps should be indicative of its
performance using maps with only partial sky coverage.

Our fiducial cosmological model is ACDM, with the
best-fit cosmological parameter values from Planck 2015,
{Q.h%, Q,h%, Q k%, h,ng} = {0.1188, 0.0223, 0, 0.6774,
0.9667}. Unless otherwise stated, ISW reconstructions are
performed on 2000 map realizations for each analysis and
include multipole information down to #,;, = 2.

Within this framework, four pieces of information are
required to model a LSS survey: the distribution of its
sources along the line of sight n(z), a prescription for
how they are binned in redshift, their linear bias »(z), and
their projected number density per steradian 7. Below, we
describe how our choices for these characteristics are based
on the properties of promising future probes of the ISW
effect.

1. Euclid-like LSS survey

Our fiducial survey is modeled on Euclid, a future LSS
survey with large sky coverage and a deep redshift
distribution [53], which is expected to be an excellent
probe of the ISW effect [52,54]. We assume the redshift
distribution used by Martinet ef al. [55],

dn 3, L5
— = - : 20
= s o[-0 (20)

which has a maximum at z,. =~ 1.21z). We choose zp =
0.7 and 2 = 3.5 x 108, with a photo-z redshift uncertainty
of 6(z) = 0.05(1 + z) which smoothes the edges of red-
shift bins. For simplicity, we assume a constant galaxy bias
of b(z) = 1. Our results are qualitatively insensitive to this
choice as long as the bias is reasonably well approximated
for the input maps. This is because the bias term cancels in
the estimate of the ISW signal, so that fractional differences
between true and modeled bias have little impact on p. We
refer the reader to Ref. [29] for further details on both fitting
for bias and the impact that mismodeling can have on
reconstruction.

In Sec. III A, we investigate the improvement in ISW
map reconstruction when the fiducial Euclid-like survey is
split into six redshift bins with edges at z € {0.01,0.4,
0.8,1.2,1.6,2,3.5} (see inset of Fig. 3), as compared to the
unbinned case. We subsequently use the six-binned Euclid
survey as our fiducial case.

2. SPHEREXx-like LSS survey

We model a second survey on the SPHEREx All-Sky
Spectral Survey (SPHEREX), a proposed survey that has
been optimized to study LSS in the low-redshift universe.
One of its goals is to place stringent limits on primordial
non-Gaussianity [56], which will require rigorous control
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FIG. 3. Quality of map reconstruction p vs the calibration error variance agal for our fiducial, Euclid-like survey. The colors of the lines

indicate how tomographic information is handled, showing that splitting the survey into six redshift bins (red) improves the
reconstruction compared to the single-bin case (blue). Solid curves indicate cases when the calibration error is included in the ISW
estimator [R,;(C;ky)], while the dashed curves show the reconstructions in which the effects of the calibration errors are not included
[Rf(C?)] (see Sec. II B for details). Points (offset horizontally for clarity) show the mean (p) of 2,000 realizations, with error bars
indicating the 68% spread across realizations. The corresponding smooth curves are p, the analytical estimate of p from Eq. (17). The
inset illustrates the redshift distribution across bins overlaid with the ISW kernel in gray (reproduced from Ref. [29]). The vertical,
shaded regions show the approximate current and projected levels of control over residual calibration errors. Calibration errors between

redshift bins are modeled as uncorrelated.

of calibration errors. Given this, SPHEREx will provide
excellent input map candidates for ISW map recon-
struction. Its shallower reach makes it complementary to
the deeper mapping of the LSS provided by Euclid.
SPHEREX will identify galaxies with varying levels of
redshift uncertainty, ranging from o, < 0.003(1 + z) up to
o, > 0.1(1 + z). Grouping these into catalogs with differ-
ent levels of precision provides collections of galaxies
useful for different science goals. The o, < 0.1(1 + z)
catalog with a projected ~300 million galaxies was
identified in Ref. [56] as the best subsample for fi¢
detection. Our investigations confirm it to be the best for
ISW detection as well. We therefore fit its projected redshift
distribution given in Ref. [56] to the functional form for
dn/dz given in Eq. (20). We select z, = 0.46, which results
in a peak dn/dz of Zpey = 0.56. We have confirmed that our
results are not strongly sensitive to changes in this redshift
distribution, in agreement with the findings of Ref. [29].
We use a projected number density of 7 = 6.6 x 107 and
consider the case where the survey is split into six redshift
bins. We choose their edges by scaling the Euclid-like
survey’s binned redshift distribution to the SPHEREx
median redshift, resulting in redshift bin edges at
7z € {0.01,0.26,0.53,0.79,1.05,1.31,2.30}. This still

provides sufficient sampling of the field in each bin to
ensure that shot noise is subdominant to the galaxy
signal power.

3. Planck-like CMB survey

CMB data have frequently been used in conjunction with
LSS data for ISW map reconstruction. Recent examples
include Ref. [17], which used NVSS radio data, the Planck-
lensing convergence map, and Planck temperature data.
That analysis was subsequently extended to include more
LSS tracers in Ref. [18]. However, in both of these cases,
residual systematics limit the usefulness of lensing data to
scales of £ > 10 and Z > 8, respectively. Bonavera et al.
[30] investigated the usefulness of CMB data for ISW
reconstruction using a simulation pipeline similar to ours,
finding that both CMB temperature and polarization data
only modestly improve reconstruction quality but carry a
greater benefit when the LSS tracers themselves contain
less information (due to, e.g., noise or other properties of
the survey).

It is then natural to ask whether CMB data can help
mitigate the impact of calibration errors in LSS maps. We
therefore consider CMB temperature as an additional input
map. To compute the total CMB temperature power
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spectrum, CL7, we compute the primordial-only contribu-
tions using a modified version of cAMB [57] and add them
to our calculations for CW. As the CMB power spectrum
is determined within the limits of cosmic variance at low ¢
and the ISW signal is already dominated by the primary
(that is, non-ISW) CMB anisotropies, we do not include
calibration errors in the generation of CMB temperature
maps. Though CMB polarization and lensing could provide
additional information, residual systematics remain at large
scales for each (see Refs. [58,59], respectively), so for
simplicity, we do not include them in this analysis.

III. RESULTS

To characterize the impact of calibration errors in LSS
surveys on the ISW map reconstruction, and the potential to
mitigate these impacts, we look at multiple combinations of
input maps with different properties. Specifically, we
consider the impact of binning in redshift, of adding
CMB intensity data, and of including additional LSS
information from another survey. For each of these studies,
we examine two limiting cases for the estimator. The best
case scenario, which we will reference as R, (C}Y), is when
one perfectly models all contributions to the galaxy power,
including residual calibration errors. The worst case,
referenced by R,(CY), is when the estimator is built out
of theoretical spectra with no power from calibration
errors. The power spectra in these two cases are related
by Eq. (11).

We use the analytical p to estimate the mean
reconstruction quality across a wide range of ‘7<2:a1s while
performing reconstruction on simulated maps for selected
values, to both verify the accuracy of p and to generate error
bars for the spread of p across simulations.

A. One survey: Binning in redshift

We first consider the Euclid-like survey alone and
investigate the impact of binning in redshift on the quality
of reconstructions in the presence of calibration errors. We
model calibration errors in the binned case by adding the
calibration field’s power to the autopower spectrum of each
bin i per Eq. (4): Ci,li - C;&i + C%!. We do not add any
power to the cross-spectra, though we test the impact of
contamination in the cross-spectra in Sec. III D.’

The results of this study are shown in Fig. 3. For
reference, we use a vertical shaded band to mark the level
of calibration corresponding to current surveys, defined
roughly as the range bounded by the residual SDSS
DRS8 limiting magnitude variations [60] and the SDSS

*In reality, the power contribution from calibration errors will
also vary somewhat across bins, depending on the redshift
dependence of the faint-end slope of the luminosity function
for the tracer population. We have assumed here for simplicity
that the power contribution is independent of redshift.

iibercalibration [61]. (“Future” levels are defined roughly
as those between that required to limit bias on cosmological
parameters to below their projected uncertainties and an
intermediate level before bias becomes unacceptable; see
Refs. [49,29] for details.)

As shown in Fig. 3, splitting the survey into six redshift
bins results in significant improvement in reconstruction at
all levels of calibration error. This improvement is com-
parable to reducing o2, of the single-bin case by a factor of
10 at “current” levels.

Tomographic information is useful because it allows
galaxy counts to be weighted more optimally, taking
advantage of the fact that the ISW effect becomes stronger
at lower redshift as dark energy becomes more dominant
and structure growth slows. For instance, considering the
expected ISW reconstruction power from each bin when
using optimal weights [i.e., the squared contribution of

each term in Eq. (7), using R,(CX¥)], we find that with no
calibration error, the first redshift bin contributes 87% as
much power as the second bin, with subsequent bins
contributing 58%, 31%, 15%, and 10% as much power,
respectively. There is an additional benefit to binning when
calibration errors are considered. Since the low-redshift
bins have a higher clustering signal than the high-redshift
bins, they are less impacted by the same level of calibration
error. Thus, the optimal weighting changes depending on
the level of calibration error. When calibration errors are
increased to o2, = 107, for example, the first bin con-
tributes the most power to the reconstruction, with bins 2—-6
only contributing 39%, 12%, 4%, 2%, and 1% as much
power. As we will show later, this error-level-dependent
weighting will mean adding information from a shallower
survey such as SPHEREx makes reconstruction more
robust against calibration errors.

The importance of accounting for calibration errors in
the estimator is apparent in the difference between the
dashed and solid curves, where doing so improves p for
62, 2 107, with Ap ~ 0.1-0.2 at current levels of calibra-
tion. This improvement is roughly comparable to the
improvement seen from binning in redshift.

Though for clarity we do not include this case in the
figure, we additionally studied the effect of using the
observed, unsmoothed galaxy-galaxy power in the estima-
tor (that is, C,, power spectra extracted from map realiza-
tions rather than computed analytically). We find that in
this case, p converges to the same value as the Rf(C;ky)
case when calibration errors are very large but is greatly
reduced from j found using either R,(C3) or R,(C™)
when calibration errors are small (62,, < 1073). For exam-
ple, for a single input map in the limit of no calibration
errors, quality reduces from p = 0.93 to 0.83 when we
switch to using observed C,’s. If we also use the observed
(unsmoothed) cross-correlation between the LSS map and

the CMB for the galaxy-ISW term in the estimator,
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TABLE I. Mean reconstruction quality coefficients p of ISW
map reconstructions for various combinations of input maps and
select levels of calibration error. The second column indicates p
for the case of zero calibration error. The following columns show

the reconstruction quality for two nonzero values of the calibra-

tion error variance; here, R,(C) [R,(C3Y)] indicates the case

where calibration errors are unaccounted [accounted] for in the
. sk
estimator. Note, when 62, = 0, C%" = C}”.

R, R,(C%) RA(CY)
o2 0 10 10 100 107*
TT 0.46
Euclid (1 bin) 0.92 0.83 0.19 0.84 0.29
Euclid (6 bin) 0.95 0.91 0.41 0.92 0.57
SPHEREX (6 bin) 0.89 0.88 0.52 0.88 0.62
Euc + Spx + TT 0.96 0.92 0.47 0.93 0.73

reconstruction quality is further degraded to p = 0.74 in the
absence of calibration errors. This is because primary CMB
anisotropies are large compared to ISW contributions,
causing the measured galaxy-CMB correlation to receive
relatively large noise contributions from chance correla-
tions between LSS maps and the primordial CMB.

Given the significant improvement in reconstruction that
binning provides, from here forward, we adopt the con-
figuration with six tomographic bins as our fiducial Euclid-
like survey.

1.0

B. Effect of adding Planck T'T data

We now consider adding information from the Planck-
like CMB temperature map described in Sec. II D. When
used as the only input map, the reconstruction is consid-
erably worse than that found using the ideal Euclid-like
survey (Table I). We include it in our study, however,
because any realistic study attempting to reconstruct the
ISW signal will likely include CMB temperature data.
Additionally, the reconstruction quality attainable with
CMB temperature data alone provides a useful baseline
against which to compare the performance of estimators
based on LSS maps.

With CMB temperature data alone, we find an average
reconstruction quality of p = 0.46, in good agreement with
Ref. [30]. To put this into proper context, however, it is
important to note that there is a large scatter around that
mean; while the average reconstruction quality is indicative
of performance, any single realization, such as that of our
own Universe, can vary substantially in fidelity. The purple
band in Fig. 4 shows the extent of this scatter for ISW
reconstruction based on just the CMB map.

When CMB temperature information is combined
with that from LSS maps, it significantly improves
reconstruction quality, but only if the true galaxy power

spectrum C;ky (including calibration error contributions) is
used in the estimator, as can been seen by the behavior of

06 L i

Q
TT only
~
—  Ry(C¥)+TT
sk;
02| T BAGT)
== R(CM+TT 3
== R(CM | e
0.0 § L future . current T
’ 107 106 107 104 1073 102
2
Ocal

FIG. 4. Reconstruction quality when using binned Euclid-like survey and CMB intensity data separately and in combination. The
purple curve and shaded band show the mean and 68% spread of p from simulations. As in Fig. 3, red curves are results when using the
binned Euclid-like survey alone, whereas blue curves are the result of using both the fiducial survey and CMB intensity map. Like in
Fig. 3, solid curves are for the case where calibration error power is correctly modeled in the estimator, and dashed curves are for when
they are not modeled at all. Neglecting the presence of calibration errors in a LSS map can actually degrade the quality of the ISW

reconstruction compared to using the CMB temperature alone.
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the solid curves on the right-hand side of Fig. 4. The blue
p(02,) curve describing the CMB + LSS reconstruction
tracks the maximum of the curves corresponding to
reconstructions using the CMB and LSS input maps
separately, shown by the purple and red curves, respec-
tively. This occurs because the estimator down-weights the
LSS survey the more it is affected by calibration errors,
converging to the TT-only reconstruction quality in the
limit of large calibration errors. If one does not model
calibration error power contributions, however, then any
improvement from combining multiple input maps is
marginal at best and can in fact result in a worse
reconstruction than just using the CMB data alone. This
demonstrates the importance of ensuring that the LSS C,’s
used in the ISW estimator are a good fit to the observed
spectra.

C. Effect of an additional LSS survey: SPHEREx-like

We now consider the addition of our fiducial six-bin
SPHEREXx-like survey described in Sec. II D 2, assuming
for simplicity that it has the same level of calibration errors
as the Euclid-like survey. Results are shown in Fig. 5.

In the limit of no calibration errors, the SPHEREXx-like
survey offers little additional information. In fact, adding
both SPHEREx and CMB TT results in negligible
improvement over the Euclid-like only case (Ap < 0.003
compared to a spread of ogyispxrr = 0.019).

However, by comparing the black and blue curves, we
see that including the SPHEREX-like survey does make the
reconstruction somewhat more robust against calibration
errors. The reason for this is similar to why binning in
redshift is helpful: recall that, in the case of binning, having
narrow, low-redshift bins means having some bins with
higher galaxy autopower than the unbinned case, which
then have less susceptibility to a given level of calibration
error. Similarly, SPHEREx has a shallower redshift dis-
tribution, and thus an intrinsically higher clustering signal,
so that it can actually provide a better reconstruction than
the Euclid-like survey at moderate levels of calibration
error. We would expect to see similarly increased robust-
ness to calibration errors for any tracer with a larger
clustering signal, including tracers with a larger bias.

Finally, just as for Euclid, we find that if calibration
errors are not accounted for in the estimator, then adding
LSS data can actually result in a worse reconstruction than
that from using CMB temperature data alone.

D. Effect of varying calibration error properties

We now test how sensitive the results in the previous
sections are to our assumptions about calibration errors,
showing the results in Fig. 6.

First, the left panel shows what happens when we vary
the level of cross-correlation between the calibration errors
of different LSS maps. It is conceivable that residual

1.0

0.8

0.6
QU
0.4 TTonly | U OSONCE 0
—— Euclid N
SPHEREx
—— Buc+TT
0.2 === Euc+ Spx+TT
- == Euc+TT, Ry(Ci)
= == Euc+Spx+TT, Ry(CH) S
0.0 ‘ . future ._current__
' 107 10 103 10+ 103 107
2
Ocal

FIG. 5.

Comparison of ISW reconstruction quality using the LSS surveys and CMB temperature individually and in combination, for

various levels of calibration error in the Euclid-like and SPHEREX-like surveys. Colors are the same as those of Fig. 4. Both of the LSS
surveys are split into six redshift bins (see Sec. IIT A), with calibration errors uncorrelated between bins and surveys. The dashed curve
shows the combined reconstruction if calibration errors are not included in the estimator. Using LSS surveys to improve the ISW map
reconstruction from the CMB temperature-only case requires calibration errors to be controlled to 62, < 107,
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FIG. 6. Left: Effect of cross-correlation between calibration errors in different bins of the fiducial Euclid-like survey, given by

cal,ij __
C, =

curve indicates the case where only the autopower contributions of the calibration errors are accounted for in the estimator [Rf(C);Y'th)],
and the dotted curve indicates the case where calibration errors are not accounted for at all [R,(C)]. Cross-correlation of the errors
results in mild degradation of the reconstruction for 62, < 10~ but otherwise has little effect as long as the autocorrelation is correctly
modeled in the estimator. Right: Dependence of p on the shape of C;“l. Solid curves indicate C}"" of the same form as Eq. (6) but with
width wed! varied. The dashed curve indicates the case where the error spectrum takes the form C&! o (£ + 1)72. Reconstruction fares
worse when calibration error power contributions are more concentrated at the largest angles, where the ISW kernel is largest. In all

C;al‘iiC;al"f'j , for bins i # j. Solid curves have calibration errors accounted for in the estimator [RK(C}ky)]. The dashed

cases, the estimator uses the true observed LSS power spectrum (C;ky ).

calibration errors can be correlated across different bins of a
single survey, or even across different surveys, especially if
the error has an astronomical origin. To model such
correlation, we set the level of cross-correlation between
the calibration errors of maps i and j using a parameter 7,

where
Ccal, ij Ccal,ii Ccﬂ,jj for i i
¢ = Tec I3 [ or i # J

As we only consider cases where calibration errors in all
maps are characterized by the same CC;", this reduces to

1)

C;al'ij =1 C¥,  fori#j. (22)

We consider the six-bin fiducial Euclid-like survey and
find that this kind of correlated error results in mild
degradation of the reconstruction for o2, <1074, but
otherwise it has little effect as long as calibration errors

are correctly modeled in the estimator [that is, R,(C}Y)
is used].

If calibration errors are not accounted for [R,(C%) is
used], reconstruction suffers considerably, as shown by the
dotted curve. We also use a dashed curve [labeled
Rf(C);Y’th)] for the case where the estimator filter correctly
accounts for the autopower contributions of calibration
errors but neglects the cross-power contributions. As seen
by comparing the solid, dashed, and dotted orange curves
in Fig. 6, reconstruction quality is far more sensitive to

accurate modeling of the calibration error contribution to
the autopower than to the cross-power. Thus, fitting the
observed autopower for each map but using theoretical
cross-powers, as is done in Ref. [25], should harm the
reconstruction relatively little, depending on the fitting
scheme; we find Ap ~ —0.03 at 62, = 107 for .. = 0.2,
far less than the typical variation over realizations shown
in Fig. 3.

Additionally, we study the impact of changing the shape
of the calibration error power spectrum CS¥, showing the
results in the right panel of Fig. 6. We first vary the width
parameter w* of the calibration error power spectrum C$
given in Eq. (6). Results for different values of w are
qualitatively similar, though for fixed 62, the reconstruction
is less sensitive to calibration errors when w® is larger. The
reason for this is that p is most sensitive to contamination at
the lowest multipoles, as will be discussed in Sec. I'V. Using a
power law CS! o (£ + 1)72 gives results similar to our

fiducial Gaussian form with w® = 10.

IV. IMPACT OF CALIBRATION ERRORS
ON S/N ESTIMATES

Given the extent to which calibration errors degrade the
quality of ISW signal reconstruction, it makes sense to ask
whether they also impact the signal-to-noise ratio (S/N) of
ISW detection. Detection of the ISW signal via the cross-
correlation between the CMB and LSS maps has been the
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subject of considerable study, as it serves as an important
consistency test for the presence of dark energy. The
significance of detection varies considerably depending
on the LSS tracer sample and the statistical methods used
[62], as well as how systematics in the LSS data are treated
[16,37,40]. Reference [37] used systematics templates to
correct the observed power spectra for SDSS galaxies,
finding a S/N loss of ~0.5 if such corrections are neglected.
Reference [16] introduced a low-redshift spike in the
source distributions in order to reproduce the observed
excess autopower in NVSS and SDSS catalogs and
estimate that such systematics result in an uncertainty of
AS/N =+ 0.4. The most recent results come from the Planck
Collaboration, which found ~4¢ evidence for the ISW
effect, with most of the signal coming from cross-corre-
lation of the CMB temperature with the NVSS radio
catalog and CMB lensing [18].

The maximum achievable signal-to-noise ratio can be
obtained by considering an ideal survey that perfectly traces
the ISW (ie., C¥ = C.¢ = CSW), resulting in a maximum
S/N ~ 6-10 for ACDM cosmology [13,14,35,52,54,62,63].

Our goal is to study how calibration errors impact the
significance of ISW detection. There are multiple ways one
can quantify detection of the ISW effect, including corre-
lation detection between LSS and the CMB, template
matching to an assumed model, or model comparison.
Each of these methods relies on different assumptions and
tests different statistical questions (see Ref. [62] for a
detailed review). Here, we adopt the simple correlation
detection statistic which quantifies the expected deviation
from a null hypothesis of no correlation between LSS (g)
and CMB temperature (7). In this formalism, the S/N for
ISW detection is

(3) =X@mremem e

¢
where we have assumed the multipoles contribute inde-
pendently to the S/N. Here, C,79 is a vector of the ISW-
LSS cross-spectra, and the covariance matrix elements
corresponding to LSS maps i and j can be written as
V,ij i Tj
C" = (ACTAC,) (24)
cricy +clr(cy + ¢ + 5L
~ 2
f sky(zf + 1) ’

where the last term in the numerator is due to shot noise and
5;; is the Kronecker delta.* Equations (23) and (25)

(25)

ij

4Strictly speaking, this will result in a slight underestimate of
the significance, as technically the null hypothesis covariance,
with CTi = C;f = 0in Eq. (25), should be used. However, as the
galaxy-ISW cross-power terms are small compared to the galaxy
autopower, we follow the practice in most of the literature of
keeping them in the S/N calculation.

demonstrate that all cosmological tests using LSS-CMB
cross-correlation are limited in their constraining power due
to sample variance and the relatively large amplitude of the
primordial CMB fluctuations. They also make it clear that
calibration errors will reduce the significance of ISW
detection.

We assume calibration errors to be uncorrelated between
maps, so 5 — EijC';al‘ij. For a single LSS map, Eq. (23)
reduces to the form

(27 + 1)(CL9)?

S 2
EARI . (26
(N) D (G T I 1 ) %

If there are no calibration errors, we find S/N = 6.6 for
our Euclid-like survey, which is near the maximum?® for this
cosmology, S/N = 6.7. As 62, increases from 0 to current
levels, the total S/N reduces to 4.9-5.7, a drop of only
~15%-30%. This can be seen in the S/N values listed for
various 62 in the legend of Fig. 7. In contrast, for the same
level of error, average reconstruction quality p is reduced
by 40%—-60%. Clearly, ISW signal reconstruction is sub-
stantially more affected by calibration errors than is ISW
detection significance.

The greater robustness of the total S/N to calibration
errors is due to the fact that it has support at higher
multipoles. This is most easily illustrated in the single-map
case, where the contribution per multipole to the total
signal-to-noise ratio is

(C)9)?
CITCY +(C7)?

(S)z AN e 1) (27)

Figure 7 shows how the contribution per multipole
responds to different levels of calibration error.

As agal increases, the signal-to-noise ratio decreases at
lower multipoles, but contributions at higher multipoles
remain unchanged. These higher-multipole contributions
are thus still available to contribute to the overall S/N.

Map reconstruction is more sensitive to the largest
scales. For the single-map case, this can be illustrated
analytically as follows. Using the single-map estimator
from Eq. (10), we can write the estimated reconstruction
quality statistic as

>This limit can in principle be increased, e.g., through the
method of Frommert et al. [64] in which the observed LSS map is
used to reduce the local variance and which in our case brings the
maximum possible S/N to 7.2, or through the inclusion of
polarization data as in the work by Liu et al. [65].
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FIG. 7. Contribution to squared signal-to-noise ratio per multi-

pole for our fiducial Euclid-like survey with varying levels of
calibration error. Total combined S/N for each level of calibration
error agal is given in the legend.
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Here, (S/N)2 is the quantity given by Eq. (27), which,
when summed over 7, gives (S/N)Z. Thus, we see from
Eq. (28) that p is proportional to a total (S/N) of which the
terms are weighted by CZ7. Since CL” drops sharply as
~¢~2, the quality of map reconstruction p is more impacted
by large-angle calibration errors than the overall S/N is.
This is also a primary cause for the degradation in
reconstruction quality seen when 62, was concentrated
at lower multipoles in Sec. III D.

V. CONCLUSIONS

Reconstruction of the integrated Sachs-Wolfe signal
would allow, for the first time, a clean separation of the
CMB temperature anisotropies into contributions from
300,000 years after the big bang and those from some
~10 billion years later. This, in turn, would allow for a more
informed assessment of the origin of the “large-angle CMB
anomalies” and a more complete elimination of ISW
contaminants to CMB-based measurements of primordial
non-Gaussianity. Accurate ISW reconstruction requires
wide-angle large-scale structure maps from which the

gravitational potential evolution can be inferred, but in
practice, these maps are plagued by photometric calibration
errors due to a host of atmospheric, instrumental, and
selection-induced systematics. In our previous work, we
found that the realistic levels of residual calibration error
severely degrade the accuracy of the reconstructed
ISW map.

In this paper, we investigated how the effects of residual
photometric calibration errors on the ISW map
reconstruction can be mitigated by using tomographic
information and by combining data from multiple surveys.
To quantify the amount of residual calibration errors, we
use their variance 62, the square root of which is roughly
equal to the rms magnitude fluctuations induced by these
systematics.

We find that for a Euclid-like survey with a single
redshift bin, to achieve a reconstruction comparable in
quality to that derived from the CMB temperature map
alone (with an average correlation between the true and
reconstructed ISW maps of only p =~ 0.46), one must limit
the variance of the calibration error field to 62, < 107>,

This can be improved significantly if we exploit the
tomographic information available by binning the LSS data
in redshift (Fig. 3). We also show that if the model spectra
in the estimator differ substantially from those used to
generate the input maps, e.g., by using theoretical power
spectra that do not account for the observed excess auto-
power in the LSS survey from calibration errors, then
reconstruction quality is substantially degraded. It is there-
fore crucial to verify that the theoretical spectra in the
estimator are a good fit to those observed or to otherwise
use smoothed fits.

We next consider how using multiple input maps,
probing different tracers and redshift ranges, improves
ISW signal reconstruction. We find that, as long as the
excess power contributed by calibration errors is
adequately modeled in the estimator, the resulting
reconstruction is always better than that from either of
the input maps individually. If the excess power from
calibration errors is not modeled, however, adding a map
can actually degrade reconstruction (Fig. 4). The CMB
temperature map adds information to the reconstruction at
all levels of calibration error but is especially valuable if the
LSS maps are subject to calibration errors with 62, > 107°.
Using a six-bin SPHEREx-like survey provides qualita-
tively similar results to the Euclid-like one, but because it is
shallower, the reconstruction is less accurate in the limit of
no calibration errors (pg,, = 0.89 & 0.04 vs pg,. = 0.95+
0.02, where errors indicate the 68% spread across realiza-
tions). However, SPHEREX’s shallower depth and therefore
intrinsically higher clustering signal becomes an asset in
the presence of calibration errors, making the survey more
robust against calibration errors and leading to a better
reconstruction for 62, > 6 x 1075, (Similarly, we would

cal
expect the increased clustering of tracers with larger bias to
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help mitigate the effects of calibration error as well.)
Therefore, a combination of a shallower and a deeper
LSS survey provides complementarity useful for separation
of calibration errors from the ISW signal and necessary for
a good ISW map reconstruction in the presence of such
errors.

Using all three simulated surveys as input—Euclid,
SPHEREX, and CMB temperature—significantly improves
reconstruction compared to using a single survey with
current levels of residual calibration errors, or CMB
temperature data alone. We find that if the calibration
errors can be controlled to the level of 62, <1076 (6%, <
1079), then the combination of Euclid, SPHEREX, and
CMB temperature maps can produce the ISW map
reconstruction to an excellent accuracy of p = 0.93+
0.03 (p = 0.87 £0.05). This is roughly the same level
of calibration control required for future LSS surveys to
avoid biasing measurements of cosmological parameters
like the non-Gaussianity parameter fy; and the dark
energy equation of state. Thus, high-quality ISW recon-
structions will, in a sense, “come for free” with the
developments needed for cosmology constraints with
next-generation surveys.

We additionally test the robustness of our results against
changes to the properties of the calibration error field,
looking at cross-correlations between calibration errors in
different maps as well as the shape of their spectrum. We
found that cross-correlation between the calibration errors
of different tracer maps degrades the reconstruction most
for 107° <62, <107 but that this effect is relatively
minor, provided the autocorrelation contribution is
accounted for in the estimator (Fig. 6, left).

We also find that, compared to map reconstruction
accuracy, the overall significance of ISW detection is less
strongly affected by calibration errors. This is because its
signal is distributed more broadly in multipole space than
that of the map reconstruction quality statistic. To clarify
this, we analytically relate p to the commonly used ISW
detection S/N statistic in the case of a single-input LSS map
and show that p is weighted by an additional factor of CZ7,
demonstrating map reconstruction’s greater sensitivity to
the largest scales [Eq. (28)].

As an extension to this work, one could study how the
inclusion of CMB lensing and polarization data can
improve ISW map reconstruction, provided the systematics
present in those data sets could be sufficiently accurately
modeled. The results of Bonavera et al. [30] indicate that
the use of lensing as input can contribute significantly to
reconstruction quality, but they also show that current noise
levels limit its effectiveness. Notably, the residual lensing
systematics at £ < 8 present a challenge, as this is where
the ISW signal is strongest, and we expect these system-
atics to affect reconstruction with CMB lensing and
polarization in a manner broadly similar to unaccounted
for calibration errors in LSS maps at those scales.

Further work could also be performed to concretely
explore how to best approximate the best case
reconstruction scenario, wherein calibration errors are fully
accounted for, by using real input data. Here, we have only
characterized the limiting cases where the residual calibra-
tion error contribution to the LSS power is fully known or
fully unknown and have not addressed intermediate cases
where they are partially accounted for.

Finally, we have only worked in the full-sky case,
whereas real data will necessarily have only partial sky
coverage. Others have already shown that incomplete sky
coverage only very minorly degrades reconstruction quality
for areas covered by the input data sets [30], and we do not
expect this to change in the presence of calibration errors.
Nevertheless, a full analysis that attempts to make pre-
dictions for real surveys should take the actual sky coverage
and survey-specific systematics into account.

Even with these considerations, it is clear that accounting
for the presence of residual calibration errors in LSS
surveys is a critical step for any reconstruction of the
ISW map, as their presence and treatment impact both the
survey characteristics and set of input maps that produce
the optimal reconstruction.
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APPENDIX A: EQUIVALENCE WITH OTHER
ESTIMATORS

We now demonstrate the equivalence between our
estimator for the ISW map coefficients a2V and the
estimators proposed by Manzotti and Dodelson [27] and
Barreiro et al. [22].

Our estimator in Eq. (7) is based on a version of the
likelihood from Manzotti and Dodelson [27] that has been
reformulated to handle observed CMB maps like any other
input map. Manzotti and Dodelson [27] derive their
estimator using the likelihood

1
L(TBY) X exp {—EdTD"d}

1
\/det(CD

xexp{—

where C = C? + C" is the angular power spectrum of the
primordial C? and noise C" contributions to CMB temper-
ature fluctuations, d is a vector of ISW and LSS tracer
maps, and D is the covariance matrix between the ISW and

~—

(Tobs _ TISW) C—l (Tobs _ TISW) }

| =

(A1)
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LSS tracers [see Ref. [27], Egs. (4)-(6)], with ISW maps
associated with the first (1) index. This likelihood is a
product of the independent likelihoods for (7°° — T™5W)
and for the input maps in d.

Instead of explicitly including independent terms for the
primordial CMB and LSS tracers (which are assumed to
have no cross-correlation), we include the total observed
CMB temperature,

Tobs = TP + TISW’ (AZ)
where 77 includes both the primordial CMB temperature as
well as any instrumental noise terms. We then expand the
data vector to include 7°bs,

ISW obs
(at’m ’ gfm’ te gfm’ afm)

ISW
df (afm ’ gfm’ cee g;m)
with ag, indicating spherical components of ISW and
CMB temperature fluctuations and g, indicating compo-
nents of LSS overdensity. The covariance matrix is sim-
ilarly expanded to account for the cross-correlation of 7°%

with the ISW and LSS tracers

ISW ISW ISW.1 ISW.n ISW,obs
Cf Cf Ct’ Cf
1,ISW 1,1 L.n 1,0bs
Cf Cf U Cf Cf
Df d
n,JSW n,1 n.n 71,0bs
Ct’ Cz,” U Cf Cf
obs, ISW 1,0bs n,0bs obs,obs
Cf Ct’ Cf Cf

(A3)

Assuming that at the scales we consider the observed
CMB is cross-correlated with other LSS tracers only
through the ISW, we have

Cobs ISW CISW ISW
obs.LSS;, _ ~ISW.LSS,
oy =C, )
bs.ob , ISW.ISW
P = P 4 PN, (A4)

assuming there is no residual cross-correlation between the
primordial and late-time CMB. Maximizing the resulting
likelihood

L(TSV) ﬁ(l)) X exp {—%dTD"d} (A5)

gives the optimal estimator given in Sec. II B.

To show that this is equivalent to the estimator derived
from Eq. (Al), we focus on the case of using CMB
temperature and a single LSS tracer as input maps. For
compactness, and to make the connections with other ISW
estimators in the literature more apparent, we adopt

notation from Barreiro et al. [22], where s, g, and T
indicate the ISW, LSS tracer, and observed CMB temper-
ature signals, respectively. We then have

dfm = (asfm’ g;nl’ az’:m)’ (A6)
and
cy C}g cy
p.=|cy e e (A7)
cy C‘:,f’ C;T
From Egs. (7) and (8), our estimator gives
ns -1 _ _
a,, = —— (D720, + [D7']130%,,)
[Df I
_ C}y(c Css) gg
coer = (C2)
Csscg!] _ (CSQ)Z
+ (oo b (A8)
C%‘]C;T _ (Cfg)Z 2

We now calculate the estimator of Manzotti and
Dodelson [27]. Denoting their covariance matrix without
the CMB as D/, we use their Eq. (9):

az,” = ((CL") 7 + D))

( [D /l]l2g§m [CPP] afm)
L,cr N,
— a
7P et|D det| D[ 9em T o tem

)[cﬁpc;ggzm (det|DL)a, .

X

~ \det|D), |+cggc"”

(A9)
Expanding the determinant, we find
C CPI’ )
~5,MD
a m = 5SS S ggm
‘ (C?g(Cf +C) = ()"
Csscgg _ (CSQ)Z
+ ( 4 4 . )aTm’ (AIO)
co(Cy+c) - (7 )

which, using the relation CIT = CL” + C%, is equivalent to
the estimator given by Eq. (A9).

This is also equivalent to the estimator proposed by
Barreiro et al. [22], which uses the Cholesky decomposi-
tion (L) of the covariance matrix D/ (denoted C, in
Ref. [22]),

99 (59
” {Cf c (A11)

= =L,L7T.
ey c;;f] v
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Note that here the ISW index is last instead of first, in
contrast to the covariance matrices D, and D/, used
previously. The Cholesky decomposition is written as

o (A12)

CJQ

¢ Css
99
¢

Equations. (8) and (9) from Ref. [22] give the ISW
estimate (their §,,,) is

~sB0s _ L12 L3, % ol
Uy =7\ V=555 |9em T 73 v Yem
Lll L22 + C L22 + C

where we have suppressed the Z-dependence of L and
combined their observed ISW signal (s,,,) and noise (1,,,)
terms into the single term a’, . We use CL” to denote the
combined power of noise and the primordial CMB, in
keeping with the notation above. Plugging this into
Eq. (A12), we obtain

ng CPP
a;r]?los = C—gg< 55 PP . 59Y2 yy) Gtm
¢ \(CF +C1) - (CF)ICy
4 Cs — (CH)?ICY g,
(€7 +CoP) - (CP e “om
B <C;Q(CTT Ccy) g
~\crer e )
7 —(CP)

C”ng
+ <K—> Ay (A13)
CA}QC;T _ (Cfg)z 4

which is the same as Eq. (A9).

APPENDIX B: ESTIMATING p WITH R,(C,)

Here, we show why using raw pseudo-C,’s (C,) in the
estimator results in a degraded reconstruction, for which p
is not well approximated by p [Eq. (17)].

For a given realization, p is constructed from the
covariance between the true and reconstructed ISW maps
[Cov(T™SV, T™¢), i.e., the numerator in Eq. (13)] normal-
ized by the square root of the individual variances of the
true and reconstructed ISW maps (6% ,. and 62, respec-
tively). We therefore focus on how using realization-
specific C,’s in the estimator filter R, affects the individual
C, contributions to o2, and Cov(TSV, T (o, is
unaffected by our choice of R,). For simplicity, we work
with a single input map.

If the ISW estimator filter R, is constructed from
analytically computed model C,’s, the power spectrum
of the ISW map for a given realization will be

~rec—rec,th
Cf

_ p2/(thy /Hgal—gal

= Rz (C2)Cr ™
ISW—gal\ 2

_ Cf Cgal—gal

- Cgal—gal 4 :
¢

We add the superscript “th” to distinguish this recon-
structed ISW power spectrum from the one where the filter
R, is built from C,’s, which will be discussed shortly. The
expectation value for this over many realizations is

~rec—rec,th C;Sw_gal ? ~gal—gal
<Cf > = Cgal_gal <Cf > >

3
(CISW gal)Z

(B1)

& ) B2)
al—gal (
cele

Now, let us look at the behavior of the reconstructed ISW
power when the galaxy autopower spectra in the estimator
filter are extracted from the observed maps. Denoting this
version of the filter by

CISW—gal
R, = 75‘% e (B3)
¢
we write
C}eo—rec — R%Cz‘éﬂl—gal’
1
_ AISW—gal\2
(R (). (B9
¢

Because the measured C&'"#*' appears in the denomi-
nator of this expression, taking its expectation value over
many realizations is somewhat more complicated. To do so,
we use the fact that (24 + 1)CE" ¥ is y2-distributed with
27 + 1 degrees of freedom. This means C°~"¢/(2¢ + 1)
follows an inverse-y> distribution, with an expectation

value®
Crec—rec 1 CISW—gal 2
’ - 2 - 1) : (B5)
20+ 1 2¢ -1 cee
Therefore, the average reconstructed power is
~ 204+ 1, 2 eemrecth
CI”CC—]’CC — rec—rec,
(Epemme) = S (Ce
— <Crec—rec,th> 1+ 2 (B6)
‘ 20— 1

®We refer the reader to Refs. [66,67] for discussions of the bias
introduced when inverting an estimator, with implications spe-
cifically for estimating the inverse covariance matrix.
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Because (C'?°"*¢) is strictly positive, this increased power
results in an increase in the total variance of the
reconstruction map &2, compared to that from the

theory-only filter reconstruction 6%,

(@) = 1= 300 + 1)(EE)

¢
1 < (”‘:«rec—rec.th >
— 52 _ 4
- GICC,[h + 471_ ;(Zf + 1) f _ 1/2 <B7)
In contrast, we find the average cross-power (CSW=rec)

between reconstructed and true ISW maps remains
unchanged. The increased power of the reconstruction thus
results in a net decrease in (p), per Eq. (13), and hence is
not well approximated by simply substituting the theory
C,, as is done to compute p. Additionally, this suggests that
a simple scaling of R, in order to “debias” the
reconstruction will not improve p.

To understand why the cross-power does not increase,
we again use the observed galaxy autopower in the
estimator and approximate its expectation value. The
cross-power is given by

FISW—rec __ P HISW—gal
(Oy; =R,C,

CISW—ga.l _
= ( C{:gal—gal )C?W_gal‘ (Bg)

3

Here, we have a quotient of two nonindependent y* random
variables. Generically, we can approximate the average of a
function of two random variables X and Y through a
second-order Taylor expansion about the mean of each

(x. py),

X)) % F o) 5 Pt (X = )
+ [y (ux. iy ) (X = ux) (Y = py))
2 Pt (Y = P,

where a prime indicates a derivative with respect to the
respective subscripted variable. By taking f(X,Y) to be
leSW—rec’ of the form X/Y, then from Eq. (BS), we can
approximate the mean cross-power to be

~ISW—gal
< CI;W—rec> ~ C?W_ga] <Cf = >
<C§al—gal>
COV(CI;W_gal, Cfﬂal—gal) Var(éial—gal)
x| 1= AISW—gal\ , ~gal—gal ~gal—gal\ 2
(G NG ()
AISW—gal
_ AISW—gal <Cf > 2 2
=G (ceed) <1_2f+1+2f—|-1 ’
where we used
2 gal—gal

~gal—gal
Var(cia ga):2f+1 4 s

~gal—gal AISW—gal al—gal ~ISW—gal
COV(C?‘ gd,Cf gd) :T—HC? gal Cf gd'

The corrective terms vanish, and we find
~ISW—gal
<CISW—rec> ~ CISW—gal <Cf >

4 ~ Cgal—gal

(G0

AISW—rec,th

=(C," ). (B9)
Then, on average, the cross-power between the true and
reconstructed ISW maps is unchanged from the theory
case. Since the multipoles are independent, this means the
total covariance between the true and reconstructed ISW

maps is unchanged as well:

<é;\//(TISW, Trec)) = %Z(zbﬂ+ 1)<C;§W—rec>

T

1 i
= D @+ 1)(CPV T,
4

While for the autopower C'$°~"¢ we were able to derive
an analytical result, a similar Taylor expansion treatment to
the same order as the cross-power results in an additive
correction of 2/(2¢ + 1), or

<Cvr;c—rec> ~ <2f + 3) <Cr;c—rec.th>

20 +1 (B10)

which is a good approximation to the analytical result
found in Eq. (B6).
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