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In Hořava-Lifshitz gravity a scaling isotropic in space but anisotropic in spacetime, often called
“anisotropic scaling,” with the dynamical critical exponent z ¼ 3, lies at the base of its renormalizability.
This scaling also leads to a novel mechanism of generating scale-invariant cosmological perturbations,
solving the horizon problem without inflation. In this paper we propose a possible solution to the flatness
problem, in which we assume that the initial condition of the Universe is set by a small instanton respecting
the same scaling. We argue that the mechanism may be more general than the concrete model presented
here. We rely simply on the deformed dispersion relations of the theory, and on equipartition of the various
forms of energy at the starting point.
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I. INTRODUCTION

In general relativity a homogeneous and isotropic
Universe is described by the Friedmann equation

3H2 ¼ 8πGρ −
3K
a2

þ Λ; ð1Þ

where H is the Hubble expansion rate; G is Newton’s
constant; ρ is the energy density; K ¼ 0; 1;−1 is the
curvature constant of a maximally symmetric 3-space; a
is the scale factor; and Λ is the cosmological constant.
The asymptotic value of ρ at late times can be set to zero
by redefinition of Λ. In the standard cosmology, ρ then
includes energy densities of radiation (∝ 1/a4) and pres-
sureless matter (∝ 1/a3). The fact that all but Λ decay as the
Universe expands is the source of the cosmological con-
stant problem. The present paper does not intend to solve

the cosmological constant problem and we simply assume
that Λ has the observed value. The slowest decaying
component on the right-hand side of the Friedmann
equation is the spatial curvature term −3K/a2 and is the
source of the flatness problem in the standard cosmology.
Inflation, once it occurs, makes ρ almost constant for an

extended period in the early Universe so that even the
curvature term decays faster than ρ. The initial condition of
the standard cosmology is thus set at the end of inflation in
such a way that the curvature term is sufficiently smaller
than 8πGρ. Subsequently, the ratio of the curvature term to
8πGρ grows but the initial value of the ratio at the end of
inflation is so small that the Universe reaches the current
epoch before the ratio becomes order unity. This is how
inflation solves the flatness problem.
If a theory of quantum gravity predicts that the ratio

ð3K/a2Þ/ð8πGρÞ were sufficiently small at the beginning of
the Universe then this could be an alternative solution to the
flatness problem. The purpose of the present paper is to
propose such a solution based on the projectable version of
Hořava-Lifshitz (HL) gravity [1,2], which has recently been
proved to be renormalizable [3,4] and thus is a good
candidate for a quantum gravity theory. Since our proposal
is solely based on a fundamental principle called “anisotropic
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scaling,”which is respected by all versions of the HL theory,
it is expected that the same idea can be implemented in
other versions of HL gravity.
One of the fundamental principles of HL gravity is the

so-called anisotropic scaling, or Lifshitz scaling,

t → bzt; x⃗ → bx⃗; ð2Þ

where t is the time coordinate, x⃗ are the spatial coordinates
and z is a number called the “dynamical critical exponent.”
In 3þ 1 dimensions the anisotropic scaling with z ¼ 3 in
the ultraviolet (UV) regime is the essential reason for
renormalizability. The anisotropic scaling with z ¼ 3 also
leads to a novel mechanism of generating scale-invariant
cosmological perturbations, solving the horizon problem
without inflation [5].
In the context of quantumcosmology, the initial conditions

of the Universe are typically set by quantum tunneling
described by an instanton, i.e. a classical solution to some
Euclidean equations of motion with suitable boundary
conditions. In relativistic theories, where z ¼ 1, quantum
tunneling is thought to be dominated by anOð4Þ symmetric
instanton, implying that T ¼ L, where T and L are the
Euclidean time and length scales, respectively. After analytic
continuation to the real time evolution, this causes the
flatness problem unless inflation follows.
Setting z ¼ 3, however, the story is completely different.

An instanton should lead to T ∝ L3 and thus

T ≃M2L3; ð3Þ

where T and L are again the Euclidean time and length
scales, respectively, and M is the scale above which the
anisotropic scaling (2) with z ¼ 3 becomes important. If
the theory is UV complete then the scaling (3) is expected
to apply to any kind of instanton deep in the UV regime,
i.e. for L ≪ 1/M. If the size of the instanton L is indeed
much smaller than 1/M then this implies that T ≪ L and
thus the instanton has a highly anisotropic shape. We thus
call this kind of instanton an “anisotropic instanton.” If the
creation of the Universe is dominated by a small anisotropic
instanton then in the real time Universe after analytic
continuation, the spatial curvature length scale will be
much greater than the cosmological time scale. In this way
the anisotropic instanton may solve the flatness problem
without inflation.
The rest of the present paper is organized as follows.

In Sec. II we review projectable HL theory, obtaining the
equivalent of Friedmann’s equation (1) in this theory. New
curvature-dependent terms are found, which will be essen-
tial for the solution to the flatness problem proposed here.
In Sec. III we examine a quantum state inspired by the no-
boundary proposal: the idea that the Universe nucleated
from nothing, as represented by Euclidean evolution
replacing the big bang singularity. We find that under

anisotropic scaling and the semiclassical evolution of
HL theory, the curvature is sufficiently suppressed to
solve the flatness problem without the need for inflation.
The solution may be more general than the concrete model
presented here, as argued in Sec. IV, where we show that on
dimensional grounds we can always predict the modifica-
tions to (1) from the modified dispersion relations of the
theory. Together with equipartition of energy at the initial
point, evolution in this regime enforces the necessary
suppression of the curvature. In Appendixes A and B we
discuss the generation of scale-invariant perturbations and
evolution after the instanton based on the concrete setup of
Sec. III. Appendix C then discusses further generalization
of the already general scenarios of Sec. IV.

II. PROJECTABLE HL GRAVITY

The basic variables of the projectable version of HL
gravity are

lapse∶ NðtÞ; shift∶ Niðt; x⃗Þ; 3dmetric∶ gijðt; x⃗Þ:
ð4Þ

The theory respects the so-called “foliation preserving
diffeomorphisms,”

t → t0ðtÞ; x⃗ → x⃗0ðt; x⃗Þ: ð5Þ

Adopting the notation of [6], the action of the gravity sector
is then given by

Ig ¼
M2

Pl

2

Z
Ndt

ffiffiffi
g

p
d3x⃗ðKijKij − λK2 − 2Λþ Rþ Lz>1Þ;

ð6Þ

where

M2
Pl

2
Lz>1 ¼ ðc1DiRjkDiRjk þ c2DiRDiRþ c3R

j
iR

k
jR

i
k

þ c4RR
j
iR

i
j þ c5R3Þ þ ðc6Rj

iR
i
j þ c7R2Þ: ð7Þ

Here, Kij ¼ ð∂tgij −DiNj −DjNiÞ/ð2NÞ is the extrinsic
curvature of the constant t hypersurfaces, Kij ¼ gikgjlKkl,
K ¼ gijKij, Ni ¼ gijNj, gij is the inverse of gij, Di and Rj

i
are the covariant derivative and the Ricci tensor constructed
from gij, R ¼ Ri

i is the Ricci scalar of gij,MPl ¼ 1/
ffiffiffiffiffiffiffiffiffi
8πG

p
is

the Planck scale, and λ and cn (n ¼ 1;…; 7) are constants.
In HL gravity, as already stated in (4), a spacetime

geometry is described by a family of spatial metrics
parametrized by the time coordinate t, together with the
lapse function and the shift vector. The 3D space at each t
can have nontrivial topology and may consist of several
connected pieces, Σα (α ¼ 1; � � �), each of which is dis-
connected from the others. In this situation, we have a
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common lapse function and a set of shift vectors and a set
of spatial metrics parametrized by not only (continuous) t
but also (discrete) α, as

Ni ¼ Ni
αðt; x⃗Þ; gij ¼ gαijðt; x⃗Þ; ðx⃗ ∈ ΣαÞ: ð8Þ

The equation of motion for NðtÞ then leads to a global
Hamiltonian constraint of the form

X
α

Z
Σα

d3x⃗Hg⊥ ¼ 0; ð9Þ

where

Hg⊥ ¼ M2
Pl

2

ffiffiffi
g

p ðKijKij − λK2 þ 2Λ − R − Lz>1Þ: ð10Þ

Because of the summation over mutually disconnected
pieces of the space fΣαg in (9),

Z
Σα

d3x⃗Hg⊥ ≠ 0 ð11Þ

is possible, provided that the sum of them over all α is zero.
Therefore, if we are interested in a Universe in one of fΣαg
then there is neither a local nor a global Hamiltonian
constraint that needs to be taken into account. On the other
hand, the equations of motion for Niðt; x⃗Þ and gijðt; x⃗Þ are
local and thus must be imposed everywhere. The absence of
a Hamiltonian constraint introduces an extra component
that behaves like dark matter [7,8], as we shall see below
explicitly for a homogeneous and isotropic Universe.
We now consider a homogeneous and isotropic Universe

in each connected piece of the space Σα (α ¼ 1; � � �),
described by

Ni
α ¼ 0; gαij ¼ aαðtÞ2Ωij; ð12Þ

where Ωα
ij is the metric of the maximally symmetric three-

dimensional spacewith the curvature constantKα ¼ 0; 1;−1
and the Riemann curvature Rij

kl½Ωα� ¼ Kαðδikδjl − δilδ
j
kÞ.

The action is then

Ig ¼ 3M2
Pl

Z
Ndt

X
α

Z
Σα

d3x⃗a3αLα;Lα

¼ 1 − 3λ

2
H2

α þ
α3K3

α

3a6α
þ α2K2

α

a4α
þ Kα

a2α
−
Λ
3
; ð13Þ

where Hα ¼ ð∂taαÞ/ðNaαÞ, α2 ¼ 4ðc6 þ 3c7Þ/M2
Pl and

α3 ¼ 24ðc3 þ 3c4 þ 9c5Þ/M2
Pl. The variation of the action

with respect to aα leads to the dynamical equation,

3λ − 1

2

�
2
∂tHα

N
þ 3H2

α

�
¼ α3K3

α

a6α
þ α2K2

α

a4α
−
Kα

a2α
þ Λ:

ð14Þ

Integrating this equation once, we obtain

3ð3λ − 1Þ
2

H2
α ¼

Cα

a3α
−
α3K3

α

a6α
−
3α2K2

α

a4α
−
3Kα

a2α
þ Λ; ð15Þ

where Cα is an integration constant. The first term on the
right-hand side behaves like a pressureless dust and thus
is called “dark matter as integration constant” [7,8]. The
equation of motion for NðtÞ then leads to the global
Hamiltonian constraint of the form (9). For example, if
Kα ¼ 1 for ∀α then the global Hamiltonian constraint is
simply X

α

Cα ¼ 0: ð16Þ

For the reason already explained in the previous paragraph,
we do not need to consider this equation, if we are interested
in a Universe in one of fΣαg.

III. ANISOTROPIC INSTANTON

As we have shown in the previous section, a homo-
geneous and isotropic Universe in the projectable HL
gravity is described by

3ð3λ − 1Þ
2

H2 ¼ C
a3

−
α3K3

a6
−
3α2K2

a4
−
3K
a2

þ Λ: ð17Þ

Here, the subscript α has been suppressed. For simplicity,
we set α2 ¼ 0 and Λ ¼ 0, giving

3ð3λ − 1Þ
2

H2 ¼ C
a3

−
α3K3

a6
−
3K
a2

: ð18Þ

We assume that there is a UV fixed point of the renorm-
alization group (RG) flow with a finite value of λ larger than
1, as in the case of 2þ 1 dimensions [9]. Since we are
interested in quantum tunneling in the UV, it is ideal to set λ
to a constant value (>1) at the UV fixed point. However,
since the RG flow in 3þ 1 dimensions has not yet been
investigated, we shall consider λ as a free parameter (>1).
We shall adopt units in which MPl ¼ 1.
Hereafter in this section, we consider the creation of a

closed (K ¼ 1) Universe. Switching to Euclidean time
τ ¼ i

R
t Nðt0Þdt0 þ const, we obtain

3ð3λ − 1Þ
2

ð∂τaÞ2
a2

¼ −
C
a3

þ α3
a6

þ 3

a2
: ð19Þ

Supposing that a → þ0 as τ → þ0, the leading behavior of
a for small τ is a ≃ a1τ1/3, where a1 is a constant. Hence,
expanding a around τ ¼ 0 as
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a ¼ a1τ1/3 þ a2τ2/3 þ a3τ þ � � � ; ð20Þ

and plugging this into the Euclidean equation of motion
(19), we obtain

a1 ¼
�

6α3
3λ − 1

�
1/6
; a2 ¼ 0;

a3 ¼
3α2
10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6

α3ð3λ − 1Þ

s
: ð21Þ

By using this formula, it is easy to solve (19) numerically
from τ ¼ ϵ towards larger τ, where ϵ is a small positive
number. The solution is unique for a given value of the
integration constant C as we have already fixed another
integration constant corresponding to a constant shift of τ.
Some numerical solutions are shown in Fig. 1. For a
positive α3 and a large enough positive C, one finds that
∂τa vanishes at a finite value of τ, which we call τin, i.e.

∂τajτ¼τin
¼ 0: ð22Þ

The Lorentzian evolution of the Universe after the quantum
tunneling is then obtained by Wick rotating the Euclidean
solution at τ ¼ τin as τ ¼ τin þ i

R
t Nðt0Þdt0, meaning that

the instanton is represented by the solution in the range
ϵ ≤ τ ≤ τin with ϵ → þ0. The contribution of the connected
piece of the space of interest to the Euclidean action iIg
is then

SE ¼ 6π2 lim
ϵ→þ0

Z
τin

ϵ
dτ

�
1 − 3λ

2
að∂τaÞ2 −

α3
3a3

− a

�

¼ 6π2 lim
ϵ→þ0

Z
τin

ϵ
dτ

�
C
3
−
2α3
3a3

− 2a

�
; ð23Þ

where we have used the equation of motion (19).

For large positive C, we expect a to be small in the
whole interval 0 ≤ τ ≤ τin. Hence in this limit we can safely
ignore the last term on the right-hand side of (19):

3ð3λ − 1Þ
2

ð∂τaÞ2
a2

≃ −
C
a3

þ α3
a6

: ð24Þ

We then have an approximate analytic solution given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3ð3λ − 1Þ

s
τ ≃

2
ffiffiffiffiffi
α3

p
3C

 
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

C
α3

a3

s !
; ð25Þ

or equivalently

a ≃
�
3
ffiffiffiffiffi
α3

p
T −

9

4
CT 2

�
1/3
; T ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3ð3λ − 1Þ

s
τ: ð26Þ

As a result, we have

τin ≃
2
ffiffiffiffiffi
α3

p
3C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð3λ − 1Þ

2

r
; ain ≃

�
α3
C

�
1/3
; ð27Þ

where ain ≡ aðτinÞ. This implies that

a3in
τin

≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α3

2ð3λ − 1Þ

s
¼ const: ð28Þ

Since we have set K ¼ 1, the scale factor a has the
dimension of length. For a positive α3 and a large positive
value of C, ain ≡ aðτinÞ is small as seen in (27). As
expected from the scaling argument (3) in the
Introduction and as confirmed numerically in Fig. 2, we
have the scaling relation (28). These results support the
claim that a small anisotropic instanton may solve the
flatness problem in HL gravity.

FIG. 1. Loglog plots of a vs. τ/τin in solid blue with the analytic solution (26) superimposed in dashed red. We have λ ¼ 2, α3 ¼ 1,
α2 ¼ 0 for both plots; however on the left we have C ¼ 6while on the right C ¼ 50. This confirms the validity of the analytic solution in
the large C limit. The figures were obtained by solving Eq. (17) numerically from τ ¼ 10−4 using the small τ expansion until
∂τajτ¼τin

≈ 10−22.
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To see if the small instanton dominates the creation of the
Universe, we need to estimate the tunneling rate, which in
the regime of validity of the semiclassical approximation
is given by the exponential of the Euclidean action (23).
This however turns out to be a difficult task. First, both
the (Euclidean) extrinsic curvature Ki

E j ¼ δij∂τ ln a and the
spatial curvature Ri

j ¼ 2δij/a
2 diverges in the limit τ → þ0,

indicating that the semiclassical description should break
down near τ ¼ 0. We are thus unable to rely on the
semiclassical formula for the tunneling rate. Indeed, the
dominant term in the integrand of (23) for small τ is
∝ α3/a3 ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3ð3λ − 1Þp

/τ, whose integral over the small τ
region exhibits a divergence of order

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α3ð3λ − 1Þp

ln ϵ.
Thus the quantum state employed in this paper, while
inspired by the no-boundary proposal, does not have a
regular beginning. Quantum effects such as the RG flow of
coupling constants might somehow ameliorate the loga-
rithmic divergence but this is beyond the scope of the
present paper. Second, based on a formulation of the
Lorentzian path integral for quantum cosmology, it was
recently suggested that the semiclassical formula for the
tunneling rate may have to be drastically modified [10–12].
This may place some doubts on the no-boundary proposal
[13–17] in general relativity. It is certainly worthwhile to
investigate whether a similar argument applies to HL gravity
or not.
The Euclidean solution that we found is unique up to an

integration constant C and a physically irrelevant, arbitrary
shift of the origin of the Euclidean time coordinate τ, as long
as the homogeneous and isotropic ansatz with a positive
three-dimensional curvature is adopted. Therefore one can
easily show that the scaling (3) holds for large C, independ-
ently from the boundary condition near a ¼ 0. This is
because the (Euclidean) time scale T and the length scale
L at τ ¼ τin can be defined locally, without referring to the
behavior of the solution away from τ ¼ τin, as

T ∼ j _HðτinÞj−1/2; L ∼
���� Ka2in

����−1/2: ð29Þ

Since the equation of motion implies that

j _HðτinÞj ∼
1

M4

���� Ka2in
����3; ð30Þ

it follows that

T ∼M2L3; ð31Þ

where M ≡ α−1/43 is the momentum scale above which the
anisotropic scaling with z ¼ 3 and thus the curvature cubic
term in (17) become important. This is exactly what we have
expected in (3) from general arguments. Because of the
uniqueness of the Euclidean solution, this scaling holds for
L ≪ 1/M, independently from the boundary condition and
any physical conditions near a ¼ 0.

IV. GENERAL ARGUMENT

Although we have proposed a concrete framework for
solving the flatness problem within HL gravity, the argu-
ments presented aremore general andmay be valid on purely
dimensional grounds for any UV complete theory with an
anisotropic scaling of spacetime. This can be suspected from
the simple argument presented in Sec. I, but we now take the
dimensional argument further. All thatwe shall need from the
concrete model presented are its dispersion relations (as in
HL theory) and equipartition at the starting point (as imposed
by the anisotropic instanton).
Let a general UV complete theory have modified

dispersion relations for its massless particles (including
gravitons) of the form

E2 ¼ M2fðp2/M2Þ; ð32Þ

where f is a smooth function with the following asymptotic
behavior,

fðxÞ ¼
�
x; ð0 ≤ x ≪ 1Þ
xz; ðx ≫ 1Þ ; ð33Þ

and the momentum scaleM may be taken to be of the order
of the Planck scale or not. This is a Hamiltonian constraint
for particles, so we may expect that in a Friedmann–
Lemaître–Robertson–Walker (FLRW) setting a corre-
sponding Hamiltonian constraint for vacuum solutions will
result from replacing E2 → H2 and p2 → jKj/a2. Even
when such a constraint does not strictly exist (as is the case
with the HL model), an effective one may be present,
resulting in a Friedmann-like equation. On dimensional
grounds we expect the corresponding Friedmann equation
in vacuum to read

FIG. 2. The plot shows a3in/τin as a function of C and confirms
the expected analytic scaling behavior in the large C limit shown
in dashed red. To obtain the plot, we kept λ ¼ 2, α3 ¼ 1, α2 ¼ 0
and integrated the Euclidean equation of motion from τ ¼ 0 to
τ ¼ τin for various values of the integration constant C.
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H2 ¼ �M2fðjKj/a2M2Þ: ð34Þ

The sign on the right-hand side may be either positive or
negative and the following argument does not rely on the
choice of the sign. Addition of matter energy density ρ [or
some component that stems from gravity but that behaves
like matter, such as the term C/a3 in (17)] then leads to

H2 ¼ 1

3

ρ

M2
Pl

�M2fðjKj/a2M2Þ; ð35Þ

where we have assumed that the ratio between the effective
gravitational constant for the homogeneous and isotropic
cosmology and ð8πM2

PlÞ−1 is (approximately) constant1

and we have absorbed such a ratio into the definition of
ρ. To complete the system we have to specify the second
Friedmann equation (which indeed was the starting point
for our concrete model), or alternatively, the conservation
equation for ρ. Let us first assume conservation (this is
in fact not needed and violations of energy conservation
only refine and reinforce the argument; see Appendix C
for details). With a general equation of state w ¼ p/ρ we
then have

_ρþ 3Hð1þ wÞρ ¼ 0; ð36Þ

integrating into

ρ ∝
1

a3ð1þwÞ : ð37Þ

In our concrete model we have z ¼ 3 and w ¼ 0, but this
setup is more general.
Let us now assume that at some time, deep in the UV

regime far beyond the scale M, the Lorentzian signature
Universe is created, after which it is subject to (semi)
classical evolution. We assume that the theory we are
considering is UV complete, so there is no need to fear
going beyond the scale M. This “initial time” of creation
can be seen as the result of tunneling from vacuum, via an
instanton, similar to our concrete model, or it can be the
result of any other process, e.g. a phase transition from a
disordered quantum geometry. The point is that the
Universe undergoes a transition into (semi)classical evo-
lution in the UV complete theory at a density ρin, assumed
to be ρin ≫ M2

PlM
2.

Let us now also assume that an equipartition principle
is in action, that is, we assume roughly equal amounts of
energy for different types of contributions that enter the
Hamiltonian. In our setting there are just two contributions:

matter (with a general equation of state w) and curvature.
Curvature can be seen as a fluid with energy density,

ρK ¼ �3M2
PlM

2fðjKj/a2M2Þ; ð38Þ

and we can tweak this formula as appropriate, to contain the
concrete model. Equipartition, then, implies

ρ ≈ ρK ∼ ρin; ð39Þ

which is equivalent to the suppression of curvature K/a2

derived from the anisotropic instanton presented in Sec. III.
However, defined in terms of ρK there is no suppression.
Indeed ρ ∼ ρK ∼ ρin initially and the subsequent evolution
takes care of the suppression. Whether we phrase things in
terms of K/a2 or ρK the final result is the same.
Let the curvature be measured by

ΩK ¼ ρK
ρþ ρK

: ð40Þ

Using (37) and (38) with (33) we see that for M2 ≪
jKj/a2 ≪ M2ðρin/M2

PlM
2Þ1/z or equivalently for ρz→1 ≪

ρ ≪ ρin, where

ρz→1 ∼ ρin

�
M2

PlM
2

ρin

�3ð1þwÞ
2z

; ð41Þ

we have

ΩK ∝ a3ð1þwÞ−2z; ð42Þ

whereas for jKj/a2 ≪ M2 or equivalently for ρ ≪ ρz→1 we
have the standard flatness problem instability:

ΩK ∝ a3ð1þwÞ−2: ð43Þ

So thatΩK may be suppressed in the first stage of evolution
we see that a necessary condition for solving the flatness
problem in an expanding Universe is

z >
3ð1þ wÞ

2
: ð44Þ

In our concrete model this is satisfied since z ¼ 3 and
w ¼ 0, but in fact for the z ¼ 3 HL theory this would work
with any w < 1. With standard gravity (i.e. z ¼ 1) we
would need w < −1/3, i.e. inflation.
The above is a necessary but not sufficient condition.

The exact condition will involveM and ρin as well as z and
w. Assuming for simplicity the Universe exits the UV phase
around jKj/a2 ∼M2 to enter a standard hot big bang model,
then curvature must be suppressed at this time by

1In the concrete example of the previous section, this ratio
depends on λ and thus is in general subject to running under the
RG flow. However, as we have assumed the existence of a UV
fixed point with finite λ, this assumption is justified.

SEBASTIAN F. BRAMBERGER et al. PHYS. REV. D 97, 043512 (2018)

043512-6



ΩK ≪ Ωsup ≡ zeq

�
TCMB

MPl

�
2
�
M4

Pl

ρz→1

�1
2

; ð45Þ

where TCMB is the present temperature of the cosmic
microwave background, we have used (43) with w ¼ 1/3
and 0 before and after matter radiation equality, and zeq is
the redshift of matter radiation equality. If ρz→1 ∼M4

Pl, with
standard assumptions we have roughly Ωsup ∼ 10−60, as is
well known.
In order to obtain this suppression while ρz→1 < ρ < ρin

we should therefore impose the condition

ρin
ρz→1

≫ Ω
− 3ð1þwÞ
2z−3ð1þwÞ

sup ; ð46Þ

where we have used (42) in conjunction with ρ conserva-
tion [and solution (37)], even though the latter is not strictly
necessary. Expressing ρz→1 and Ωsup in terms of ρin andM,
this translates to

ρin
M2

PlM
2
≫
�
1

zeq

MPlM
T2
CMB

� 4z
2z−3ð1þwÞ

: ð47Þ

Equation (47) is the general condition for solving the
flatness problem in the vast class of models considered
here. For the concrete model proposed in this paper (z ¼ 3,
w ¼ 0), if we set M ¼ MPl for concreteness then we have

ρ1/4in

MPl
≫

1

zeq

�
MPl

TCMB

�
2

∼ 1058: ð48Þ

Equation (47) establishes the general condition for a
solution of the flatness problem in general UV complete
theories with anisotropic scaling. In summary, they must
start operating sufficiently above the Planck scale and
satisfy equipartition in some form at this initial point. This
applies to our concrete model with a starting point defined
by an anisotropic instanton. However, the formal mecha-
nism is more general.

V. SUMMARY AND DISCUSSIONS

We have proposed a possible solution to the cosmologi-
cal flatness problem without relying on inflation. To do so
we have made use of the renormalizable theory of gravity
called Hořava-Lifshitz (HL) gravity. We further assumed
that the initial condition of the Universe respects the so-
called anisotropic scaling (2), with z ¼ 3 which is the
minimal value that guarantees renormalizability of HL
gravity. Because of this scaling, any physical system in
the deep ultraviolet (UV) regime tends to possess the
scaling property T ≃M2L3, where T and L are the time
scale and the length scale of the system and M is the
momentum scale characterizing the anisotropic scaling.
If the Universe started in the deep UV regime then the

initial condition is expected to satisfy this scaling property
with L ≪ 1/M, meaning that the curvature length scale of
the Universe is much longer than the expansion time scale.
This is exactly what is needed to solve the flatness problem.
Based on the projectable version of the HL theory for

concreteness, we have found a family of instanton solutions
parametrized by an integration constant C. This family of
solutions is unique under the FLRW ansatz for the pure
gravity system, i.e. without any matter fields, for a given set
of parameters in the action. For positive and large enough
C, the spatial size ain and the (Euclidean) temporal size τin
of the instanton are decreasing functions of C. We con-
firmed the scaling relation a3in/τin ≃ const. in the large C
limit, both numerically and analytically. Moreover, by
defining T and L locally at τ ¼ τin through _H and K/a2

as in (29), we have seen that the scaling T ∼M2L3 holds
independently from the boundary condition and any physi-
cal conditions near a ¼ 0. We call those instantons with
anisotropy in four-dimensional Euclidean spacetime (but
with isotropy in three-dimensional space) anisotropic
instantons. The anisotropic instanton provides a concrete
example of a physical system that realizes the scaling
property T ≃M2L3 and thus may solve the flatness
problem in cosmology.
We have also given a more general argument for the

solution of the flatness problem presented here, based on
the assumption of equipartition among different contribu-
tions of energy density to the Hamiltonian of the system.
The equipartition between the highest time derivative term
and the highest spatial gradient term can be considered as a
restatement of the anisotropic scaling and thus is expected
to be universally applicable to many physical systems in
any possible UV complete theories with anisotropic scal-
ing. We showed that a large class of theories and cosmo-
logical models satisfying this property will be free from the
flatness problem. The flatness of the Universe is then an
expression of the fact that the Universe started deep in the
UV regime and of this scaling property of quantum gravity.
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APPENDIX A: SCALE-INVARIANT
PERTURBATION

In the projectable Hořava-Lifshitz gravity, there are three
physical degrees of freedom: two from the tensor graviton
and one from the scalar graviton. Actually, one can
consider the scalar graviton as a perturbation of the dark
matter as integration constant, i.e. the C/a3 term in (17). In
other words, the dark matter as integration constant is a
coherent condensate of scalar gravitons. Both tensor and
scalar gravitons obey the z ¼ 3 anisotropic scaling and thus
it is expected that the quantum tunneling comes with scale-
invariant cosmological perturbations of both of them,
following exactly the same logic as the one proposed in [5].
After quantum tunneling, the Universe is still in the UV

regime and thus the stress-energy tensor of matter fields Tμν

does not have to satisfy the usual four-dimensional con-
servation equation, ∇μTμν ≠ 0, where ∇μ is the four-
dimensional covariant derivative. In this situation, matter
fields and the scalar graviton exchange energies [7]. It is
therefore possible that the scale-invariant perturbations of
the scalar graviton may be transferred to matter fields. As a
result of such transfer processes a part of the coherent
condensate of scalar gravitons, i.e. the dark matter as
integration constant, may be converted to a gas/dust of
scalar graviton particles, which may also behave as dark
matter. If energy densities in the matter sector are initially
small compared with that in the dark matter as integration
constant then the resulting perturbations after such a
transfer of energies will inevitably be almost scale-invariant
and adiabatic.

APPENDIX B: EVOLUTION AFTER INSTANTON

In Sec. III, we have shown that for a large positive value
of the dark matter as integration constant, C, there is an
instanton solution with the scaling properties (28) and (31).
After the Lorentzian Universe emerges as the analytic
continuation of the instanton, this “dark matter” dominates
the energy density of the Universe for some time. For the
subsequent evolution, we assume a minimal scenario as a
demonstration in this appendix. Since C interacts with
matter (and thus in fact is not constant in its presence) [6],
it can decay and populate the Universe with matter and
radiation some time after the instanton tunneling. Under the
assumption that the continuity equation is respected in the
matter sector, the relevant part of (17) after the transition
reads, with the addition of matter and radiation,

3ð3λ − 1Þ
2

H2 ¼ C
a3

−
3K
a2

þ 1

M2
Pl

ðρmat þ ρradÞ þ Λ; ðB1Þ

where ρmat and ρrad are the energy densities of radiation
and matter, respectively, and we have absorbed the ratio
between the effective gravitational constant for the homo-
geneous and isotropic cosmology and ð8πM2

PlÞ−1 into the
definition of ρmatter and ρrad. We have recovered the
cosmological constant Λ to account for the late-time
accelerated expansion. We further assume an instantaneous
reheating by the decay of C for simplicity, and that the
values of C, ρrad and ρmat shift before and after reheating as

tin < t < treh∶ ρmat ¼ ρrad ¼ 0; ðB2Þ

treh < t∶
C
a3

þ ρmat ¼
a30
a3

ρ0mat; ρrad ¼
a40
a4

ρ0rad; ðB3Þ

where “in,” “reh” and “0” denote the values at the instanton
transition, reheating and present time, respectively.
The Universe undergoes the standard cosmic history of

the hot big bang cosmology after the reheating, namely
nucleosynthesis followed by radiation-, matter- and then
Λ-dominated periods. The fractional curvature “density,”
defined as ΩKðtÞ≡ ð3K/a2Þ/ρtot, evolves as

jΩKðtinÞj
jΩKðt0Þj

¼ ρ0
ρΛm

�
areh
a0

��
a0
aΛm

�
4
�
aΛm
aeq

��
ain
a0

�
; ðB4Þ

where the subscripts “eq” and “Λm” denote the values at
the time of matter-radiation and Λ-matter equalities,
respectively. The values of ρ0/ρΛm, areh/a0, a0/aΛm and
aΛm/aeq are given in the same way as the standard
cosmological evolution. On the other hand, by setting
K ¼ 1, (28) gives

ain
a0

¼ s1/2

a0

�
τin
ain

�
1/2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
3
jΩKðt0Þj

ρ0
M2

Pl

r �
τin
ain

�
1/2
; ðB5Þ

where s≡
ffiffiffiffiffiffiffiffiffiffiffiffi
3α3

2ð3λ−1Þ
q

. Similarly, the fractional density ΩK at

the time t ¼ tin is approximately given by

jΩKðtinÞj ≃
3/a2in
α3/a6in

¼ 3s2

α3

�
τin
ain

�
2

: ðB6Þ

Hence (B4) reduces to
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τin
ain

≃
α2/33 jΩKðt0Þjρ2/9eq ρ

1/9
0

28/93sΩ8/9
m ð1þ zrehÞ2/3M2/3

Pl

≃ 1.80 × 10−47
�
MPl

M

�
2/3
�
3λ − 1

2

�
1/2

×

�
1010

1þ zreh

�
2/3 jΩKðt0Þj

0.005
; ðB7Þ

whereM ≡ α−1/43 as defined in (31), and in the last approxi-
mate equality we have used the observed values to plug in
ρeq ≃ ð5.67 × 10−28MPlÞ4, ρ0 ≃ ð1.01 × 10−30MPlÞ4 and
Ωm ≃ 0.308. Since we have set K ¼ 1, the scale factor a
has the dimension of length.
As we learn from (B7), we need an anisotropic instanton

with the level of anisotropy of order T/L≲ 10−47 in order
to respect the observational upper bound jΩKðt0Þj ≲ 0.005
[18], provided that the reheating occurs before Big Bang
nucleosynthesis (zreh ≳ 1010), that λ at the time of tunneling
does not deviate much from its (expected) IR value λIR ¼ 1,
and that M/MPl ∼Oð1Þ. This small value is to account
for the present flatness of the Universe by the proposed
mechanism in Sec. III, which in the inflationary cosmology
would be compensated by the duration of inflation ∼50–60
e-foldings. This also sets the lower bound on the energy
scale that the instanton tunneling has to occur. At the time
of this transition, (17) gives

3ð3λ − 1Þ
2

H2
in ∼

C
a3in

∼
α3
a6in

≃
α3
s3

�
ain
τin

�
3

≃ ð1.28 × 1035Þ4 M
4

M2
Pl

�
1þ zreh
1010

�
2

×

�
0.005

jΩKðt0Þj
�

3

; ðB8Þ

where Hin is the value of the Hubble parameter at the
time of instanton transition (in Planck units), and this
corresponds to the energy scale at the transition to be
Ein ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MPlHin
p ≳ 1035M. If we set M ¼ MPl and if

reheating occurs at the time K/a2 ∼ ð1/M4ÞðK/a2Þ3,
i.e. ρ ∼ C ∼ 1056zrehjΩKðt0Þj−3/2, then one finds zreh ∼
1060jΩKðt0Þj−1/2 and therefore from (B8), H2

in∼
ð1058Þ4jΩKðt0Þj−7/2, which is consistent with the general
results in Sec. IV.

APPENDIX C: A MORE GENERAL SOLUTION
TO THE FLATNESS PROBLEM

In Sec. IV we showed how the concrete model presented
in this paper may be part of a more general class of
solutions. In this appendix we expand further on this
argument, both in scope and in terms of interpretation.
There is a simple interpretation of the general argument

presented in Sec. IV. It is known that modified dispersion
relations (MDR) may lead to an energy dependent speed of

propagation for massless particles. This falls under the
general umbrella term of “varying speed of light” (see [19]
for an early review). In the guise of MDRs, such theories
lead to several astrophysical and cosmological implications
(e.g. [20,21]). The phenomenon may be quantified by the
phase speed cp ¼ E/p or the group speed cg ¼ dE/dp.
In the case of (32) and (33), in the UV we have

cp ∝ cg ∝
�
p
M

�
z−1

: ðC1Þ

In view of this, it is tempting to map the Friedmann
equation (35) into the standard-looking Friedmann equation:

H2 ¼ 1

3
ρ −

Kc2h
a2

; ðC2Þ

alsowith a time dependent c, andwherewe have reinstatedK
as the culprit for the sign ambiguity of the curvature term
(relevant in what follows). Assuming K ≠ 0 we have
c2h ¼ a2M2f, so that in the UV

ch ≈
�

1

Ma

�
z−1

: ðC3Þ

We see that in the deep UV we have ch ∝ cg ∝ cp (with the
understanding that comparisons assume the replacements
E2 → H2 andp2 → jKj/a2). Thus in the deepUV thevarious
cmay be used interchangeably. The transition fromUV to IR
may be different, but this is not important here.
This interpretation at once connects the solution of the

flatness problem presented here to that in [22]. This is
particularly relevant if we wish to consider the implication
of nonconservation of energy mentioned above. As shown
in [22] such violations actually help to solve the flatness
problem, reinforcing the argument.
As is well known, violations of Lorentz invariance may

bring about nonconservation. This depends on how we
close the system started by (C2). In the concrete model
presented in this paper, conservation of ρ is assumed (or
rather, one starts from the second Friedmann equation and
then integrates it into the first, building conservation into
the model). An alternative is to assume no modifications
to the second Friedmann equation:

ä
a
¼ −

1

6
ρð1þ 3wÞ: ðC4Þ

This implies violations of the Bianchi identities and energy
conservation. Specifically, in combination with (C2) we
find

_ρþ 3
_a
a
ρð1þ wÞ ¼ 6Kc2

a2
_c
c
: ðC5Þ

Merely looking at the sign of the rhs is very informative.
Defining ρin ¼ 3H2 we see at once that if _c/c < 0 the

SOLVING THE FLATNESS PROBLEM WITH AN … PHYS. REV. D 97, 043512 (2018)

043512-9



violations of energy conservation act so as to push the
Universe towards flatness. If the Universe is closed (K ¼ 1
and thus supercritical, ρ > ρin) then energy is removed
from the Universe; if the Universe is open (K ¼ −1 and
ρ < ρin) then energy is inserted into the Universe.
No violations occur for a flat model. Thus ρ is pushed
to ρin.
This does not mean that these violations are needed, or

indeed relevant in all regimes. As in [22] we can combine
(C2) and (C4) to obtain

_ΩK ¼ ð1 −ΩKÞΩK
_a
a
ð1þ 3wÞ þ 2

_c
c
ΩK: ðC6Þ

If ΩK ≪ 1 this integrates to

ΩK ∝ a1þ3wc2 ðC7Þ

leading to (42), which was obtained by ignoring violations
of energy conservation. Thus these violations are not very
important in the solution to the flatness problem, as long as
curvature is already sufficiently suppressed.
Where these violations may be interesting is in situations

in which the Universe does not start from exact equiparti-
tion. Let us consider an extreme case. Suppose that initially
ρ ¼ 0 and K ¼ −1, that is, a Milne Universe beginning.
Then the Universe starts with ΩK ¼ 1 and no matter. This
would be hopeless if energy were conserved (the Universe
would simply remain empty). However inserting this
condition into (C6), we see that the first term initially
vanishes, but the second term leads to ΩK ∝ c2. Hence
curvature is still suppressed (at this rate) while matter is
being dumped into the Universe. ρ ¼ 0 is also pushed to
ρ ¼ ρin. Eventually ΩK ≪ 1, after which violations of
energy conservation become irrelevant, and suppression
of curvature proceeds according to (C7).
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