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In the standard approach to studying cosmological structure formation, the overall expansion of the
Universe is assumed to be homogeneous,with thegravitational effect of inhomogeneities encoded entirely in a
Newtonian potential. A topic of ongoing debate is to what degree this fully captures the dynamics dictated by
general relativity, especially in the era of precision cosmology. To quantitatively assess this, we directly
compare standard N-body Newtonian calculations to full numerical solutions of the Einstein equations, for
cold matter with various magnitude initial inhomogeneities on scales comparable to the Hubble horizon. We
analyze the differences in the evolution of density, luminosity distance, and other quantities defined with
respect to fiducial observers. This is carried out by reconstructing the effective spacetime and matter fields
dictated by theNewtonian quantities, and by taking care to distinguish effects of numerical resolution.We find
that the fully general relativistic and Newtonian calculations show excellent agreement, even well into the
nonlinear regime. They only notably differ in regions where theweak gravity assumption breaks down,which
arise when considering extreme cases with perturbations exceeding standard values.
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I. INTRODUCTION

Our observable Universe appears to be, to a good
approximation, homogeneous, isotropic, and flat on the
largest scales, but with rich structure at smaller scales.
The usual approach in cosmology is to treat the Universe
on large scales as governed by a homogeneous solution to the
Einstein equations—the Friedmann-Robertson-Walker
(FRW) solution—with small deviations away from homo-
geneity, which are treated perturbatively. Smaller scales,
where deviations from homogeneity become large and lead
to formation of clusters of galaxies and other structures, are
assumed to be decoupled from the large-scale dynamics.
However, this treatment is only an approximation, as general
relativity (GR) is inherently a nonlinear system which
couples different scales. Recently, there has been much
interest in applying advances in numerically solving the full
Einstein equations to study inhomogeneous cosmologies
[1–5]. Such studies are motivated by assessing “backreac-
tion” effects—that is, the potential for smaller-scale inho-
mogeneities to effect the overall expansion of the Universe, a
topic that remains controversial [6–10]—and, in general,
quantifying relativistic effects and their possible impact on
making measurements in the era of precision cosmology.
Impetus for this is provided by ongoing and upcoming
cosmological surveys such as theDarkEnergy Survey (DES)
(see year-one results in [11]), theDark Energy Spectroscopic

Instrument (DESI) [12], the Large Synoptic Survey
Telescope (LSST) [13], or the Euclid space mission [14].
These surveys will provide vast observational data, from
cosmological distances to lensing observations, measured
with unprecedented precision, for testing assumptions under-
lying the standard cosmological model.
Studies utilizing full GR solutions have begun to explore

the nonlinear effects that appear for sufficiently large
inhomogeneities. However, standard Newtonian cosmology
simulations also capture effects in collapse and structure
formation that are nonlinear in the amplitude of the inho-
mogeneities, so the important question that remains to be
answered is, how important are effects that are both nonlinear
and relativistic? The goal of this work is to realize a
meaningful comparison between standard Newtonian cos-
mology calculations, and those utilizing full GR, that will
allow us to quantify how much the two types differ.
To do this, we directly compare Newtonian and full GR

cosmological simulations of cold matter in an expanding
Universe. For the former,weuse standardN-body techniques
to evolve a set of particles on a FRW background that source
(through a Poisson-type equation), and respond to, a
Newtonian gravitational potential. For the latter, we numeri-
cally solve the nonlinear constraint (at the initial time) and
evolution parts of theEinstein equations, using standard grid-
based methods. Given the computational expense of solving
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the full Einstein field equations, instead of using entirely
realistic initial conditions, we focus on some simplified
setups that contain inhomogeneities at a modest range of
scales and allow us to compare the two types of calculations
as a function of their amplitude. In this work, we study a
range of cosmological models, including ones where the
density fluctuations exceed the rms of the density field at the
corresponding scales in the standard ΛCDM cosmological
model by factor of up to∼100 (i.e., they roughly correspond
to rms ∼0.1 at a Gpc scale at the present time). This is partly
considered as a limiting case, to see how large the amplitude
of the inhomogeneities can be made before significant
relativistic effects arise. However, we also note that the
possibility that high over(under)density structures are
present on scales larger than the baryon acoustic oscillations
have not been fully ruled out. For example, several studies
find evidence for a ∼300 Mpc underdensity in the southern
sky, detected both in the distribution of galaxies [15] and
x-ray galaxy clusters [16].
We carry out the comparison in terms of quantities defined

with respect to a set of fiducial observers, e.g. luminosity
distance-redshift relations, both since these are the most
readily interpreted and relevant quantities, and because this
will obviate difficulties associated with the different coor-
dinates used in the Newtonian and GR calculations. In order
to facilitate this comparison, and to ensure that we are setting
up equivalent initial conditions in the two cases, wemake use
of a dictionary that allows an effective spacetime and set of
matter fields to be reconstructed from the evolution variables
of the Newtonian simulation [17,18] (once the density fields
have been suitably constructed from the particles using the
techniques of [19]).We find that theNewtonian calculations,
suitably interpreted, in fact agree quite well with the full GR
results, well into the nonlinear regime. We only find a
significant difference in extreme cases where the magnitude
of the Newtonian potential is no longer much smaller than 1.
We also comment on the possible differences that can arise
due to using a fluid versus particle description formatter, as is
commonly done in conjunctionwith the different approaches
to gravity.
Previous studies utilizing evolutions in full GR have

mainly focused on comparing to linear theory using simple
setupswith perturbations initially at a single length scale, and
following the evolution of matter or certain metric functions
[1,4], or evolved perturbations at a range of length scales over
an increase in scale factor by a factor of a few, while also
tracking light propagation [2,3]. In this work we consider
initial inhomogeneities of both these types, evolved through
a∼100 × increase in scale factor.We also use initial data that
nontrivially solves the momentum constraint of the Einstein
equations. This contrasts with previous treatments that
trivially satisfy the momentum constraint by assuming a
moment of time symmetry—and hence include decaying, as
well as growing, perturbations—or donot solve the nonlinear
momentum constraint. In addition, as in [4], we use a

treatment that is not restricted to synchronous gauge (geo-
desic slicing), where the lapse is set to unity and the shift
vector to zero, which will break down when caustics form.1

This comes at the expense of having to also keep track of the
nontrivial evolution of matter.
Tackling the problem from the other end, there has also

been work comparing N-body calculations to exact sol-
utions of the Einstein equations [21], and incorporating
various relativistic effects into such calculations, for exam-
ple, evolving additional metric degrees of freedom in the
weak gravity limit [22,23], or including relativistic screen-
ing through a Helmholtz equation [24]. In addition, as a
way to probe the behavior of inhomogeneities on cosmic
expansion in the extreme relativistic limit, there have been
studies using full GR solutions of black hole lattices
[25–27].
The rest of this paper is organized as follows. In

Sec. II we review the relativistic-Newtonian matching
scheme that we will use in setting up equivalent initial
conditions and making comparisons. In Sec. III we
describe the initial conditions for the various cases we
consider, outline how we perform the respective
Newtonian and GR calculations, and describe how we
define and compute various “observable” quantities that
we will compare between the two cases. The results of
this comparison are given in Sec. IV. We conclude in
Sec. V and mention some directions for future work. In
the Appendix we describe results from resolution studies
used to assess numerical error. Unless otherwise stated,
we use units with G ¼ c ¼ 1 throughout.

II. RELATIVISTIC TRANSLATION OF
NEWTONIAN QUANTITIES

In this paper, we consider solutions of general relativity
coupled to a matter model consisting of pressureless fluid
in a periodic domain, and compare this to the N-body
simulations of Newtonian gravity on the background of an
expanding FRW solution commonly used in studies of
structure formation. Properly interpreted, the quantities
from such simulations should agree both with linear
perturbation theory for sufficiently small perturbations
around a homogeneous FRW solution, and with nonlinear
Newtonian gravity on scales much smaller than the Hubble
radius. In [17,18] a relativistic-Newtonian matching
scheme is laid out that we will use to set up equivalent
initial conditions and compare quantities between the GR
and Newtonian calculations. In this section we briefly
review this scheme.
For the Newtonian simulations we assume a background

FRW solution with density ρ0, scale factor a, and Hubble
parameter H. We then calculate, on the simulation domain,

1Geodesic slicing is also not strongly hyperbolic in the
Baumgarte-Shapiro-Shibata-Nakamura formulation of the Einstein
equations [20].
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a density ρN, gravitational potential ψN , and a velocity vi.
From the density we can also define a density contrast δN :

ρN ¼ ρ0ð1þ δNÞ: ð1Þ

The gravitational potential ψN satisfies

∂i∂iψN ¼ 4πa2ρ0δN ð2Þ

and the evolution of the density perturbation

δ̇N þ ∂iðð1þ δNÞviÞ ¼ 0 ð3Þ

where the derivatives are with respect to comoving coor-
dinates and conformal time τ.
Under some simplifying assumptions the metric that we

can reconstruct from the Newtonian quantities is

ds2 ¼ a2½−ð1þ 2ψNÞdτ2 þ ð1 − 2ψNÞδijdxidxj�: ð4Þ

The quantities that make up the stress-energy tensor
Tab ¼ ρuaub in the relativistic treatment are as follows.
The density is given by

ρ/ρ0 − 1 ¼ δ ¼ δN − 2ψN − 2dψN /d logðaÞ ð5Þ

and the four-velocity is

ua ¼ uτð1; viÞ ð6Þ

where the time component can be calculated from the
normalization requirement uaua ¼ −1 as

ðuτÞ−1 ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ψN − ð1 − 2ψNÞδijvivj

q
: ð7Þ

We also note that along the trajectory of some observer
or particle, we can calculate the proper time as tp ¼R ðuτÞ−1dτ.
In the above we have ignored the vector modes of the

metric, both because they are expected to be small, and
because determining them would require the solution of
additional elliptic equations that are not typically solved in
Newtonian simulations (though see [28,29]). This is the
correspondence in [17], and in the “abridged dictionary” of
[18]. The goal of this work will be to quantify how closely
the spacetime metric and matter fields constructed from the
Newtonian solution above match the full solution of the
Einstein equations.

III. METHODOLOGY

A. Initial conditions

In this section we detail the initial conditions we use. We
begin with the initial data for the Newtonian simulations.

We then outline how these translate into the GR quantities
and specify how we solve the constraint part of the Einstein
equations to obtain fully relativistic initial data for the GR
calculations. For convenience we will assume that at the
initial time a ¼ 1.
For the Newtonian simulations we specify the density

perturbations and velocities fδN; vig. We take the density
perturbations to be a sum over modes with different
amplitudes δ̄n, wave numbers kn, and phases ϕn:

δN ¼
X

n

δ̄n sinðkn · xþ ϕnÞ: ð8Þ

For many of the cases we consider, we will use a simplified
version of this where all of the components of the density
perturbations have the same amplitude and wave-number
magnitude in each of the coordinate directions:

δN ¼ δ̄
X

i

sinðkxiÞ: ð9Þ

For the velocity initial condition we use the Zel’dovich
approximation (ZA) [30]:

v ¼ H
X

n

knδ̄n cosðkn · xþ ϕnÞ/k2n: ð10Þ

For comparison with previous work where initial data were
chosen to trivially satisfy the momentum constraint (e.g.
[1,2]), we also consider a case where the velocity is initially
zero: vi ¼ 0.
Once we have specified fδN; vig, we can calculate ψN

from Eq. (2), and thus ψ̇N , in order to calculate the
relativistic quantities. Taking the time derivative of
Eq. (2) and combining it with Eq. (3) (dropping the
second-order term), we have that

∂i∂iψ̇N ≈ −
3

2
H2ð∂ivi þHδNÞ: ð11Þ

This can be inverted to give an approximation of ψ̇N at
the initial time. For the Zel’dovich approximation veloc-
ity profile this just gives ψ̇N ¼ 0 and implies that the
density perturbation is evolving with the Hubble flow:
δ̇N ¼ HδN . With these quantities in hand we can apply
the dictionary of Sec. II to calculate everything else. For
example, for the simple density profile of Eq. (9) from
Eq. (5), we have that δ ¼ ½1þ 3ðH/kÞ2�δN and δ ¼ δN
for the Zel’dovich velocity profile and the zero velocity
profile, respectively.
In addition to the density, the rest of the quantities for

the GR initial data can be calculated from the metric in
Eq. (4). Note, however, that the Einstein equations also
impose constraints—the Hamiltonian and momentum
constraints—on the initial metric. We solve these con-
straints in the conformal thin-sandwich formalism using
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the code described in [31]. In this formalism we specify
the conformal three-metric γ̃ij, the trace of the extrinsic
curvature K, the conformal lapse α̃, the matter density ρ,
and the conformal three-momentum p̃i:

γ̃ij ¼ ð1 − 2ψNÞδij;
K ¼ −3Hð1 − ψN − ψ̇N /HÞ;
α̃ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ψN

p
;

p̃i ¼ ρ0ð1þ δÞαðuτÞ2vi; ð12Þ

as well as the traceless part of the time derivative of the
metric, which we set to zero, ∂tγ̃

ij ¼ 0. With these free
data, we solve the conformal thin-sandwich equations2

for a conformal factor Ψ and shift vector βi, such that the
four-metric

gabdxadxb ¼ −Ψ12α̃2dt2 þΨ4γ̃ijðβidtþ dxiÞðβjdtþ dxjÞ
ð13Þ

satisfies the nonlinear constraint equations. Since the
conformal quantities already satisfy the constraint equa-
tions to linear order, we expect the quantities ðΨ − 1Þ and
βi to be small and to scale like δ̄2 for small initial
inhomogeneities, which is true for all the cases consid-
ered here. We will consider initial conditions that consist
of small perturbations on superhorizon scales, and our
method for constructing initial conditions is in keeping
with the assumption for the validity of the Newtonian
approximation that this regime should be well described
by linear perturbation theory.

B. Newtonian simulations

We carry out N-body simulations using the GADGET-
2 code [32] in a mode for following the evolution of
collisionless matter. The code combines two methods to
compute gravitational forces: the Fourier technique for
the contribution from long-range forces and the hierar-
chical tree method for short-range forces. The positions
and velocities of particles are advanced using leapfrog
integration with an adjustable time step. The Newtonian
evolution of the particles is decoupled from the back-
ground expansion which is governed by the Friedmann
equation.
We generate initial conditions by displacing particles

from the positions given by regular mesh. The displace-
ment field is related to the gradient of the initial potential
ψNða ¼ 1Þ through the Zel’dovich approximation [30]

δxi ¼ −
1

4πρ0
∂iψNða ¼ 1Þ; ð14Þ

where ∂i is the derivative with respect to the initial
Lagrangian coordinates. Due to the nonlinearity of the
transformation between the Lagrangian and Eulerian coor-
dinates, the density field generated by the above displace-
ment can slightly differ from the assumed initial density.
The relative deviations from the analytic model given by
Eq. (8) reach the percent level for initial conditions with the
highest amplitude δ̄. In order to mitigate this problem, we
alter particle masses in a way that they compensate
differences between the actual and assumed density field.
This correction makes the density field computed from the
particle position resemble the analytic model with relative
errors in the density contrast δN of 10−3.
The N-body code does not explicitly evolve the density

field, which needs to be computed from the particle
positions in a postprocessing analysis. We employ a
method based on tracing the evolution of the initial
(Lagrangian) tessellation of the dark matter manifold in
phase space [19,33]. The local density is primarily deter-
mined by the expansion or contraction (in regions with no
shell crossing, e.g. voids) and superposition (in multistream
regions, e.g. halos) of tetrahedral volume elements defined
by fixed groups of particles (neighboring particles in the
initial Lagrangian space). Assuming that every particle
contributes equally to the mass elements carried by all
adjacent tetrahedra leads to a straightforward means of
estimating the density at particle positions. Additional
assumptions regarding interpolation schemes are required
for estimating the density at arbitrary points. Here we
follow the approach outlined in [19].
The accuracy of the adopted density estimator has some

limitations. Less accurate density estimates can be expected
in multistream regions (e.g. halos) where the density
estimator does not fully comply with the effective density
of the Poisson solver in the N-body code. However, as we
shall see, the detailed properties of the matter distribution in
these regions are quite sensitive to numerical resolution
both in the GR and N-body simulations.

C. GR simulations

To evolve the GR-hydrodynamic equations we use the
code described in [34]. The Einstein equations are evolved
in a periodic domain in the generalized harmonic formu-
lation using a damped harmonic gauge [35,36] in a similar
manner as in [37]. We make our initial conditions com-
patible with this choice of gauge by appropriately choosing
∂tgta (or equivalently, the time derivatives of the lapse and
shift) at the initial time, so it does not affect the corre-
spondence with the Newtonian quantities on the initial time
slice. We use fourth-order Runge-Kutta time stepping and
standard fourth-order finite differences for the spatial
derivatives.
We note that stably evolving the Einstein equations

requires resolving the light-crossing time between grid
cells since this is the speed at which information2In contrast to [31], we do not conformally rescale the energy.
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propagates. This is in contrast to Newtonian simulations,
where gravity is encapsulated in an elliptic equation, and
the necessary time resolution is set by the velocity of the
particles. This is the primary reason that solutions of full
GR are much more computationally expensive than their
Newtonian counterparts. To deal with the fact that the
metric functions grow due to expansion, placing stricter
limits on the time-step size for numerical stability,3 we
decrease dt in proportion to the minimum of α−1 over the
whole domain during evolution.
Unlike some other approaches we have not chosen a

synchronous gauge, which means that we do not have to
worry about the potential for coordinate problems from the
formation of caustics, and we can use a gauge that has been
found to be robust in the strong field, dynamical regime.
However, it does mean that the dust velocity will not be
zero in these coordinates, and the evolution of the dust will
have to be kept track of as well. The way we handle this is
just to evolve the hydrodynamic equations but with a fixed,
negligibly small pressure (P ∼ 10−12ρ) and to ignore the
energy evolution equation. The fluid equations are evolved
as in [34] using standard high-resolution shock-capturing
techniques that are second-order accurate for smooth flows
and reduce to first order in the presence of shocks. We
present details on convergence and estimates of numerical
error in the Appendix.

D. Particle versus fluid differences

Since we use a particle description of matter for the
Newtonian calculations and a fluid description for the GR
calculations, there will, in principle, be differences between
the two, irrespective of their treatment of gravity. In the
particle case we are approximating the collisionless
Boltzmann equation. Taking moments of this equation,
the evolution of the density will obey the continuity
equation, while the momentum density will obey the
Jeans equation. These can be thought of as equivalent to
the Euler equations governing a fluid, but with an aniso-
tropic effective pressure that is nonzero in multistream
regions and is set by the velocity dispersion. On the other
hand, when actually evolving a fluid in the GR case, we
take the pressure to be zero. In order to quantify this, we
measure the velocity dispersion in the N-body calculation

σv ¼ hjv − hvij2i1/2; ð15Þ

where h…i represent an average over momentum space, for
some representative cases below. In practice, we find these
differences to be negligible for most of the comparisons we
make in this work, where the velocity dispersion is zero (in
single-stream regions) or small, and to only be significant
in the vicinity of large collapsing regions at late times.

E. Calculating observables

To make a meaningful comparison between the
Newtonian and GR calculations, we want to utilize observ-
able quantities—that is, quantities defined in terms of a set
of fiducial observers. This is especially important since we
use different coordinates for the two calculations. To
facilitate this we will make use of a set of geodesics, both
timelike and null, that are defined with respect to the initial
time slice where the two calculations do make use of the
same gauge (up to small nonlinear corrections).
One quantity we will compare is the density ρ measured

as a function of proper time, as seen by a chosen set of
observers comoving with matter (at the underdensities,
overdensities, etc.). In the GR simulations this is calculated
by integrating geodesics and evaluating ρ along their
worldlines. In the Newtonian simulations this can be
calculated by saving fδN; vi;ψN; ψ̇Ng along different
particle trajectories and using the formulas in Sec. II.
Even though the “observer” quantities are proper time
and density, for convenience we can translate this into an
effective scale factor and density contrast by making
reference to the FRW solution (but not referring to any
global or averaged quantities). The scale factor that a
fiducial observer would get by integrating the FRW
solution as a function of proper time is just

ap ≔ ½3tpHða ¼ 1Þ/2þ 1�2/3: ð16Þ
Likewise the density is ρFRWðtpÞ ¼ ρ0ða ¼ 1Þa−3p , from
which we can define a density contrast from only the
observer’s local quantities as

δobsðtpÞ ≔ ρðtpÞ/ρFRWðtpÞ − 1: ð17Þ
We emphasize that this is just a convenient parametrization
of the density seen by an observer comoving with matter
and will differ from the quantity δN.
We also calculate null geodesics as a point of compari-

son, by directly integrating the geodesic equation

dka

dλ
þ Γa

bck
bkc ¼ 0 ð18Þ

where ka is the four-velocity, λ is an affine parameter, and
Γa
bc is the Christoffel symbol. For the Newtonian simu-

lations we also directly integrate the geodesic using the
values from the reconstructed metric [Eq. (4)] as a post-
processing step. This will, in some sense, include “rela-
tivistic” effects in the propagation of light, but the
viewpoint we are taking is that we want to compare how
similar the spacetime given by Eq. (4) is to the spacetime
that comes from solving the Einstein equations, and tracing
out geodesics is simply a way to measure this.
From the four-velocity of each of these null geodesics,

we can compute a redshift with respect to an emitter and
observer comoving with matter,

3In particular, with the gauge choice used here, the lapse
grows.
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z ¼ −1þ ðuakaÞemit

ðuakaÞobs
: ð19Þ

Following [38], for each primary null geodesic, we
also compute two neighboring null geodesics that are
perturbed slightly in the directions orthogonal to the
geodesic’s initial four-velocity, and we calculate the lumi-
nosity distanceDL (or equivalently, the angular distance, as
the two quantities are related by the reciprocity relation
[39]) from its relation to the geodesic deviation equation.
See [38,40] for details.
Below we shall primarily concentrate on comparisons

between the Newtonian and fully general-relativistic cal-
culations of fapðtpÞ; δobsðtpÞg along specified timelike
geodesics and fzðλÞ; DLðλÞg along null geodesics.

F. Cases

In this study we compare the general-relativistic and
Newtonian evolution beginning from several different initial
conditions, for an inhomogeneous, dust-filled, expanding
universe with vanishing global curvature (the Einstein–de
Sitter model, i.e. Ω ¼ 1). We consider several cases where
the inhomogeneities are initially at one length scale [Eq. (9)],
and the velocity is given by the Zel’dovich approximation
[Eq. (10)]. We fix k ¼ πHða ¼ 1Þ/2—i.e. the initial wave-
length is 4 times the initial Hubble radius—and consider
various magnitudes for the inhomogeneities: δ̄ ¼ 5 × 10−4,
10−3, and 10−2. For comparison with previous work, we also
consider initial conditions equivalent to the δ̄ ¼ 10−3 case
but with initial velocity that is identically zero.
In addition, we consider cases with inhomogeneities at a

range of length scales. In particular, we consider a spectrum
of inhomogeneities given by Eq. (8) where δ̄n is nonzero for
π/2 ≤ kn/Hða ¼ 1Þ ≤ 6π, and given by drawing from a
normal distribution with zero mean and σn ¼ ðkn/kminÞ−3/2,
δ̄n ∼ δ̄PS ×N ð0; σ2nÞ with δ̄PS ¼ 10−3 and 10−2. We also
chose ϕn in Eq. (8) from a uniform distribution on ½0; 2π�
and again use the Zel’dovich approximation for the initial
velocity profile.
For several cases we perform simulations with multiple

resolutions in order to estimate numerical errors, which
we discuss in detail in the Appendix. Unless otherwise
stated, results in the following are shown from the highest
resolution runs, utilizing 2563 particles for the Newtonian
simulations, and between 1923 and 2563 grid cells for the
GR simulations.

IV. RESULTS

A. Single-wavelength initial conditions

We first focus on simpler initial conditions of the form
given by Eq. (9), where the inhomogeneities are initially all
at a wavelength that is 4 times the initial Hubble radius, and
follow the evolution of these inhomogeneities as they enter
the horizon and grow. To begin with we compare a case

where the initial velocity profile is zero to one where the
velocity is given by the Zel’dovich approximation. In the
latter case jδN j grows linearly with the scale factor in
the Newtonian picture, beginning at the initial time. The
zero-velocity initial data, on the other hand, includes both
growing and decaying density perturbations, so jδN j ini-
tially grows slower.
We show the density measured by some fiducial observ-

ers for these two cases in Fig. 1. Though the sizes of the
initial Newtonian density perturbations δN are the same in
both cases [given by Eq. (9) with δ̄ ¼ 10−3], they corre-
spond to different densities through the relation given by
Eq. (5). However, making use of this correspondence
between the Newtonian and GR calculations, as illustrated
in Fig. 1, both give fully consistent results, even as the
perturbations become nonlinear—as evidenced by the
diverging of the magnitude of the density contrast at the
overdensities and underdensities. In what follows we will
focus on initial conditions given by the Zel’dovich approxi-
mation velocity profile since this gives only growing
modes, and we will study how close the relativistic and
Newtonian calculations are in the nonlinear regime.
We can study how the difference between the calcu-

lations changes as a function of the magnitudes of the initial
inhomogeneities. In Fig. 2 we again focus on the density
measured by some fiducial observers and show the frac-
tional difference between the GR and either Newtonian or
linear perturbation results for a range of values for δ̄. For
δ̄ ≤ 10−3 a correction quadratic in δ̄ to the density is evident
in the GR versus linear comparison, which reaches as high
as tens of percent at the end. However, the difference from
the Newtonian results is roughly an order of magnitude

FIG. 1. The density contrast as measured by an observer
comoving with matter at the point of maximum overdensity
(black and red curves) or underdensity (blue and green curves) for
two cases with δ̄ ¼ 10−3 in Eq. (9), and an initial velocity profile
that is either zero or given by the Zel’dovich approximation. The
general-relativistic (solid lines) and Newtonian (dotted lines)
calculations closely track each other.
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smaller. The <1% difference from this case seems to be
consistent with being due to numerical truncation error, as
illustrated in the Appendix. Since jψN j≲ 2 × 10−3 for these
cases, even though the deviations from the background
density are large, gravity is still weak.
The case with δ̄ ¼ 10−2 is more extreme, with initial

amplitude density perturbations that exceed the equivalent
values in the standard ΛCDM model by roughly a factor
of 100. Figure 3 shows the initial and final density contrast
δN from N-body simulations. Though the density at the
point of maximum underdensity, which develops into a
void, is again very close in the Newtonian and GR
calculations, strong differences can be seen in the maxi-
mum overdensity at late times, with the Newtonian
density exceeding that of the GR. In fact, in the
Newtonian case a massive halo forms around this point
with ψN ∼ −0.2, while in the GR case the fluid density
grows without bound, so the approximation of weak
gravity is definitely breaking down. The divergence

between the GR and Newtonian densities coincides quite
well with the moment of halo formation predicted by the
standard theory of spherical collapse, i.e. a ≈ 56, at which
the linearly extrapolated density contrast equals 1.686.
Before that, the GR and Newtonian simulations return
fully consistent densities at all times until a ≈ 50
when δ ≈ 10.
This discrepancy at halo formation is, of course (at least

partially), due to just the differing treatments of matter. In
the particle case, after shell crossing at a ≈ 59 at the point
of maximum overdensity, the velocity dispersion goes
from zero to having a value of σv ≈ 0.2–0.3. In the
pressureless fluid treatment, there is nothing to halt the
collapse, and we do not continue the calculation beyond
this point. Thus, for this case we do not compare the GR
and Newtonian results past the point where multistream
regions form.
Similar but less extreme differences can also be

found in other overdense or underdense regions in the
δ̄ ¼ 10−2 case. As shown in Fig. 4, roughly 10% dif-
ferences zappear at e.g. ðx; y; zÞ ¼ ðπ/kÞ × ð−1/2; 1/2; 1/2Þ

FIG. 2. The fractional difference between the density contrast
δobs at an underdensity (top) or overdensity (bottom) in the GR
calculation compared to Newtonian simulations (solid lines) or
linear perturbation theory (dotted lines) for various magnitudes of
the initial inhomogeneities.

FIG. 3. Two-dimensional slice of δN from the Newtonian
simulations at the initial (a ¼ 1; top) and final (a ¼ 60; bottom)
times from the δ̄ ¼ 10−2 case.
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and ðπ/kÞ × ð−1/2;−1/2; 1/2Þ (and similarly at the permu-
tations of the Cartesian directions). At both the overdense
and underdense points shown, jδobsj is larger in the
Newtonian case. In contrast to the lower density cases,
these differences do not appear to be due to resolution
effects (though things do begin to become under-resolved
at very late times at the center of the halo; see the Appendix
for details).
We can also compare the propagation of light as a

measure of the differences between the two cases. To
illustrate this, we note that our setup has a line of
symmetry connecting the point of maximum overdensity
and underdensity along which null geodesics will propa-
gate. Hence, we can consider beams of light rays emitted
by an observer at the overdensity (underdensity) at
specified intervals of proper time and specified frequency,
and calculate the redshift and luminosity distance, as seen
by observers comoving with matter, as the beam prop-
agates and finally reaches the underdensity (overdensity).
This is shown in Figs. 5 and 6 for initial conditions with
δ̄ ¼ 10−3 and 10−2, respectively. In the former we can see
that, similar to the density contrast, at later times, once
the perturbations have entered the horizon and begun
collapsing, there are significant, order 10%, deviations
from the homogeneous value of DL, and also noticeable
nonlinear corrections. However, again, the Newtonian and
GR calculations agree quite well, with differences ≲1%,
compatible with being due to numerical error.
For the δ̄ ¼ 10−2 case shown in Fig. 6, there are even

stronger effects from the inhomogeneities, with order unity
deviations away from the linear perturbation value for DL,
and also some cases where the light rays are blueshifted as
they approach the large, collapsing overdensity, causing z

to decrease. Again, the nonlinear Newtonian and GR
calculations track each other quite well. However, there
are noticeable differences which can be likely ascribed to
the violation of the weak field regime, inside the halo of the
Newtonian simulation (see the cases demonstrating light
propagation inside the overdensity at late times: the yellow
curve at small redshifts and the light blue curve at high
redshifts).
Figure 6 demonstrates how the nonlinear phase of

evolution, both in GR and Newtonian simulations,
develops asymmetry between light propagation inside
the overdensity and underdensity. For the latter, both
simulations consistently show the emergence of a super-
Hubble flow—a linear relation between redshift and dis-
tance with the effective Hubble constant Heff > H0 at
z≲ 0.2. Homogeneity of the super-Hubble expansion (in
contrast to the local Hubble flow at the overdensity) reflects

FIG. 4. The fractional difference between the density contrast
δobs measured by an observer comoving with the fluid initially at
ðx; y; zÞ ¼ ðπ/kÞ × ð−1/2; 1/2; 1/2Þ (black lines) and ðπ/kÞ ×
ð−1/2;−1/2; 1/2Þ (blue lines) in the GR calculation compared
to Newtonian simulations (solid lines) or linear perturbation
theory (dotted lines) for δ̄ ¼ 10−2.

FIG. 5. The luminosity distance to the global maximum (OD)
or minimum (UD) of the density field in the model with
δ̄ ¼ 10−3. Distances are computed for an ensemble of observers
located along the line joining the two critical points. Approximate
values of the scale factor at subsequent moments of light emission
are provided in the bottom right corner. The upper panel shows
deviation of the GR/Newtonian distances from the corresponding
observable based on the FRWmetric, and the bottom panel shows
the fractional difference between the GR and Newtonian calcu-
lations. The shaded band indicates a linear scale of the vertical
axis. The general-relativistic (thick solid lines) and Newtonian
(dashed lines) simulations return consistent distances with
compatible deviations from the FRW model and the predictions
of linear Newtonian evolution (thin black lines, shown only for
the latest emission time).

EAST, WOJTAK, and ABEL PHYS. REV. D 97, 043509 (2018)

043509-8



the fact that matter evacuation not only increases the
density contrast in voids but also homogenizes the residual
matter distribution [41]. Our results demonstrate that both
GR and Newtonian simulations provide a consistent
description of this mechanism. In addition, we can see
that the effective Hubble constant Heff at subsequent
emission times converges to its asymptotic value given
by the maximum expansion in voids predicted in
Newtonian gravity (the green line in Fig. 6), i.e. Heff →
ð3/2ÞH for Ωm ¼ 1 [42].

B. Initial conditions with range of scales

We next consider more general initial conditions that
begin with variations over a range of length scales to further
study possible coupling between short and long length
scales. In particular, we use the power spectrum initial
conditions described in Sec. III F which have density
variations on wavelengths ranging from 4 times to one-
third the initial Hubble radius at two different amplitudes,
which we label δ̄PS ¼ 10−3 and δ̄PS ¼ 10−2. To illustrate
this we show a slice through the initial and final
Newtonian density contrast from the higher amplitude case
in Fig. 7. As is evident in the bottom panel, this model
generates a network of halos with δN ≳ 102 and voids
with δN ∼ −0.9.
As an indication of the evolution of these cases, in

Fig. 8 we show the density (relative to a FRW solution)
seen by fiducial observers comoving with matter at the

initial points of minimum and maximum density (marked
in Fig. 7). As in the previous cases, there is broad
agreement between the Newtonian and GR results even
as the inhomogeneities become large. At the point of
maximum density, the velocity dispersion becomes non-
zero in the particle case at a ≈ 15 and eventually reaches
a value of σv ∼ 0.04. As nonlinear structure and multi-
stream regions (in the N-body case) form, the density
value at the overdensity becomes noisy, as well as fairly
sensitive to resolution and the density estimator used.
We illustrate this latter point in Fig. 8 by also including
the density estimate for one of the N-body cases using
two alternative methods: the cloud-in-cell method [32]
and by calculating the density from the gravitational
potential through the Poisson equation. Because of this,

FIG. 6. The same as Fig. 5 but for the case with δ̄ ¼ 10−2. The
green line shows the maximum super-Hubble flow in empty
voids, i.e. δN → −1, based on Newtonian calculations.

FIG. 7. Two-dimensional slice of δN from the Newtonian
simulations at the initial (a ¼ 1; top) and final (a ¼ 100; bottom)
times from the δ̄PS ¼ 10−2 case. The red and green points indicate
the positions of fiducial observers initially at points of maximum
overdensity and underdensity, respectively.
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in what follows we will concentrate on comparing the
propagation of light rays in the respective spacetimes.
Since it does not have the discrete symmetry of the initial

conditions considered in Sec. IVA, for this setup we

consider a set of light rays with initial positions at the
points of minimum and maximum density, as well as an
intermediate point with δN ¼ 0. For each position we
consider light rays with initial velocities pointing in plus
and minus each of the x, y, and z coordinate directions that
then propagate throughout the simulations. We show the
luminosity-redshift values—again, as measured by observ-
ers comoving with matter—for a representative set of these
in Fig. 9 for δ̄PS ¼ 10−3 and Fig. 10 for δ̄PS ¼ 10−3. The
effect of short and longer wavelength inhomogeneities is
evident in higher and lower frequency components of the
deviations from the homogeneous values ofDL versus z. In
the higher amplitude case (Fig. 10) strongly nonlinear
effects are apparent, including instances of decreasing
redshift with increasing luminosity distance and “lensing”
which causes DL to pass through zero. However, these
features are captured by both the full GR spacetime and the
one reconstructed from the Newtonian solution. Though
there are some evident quantitative differences between the
values of DL obtained in the two cases, these can be
primarily attributed to numerical truncation error due to the
small-scale structure eventually not being well resolved.
This is illustrated in the Appendix (in particular, Fig. 14),
where we include lower resolution results.
Figures 9 and 10 clearly demonstrate a difference

between light propagating primarily in voids (left panels)
or overdense regions (right panels). The cumulative effect
of tidal forces (corresponding to the Riemann tensor in the
GR calculations) makes the photon rays diverge in the
former case or converge in the latter. This in turn manifests

FIG. 8. The density contrast as measured by an observer
comoving with matter at the points of maximum overdensity
(black and red curves) and underdensity (blue and green curves)
shown in Fig. 7 for two cases with δ̄PS ¼ 10−3 and δ̄PS ¼ 10−2.
The general-relativistic (solid lines) and Newtonian (dashed
lines) calculations closely track each other except at the over-
density in the largest amplitude case where a noisy multistream
region forms. In such regions the N-body density contrast is
sensitive to the particular density estimator used, which we
illustrate by also including the cloud-in-cell density estimate, as
well as the one obtained from the potential through the Poisson
equation (dotted lines), for one case.
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FIG. 9. The luminosity distance to the global minimum (left panels), the node point (middle panels), and the global maximum (right
panels) of the initial density field in the cosmological model with δ̄PS ¼ 10−3. Distances are computed for observers located along
photon rays emitted at the scale factor aem ¼ 1 in the x, y, and z directions. The upper panels show deviations between the GR and
Newtonian distances from the corresponding observables based on the unperturbed FRW metric, and the bottom panels show the
fractional difference between the GR and Newtonian results. Both the GR and Newtonian simulations return consistent distances with
nearly the same deviations from the FRW model.
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itself as demagnification (increased distances) or magnifi-
cation (decreased distances), respectively. Our results show
that this cumulative lensing effect is consistently described
both in fully GR computations and in (relativistic) ray
tracing on the effective spacetime of the Newtonian
simulations.

V. DISCUSSION AND CONCLUSION

We have systematically compared cosmological mod-
els of structure formation calculated using the full
Einstein equations to those using Newtonian gravity
on a homogeneously expanding background. We con-
sidered a suite of globally flat cold dark matter models
(Einstein–de Sitter models) with a range of density
perturbations on scales comparable to the Hubble
horizon at the initial time. Starting with consistent
initial conditions based on the correspondence between
GR and Newtonian cosmology in the linear regime of
the density evolution, we evolved the models to a highly
nonlinear phase using both numerical GR coupled to
hydrodynamics and N-body techniques. The GR and
Newtonian simulations were then compared in terms of
the density field and the properties of light propagation.
The former was consistently calculated for an ensemble
of freely falling observers located at various points of
the initial density field. The latter was quantified by
solving the geodesic equations describing bundles of
light rays emitted from a set of sources, consistently
defined in both simulations. Every bundle of geodesics
was then used to determine cosmological distance as a
function of redshift, as measured by free-falling observ-
ers located along the photon path.
Our comparison between GR and Newtonian simula-

tions in the highly nonlinear phase does not reveal any

significant differences, as long as the Newtonian potential
does not violate the weak field assumption. Our resolution
studies show that in most cases, any apparent differences
between the GR densities and their counterparts from
Newtonian simulations—typically subpercent in the level
of the inhomogeneities—are due to truncation error in the
simulations. In general, the fractional differences between
the two decrease in higher resolution runs. The only
exception is one case with high density regions with shell
crossings. In this one case, we were not able to continue the
GR fluid calculation past the time where shell crossing
occurs in the Newtonian N-body calculation. This is
predominantly due to the lack of full conformity between
the treatment of matter in the hydrodynamical and particle
description. A more thorough comparison of GR and
Newtonian simulations into this regime will probably
require using particles (or hydrodynamics) with both
treatments of gravity. In the other cases considered here,
particle versus fluid differences due to multistream regions
were subdominant to numerical truncation error.
Despite some noticeable differences between GR and

Newtonian in regions where the weak gravity assumption is
violated, we do not see any dissimilarities between gravi-
tational collapse in the GR and Newtonian frameworks. In
particular, in the model with the highest amplitude of the
initial density field (δ̄ ¼ 10−2), the Newtonian evolution
closely resembles the GR collapse until δN ∼ 10. Taking the
moment of abrupt growth of density as the halo formation
time (the first shell crossing in Newtonian simulations), we
demonstrated that both GR and Newtonian simulations
point to the halo formation time that is consistent with the
standard spherical collapse model. This is in contrast to [1]
which considered a similar setup and reported a lag
between gravitational collapse in GR and the standard
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FIG. 10. The same as Fig. 9 but for the case with δ̄PS ¼ 10−2. The fractional differences are computed at the same value of affine
parameters and plotted as a function of redshift from the GR simulations. The corresponding fractional differences in redshift are smaller
than 10−2 at all times.
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(Newtonian) spherical model. Our study also suggests that
the results of [2,3] are similarly in a regime where the
observed nonlinear effects should be well captured by a
nonlinear Newtonian calculation.
In our study we have made use of the “abridged

dictionary” of [17,18] which relates the quantities from
a Newtonian cosmology calculation to the general-rela-
tivistic spacetime metric and stress-energy tensor that they
should approximate. Though this correspondence is only
strictly applicable at the linear level, as argued in [18], the
corrections should be small even with large inhomoge-
neities, as long as they occur on small scales and the
gravitational potential remains small. Our study demon-
strates, for the first time, by means of explicit comparison
of fully GR and Newtonian cosmological simulations, that
indeed this is the case, even beginning with inhomoge-
neities on scales comparable to the Hubble horizon and
continuing to the highly nonlinear regime of the density
evolution. The Newtonian simulations are able to arrive at
these solutions with considerably less computational
expense, both because of the fewer number and less
complicated nature of evolution equations and because
roughly 100 times fewer time steps have to be taken. In
most cases we found the differences between the
Newtonian and relativistic calculations to be dominated
simply by numerical errors. Though here we focused on
somewhat simplified setups with a limited range of length
scales, and hence less stringent resolution requirements,
production-level structure-formation N-body simulations
typically have numerical errors that are comparable or
worse [43,44], meaning it will be quite challenging to
make such errors subdominant to any relativistic effects.
Having said that, we emphasize that we have focused on
somewhat simplified setups in this work, and our study
does not exhaust all possible initial conditions nor probe
the effects of other types of matter or cosmological
parameters such as dark energy, curvature, etc. Other,
more relativistic types of matter, e.g. neutrinos, may
exhibit stronger differences.
The close resemblance between our GR and Newtonian

simulations is especially prominent in the comparison
distances calculated from ray tracing (in both cases, based
on solving geodesic equations describing bundles of light
rays). Both simulations consistently capture all effects,
giving rise to noticeable deviations from the observables
based on the FRW metric including the enhanced (sup-
pressed) expansion in overdense (underdense) regions
(see Figs. 5 and 6) and the demagnification (magnification)
in voids (overdensities) (see Figs. 9 and 10). Although
numerical errors appear to be larger for some cases
featuring particularly strong lensing, ray tracing yields
remarkably similar characterization of these lensing events
in both simulations.
Most observables used in cosmological inference are

not based on directly integrating the geodesic equation but

are rather derived under a number of simplifying assump-
tions, e.g. linearity of density evolution and the Born
approximation of thin lenses adopted commonly in
lensing calculations. However, it is not obvious whether
forgoing such approximations when calculating observ-
ables can introduce significant corrections or not, and this
is something currently under investigation (e.g. [45,46]).
Several recent studies have attempted to address this
problem by combining fully GR cosmological simulations
with full ray tracing [3,47]. Our results suggest, however,
that any possible corrections to the standard cosmological
observables may stem from inaccurate ray tracing adopted
in the standard framework rather than from a genuine
difference between GR and Newtonian evolution of the
density field. Therefore, to test the standard framework for
calculating cosmological observables, it may be worth
further exploring the easier and computationally less
expensive strategy of using standard N-body simulations
to reconstruct a spacetime and directly integrating geo-
desics on it, as we do here (see [48,49] for work along
these lines). The same strategy can also be useful in
theoretical considerations involving cosmological models
with large-scale perturbations exceeding the limits
imposed by the standard ΛCDM model. For example,
our study shows that models with large-scale local voids
can feature substantially higher, locally measured, Hubble
constants and thus are able to reproduce basic properties
of recently studied cosmological models with an obser-
vationally constrained relation between the cosmological
redshift and cosmic scale factor, dubbed redshift remap-
ping [50,51].
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APPENDIX: NUMERICAL ERROR RESULTS

In this appendix we give some details on numerical
convergence and error estimates. It is important to deter-
mine if the differences seen between the various quantities
compared between the Newtonian and GR simulations are
due to the differences in the underlying equations or just to
differences in the numerical truncation error. In order to
estimate this, we run selected cases at multiple resolutions.
For the Newtonian N-body simulations we use a low,
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medium, and high resolution with 643, 1283, and 2563

particles, respectively. For most of the GR calculations we
use a low, medium, and high resolution with a grid with
963, 1283, and 1923 cells, respectively. For the cases with
the largest amplitude inhomogeneities (the δ̄ ¼ 10−2 and
δ̄PS ¼ 10−2 cases) we use 1283, 1923, and 2563 grid cells.
To illustrate convergence, in Fig. 11 we show the magni-
tude of the generalized harmonic constraint violation for
several cases. The convergence of this quantity to zero with
increasing resolution is a nontrivial check that the con-
straint equations at the initial time and the evolution

equations are being solved with sufficient resolution
(see [52]).
The Newtonian and GR calculations will have different

truncation error, with different dependence on resolution.

FIG. 11. The volume average of the norm of the constraint
violation Ca ≔ □xa −Ha as a function time (parametrized by a
volume-averaged measure of the effective scale factor), for
simulations with δ̄ ¼ 10−2 (top) and δ̄PS ¼ 10−3 (bottom) at
three different resolutions. The decrease in constraint violation
with increasing resolution is consistent with roughly second-
order convergence.

FIG. 12. The relative difference in density contrast δobs between the GR and Newtonian simulations, at three different sets of
resolutions. The left and middle panels show the points of maximum overdensity and underdensity for δ̄ ¼ 10−3 and δ̄ ¼ 10−2,
respectively (similar to Fig. 2), while the right panel shows the same intermediate points from the δ̄ ¼ 10−2 case as in Fig. 4.

FIG. 13. The relative difference in the luminosity versus red-
shift between the GR and Newtonian simulations at different
resolutions for light rays emitted at the point of maximum
overdensity that propagate to the point of maximum underdensity
for the δ̄ ¼ 10−3 (top) and δ̄ ¼ 10−2 (bottom) cases, similar to
Figs. 5 and 6.
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However, to give a rough estimate, we show the difference
between several quantities in the Newtonian and GR
simulations at multiple resolutions. In Fig. 12 we show
the difference in the density contrast measured at the
overdensity and underdensity for δ̄ ¼ 10−3 and δ̄ ¼ 10−2

(left and middle panels; cf. Fig. 2), as well as some
intermediate points for δ̄ ¼ 10−2 (right panel; cf. Fig. 4).
For many of the cases, the difference between the two
calculations decreases as the resolution of the respective
simulations is increased, indicating that the discrepancy is
primarily attributable to truncation error. However, at late
times in several of the δ̄ ¼ 10−2 cases, differences in the
density that are consistent with increasing resolution are
apparent.
We also show the dependency of the redshift-luminosity

relations on resolution in Fig. 13. Again, for the δ̄ ¼ 10−3

case shown in the top panel, the difference between the GR
and Newtonian results decreases noticeably with increasing
resolution, indicating that the ≲1% differences seen in
Fig. 5 are likely dominated by truncation error. Here we just
show the light rays beginning at the overdensity and ending
at the underdensity, but the reverse ones are similar.
However, for the δ̄ ¼ 10−2 case shown in the bottom panel,
there are some significant differences in the luminosity
distance in the vicinity of the overdensity as it collapses at
later times, though the differences diminish as the light rays
propagate farther away.
Finally, as an indication of the magnitude of truncation

error in the power-spectrum initial conditions simulations, in
Fig. 14 we show high- and medium-resolution results for
redshift versus luminosity for δ̄PS ¼ 10−3 and δ̄PS ¼ 10−2.
Here it can be seen that the difference between the GR and
Newtonian values is both comparable to the difference with
resolution and diminishes as the resolution is increased. This
is true both for δ̄PS ¼ 10−3 (top panel), where the differences
are small, and δ̄PS ¼ 10−2 (bottom panel), where stronger
resolution-dependent effects are evident at late times.

[1] E. Bentivegna and M. Bruni, Phys. Rev. Lett. 116, 251302
(2016).

[2] J. T. Giblin, J. B. Mertens, and G. D. Starkman, Phys. Rev.
Lett. 116, 251301 (2016).

[3] J. T. Giblin, J. B. Mertens, and G. D. Starkman, Astrophys.
J. 833, 247 (2016).

[4] H. J. Macpherson, P. D. Lasky, and D. J. Price, Phys. Rev. D
95, 064028 (2017).

[5] D. Daverio, Y. Dirian, and E. Mitsou, Classical Quantum
Gravity 34, 237001 (2017).

[6] T. Buchert, Gen. Relativ. Gravit. 32, 105 (2000).
[7] E. W. Kolb, S. Matarrese, A. Notari, and A. Riotto, Phys.

Rev. D 71, 023524 (2005).

[8] S. Rasanen, Classical Quantum Gravity 28, 164008
(2011).

[9] A. Ishibashi and R. M.Wald, Classical Quantum Gravity 23,
235 (2006).

[10] S. R. Green and R. M. Wald, Classical Quantum Gravity 31,
234003 (2014).

[11] DES Collaboration, arXiv:1708.01530.
[12] M. Levi, C. Bebek, T. Beers, R. Blum, R. Cahn, D.

Eisenstein, B. Flaugher, K. Honscheid, R. Kron, O. Lahav,
P. McDonald, N. Roe, D. Schlegel, and representing (the
DESI Collaboration), arXiv:1308.0847.

[13] LSST Dark Energy Science Collaboration, arXiv:1211
.0310.

FIG. 14. The luminosity distance (normalized by the FRW
value) versus redshift for a representative set of null rays in the
δ̄PS ¼ 10−3 (top) and δ̄PS ¼ 10−2 (bottom) cases. We show results
from both the highest resolution GR (solid black lines) and
Newtonian (dashed red lines) simulations, as well as lower
resolution results from both cases (grey solid and magenta
dashed lines, for GR and Newtonian, respectively) to indicate
the magnitude of the numerical truncation error.

EAST, WOJTAK, and ABEL PHYS. REV. D 97, 043509 (2018)

043509-14

https://doi.org/10.1103/PhysRevLett.116.251302
https://doi.org/10.1103/PhysRevLett.116.251302
https://doi.org/10.1103/PhysRevLett.116.251301
https://doi.org/10.1103/PhysRevLett.116.251301
https://doi.org/10.3847/1538-4357/833/2/247
https://doi.org/10.3847/1538-4357/833/2/247
https://doi.org/10.1103/PhysRevD.95.064028
https://doi.org/10.1103/PhysRevD.95.064028
https://doi.org/10.1088/1361-6382/aa9312
https://doi.org/10.1088/1361-6382/aa9312
https://doi.org/10.1023/A:1001800617177
https://doi.org/10.1103/PhysRevD.71.023524
https://doi.org/10.1103/PhysRevD.71.023524
https://doi.org/10.1088/0264-9381/28/16/164008
https://doi.org/10.1088/0264-9381/28/16/164008
https://doi.org/10.1088/0264-9381/23/1/012
https://doi.org/10.1088/0264-9381/23/1/012
https://doi.org/10.1088/0264-9381/31/23/234003
https://doi.org/10.1088/0264-9381/31/23/234003
http://arXiv.org/abs/1708.01530
http://arXiv.org/abs/1308.0847
http://arXiv.org/abs/1211.0310
http://arXiv.org/abs/1211.0310


[14] R. Laureijs, J. Amiaux, S. Arduini, J. Auguères, J. Brinch-
mann, R. Cole, M. Cropper, C. Dabin, L. Duvet, A. Ealet
et al., arXiv:1110.3193.

[15] R. C. Keenan, A. J. Barger, and L. L. Cowie, Astrophys. J.
775, 62 (2013).

[16] H. Böhringer, G. Chon, M. Bristow, and C. A. Collins,
Astron. Astrophys. 574, A26 (2015).

[17] N. E. Chisari and M. Zaldarriaga, Phys. Rev. D 83, 123505
(2011); 84, 089901(E) (2011).

[18] S. R. Green and R. M. Wald, Phys. Rev. D 85, 063512
(2012).

[19] T. Abel, O. Hahn, and R. Kaehler, Mon. Not. R. Astron.
Soc. 427, 61 (2012).

[20] H. R. Beyer and O. Sarbach, Phys. Rev. D 70, 104004
(2004).

[21] D. Alonso, J. Garcia-Bellido, T. Haugbolle, and J. Vicente,
Phys. Rev. D 82, 123530 (2010).

[22] J. Adamek, D. Daverio, R. Durrer, and M. Kunz, Nat. Phys.
12, 346 (2016).

[23] J. Adamek, R. Durrer, and M. Kunz, J. Cosmol. Astropart.
Phys. 11 (2017) 004.

[24] O. Hahn and A. Paranjape, Phys. Rev. D 94, 083511
(2016).

[25] E. Bentivegna and M. Korzynski, Classical Quantum
Gravity 29, 165007 (2012).

[26] C.-M. Yoo, H. Okawa, and K.-i. Nakao, Phys. Rev. Lett.
111, 161102 (2013).

[27] C.-M. Yoo and H. Okawa, Phys. Rev. D 89, 123502
(2014).

[28] M. Bruni, D. B. Thomas, and D. Wands, Phys. Rev. D 89,
044010 (2014).

[29] D. B. Thomas, M. Bruni, and D. Wands, Mon. Not. R.
Astron. Soc. 452, 1727 (2015).

[30] Y. B. Zel’dovich, Astron. Astrophys. 5, 84 (1970).
[31] W. E. East, F. M. Ramazanoglu, and F. Pretorius, Phys. Rev.

D 86, 104053 (2012).
[32] V. Springel, Mon. Not. R. Astron. Soc. 364, 1105

(2005).

[33] S. Shandarin, S. Habib, and K. Heitmann, Phys. Rev. D 85,
083005 (2012).

[34] W. E. East, F. Pretorius, and B. C. Stephens, Phys. Rev. D
85, 124010 (2012).

[35] M.W. Choptuik and F. Pretorius, Phys. Rev. Lett. 104,
111101 (2010).

[36] L. Lindblom and B. Szilágyi, Phys. Rev. D 80, 084019
(2009).

[37] W. E. East, M. Kleban, A. Linde, and L. Senatore,
J. Cosmol. Astropart. Phys. 09 (2016) 010.

[38] E. Bentivegna, M. Korzyński, I. Hinder, and D. Gerlicher,
J. Cosmol. Astropart. Phys. 03 (2017) 014.

[39] I. M. H. Etherington, Gen. Relativ. Gravit. 39, 1055 (2007).
[40] V. Perlick, Living Rev. Relativity 7, 9 (2004).
[41] R. Wojtak, D. Powell, and T. Abel, Mon. Not. R. Astron.

Soc. 458, 4431 (2016).
[42] F. Bernardeau, R. van de Weygaert, E. Hivon, and F. R.

Bouchet, Mon. Not. R. Astron. Soc. 290, 566 (1997).
[43] K. Heitmann et al., Comput. Sci. Discovery 1, 015003

(2008).
[44] A. Schneider, R. Teyssier, D. Potter, J. Stadel, J. Onions,

D. S. Reed, R. E. Smith, V. Springel, F. R. Pearce, and R.
Scoccimarro, J. Cosmol. Astropart. Phys. 04 (2016) 047.

[45] A. Petri, Z. Haiman, and M. May, Phys. Rev. D 95, 123503
(2017).

[46] G. Fabbian, M. Calabrese, and C. Carbone, arXiv:1702
.03317.

[47] J. T. Giblin, Jr., J. B. Mertens, G. D. Starkman, and A. R.
Zentner, Phys. Rev. D 96, 103530 (2017).

[48] S. M. Koksbang and S. Hannestad, Phys. Rev. D 91, 043508
(2015).

[49] S. M. Koksbang and S. Hannestad, Phys. Rev. D 92, 023532
(2015); 92, 069904(E) (2015).

[50] R. Wojtak and F. Prada, Mon. Not. R. Astron. Soc. 458,
3331 (2016).

[51] R. Wojtak and F. Prada, Mon. Not. R. Astron. Soc. 470,
4493 (2017).

[52] F. Pretorius, Classical Quantum Gravity 22, 425 (2005).

COMPARING FULLY GENERAL RELATIVISTIC AND … PHYS. REV. D 97, 043509 (2018)

043509-15

http://arXiv.org/abs/1110.3193
https://doi.org/10.1088/0004-637X/775/1/62
https://doi.org/10.1088/0004-637X/775/1/62
https://doi.org/10.1051/0004-6361/201424817
https://doi.org/10.1103/PhysRevD.83.123505
https://doi.org/10.1103/PhysRevD.83.123505
https://doi.org/10.1103/PhysRevD.84.089901
https://doi.org/10.1103/PhysRevD.85.063512
https://doi.org/10.1103/PhysRevD.85.063512
https://doi.org/10.1111/j.1365-2966.2012.21754.x
https://doi.org/10.1111/j.1365-2966.2012.21754.x
https://doi.org/10.1103/PhysRevD.70.104004
https://doi.org/10.1103/PhysRevD.70.104004
https://doi.org/10.1103/PhysRevD.82.123530
https://doi.org/10.1038/nphys3673
https://doi.org/10.1038/nphys3673
https://doi.org/10.1088/1475-7516/2017/11/004
https://doi.org/10.1088/1475-7516/2017/11/004
https://doi.org/10.1103/PhysRevD.94.083511
https://doi.org/10.1103/PhysRevD.94.083511
https://doi.org/10.1088/0264-9381/29/16/165007
https://doi.org/10.1088/0264-9381/29/16/165007
https://doi.org/10.1103/PhysRevLett.111.161102
https://doi.org/10.1103/PhysRevLett.111.161102
https://doi.org/10.1103/PhysRevD.89.123502
https://doi.org/10.1103/PhysRevD.89.123502
https://doi.org/10.1103/PhysRevD.89.044010
https://doi.org/10.1103/PhysRevD.89.044010
https://doi.org/10.1093/mnras/stv1390
https://doi.org/10.1093/mnras/stv1390
https://doi.org/10.1103/PhysRevD.86.104053
https://doi.org/10.1103/PhysRevD.86.104053
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1103/PhysRevD.85.083005
https://doi.org/10.1103/PhysRevD.85.083005
https://doi.org/10.1103/PhysRevD.85.124010
https://doi.org/10.1103/PhysRevD.85.124010
https://doi.org/10.1103/PhysRevLett.104.111101
https://doi.org/10.1103/PhysRevLett.104.111101
https://doi.org/10.1103/PhysRevD.80.084019
https://doi.org/10.1103/PhysRevD.80.084019
https://doi.org/10.1088/1475-7516/2016/09/010
https://doi.org/10.1088/1475-7516/2017/03/014
https://doi.org/10.1007/s10714-007-0447-x
https://doi.org/10.12942/lrr-2004-9
https://doi.org/10.1093/mnras/stw615
https://doi.org/10.1093/mnras/stw615
https://doi.org/10.1093/mnras/290.3.566
https://doi.org/10.1088/1749-4699/1/1/015003
https://doi.org/10.1088/1749-4699/1/1/015003
https://doi.org/10.1088/1475-7516/2016/04/047
https://doi.org/10.1103/PhysRevD.95.123503
https://doi.org/10.1103/PhysRevD.95.123503
http://arXiv.org/abs/1702.03317
http://arXiv.org/abs/1702.03317
https://doi.org/10.1103/PhysRevD.96.103530
https://doi.org/10.1103/PhysRevD.91.043508
https://doi.org/10.1103/PhysRevD.91.043508
https://doi.org/10.1103/PhysRevD.92.023532
https://doi.org/10.1103/PhysRevD.92.023532
https://doi.org/10.1103/PhysRevD.92.069904
https://doi.org/10.1093/mnras/stw547
https://doi.org/10.1093/mnras/stw547
https://doi.org/10.1093/mnras/stx1550
https://doi.org/10.1093/mnras/stx1550
https://doi.org/10.1088/0264-9381/22/2/014

