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In the context of a binary inspiral of mixed neutron star–black hole systems, we investigate the excitation
of the neutron star oscillation modes by the orbital motion. We study generic eccentric orbits and show that
tidal interaction can excite the f-mode oscillations of the star by computing the amount of energy and
angular momentum deposited into the star by the orbital motion tidal forces via closed form analytic
expressions. We study the f-mode oscillations of cold neutron stars using recent microscopic nuclear
equations of state, and we compute their imprint into the emitted gravitational waves.
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I. INTRODUCTION

After the historical detections of gravitational waves
(GWs) by binary black holes (BHs) [1] and the equally
historical observation of a binary neutron star (NS) merger
[2,3], it is expected that NSs in mixed binary BH-NS
systems will be detected routinely in the GW channel by
the next LIGO-Virgo observation runs, with the current
upper limits given in Ref. [4]. Binary systems of NSs are
qualitatively different emitters of GWs than BH ones: At
first approximation, mixed NS-BH can be treated in general
relativity on equal footing as binary BH systems; however,
the presence of matter in the GW source may lead to new
detectable astrophysical effects in the GW signal that are
not expected to appear in the binary BH case like, e.g., NS
tidal deformations leaving an imprint in the GW signal
[5,6] and breaking of the NS giving origin to a gamma ray
burst or a more general electromagnetic counterpart [7], to
name only the most studied effects.
Beside their direct phenomenological relevance, these

effects carry information on the highly uncertain equation
of state of the NS, thus making GW detection an invaluable
probe of the internal structure of NSs. In this work, we
focus on a specific effect in GW signals: A NS can be
tidally deformed by the orbital motion in generic elliptic
orbits, hence setting oscillations of the NS normal modes.
The orbit being elliptical can induce resonant oscillations at
a frequency much higher than the frequency scale set by the
inverse of the orbital period, since, in general, NS oscil-
lations are much higher than the orbital frequency of
inspiral binary systems.

Quantifying this phenomenon in light of the exciting
prospect of a future GW detection has been the subject of
extensive investigations in the literature in a number of
different contexts. The theoretical setup for studying such
tidally induced NS oscillations has been provided in
Refs. [8,9]. In Ref. [10], it was originally proposed that
tidal encounters between a NS and a main-sequence star
might lead to the formation of x-ray binaries in globular
clusters. In Ref. [11], the effects of the tidal resonances for a
circular orbital motion have been studied, with the result
that, if the companion of a NS is a BH of mass ≥ 6 M⊙, the
g-mode resonance is unimportant, while the f-mode
resonance may affect the orbital evolution just before the
merging. Reference [12] considered the energy absorbed by
tidal excitations in an eccentric orbit (but not their imprint
in the GW form). Reference [13] computed the effect on the
emitted GW phase of a resonant mode excitation by the
circular inspiral motion. Rotating NSs were considered by
Ref. [14] (including g modes and r modes) when the spin
axis is aligned or antialigned with the orbital angular
momentum axis. Reference [15] solved for the tidal
deformation dynamics of a NS in an external field of a
massive object, and recently Ref. [16] presented a frame-
work for the discussion of binary NSs and mixed NS-BH
oscillation mode excitation and detection via the GWs
observed by a future GW detector such as the Einstein
Telescope or Cosmic Explorer. Numerical results on the
GW emission of tidally excited NS oscillations in the last
stages of a coalescence have been given in Ref. [17], and, in
Ref. [18], the imprint of resonant tidal on the gravitational
waveform has been computed within the effective one-
body description of the two-body orbital motion. Finally, in
Ref. [19], the tidal resonant effects are investigated in the
context of the Hamiltonian formalism, finding quantitative
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estimates of the acceleration of the inspiral evolution due to
a tidal term in the evolution equation of the binary system.
In the present paper, we consider a nonrotating NS with

two different equations of states [20,21] with the goal of
translating resonant excitations of various f modes for NSs
inspiraling binary NS-BH systems that move in an elliptical
orbit into a quantitative prediction for the emitted GW form
well in the inspiral phase.
Numerical simulations show that most of the energy

released in gravitational waves is indeed transferred into f
modes, which are characterized by a wave function free of
nodes along the radial direction. We do not study the
possibilities of exciting the g modes, because these modes
are related to the presence of density discontinuities in the
outer envelopes of NSs (see [22,23]), density discontinu-
ities in the inner core as a consequence of phase transitions
at a high density (as studied in Ref. [24]), and/or thermal
gradients as for a proto-NS (see, e.g., [25]). In this paper,
we do not consider the possibility of having discontinuities
of the density; moreover, we focus on barotropic equations
of state where the pressure depends only on the energy
density, implying that all g modes degenerate to zero
frequency, and, hence, we focus on the excitations of
f-modes. Our study is based on the following simplifying
assumptions: (i) We neglect BH rotation, and, thus, we treat
the BH as a point particle with mass MBH; (ii) the hydro-
dynamic stability of the NS is computed using the
Oppenheimer-Volkoff equations, but we use Newtonian
equations to calculate the oscillation modes (see
Appendix A); (iii) the NS does not rotate and we neglect
viscous effects.
By implementing the formalism presented in Refs. [8,9],

we find new general analytic expressions for the energy and
angular momentum deposited into NS oscillations during
the elliptic orbital motion, allowing us to compute the mass
quadrupole which is sourcing GW emission and eventually
compare it with the orbital quadrupole.
The outline of this paper is as follows: In Sec. II, we

present the setup of the physical system under consideration,
and we provide new analytic expressions for the dynamics of
tidally induced NS oscillations, which are the main result of
this paper. In Sec. III, we analyze quantitatively their GW
emission. Finally, conclusions for the future detectability of
NS oscillations in the GW channel are drawn in Sec. IV.
We set the speed of light c ¼ 1 throughout this paper.

II. COUPLING OF NEUTRON STAR
OSCILLATION MODES TO

ORBITAL MOTION

In this section, we study the tidal excitation of NS
oscillation modes in nonrotating stars in an elliptical orbit.
Our analysis will be general, but the astrophysical case we
have in mind is that of a binary NS-BH system. The idea to
compute the energy deposited in stellar oscillations by the
tidal gravitational field is first described by Refs. [8,9].

In this paper, we use Newtonian linearized equations to
calculate the oscillation modes. The use of Newtonian
equations is consistent with our Newtonian description of
tidal interactions. For the f mode, general relativistic
effects are expected to modify our results of oscillation
frequencies by not more than GM�/ðR�c2Þ ∼ 20% (see
[26]), where M� and R� are the mass and radius, respec-
tively, of the NS, while damping times deviate at most by
15% from the empirical relations given in Ref. [27],
however, still compatible with the results obtained in the
recent Ref. [28].
We also neglect the spin Ωs of the NS. When Ωs ≠ 0, the

normal modes of the star get more complicated, especially
when Ωs becomes comparable to the mode frequencies
[29]. For Ωs ≡ 0, the eigenmodes can be adequately
approximated by those of a nonrotating spherical star;
the basic equations that governing the oscillations of stars
are discussed in more detail in Appendix A.
The NS oscillations are excited by tidal forces while the

NS is bound in a binary system with a black hole in an
eccentric orbit whose evolution is driven by gravitational
radiation. The distance D between two objects in an elliptic
orbit can be parametrized by [see, e.g., Eq. (4.54) of
Ref. [30]]

D ¼ að1 − e2Þ
1þ e cosψ

; ð1Þ

a being the semimajor axis ande the eccentricity (withψ ¼ 0
corresponding to the periastron), and the true anomaly ψ is
related to the eccentric anomaly u and time t via [see, e.g.,
Eqs. (4.57) and (4.58) of Ref. [30]]

β≡ u − e sinu ¼ ω0t;

cosψ ¼ cos u − e
1 − e cos u

; ð2Þ

T being the orbital period, ω0 ≡ 2π/T, with the following
relationships holding among orbital parameters:

ψ̇ ¼ ½GNMað1 − e2Þ�1/2
D2

ð3Þ

(whereM is the total mass of the binary system and GN the
Newton constant), and the standard definition of the rela-
tivistic orbital parameter

x≡ ðGNMω0Þ2/3 ¼
GNM
a

; ð4Þ

the last equality holding only at the Newtonian level.
In order to study quantitatively the effect of the gravi-

tational force inducing oscillations into the NS and follow-
ing the procedure outlined in Ref. [9], it is useful to expand
the Newtonian potential in spherical harmonics [see, e.g.,
Eq. (3.70) of Ref. [31]], centered at the star as per
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1

jD − rj ¼
X∞
l¼0

Xl
m¼−l

4π

2lþ 1

rl

Dlþ1
Y�
lmðθ;ϕÞYlmðπ/2;ψÞ;

ð5Þ
r, θ, and ϕ being coordinates of the mass elements of the
NS, l; jmj ≤ l are the spherical harmonic indices, and the
orbital motion is assumed to be planar (no spin-induced
precession). Using Eq. (5) for the elliptic orbit, it will be
useful to expand eimψ /Dlþ1 for generic l into a Fourier
series of the type

eimψ

Dlþ1
¼ 1

alþ1

X∞
j¼0

fcðl;mÞ
j ðeÞ cosðjβÞ þ isðl;mÞ

j ðeÞ sinðjβÞg:

ð6Þ

The detailed calculation of the Fourier coefficients cðl;mÞ
j ðeÞ

and sðl;mÞ
j ðeÞ and their analytic expressions are presented in

Appendix B.
In order to perform an analytic quantitative analysis, we

borrow here the framework of Ref. [12], where NS
oscillations are modeled as a series of damped harmonic
oscillator displacements xnðtÞ driven by an external force,
that we can take as purely monochromatic:

ẍnðtÞ þ 2
ẋnðtÞ
τn

þ ω2
nxnðtÞ ¼ Cj cosðωjtÞ þ Sj sinðωjtÞ;

ð7Þ
where τn is the damping time [32], ωn is related to the
stellar mode frequency νn by νn ¼ ðω2

n − 1/τ2nÞ1/2/ð2πÞ,
ωj ≡ jω0 is the jth harmonic of the main orbital angular
frequency ω0, and Cj, Sj is the exciting force amplitude.
The time scale of ωj variation, τGW, is set by the GW
radiation and via the Einstein quadrupole formula

τGW ¼
�
ω̇0

ω0

�
−1

≃
5

96η
ðGNMÞ−5/3ω−8/3

0 g−1ðeÞ

≃ 50 sec

�
η

0.2

�
−1
�

x
0.02

�
−5/2

×

�
ω0

100 Hz

�
−1
g−1ðeÞ; ð8Þ

with η≡M�ðM −M�Þ/M2 and gðeÞ a dimensionless factor
depending on eccentricity alone (see Sec. 4.1.3 of
Ref. [30]):

gðeÞ ¼ 1

ð1 − e2Þ7/2
�
1þ 73

24
e2 þ 37

96
e4
�
:

When τGW ≫ 2π/ωn, we can consider the forcing term as
monochromatic and Eq. (7) admits the exact analytic
solution

½ðω2
j − ω2

nÞ2þ4ω2
j /τ

2
n�xnðtÞ

¼ ðω2
n − ω2

jÞðCj cosðωjtÞ þ Sj sinðωjtÞÞ
þ 2ωj/τnðCj sinðωjtÞ − Sj cosðωjtÞÞ; ð9Þ

the solution xðhÞn to the homogeneous equation being

xðhÞn ∝ e−t/τn cos½ðω2
n − 1/τ2nÞ1/2tþ ϕ0�: ð10Þ

Fixing the integration constants of the homogeneous
solution to have vanishing excitations at the onset of the
forcing term (deep in the early inspiral), one can find an
energy per unit of mass E per unit of time:

Ė ¼ ðC2
j þ S2jÞω2

j /τn
ðω2

j − ω2
nÞ2 þ 4ω2

j /τ
2
n
: ð11Þ

Equation (11) is valid when the forcing term can be
considered constant for a time span larger than τn; however,
the forcing term is coherent only over a time τc approx-
imately given by the geometric mean of the instantaneous
orbital period and the GW-triggered decay time τGW [13]:

τc ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τGW2π/ω0

p

≃ 2 sec

�
η

0.2

�
−1/2

�
x

0.02

�
−5/4

�
ω0

100 Hz

�
−1
g−1/2ðeÞ:

ð12Þ
In our case τn¼0 can vary in the range 10−1, 100, and
102 sec for, respectively, l ¼ 2, 3, 4; see Tables I and II.
Energy is mostly absorbed by the l ¼ 2 mode and also in
the l ¼ 3 at resonance, where Eq. (11) holds also for τn >
τc by replacing τn in Eq. (11) with the minimum of τc, τn.
The NS oscillation vectors ζ⃗ðt; r⃗Þ satisfy an equation of

the type (see [34])
�
ρ
d2

dt2
þ L

�
ζ⃗ðt; r⃗Þ ¼ −ρ∇⃗Uðr⃗Þ; ð13Þ

where L is an operator characterizing the internal restoring
force of the star. In order to apply this toy model of a
damped harmonic oscillator to the tidally excited NS
oscillation, we decompose the oscillation field ζ⃗ðt; r⃗Þ into
normal modes with factorized time and space dependence:

ζ⃗ðt; r⃗Þ ¼
X
n;l;m

qnlmðtÞξ⃗nlmðr⃗Þ; ð14Þ

where we have added the spherical harmonics l; m labels
and the spatial mode eigenfunctions ξnlm satisfy

ðL−ρω2
nÞξ⃗nlm¼ 0; ð15Þ

allowing the identification of ωn with the stellar frequency
of the eigenmode. The differential equations the oscillation
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mode fields ξ satisfy are summarized in Appendix A, which
are solved for two different equations of state and three
values of the central density of the NS, with the resulting
mass, radius, frequency, and damping times (the last two
depending on l) reported in Appendix C for 2 ≤ l ≤ 4.
It is also useful to expand the eigenmodes into a radial (r)

and a poloidal (h) component:

ξ⃗nlmðr⃗Þ ¼ ðξðrÞnlðrÞêr þ rξðhÞnl ðrÞ∇⃗ÞYlmðθ;ϕÞ ð16Þ
and impose the normalization condition [35]
Z

d3xρðrÞξ⃗�nlm · ξ⃗n0l0m0

¼
Z

drr2ρðrÞðξðrÞnlξ
ðrÞ
n0l0 þ lðlþ 1ÞξðhÞnl ξ

ðhÞ
n0l0 Þδl;l0δm;m0

¼ ρ0R5�δn;n0δl;l0δm;m0 ; ð17Þ
where ρðrÞ, ρ0, and R� are, respectively, the density, central
density, and radius of the NS and we usedZ

dΩYlmðθ;ϕÞY�
l0m0 ðθ;ϕÞ ¼ δl;l0δm;m0 ;

Z
dΩr2∇⃗Ylmðθ;ϕÞ · ∇⃗Y�

l0m0 ðθ;ϕÞ ¼ lðlþ 1Þδl;l0δm;m0 ;
Z

dΩr⃗ · ∇⃗Ylmðθ;ϕÞr⃗ · ∇⃗Y�
l0m0 ðθ;ϕÞ ¼ δl;l0δm;m0 ; ð18Þ

and the integral of products of spherical harmonics with an
unequal number of derivatives vanishes for any l; m, l0,m0.
By multiplying both members of Eq. (13) by

ρðrÞξ�nlmðr⃗Þ, substituting the expansion in Eq. (5), and
integrating over the NS volume, the mode qnlmðtÞ is
singled out, and it satisfies an equation of the type (7):

q̈nlmðtÞ þ
2

τnl
q̇nlmðtÞ þ ω2

nqnlmðtÞ

¼ GNMBH

a3

�
R�
a

�
l−2

QnlWlm

×
X
j

ðcðlþ1;mÞ
j ðeÞ cosðjβÞ þ isðlþ1;mÞ

j ðeÞ sinðjβÞÞ;

ð19Þ
where

Wlm ≡ 4π

2lþ 1
Ylmðπ/2; 0Þ;

Qnl ≡ 1

ρ0Rlþ3�

Z
R�

0

drr2ρðrÞlrl−1ðξðrÞnl þ ðlþ 1ÞξðhÞnl Þ;

ð20Þ
and MBH is the black hole mass. Note that the rhs of
Eq. (19) is complex, but given the symmetries of the c, s
coefficients: Wlm ¼ ð−1ÞlWl−m (and Wlm ¼ 0 if l; m

have different parity), cl;mj ¼ cl;−mj , sl;mj ¼ −sl;−mj the sum
of

P
mqnlm × Ylm returns a real quantity. The modes qnlm

thus satisfy an equation of the type (7) with the coefficients
Cj, Sj replaced by

ðCj; SjÞ →
GNMBH

a3

�
R�
a

�
l−2

QnlWlmðcðl;mÞ
j ðeÞ; sðl;mÞ

j ðeÞÞ:

ð21Þ
These expressions will be needed in Sec. III to compute the
time-varying quadrupole associated to these oscillations,
the source of GWs.
The rate of energy (per unit of mass, per unit NS radius)

absorbed by each oscillation mode can be read from
Eq. (11) by inserting the above values of Cj, Sj and
summing over n; j > 0;l ≥ 2 and jmj ≤ l, the rate of
absorbed energy via tidal mechanism Ė� being

Ė� ¼
X
j

Ėj ¼ ρ0R�

�
R�
a

�
4
�
GNMBH

a

�
2

×
X

j;n;l;m

ðcðl;mÞ
j

2 þ sðl;mÞ
j

2Þ

×

�
R�
a

�
2l−4

Q2
nlW

2
lm

ω2
j /τnl

ðω2
j − ω2

nlÞ2 þ 4ω2
j /τ

2
nl
: ð22Þ

The contribution from individual j modes to the rate of
energy absorption is plotted in Fig. 1 after being divided by
the factor

K ≡ ρ0R�

�
R�
a

�
4
�
GNMBH

a

�
2 ðGNMω0Þ2

ω02

≃ 1.5 × 10−14
M⊙
sec

�
x

0.01

�
9
�

ρ0
1015 gr/cm3

�

×
�

R�
10 Km

�
5
�
MBH

4 M⊙

�
2
�

M
6 M⊙

�
−6
; ð23Þ

where ω02 ¼ ωnl for n ¼ 0, l ¼ 2. Factorizing the
absorbed energy rate by the quantity K has the virtue of
making Ėj/K dimensionless and independent of the rela-
tivistic parameter x (as long as the orbital frequency does
not hit a resonance with ωj ≡ jω0) and mildly dependent
on ρ0 and a.
In Fig. 2, we report the rate of absorbed energy Ė�

normalized by

ĖGW0 ≡ 32

5GN
η2x5; ð24Þ

which is the expression of the leading order in x of the GW
emission rate at zero eccentricity from a binary inspiral,
making visually easier the comparison betweenGW radiated
energy ĖGW and Ė�. For ĖGW we use the 3PN formula taken
from Ref. [37]; see also Sec. 10.3 of Ref. [38].
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The absorbed angular momentum can be computed in a
similar way, following Ref. [26], where it is noted that the
variation of angular momentum

L̇� ¼ −
Z

d3xðρ0 þ δρÞðẑ · r⃗ × ∇⃗UÞ; ð25Þ

we can derive in our setup

L̇� ¼
X
nl

qnlmðtÞ
Z

d3x∇⃗ · ðρ0ξ⃗nlmÞ
∂U
∂ψ

¼
X
nlm

qnlmðtÞ
Z

d3x∇⃗ · ðρ0ξ⃗nlmÞ
GNMBH

a

�
r
a

�
l
Wlmim

×Y�
lmðθ;ϕÞ

X
j

ðcðl;mÞ
j ðeÞcosðjβÞþ isðl;mÞ

j ðeÞ sinðjβÞÞ;

ð26Þ
where in the last passage we have inserted the expansion of
Eqs. (5) and (6) and derived by parts inside the integral. In
this form the angular momentum absorption rate by NS
oscillations can be rewritten as

L̇� ¼ ρ0R�

�
GNMBH

a

�
2

2
X

j;n;l;m>0

mcðl;mÞ
j sðl;mÞ

j

�
R�
a

�
2l

×Q2
nlW

2
lm

ωj/τnl
ðω2

j − ω2
nlÞ2 þ 4ω2

j /τ
2
nl
: ð27Þ

In Fig. 3, the absorbed angular momentum rate L̇�
normalized by the leading-order expression in x of

FIG. 1. Distribution of the rate of energy absorbed by the
fundamental NS oscillation mode divided by K, defined in
Eq. (23), as a function of the harmonic j of the fundamental
mode in eccentric orbits, for nine equally spaced values of
eccentricity (from e0 ¼ 0 in blue, through ei ¼ i/10 until e8 ¼
0.8 in yellow). For each value of eccentricity, the curves for x ¼
0.01 and x ¼ 0.07 are shown, with x defined in Eq. (4). For the
latter value of x, the contribution of the l ¼ 2 mode alone is
isolated in the dashed curve. For x ¼ 0.07, the resonant absorp-
tion peaks l ¼ 2 are visible for e ¼ 0.5, 0.6, 0.7, 0.8, and for
e ¼ 0.6, 0.7, 0.8 the resonant peak of l ¼ 3 is also visible, as
j̄ω0 ¼ j̄x3/2/ðGNMÞ ≃ 18.1 kHzðj̄/34Þð6.965 M⊙/MÞðx/0.07Þ3/2
where for this plot MBH ¼ 5 M⊙ and we used the equation
of state A (APR) of Ref. [20] and central density ρ0 ¼
1.5 × 1015 gr/cm3; see Table I. In this case, the n ¼ 0 f mode
has frequency νl¼2

f ¼ 2.888 kHz [we have verified that for x <
0.07 the NS is safe from tidal breaking, whose condition requires
D≲ 0.3RNSðMNS/MBHÞ1/3x1/2ðM/MBHÞ1/2; see [36]].

FIG. 2. Rate of energy absorbed Ė� as a function of the
eccentricity, with MBH ¼ 5 M⊙, the NS with equation of state
A (APR) of [20] for different values of the central density
ρ0 ¼ ð1.5; 1.2; 0.99Þ × 1015 gr/cm3; lines of increasing thickness
show results for increasing ρ0. For comparison, we also plot the
GW luminosity for the two values of x; all functions are divided
by the Newtonian GW luminosity at zero eccentricity ĖGW0 given
by Eq. (24). Plots for the other equations of states described in
Appendix C are shown in Fig. 7 and are qualitatively similar.

FIG. 3. Rate of angular momentum absorbed as a function of
the eccentricity, the same parameters as in Fig. 2. Here L̇GW is the
Newtonian angular momentum loss in GWs for small eccen-
tricities L̇GW ¼ 32

5
η2M x7/2

ð1−e2Þ2 ð1þ 7
8
e2Þ and L̇GW0 ≡ L̇GWje¼0.
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L̇GW0 ≡ 32/5Mη2x7/2 is reported for various values of the
relativistic parameter x and the eccentricity e. The values of
L̇ are negligible with respect to L̇GW, and, given the typical
moment of inertia of a NS (∼1045 gr cm2; see Ref. [39]),
the induced rotation on the NS is also negligibly small.

III. GRAVITATIONAL WAVE EMISSION

We have seen in the previous section that the energy
absorbed by the NS is very small compared to the orbital
energy at moderate eccentricity values (e≲ 0.6); hence,
such absorption will not alter in any significant way the
chirping signal. However, the energy absorbed will set
oscillations in the neutron star that give rise to a time-
varying quadrupole, which will in turn generate GWs with
a significantly different pattern than the GWs associated to
the decaying orbital motion.
The general expression for the GW in the TT gauge is

given by (see [40])

hTTij ðt; rÞ ¼
1

r
GN

Xþ∞

l¼2

Xl
m¼−l

½ulmðTE2
lmÞij þ vlmðTB2

lmÞij�;

ð28Þ

where ulm (vlm) is linearly related to the lth time
derivative of the mass (momentum) multipole moments.
The leading-order contribution to the radiation reaction
comes from the mass quadrupole term, for which it is (see,
e.g., Sec. 3 of Ref. [30])

u2m ¼ 16

15
π

ffiffiffi
3

p
Q̈ijY2m

ij
�; ð29Þ

Ylm
i1…il

being the tensor spherical harmonics and Qij ≡R
d3xρxixj is the standard quadrupole mass moment in

Cartesian coordinates. It will be convenient to express the
leading-order GW amplitude in terms of the spherical
components Qm of the quadrupole, related to their
Cartesian counterpart via

Q2m ≡ 8π

15
QijðY2m

ij Þ�;
Qij ¼

X
jmj≤2

Q2mY2m
ij ; ð30Þ

leading to (explicit expressions of l ¼ 2 tensor spherical
harmonics are reported in Appendix D)

u2m ¼ 2
ffiffiffi
3

p
Q̈m: ð31Þ

We now have all the ingredients to relate the leading GW
source u2m to the NS tidal oscillations via

Q�2m ¼ 8π

15

Z
ρr2Y�

2md
3x; ð32Þ

that in terms of the displacement vector introduced in
Eqs. (13) and (14) can be expressed as (see [41])

15

8π
Q�2m ¼

Z
ðρ0 þ δρÞr2Y�

2md
3x

¼ −
X
n

Z
∇⃗ · ðρ0ζ⃗n2mÞr2Y�

2md
3x

≃ q02mðtÞ
�
2

Z
R�

0

ρ0fξðrÞ02 þ 3ξðhÞ02 gr3dr

− ρ0ξ
ðrÞ
02 r

4jR�
0

�
; ð33Þ

where an integration by parts has been performed in the last
step, the explicit expression of ζ⃗n2mðt; x⃗Þ has been inserted,
and only the n ¼ 0 contribution has been considered, since
we analyzed only the f mode. Observing that the boundary
term is numerically smaller than the integral term, sub-
stituting the solution of Eq. (19), and considering only the
resonant contribution for ωj̄ ≃ ω02, the NS average quadru-
pole value can be written as

hQ2
�22i1/2≃

2
ffiffiffi
2

p
π

15
ρ0R5�Q2

02W22

GNMBH

a3
τ02
ωj̄

× ½ðcð2;2Þj̄ Þ2þðsð2;2Þj̄ Þ2�1/2

≃
4

ffiffiffi
2

p
π

15

ðρ0R5�τ02Þ1/2
ω02

Q02

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ėðl¼2Þ
j̄

q

≃10−2 M⊙ km2

�
ρ0

1015 gr/cm3

�
1/2
�

R�
10 km

�
5/2

×

�
Ėðl¼2Þ
j

10−8 M⊙/ sec

�1/2�
τ02

0.1 sec

�
1/2
�

ω02

18 kHz

�
−1
:

ð34Þ

The quantity directly related to GW emission, uðNSÞ2m ,
follows straightforwardly via Eq. (31). In Fig. 4, we report
the numerically derived contribution to the second time
derivative of the quadrupole (divided by the reduced mass
of the binary system) and, as a comparison, the (magnified)
second derivative of the quadrupole associated to n ¼ 0,
l ¼ 2 NS oscillations during an ordinary binary inspiral in
which the orbit shrinks due to GW backreactions.
For comparison, we also report in Fig. 5 the time

evolution of the displacement q0lll ¼ 2, 3, 4 along the
inspiral phase.
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IV. CONCLUSIONS

In this paper, we have developed and presented a
framework able to perform analytic and quantitative study
of the excitations of a neutron star in an inspiraling binary
system of arbitrary eccentricity. We have computed the
energy and the angular momentum deposited into stellar
mode oscillations by the tidal field via closed form analytic
formulas. The amount of energy absorbed by the neutron
star in a given mode depends on the overlap of the tidal

force field with the displacement field of the mode; hence,
it requires solving the equilibrium equations of a neutron
star, done here in the Newtonian approximation. We
focused our analysis on the fundamental f mode of a
nonrelativistic star, finding the rate of energy absorbed and
angular momentum as a function of the eccentricity and of
the period of the inspiral orbital, when the f mode can be in
resonance with higher harmonics of the main orbital
frequency and on their imprint in the gravitational wave
signal well in the inspiral phase (note that this phenom-
enological effect is complementary to the acceleration of
the coalescence because of the orbital energy leaking into
tidal oscillations).
As a future development of this work, we intend to

extend our analysis to the general relativistic equilibrium
equations of a rotating neutron star, with the inclusion of
the r mode and g modes, and considering a not barotropic
equation of state: Such modes have lower frequency values
than the f mode and can therefore be excited at resonance
in an elliptical orbit earlier in the inspiral phase. The
phenomenological impact of the computations presented
here relies on the signature that neutron star oscillations
will imprint onto the gravitational signals of an inspiral
binary system. Despite being subdominant with respect to
the gravitational wave sourced by the orbital motion, the
detailed features of the star oscillation bears invaluable
information on its equation of state and density, allowing
us to make a bridge to the nuclear physics ruling its
equilibrium. Since it is expected in the near future that a
third-generation gravitational wave detector could observe
signals from binary systems involving a neutron star at a
signal-to-noise ratio of the order of 102 or more (see, e.g.,
[42]) and that such a detectionwill involve the observation of
hundreds of thousands of gravitational wave cycles during
the inspiral of a binary system for a time stretch of the order of
several days, the quantitative prediction of the modification
of the inspiral signal, even at a very low level, will have an
impact on the physics outcome of the detection.
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APPENDIX A: FOUR FIRST-ORDER LINEAR
DIFFERENTIAL EQUATIONS OF NONRADIAL

OSCILLATIONS

The normal modes of a spherical star can be labeled by
spherical harmonic indicesl andm and by a “radial quantum
number” n. In spherical coordinates, the Lagrangian dis-
placement ξ of a fluid element is given by

FIG. 4. Second derivative of the quadrupole Q̈22 divided by the
reduced mass μ≡ ηM: the contribution from orbital dynamics
compared with the (magnified) contribution from the NS oscil-
lation Q�22 for an inspiral with initial conditions xi ¼ 0.04,
ei ¼ 0.4, and MBH ¼ 5 M⊙ and the parameter for the NS given
by equation of state B (SLy4) [21] with ρ0 ¼ 2 × 1015 gr/cm3.

FIG. 5. Given the same parameters of Fig. 4, here are displayed
the f-mode displacements q0ll for l ¼ 2, 3, 4 (magnified by a
factor of 103). Also shown are the main gravitational wave
frequency fGW ≡ ω0/π and the eccentricity along the inspiral
dynamics considered.
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ξnlm ¼
�
ξðrÞnlðrÞ; ξðhÞnl ðrÞ

∂
∂θ ;

ξðhÞnl ðrÞ
sin θ

∂
∂ϕ

�
Ylmðθ;ϕÞeiσt;

ðA1Þ

where Ylm denotes a spherical harmonic and σ denotes the
pulsation angular frequency. The oscillation is assumed to be
adiabatic; we ignore the thermal evolution of the NS, and for
simplicity we use the Newtonian description in the Ref. [43]
formulation. In this case, the equations reduce to a system of
four first-order differential equations with four dimension-
less variables, given by

y1 ¼
ξðrÞnl

r
; y2 ¼

1

gr

�
p0

ρ
þΦ0

�
¼ σ2

g
ξðhÞnl ; ðA2Þ

y3 ¼
Φ0

gr
; y4 ¼

1

g
dΦ0

dr
: ðA3Þ

Here, the meanings of the symbols are as follows: p0 andΦ0
are the radial part of the Eulerian perturbation to the pressure
p and the gravitational potential Φ, respectively; r is the
distance from the center of the star, ρ is the density, and
g≡GmðrÞ/r2 is the local acceleration due to gravity. The
system of differential equations that governs the linear
adiabatic oscillations of stars is then given by

r
dy1
dr

¼ ðVg − 1 − lÞy1 þ
�
lðlþ 1Þ
c1ω2

− Vg

�
y2 þ Vgy3;

ðA4Þ

r
dy2
dr

¼ ðc1ω2 − A�Þy1 þ ð3 −U þ A� − lÞy2 − A�y3;

ðA5Þ

r
dy3
dr

¼ ð3 − U − lÞy3 þ y4; ðA6Þ

r
dy4
dr

¼ A�Uy1 þ UVgy2

þ ½lðlþ 1Þ −UVg�y3 − ðU þ l − 2Þy4; ðA7Þ

where

Vg ¼ −
1

Γ1

d lnp
d ln r

¼ gr
c2s

;

A� ¼ 1

Γ1

d lnp
d ln r

−
d ln ρ
d ln r

;

U ≡ d lnmðrÞ
d ln r

¼ 4πρr3

mðrÞ ; ðA8Þ

c1 ≡ r3

R3�

M�
mðrÞ ;

Γ1 ¼
�∂ lnp
∂ ln ρ

�
S
;

ω2 ¼ R3�
GNM�

σ2: ðA9Þ

Here Γ1 is the first adiabatic exponent, cs is the sound speed,
mðrÞ is the concentricmass,M� andR� are the totalmass and
radius of the star, respectively, and GN is the gravitational
constant. There are four boundary conditions; the inner
boundary conditions at r ¼ 0 are

c1ω2y1 − ly2 ¼ 0;

ly3 − y4 ¼ 0;

the outer boundary conditions at r ¼ R� are

y1 − y2 þ y3 ¼ 0;

ðlþ 1Þy3 þ y4 ¼ 0:

The two central boundary conditions require that the two

divergences involved, ∇ · ξðrÞnl and ∇ ·Φ0, remain finite. At
the surface, we require δP/P to be finite and Φ0, the
gravitational force per unit mass, to be continuous across
the perturbed surfaces. The above equations and boundary
conditions constitute an eigenvalue problem for the eigen-
value σ.
The expression for the damping time due to the emission

of gravitational waves in the Newtonian case (see [44,45])
is given by

τnl ≡ ðl − 1Þ½ð2lþ 1Þ!!�2
lðlþ 1Þðlþ 2Þ

�
σ

2πG

��
c
σ

�
2lþ1

×

R R�
0 drρr2½ξðrÞnlðrÞ2 þ lðlþ 1ÞξðhÞnl ðrÞ2�

fR R�
0 drρrlþ1½ξðrÞnlðrÞ þ ðlþ 1ÞξðhÞnl ðrÞ�g2

;

ðA10Þ

where n!! ¼ 1…ðn − 4Þðn − 2Þn.

APPENDIX B: EXPANSION OF THE
FOURIER COEFFICIENTS

Expanding in Eq. (6), we have

cðl;mÞ
j ðeÞ ¼ cj

πð1 − e2Þlþ1

Z
π

−π
cosðmψÞð1þ e cosψÞlþ1

× cosðjβÞdβ; ðB1Þ

for l ≥ 0; jmj ≤ l, where we used that ψ is an odd function
of time; hence cosψ (sinψ) is an even (odd) function of
time, cj ¼ 1 for j ≠ 0, and c0 ¼ 1/2.
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In order to expand cosðmψðtÞÞ into sums of terms of the
type cosðnβÞ, it is useful to express it in terms of powers of
cosðψÞ via [46]

cosðmθÞ ¼ TmðcosðθÞÞ; ðB2Þ
where Tm is the Chebyshev polynomial of the order of r
and it has the form

TmðxÞ ¼
X½m/2�

k¼0

tðsÞr xm−2k; ðB3Þ

[x] being the integer part of x. Using the standard relation-
ships between eccentric anomaly ψ, true anomaly u, and
time t (see Sec. II), one finds

1þ e cosψ ¼ 1 − e2

1 − e cos u
;

dβ ¼ ð1 − e cos uÞdu; ðB4Þ

to obtain

cðl;mÞ
j ¼ 2cn

π

Z
π

0

X½m/2�

k¼0

tðkÞm
ðcos u − eÞm−2k

ð1 − e cos uÞm−2kþl

× cosðju − je sin uÞdu: ðB5Þ

In order to perform this integral, we use the standard Taylor
expansions

ð1 − xÞn ¼
Xn
k¼0

ð−1Þk n!
k!ðn − kÞ! x

k;

1

ð1 − xÞn ¼
X∞
k¼0

ðnþ k − 1Þ!
k!ðn − 1Þ! xk ðB6Þ

to write

cðl;mÞ
j ðeÞ ¼ 2cj

π

Z
π

0

X½m/2�

k¼0

tðkÞm ð−eÞm−2k
Xm−2k

p¼0

ðm − 2kÞ!
p!ðm − 2k − pÞ! ð−1Þ

p

�
cos u
e

�
pX∞

n¼0

ðm − 2kþ lþ n − 1Þ!
n!ðm − 2kþ l − 1Þ!

× ðe cos uÞn cosðju − je sin uÞdu

¼ 2cj
π

Z
π

0

X½m/2�

k¼0

Xm−2k

p¼0

X∞
n¼0

ð−1ÞpþmtðkÞm
ðm − 2kÞ!

p!ðm − 2k − pÞ!
ðm − 2kþ lþ n − 1Þ!
n!ðm − 2kþ l − 1Þ!

× em−2kþn−pðcos uÞpþn cosðju − je sin uÞdu; ðB7Þ

and then we use the de Moivre formula

cosnðuÞ ¼ 1

2n

Xn
k¼0

n!
k!ðn − kÞ! cosðn − 2kÞu ðB8Þ

to get to

cðl;mÞ
j ðeÞ ¼ cj

π

Z
π

0

X½m/2�

k¼0

Xm−2k

p¼0

X∞
n¼0

Xpþn

q¼0

ð−1Þpþm tðkÞm

2pþn−1
ðm − 2kÞ!

p!ðm − 2k − pÞ!
ðm − 2kþ lþ n − 1Þ!
n!ðm − 2kþ l − 1Þ!

ðpþ nÞ!
q!ðpþ n − qÞ!

× em−2kþn−p cos½ðpþ n − 2qÞu� cosðju − je sin uÞdu: ðB9Þ

Finally, using the integral representation of the Bessel functions

JnðzÞ ¼
1

π

Z
π

0

cosðnu − z sin uÞdu ðB10Þ

and the standard trigonometric identity

2 cos α cos β ¼ cosðαþ βÞ þ cosðα − βÞ; ðB11Þ

one gets to
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cðl;mÞ
j ðeÞ ¼ cjð−eÞm

X½m/2�

k¼0

Xm−2k

p¼0

X∞
n¼0

Xpþn

q¼0

ð−1Þpen−2k−p tðkÞm

2pþn

ðm − 2kÞ!
p!ðm − 2k − pÞ!

ðm − 2kþ lþ n − 1Þ!
n!ðm − 2kþ l − 1Þ!

ðpþ nÞ!
q!ðpþ n − qÞ!

× ðJnþpþj−2qðjeÞ þ Jj−p−nþ2qðjeÞÞ: ðB12Þ

Analogously for sðl;mÞ
j ðeÞ, one can use the Chebyshev polynomial of the second kind UnðxÞ satisfying the equation

sinðmθÞ ¼ Um−1ðcos θÞ sin θ

¼ sin θ
X½ðm−1Þ/2�

k¼0

uðkÞm−1ðcos θÞm−1−2k ðB13Þ

to obtain

sðl;mÞ
j ðeÞ¼ 2ð1−e2Þ1/2

π

Z
π

0

sinu
X½ðm−1Þ/2�

k¼0

uðkÞm−1
ðcosu−eÞm−1−2k

ð1−ecosuÞm−2kþl sinðju− jesinuÞdu

¼−
2ð1−e2Þ1/2

π

Z
π

0

X½ðm−1Þ/2�

k¼0

Xm−1−2k

p¼0

X∞
n¼0

Xpþn

q¼0

ð−1Þpþmem−1−2kþn−p uðkÞm

2pþn

×
ðm−2k−1Þ!

p!ðm−2k−1−pÞ!
ðm−2kþlþn−1Þ!
n!ðm−2kþl−1Þ!

ðpþnÞ!
q!ðpþn−qÞ!sinucos½ðpþn−2qÞu�sinðju− jesinuÞdu: ðB14Þ

Now using

2 sin α cos β ¼ sinðαþ βÞ þ sinðα − βÞ;
2 sinα sin β ¼ cosðα − βÞ − cosðαþ βÞ; ðB15Þ

one finally obtains

sðl;mÞ
j ðeÞ ¼ ð1 − e2Þ1/2ð−eÞm

X½ðm−1Þ/2�

k¼0

Xm−1−2k

p¼0

X∞
n¼0

Xpþn

q¼0

ð−1Þp ðm − 2k − 1Þ!
p!ðm − 2k − 1 − pÞ!

ðm − 2kþ lþ n − 1Þ!
j!ðm − 2kþ l − 1Þ!

ðpþ nÞ!
q!ðpþ n − qÞ!

× en−2k−p
uðkÞm−1
2pþnþ1

½Jnþpþjþ1−2qðjeÞ þ Jj−p−nþ1þ2qðjeÞ − Jnþpþj−1−2qðjeÞ − Jj−p−n−1þ2qðjeÞ�: ðB16Þ

TABLE II. Data for the equation of state B (SLy4) [21].

ρ0 ðgr/cm3Þ R (km) M ðM⊙Þ νf;l¼2 (kHz) νf;l¼3 (kHz) νf;l¼4 (kHz) τl¼2 (s) τl¼3 (s) τl¼4 (s) jQ02j jQ03j jQ04j
2.0 × 1015 10.615 1.994 3.300 4.143 4.829 0.152 4.48 60.2 2.148 2.372 2.443
1.6 × 1015 11.017 1.884 3.024 3.808 4.461 0.149 3.17 196 2.180 2.439 2.446
1.2 × 1015 11.435 1.634 2.654 3.372 3.967 0.168 8.53 130 2.270 2.989 2.508

TABLE I. Data for the equation of state A (APR) [20] and [33] for the crust.

ρ0 ðgr/cm3Þ R (km) M ðM⊙Þ νf;l¼2 (kHz) νf;l¼3 (kHz) νf;l¼4 (kHz) τl¼2 (s) τl¼3 (s) τl¼4 (s) jQ02j jQ03j jQ04j
1.5 × 1015 11.132 1.965 2.888 3.742 4.420 0.153 4.494 67.1 2.321 2.437 2.613
1.2 × 1015 11.433 1.704 2.741 3.456 4.033 0.158 3.28 181 2.258 2.482 2.501
9.9 × 1014 11.603 1.408 2.384 3.071 3.602 0.204 2.939 152 2.323 2.594 2.653
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APPENDIX C: NEUTRON STAR
EQUATIONS OF STATE

This Appendix provides the numerical data for f-mode
frequencies of two realistic equations of state. In the
first part of the table of each equation of state, we list
the central density, the radius, the mass of the stellar
model, and the frequencies of the f mode for increasing
values of l. In the second part of each table, we list the
damping times of NS and the coefficients jQ0lj.

APPENDIX D: TENSOR SPHERICAL
HARMONICS

The explicit expressions of the tensor spherical harmon-
ics Ylm

i1…il
for l ¼ 2 are

Y22
ij ¼

ffiffiffiffiffiffiffiffi
15

32π

r 0
B@

1 i 0

i −1 0

0 0 0

1
CA

ij

;

Y21
ij ¼ −

ffiffiffiffiffiffiffiffi
15

32π

r 0
B@

0 0 1

0 0 i

1 i 0

1
CA

ij

;

Y20
ij ¼

ffiffiffiffiffiffiffiffi
5

16π

r 0
B@

−1 0 0

0 −1 0

0 0 2

1
CA

ij

; ðD1Þ

and Y2;−m ¼ ð−1ÞmY2;m�.

APPENDIX E: ENERGY AND ANGULAR
MOMENTUM ABSORPTION RATES

In this Appendix, we report results for an additional
equation of state than the one considered in the main text.
Figure 6 shows the distribution of energy absorbed Ėj as a

FIG. 6. Distribution of the energy per unit of mass absorbed by
a single NS oscillation f mode Ėj divided by the quantity K
defined in Eq. (23) as a function of the harmonic mode j of the
fundamental orbital frequency in eccentric orbits for the equation
of state [21] in Table II for ρ0 ¼ 2.0 × 1015 gr/cm3.

FIG. 7. Rate of energy absorbed Ė� as a function of eccentricity,
with MBH ¼ 5 M⊙, NS with the equation of state given by
Ref. [21] in Table II. For comparison, we also plot the GW
luminosity for two values of x, and all functions are divided by
the Newtonian GW luminosity at zero eccentricity ĖGW0 given by
Eq. (24). Note that for large eccentricity e > 0.7 absorption by
the NS as computed in this approximation is not negligible
compared to GW emission. For each equation of state, results for
the three values of the central density reported in the correspond-
ing tables are reported, with increasing line thickness denoting a
higher central density.

FIG. 8. Rate of angular momentum absorbed as a function of
eccentricity, the same parameters as in Fig. 2. Here L̇GW is the
Newtonian angularmomentum loss inGWs for small eccentricities
L̇GW ¼ 32

5
η2M x7/2

ð1−e2Þ2 ð1þ 7
8
e2Þ and L̇GW0 ¼ L̇GWje¼0, with

M ≡M� þMBH, η≡M�MBH/M2.
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function of the fundamental mode frequency harmonic j for
the two equations of state in Tables I and II.
Figures 2 and 3 display, respectively, the energy

and angular momentum absorbed by NS oscillations during
the inspiral motion for three different central density for

the equation of state reported in Table I. For comparison
the gravitational luminosity and angular momentum emit-
ted in gravitational wave are also reported. Analog quan-
tities for the equation of state of Table II are reported in
Figs 6–8.
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