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Dissipative dark matter, where dark matter particle properties closely resemble familiar baryonic matter,
is considered. Mirror dark matter, which arises from an isomorphic hidden sector, is a specific and
theoretically constrained scenario. Other possibilities include models with more generic hidden sectors that
contain massless dark photons [unbroken Uð1Þ gauge interactions]. Such dark matter not only features
dissipative cooling processes but also is assumed to have nontrivial heating sourced by ordinary supernovae
(facilitated by the kinetic mixing interaction). The dynamics of dissipative dark matter halos around
rotationally supported galaxies, influenced by heating as well as cooling processes, can be modeled by fluid
equations. For a sufficiently isolated galaxy with a stable star formation rate, the dissipative dark matter
halos are expected to evolve to a steady state configuration which is in hydrostatic equilibrium and where
heating and cooling rates locally balance. Here, we take into account the major cooling and heating
processes, and numerically solve for the steady state solution under the assumptions of spherical symmetry,
negligible dark magnetic fields, and that supernova sourced energy is transported to the halo via dark
radiation. For the parameters considered, and assumptions made, we were unable to find a physically
realistic solution for the constrained case of mirror dark matter halos. Halo cooling generally exceeds
heating at realistic halo mass densities. This problem can be rectified in more generic dissipative dark
matter models, and we discuss a specific example in some detail.
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I. INTRODUCTION

Avariety of observations, on both large and small scales,
suggests the existence of nonbaryonic dark matter in the
Universe. Anisotropies of the cosmic microwave back-
ground radiation, large scale structure, gravitational lensing
observations, etc., are all consistent with cold or warm dark
matter candidates, with Ωdm/Ωb ≈ 5.4 from the analysis of
PLANCK data [1]. On smaller scales, dark matter proper-
ties can be probed in several ways, including the abundance
and distribution of satellite galaxies, and via the structural
properties of galactic dark matter halos.
The structural properties of galactic dark matter halos

can be constrained by rotation curve measurements of
rotationally supported spiral and irregular galaxies, e.g.
[2–5]. These measurements indicate that the dark matter
halos around small dwarf irregular and low surface
brightness galaxies can dominate the gravitational potential
at all measured radii, e.g. [6–8]. The observed (∼) linear
rise of the rotational velocity in the inner region of such
galaxies provides evidence that baryons must influence
the dark matter structural properties, despite being only
a small subcomponent of the mass. In addition, various
empirical scaling relations, including the Tully-Fisher

relations [9,10], radial acceleration relation [11,12], and
others e.g. [13,14], all support the notion that baryons
influence dark matter structural properties.
This article concerns a type of self-interacting darkmatter,

with dissipative interactions, that has the potential to address
these (and other) small scale structural issues. The protype
dissipative dark matter particle physics model assumes the
existence of a hidden sector that contains a “dark proton” and
a “dark electron,” coupled together via a massless “dark
photon” [15]. Such darkmatter is dissipative in the sense that
it can cool via the emission of dark photons. The most
theoretically constrained example of dissipative dark matter
arises if the hidden sector is exactly isomorphic to the
ordinary sector (see e.g. [16] for a review and detailed
bibliography). This kind of dark matter has been called
mirror dark matter, since the existence of an isomorphic
hidden sector restores improper Lorentz symmetries, includ-
ing space-time parity, as full symmetries of the Lagrangian
describing fundamental particle interactions [17].
In dissipative dark matter models, the halo around

rotationally supported galaxies takes the form of a dark
plasma with long range interactions resulting in collective
behavior. This type of halo dark matter can be modeled as a
fluid governed by Euler’s equations, and if significant dark
magnetic fields are present, by magnetohydrodynamics
(MHD) equations. The parameter space of interest is one*rfoot@unimelb.edu.au
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where dissipation plays an important role: in the absence of
significant heating the dark matter halo would collapse to a
disk on a time scale shorter than the current Hubble time.
However, at the present epoch, such galactic dark matter
can form an extended halo provided that significant heat
source(s) exist. The only viable heating mechanism iden-
tified so far is from ordinary Type II supernovae (SN),
which can provide heat sources for the dark sector if the
kinetic mixing interaction exists [18–20].
Dark matter galaxy halos are dynamical in this picture,

influenced by the dissipative cooling as well as supernova
sourced heating. For a sufficiently isolated and unperturbed
galaxy, the dark halo is expected to evolve until it reaches
an approximate steady state configuration, where the halo
is in hydrostatic equilibrium, and where heating and cool-
ing rates locally balance. This means that the current
structural properties of the dark matter halos around such
isolated galaxies can be determined by the galaxy’s current
baryonic properties, including the SN abundance and
distribution. Knowledge of the past history of the galaxy
is not essential in this picture.
In this article we aim to study the steady state solution for

dissipative dark matter particle models, including mirror
dark matter, as well as in more generic models. Previous
work examined this problem, within the mirror dark matter
context, considering only optically thin cooling, and
neglected to fully deal with capture and line emission
[21,22] (some work also looked at the optically thin case in
more generic models [15,23–25]). Here, we aim to include
all of the important cooling processes, and take into
account halo reabsorption of cooling radiation. There are
some remaining simplifying assumptions: spherical sym-
metry and negligible dark magnetic fields. We have also
followed earlier work [21,22] and assumed that the SN
sourced energy is transported to the halo via dark radiation.
The alternative case, where the SN sourced energy is
transmitted to the halo via local collisional processes in
the SN vicinity, will be discussed in a separate paper.
For the parameters studied, we were unable to find

physically realistic solutions for the constrained case of
mirror dark matter halos. Halo cooling generally exceeds
heating at realistic halo mass densities. This result prompts
reexamination of the assumptions made; it also provides
motivation to explore more generic dissipative models.
One such generic model, which features steady state
solutions with realistic halo mass densities, will be studied
in some detail.
This article is structured as follows. In Sec. II we provide

some background information on dissipative dark matter
models, focusingmainly on aspects of thesemodels relevant
for understanding galaxy halo properties at the present
epoch (the steady state solution of Euler’s equations). In
Sec. III we discuss relevant halo properties: the ionization
state and local heating and cooling rates. In Sec. IV we
describe our method of solution of the steady state

equations, give our results for the dissipative particle physics
models studied, and discuss. In Sec. V we conclude.

II. DISSIPATIVE DARK MATTER

The standard model provides a remarkable description
of the known elementary particles and their fundamental
interactions. There are no suitable dark matter candidates
in the standard model, but this can easily be rectified by
introducing a hidden sector. That is, a sector of additional
particles and forces which couples to ordinary matter
predominantly via gravity,

L ¼ LSM þ Ldark þ Lmix: ð1Þ

If the hidden sector features an unbroken Uð1Þ gauge
symmetry, then there will be “dark electromagnetic”
interactions among the dark sector particles mediated by
a massless dark photon. This kind of dark matter can be
dissipative in the sense that galactic dark matter halos can
cool (in the absence of heating) on a time scale shorter than
the current Hubble time.

A. Two-component dissipative dark matter

The protype dissipative dark matter model consists of a
dark sector with two Uð1Þ0 charged hidden sector particles:
a dark electron (ed), and a dark proton (pd). The inter-
actions of these particles are governed by the Lagrangian,

Ldark ¼ −
1

4
F0μνF0

μν þ ēdðiDμγ
μ −medÞed

þ p̄dðiDμγ
μ −mpd

Þpd þ Lmix: ð2Þ

Here, F0
μν ≡ ∂μA0

ν − ∂νA0
μ is the field strength tensor

associated with the dark Uð1Þ0 gauge interaction, and A0
μ

is the relevant gauge field. The dark electron and dark
proton are described by the quantum fields ed, pd, and the
covariant derivative is Dμ ≡ ∂μ þ ig0Q0A0

μ (where g0 is the
coupling constant associated with this gauge interaction).
The Lagrangian [Eq. (2)] possesses dark lepton and dark
baryon global Uð1Þ symmetries which ensure that the dark
proton and dark electron are absolutely stable; this is
analogous to the way global baryon and lepton symmetries
ensure the stability of the electron and proton in the
standard model.
The dark electron and dark proton are assumed to have

Uð1Þ0 charges opposite in sign, but their charge ratio
jQ0ðpdÞ/Q0ðedÞj is not necessarily unity; it is a fundamental
parameter of the theory. The self-interactions of the dark
electron can be defined in terms of the dark fine structure
constant, αd ≡ ½g0Q0ðedÞ�2/4π. A fundamental particle-
antiparticle asymmetry is presumed to set the relic abun-
dance of dark electrons and dark protons (that is, the relic
abundance of dark antielectrons and dark antiprotons is
negligible).
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In addition to gravity, the dark sector interacts with the
standard model particles via the kinetic mixing interaction
involving the dark photon and the standard model hyper-
charge gauge boson [17,20],

Lmix ¼
ϵ0

2
FμνF0

μν: ð3Þ

Here, Fμν is the standard Uð1ÞY field strength tensor. This
renormalizable gauge-invariant interaction, characterized
by the dimensionless parameter ϵ0, leads to photon–dark
photon kinetic mixing, which imbues the dark electron
and dark proton with an ordinary electric charge: −ϵe
and Z0ϵe, where Z0 ≡ jQ0ðpdÞ/Q0ðedÞj [19]. (Note that the
parameter ϵ, which is proportional to ϵ0, is conveniently
taken as the fundamental parameter.) The new particle
physics is fully described by the five fundamental param-
eters: med; mpd

; Z0; αd, and ϵ.

B. Mirror model

The standard model of particle physics has been very
successful in describing the interactions of the known
elementary particles. Indeed, the recent discovery of a
Higgs-like scalar at the LHC [26,27] is the latest chapter
in this remarkable story. An intriguing feature of the
standard model is that the weak interaction violates
improper Lorentz symmetries, including parity and time
reversal. However, if the standard model is extended to
include an exact “mirror” copy, that is, a duplicate set of
matter particles and gauge bosons, labeled henceforth with
a prime ( 0), then the improper Lorentz symmetries can be
respected [17].
In terms of a fundamental Lagrangian, the standard

model is extended with an exact copy,

L ¼ LSMðe; u; d; γ;…Þ þ LSMðe0; u0; d0; γ0;…Þ: ð4Þ

So far, no new fundamental parameters have been intro-
duced. The elementary “mirror particles” have the same
masses as their corresponding ordinary matter counterparts,
and their gauge self-interactions have the same coupling
strength as the ordinary matter gauge self-interactions.
Since the mirror particles are described by a Lagrangian
that is exactly analogous to that of the standard model,
there will be an entire set of “mirror elements”:
H0;He0;Li0;Be0;B0;C0, etc., the properties of which will,
of course, be completely analogous to the corresponding
ordinary elements: H, He, Li, Be, B, C, etc.
The mirror sector particles are largely decoupled from

the standard model particles, sharing only gravity and,
possibly, additional interactions. Any additional inter-
actions must respect the gauge and space-time sym-
metries (including the improper space-time symmetries),
conditions that lead to only two possible renormalizable
interactions. These are the Higgs–mirror Higgs portal

interaction (λhϕ†ϕϕ0†ϕ0), and the kinetic mixing interaction
of the form Eq. (3), where Fμν and F0

μν are the field strength
tensors of the standard model Uð1ÞY and mirror Uð1Þ0Y
gauge fields. The effect of kinetic mixing is to embellish the
mirror sector particles with a tiny ordinary electric charge:
Q ¼ −ϵe for the mirror electron, e0, and Q ¼ ϵe for mirror
proton, p0.

C. Dark matter as mirror matter

Mirror particles can be identified with the nonbaryonic
dark matter in the Universe, e.g. [28–30]. On large scales,
mirror dark matter closely resembles collisionless cold dark
matter, e.g. successfully reproducing the cosmic microwave
background (CMB) anisotropy spectrum [31–34]. On
smaller scales, though, the effects of the self-interactions,
and interactions with baryons via the kinetic mixing
interaction, lead to very different phenomenology. Here,
we provide a short overview of some relevant aspects of
mirror dark matter. A more comprehensive review, includ-
ing a more detailed bibliography, can be found in [16].
Early Universe cosmology of kinetically mixed mirror

dark matter has been studied in a number of papers [35–37].
In the early Universe, during the radiation dominated
epoch, the ordinary and mirror particles form two almost
decoupled sectors, each described by distinct temperatures,
T and T 0. Successful big bang nucleosynthesis (BBN)
limits the energy density of the dark sector so that a
temperature asymmetry is required. An asymmetry is also
needed to reproduce the CMB.1 In fact, in the limit where
T 0 ≪ T, mirror dark matter behaves like collisionless cold
dark matter as far as BBN and CMB are concerned. It is
well known that collisionless cold dark matter can fit the
measured CMB anisotropy spectrum, with Ωdm ≃ 5.4Ωb
obtained from the analysis of PLANCK data [1] (Ω is the
usual normalized cosmic energy density parameter). These
considerations motivate the effective initial conditions at
the BBN epoch,2

T 0 ≪ T; Ωb0 ≃ 5.4Ωb: ð5Þ

In the presence of nonzero kinetic mixing, entropy can
be transferred from the ordinary sector to the mirror
particles, a process driven mainly by the particle inter-
action: ēe → ē0e0. This entropy transfer ceases to be
important for temperatures below the kinematic threshold,
T ≲me, and T 0/T asymptotes to [36,37]

1The origin of the temperature asymmetry between the
ordinary and mirror particles is unknown, but may potentially
arise in chaotic inflation models [29,38,39].

2We assume that mirror dark matter comprises all of the dark
matter in the Universe. Hybrid dark matter models, where a
subdominant dissipative component is mixed with a dominant
collisionless component, have been discussed in e.g. [40–42].
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T 0/T ≃ 0.31
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ/10−9

p
: ð6Þ

The nonzero value of T 0/T appears to be rather important
for the evolution of small scale structure. Prior to mirror
hydrogen recombination (at T 0 ∼ 1 eV), the growth of
mirror dark matter density perturbations is impacted by
dark acoustic oscillations and dark photon diffusion. These
effects can only be important for density perturbations
characterized by length scales less than the sound horizon
at that time.
The effect of this dark sector physics is to severely

suppress power on small scales. This is somewhat analo-
gous to the situation with warm dark matter, although the
physical origin of the suppression involves very different
physics. This suppression of power on small scales can
provide a simple explanation [43] for the observed deficit
of satellite galaxies [44,45], and potentially also a similar
(albeit more modest) deficit observed for small field
galaxies [46–48]. Matching the relevant scales leads to a
rough estimate of the fundamental kinetic mixing param-
eter: ϵ ∼ 1–4 × 10−10 [43].
In this picture, very small scale perturbations are

exponentially suppressed, so much so, that the smallest
observable galaxies could only have formed “top-down”;
that is, they arose out of the collapse of larger density
perturbations. If one contemplates the evolution of a galaxy
mass scale perturbation, then collapse occurs when the
mean overdensity of such a perturbation reaches a critical
value, δ ∼ 1. During the nonlinear collapse process, the
dissipative dark matter is envisaged to form a disklike
structure. The collapse is not expected to be completely
uniform, perturbations at the edge of the dark disk could
potentially break off and seed the formation of small
satellite galaxies. In such a formation scenario, the satellite
galaxies would have a planar and corotating distribution,
consistent, perhaps, with the properties of the observed
satellites of the Milky Way [49] and Andromeda [50].
Meanwhile, the bulk of the dark disk of the host galaxy
might conceivably take the form of a diffuse gas of dark
sector particles. It is envisaged that this dark disk gas
component would eventually disrupt due to the heating
from ordinary supernovae (facilitated by the kinetic mixing
interaction, to be discussed), and ultimately expand to form
a roughly spherical dark plasma halo.
Dark matter, if dissipative, might arise from a more

generic hidden sector as opposed to the rather theoretically
constrained case of mirror dark matter. The two-component
dissipative model, reviewed in Sec. II. A, is one such
scenario. That specific model has been examined in some
detail in [15] (see also [43]), where some constraints on the
fundamental parameters were derived. Importantly, the
picture sketched above readily generalizes to this more
generic case, and thus it remains a prime candidate for dark
matter that is able to explain structure on large scales and,
potentially, also on small scales.

III. GALAXY STRUCTURE

The dark matter halo around rotationally supported
galaxies is envisaged to be a dissipative plasma.3 The bulk
properties of such a plasma can be modeled as a fluid
governed by Euler’s equations of fluid dynamics (and
MHD equations if dark magnetic fields play an important
role). These fluid equations take the form

∂ρ
∂t þ∇ · ðρvÞ ¼ 0;

∂v
∂t þ ðv ·∇Þv ¼ −

�
∇ϕþ∇P

ρ

�
;

∂
∂t

�
ρ

�
v2

2
þ E

��

þ∇ ·

�
ρ

�
v2

2
þ P

ρ
þ E

�
v

�
− ρv ·∇ϕ ¼ H − C: ð7Þ

Here P, ρ, and v, denote the pressure, mass density, and
velocity of the fluid, and ϕ is the gravitational potential.
E is the internal energy per unit mass of the fluid, so that
ρðv2/2þ EÞ is the energy per unit volume. Finally,H and C
are the local heating and cooling rates per unit volume.
Significant simplifications occur if the system evolves to

a steady state configuration; the time derivatives vanish,
and assuming there is no steady state velocity flow, the
system reduces to just two equations,

▽P ¼ −ρ∇ϕ;

H ¼ C: ð8Þ

These equations need to be satisfied at every location in the
halo. We shall assume that the steady state configuration is
the current physical state of rotationally supported galaxies
that are sufficiently isolated and have stable star formation
rates. Naturally, it would be useful to solve the full system
of time-dependent fluid equations to examine the evolu-
tionary history and thereby check the consistency of this
picture. This would surely require many details about the
galaxy’s properties and history, etc., but nevertheless could
be attempted.
The halo density and temperature profiles for which the

steady state conditions [Eqs. (8)] are satisfied represent a
steady state solution. If this solution is unique, then the
current halo properties are dictated in a large measure by
the baryonic properties as the halo heating is sourced by
ordinary Type II supernovae (to be discussed). This makes
the dissipative dynamics highly predictive. Moreover, the
tight coupling between the physical properties of the halo
and the galactic baryon content can potentially address

3The dark matter halo around elliptical and dwarf spheroidal
galaxies is expected to have very different physical properties in
this picture. See [15,16] for relevant discussions.
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long-standing indications of such a connection, e.g.
[11–14,51]. Previous work in this direction [15,21–25]
offers some encouragement that such a picture might lead
to successful phenomenology.
In this paper we endeavor to solve Eqs. (8) to find steady

state solutions for mirror dark matter, as well as for the more
generic dissipative dark matter model of Sec. II A. We
include all the major cooling processes and take into account
halo reabsorption of cooling radiation as the optically thin
approximation is not always valid. In fact, the wavelength-
dependent finite optical depth will be taken into consider-
ation for all dark radiation sources, i.e. heating as well as
cooling. It turns out that the equations are somewhat non-
trivial, and we do make the simplifying assumption of
spherical symmetry. While there is reason to suppose that
an approximately spherically symmetric halo would form at
large distances [15], departures from spherical symmetry are
anticipated in the inner regions of galaxies. Nevertheless,
we expect (as will be discussed) that such departures from
spherical symmetry are not of critical importance. Naturally,
a more sophisticated analysis, without the spherical sym-
metry assumption, could be undertaken following essentially
the same procedure as developed here.
The baryons contribute to the gravitational potential,

and their distribution is certainly not spherical. In spiral
galaxies the stellar distribution can be modeled as an
azimuthally symmetric disk with surface density [52]

ΣðrÞ ¼ m
e−r/rD

2πr2D
; ð9Þ

where m is the mass of the disk and rD is the disk scale
length. To have a mathematically consistent description we
instead adopt a spherically symmetric distribution for the
baryons, with density defined by

R
r
0 ρ

stars
baryonsðr0Þ4πr02dr0 ¼R

r
0 Σðr0Þ2πr0dr0, i.e.

ρstarsbaryonsðrÞ ¼ m�
e−r/rD

4πr2Dr
: ð10Þ

Here, m� is the stellar mass parametrized in terms of a
stellar mass fraction: m� ¼ fsmbaryons. In addition to stars,
there is also a baryonic gas component—which generally
features a more spatially extended distribution. We model
the gas density, ρgasbaryonsðrÞ, with an exponential profile
of the form Eq. (10), but with rgasD ¼ 3rD and total
mass mgas ¼ ð1 − fsÞmbaryons.
The first equation in Eqs. (8), the hydrostatic equilibrium

condition, relates the dark matter fluid density and temper-
ature. If we assume that all particle species are in local
thermodynamic equilibrium at a common temperature T,
then the fluid pressure is P ¼ ρT/m̄, where m̄≡P

nimi/
P

ni is the mean mass of the particle species.
(Each of these quantities is, of course, location dependent.)

For a spherically symmetric system, the hydrostatic equi-
librium condition reduces to4

∂T
∂r ¼ −

T
ρ

∂ρ
∂r þ

T
m̄
∂m̄
∂r − m̄∇ϕ; ð11Þ

where the gravitational acceleration is

∇ϕ ¼ GN

r2

Z
r

0

½ρðr0Þ þ ρbaryonsðr0Þ�4πr02dr0: ð12Þ

Here, GN is Newton’s constant. Notice that we have
included only the dark matter fluid density, ρ, and the
stellar, gas baryon components.5 For a given fluid density
[ρðrÞ] and composition [m̄ðrÞ], the hydrostatic equilibrium
condition can be solved for the temperature profile if a
boundary condition is specified. In our numerical work, we
take dT/dr ¼ 0 at r ¼ 20rD. (The results in the physical
region of interest, r≲ 6rD, are quite insensitive to the
boundary condition and its location, so long as the
boundary is sufficiently distant.)
To proceed further, we need to evaluate the heating and

cooling rates; also required is the ionization state of the
halo. We first evaluate these equations for a mirror dark
matter halo; the modifications necessary for the generic
dissipative dark matter model will be subsequently indi-
cated. Since the heating and cooling rates depend on the
ionization state, and vice versa, an iterative method will
then be needed to solve this system of equations; one such
method will be discussed in Sec. IV.

A. Ionization state of the halo

In the mirror dark matter scenario, the halo is a multi-
component plasma comprising a set of elementswith varying
degrees of ionization. To simplify the discussion,we shall, on
occasion, adopt the notation “electron” for “mirror electron,”
“photon” for “mirror photon,” etc. Since the discussion of the
mirror dark matter plasma exclusively comprises mirror
particles with exactly analogous particle properties to ordi-
nary matter, no confusion need arise. We shall label the
mirror elements and their ionization state with the notation:
Ak, where A ¼ H0;He0;C0;O0;Ne0, etc., and k ¼ 0; 1;…;
ZðAÞ represents the number of bound electrons present.
[ZðAÞ is the nuclear charge, i.e. ZðH0Þ ¼ 1; ZðHe0Þ ¼ 2;
ZðC0Þ ¼ 6, etc.]
The ionization state in a local region of interest is

determined by the balancing of electron capture against
the ionization processes:

4Natural units with ℏ ¼ c ¼ kB ¼ 1 are used unless otherwise
indicated.

5In addition to the diffuse dissipative fluid component, there
can also be clumped dark matter objects, “dark stars.” In the
analysis of this paper, such a component is presumed to be
subdominant and is, for simplicity, neglected.
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Ak þ e0 → Akþ1 þ γ0 Capture ðfree-bound transitionÞ;
Ak þ e0 → Ak−1 þ e0 þ e0 Electron impact ionization;

Ak þ γ0 → Ak−1 þ e0 Photoionization: ð13Þ

The cross sections for these processes will be denoted by
σ½Ak�fb, σ½Ak�I, and σ½Ak�PI, respectively. We introduce the
notation fAk for the fraction of A states with k bound
electrons present. That is, nAk ¼ fAknA, where nA is the
number density of all A states. All these quantities are, of
course, location dependent. At any given location, the rate
of change of nA0 is

dnA0

dt
¼ −nA0

Z
dne0

dEe
σ½A0�fbvedEe

þ nA1

�Z
dne0

dEe
σ½A1�IvedEe þ

Z
dF
dEγ

σ½A1�PIdEγ

�
:

ð14Þ

Here, dF/dEγ is the mirror photon flux at the location
of interest, dne0 /dEe is the local mirror electron energy
distribution, and ve ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ee/me

p
is the mirror electron

velocity. In the steady state limit, dnA0 /dt → 0, and one
finds

fA1 ¼
R dne0

dEe
σ½A0�fbvedEeR dne0

dEe
σ½A1�IvedEe þ

R
dF
dEγ

σ½A1�PIdEγ

fA0 : ð15Þ

More generally, using dnAk /dt ¼ 0, one can deduce

fAkþ1 ¼
R dne0

dEe
σ½Ak�fbvedEeR dne0

dEe
σ½Akþ1�IvedEe þ

R
dF
dEγ

σ½Akþ1�PIdEγ

fAk :

ð16Þ

This equation, together with
P

kfAk ¼ 1, determines the
ionization state at a given location in terms of the mirror
electron distribution, the mirror photon flux, and the
relevant cross sections. We now discuss each of these
three quantities in turn.
The electron distribution will be assumed to be

Maxwellian,

dne0

dEe
¼ ne0

2

T

ffiffiffiffiffiffi
Ee

πT

r
e−Ee/T: ð17Þ

This is an important simplification. In general, significant
departures from a Maxwellian distribution can occur in the
low density plasma environment from a variety of (typi-
cally) complex processes. One such process arises due to
the halo heating mechanism assumed. As will be discussed
in more detail in Sec. III C, the kinetic mixing interaction
transforms ordinary supernovae into powerful heat sources.

Supernovae generate energetic mirror photons which are
absorbed in the halo via the photoionization process.
The ejected mirror electron resulting from photoionization
can be very energetic, and it thermalizes primarily by
scattering off free and bound mirror electrons in the plasma.
The ionization due to such nonthermal scattering off bound
mirror electrons is neglected in our analysis, but could be
important at low halo temperatures where there are rela-
tively few free mirror electrons.
The mirror photon flux originates from several sources:

supernovae, line emission, capture, and bremsstrahlung. In
a given volume element, dV, the differential luminosity of
photons that arises from all of these sources combined will
be denoted as dLS/dVdEγ . To calculate the flux of photons
at a particular location in the halo we must integrate this
luminosity over all possible source locations and take into
account reabsorption processes.
Within a spherical coordinate system with origin at the

galaxy center, O, consider a particular halo location of
interest, P, at r in this coordinate system (see diagram).
Some of the photons which arrive at P propagate from a
source location, S, at r1. It is

convenient to define a second spherical coordinate system
(with coordinates l; θ;ϕ) with origin now at P (and with
the z axis in the direction of r). The photon flux at P (i.e. at
the origin of the second spherical coordinate system) can be
found by integrating over all source locations. Taking into
account the absorption along the photon path from S to P,
we have

dFðrÞ
dEγ

¼
Z Z

1

Eγ

dLSðr1Þ
dVdEγ

e−τ

4πl2
2πl2d cos θdl

¼
Z Z

e−τ

2Eγ

dLSðr1Þ
dVdEγ

d cos θdl; ð18Þ

where r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2 þ 2rl cos θ

p
follows from this geom-

etry, and we have set r1 ¼ jr1j, r ¼ jrj, etc. The optical
depth, τ ¼ τðl; θ; EγÞ, is given by

τðl; θ; EγÞ ¼
X
A;k

Z
l

0

σ½Ak�PInAkðr;l1; θÞdl1; ð19Þ

where nAkðr; l1; θÞ ≡ nAkðr0Þ with r0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ l2

1 þ 2rl1 cos θ
p

. The photoionization cross
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section in Eq. (19) is also a function of r;l1; θ, because it
depends on the temperature along the path:Tðr0Þ. In deriving
Eq. (18) azimuthal symmetry has been used to perform the
trivial ϕ integration. (Azimuthal symmetry in the coordinate
system with origin at the point of interest, P, follows from
spherical symmetry in the coordinate system with origin at
the Galactic center.)
We now consider the cross sections. In addition to the

σ½Ak�fb, σ½Ak�I , and σ½Ak�PI cross sections, we will also
need the electron excitation cross section, σ½Ak�nln0l0 , and
the flux of bremsstrahlung photons. For the electron
excitation process, we made extensive use of the cross
sections calculated by Group T-4 of the Los Alamos
National Laboratory (LANL), publicly available via their
online web interface [53]. The LANL code is based on the
method of Mann [54], and calculated using the first order
many body theory. The LANL code also makes use of the
Hartree-Fock method of Cowan [55], developed at Group
T-4 of the Los Alamos National Laboratory.
Our numerical work used the LANL cross sections for

the electron excitation process, with a total of around ∼300
of the most important nl → n0l0 transitions considered. For
the generic dark matter model, these cross sections will
need to be scaled to investigate parameters med; αd that are
different from me, α. To understand the appropriate scaling
with respect to these parameters an analytic form for the
electron excitation cross section is also useful. For hydro-
genlike ions, Van Regemorter [56] calculated the cross
section for electron impact excitation nl → n0l0 (with
excitation energy Enln0l0 ) in the Bethe approximation,

σ½Ak�nln0l0 ¼ πa20
8πfnln0l0ffiffiffi

3
p

�
Ry

Enln0l0

�
2GðxÞ

x
ΘðEe − Enln0l0 Þ;

ð20Þ

where ΘðyÞ is the Heaviside step function. Also,
a0 ≡ 1/ðmeαÞ, fnln0l0 is the absorption oscillator strength,
Ry≡ α2me/2, x≡ Ee/Enln0l0 , and GðxÞ is the effective
Gaunt factor of order unity.
For electron impact ionization (Ak þ e0 → Ak−1 þ e0 þ e0)

we have adopted the Lotz formula [57],

σ½Ak�I ¼
X
i

0.62α2π
EeIi

ln

�
Ee

Ii

�
ΘðEe − IiÞ; ð21Þ

where Ii denotes the ionization energies of the k bound
electrons (i ¼ 1;…; k) in the Ak ion. The set of ionization
energies, Ii, for each Ak ion were acquired from the LANL
web interface [53].
For photoionization, also called bound-free transition

(Ak þ γ0 → Ak−1 þ e0), we used the Karzas and Latter
result [58,59],

σ½Ak�PI ¼
X
i

32παI2i gbf
3

ffiffiffi
3

p
meE3

γni
ΘðEγ − IiÞ: ð22Þ

Here, the index [i] represents the state of the electron prior
to its ejection from the atom, ni is its principal quantum
number, and Ii is the ionization energy. The sum runs over
all bound electrons [i.e. from i ¼ 1;…; k]. Near threshold,
the Gaunt factor is unity to within 20%, and we set gbf ¼ 1

in the numerical work.
For electron capture, also known as free-bound transition

(Ak þ e0 → Akþ1 þ γ0), we used the modified Kramers
formula [60],

σ½Ak�fb ¼
X
i

16παI2i wigfb
3

ffiffiffi
3

p
m2

eðEe þ IiÞEeni
; ð23Þ

where wi is the number of unoccupied states in the ni shell
of the ion before recombination. In the numerical work, we
considered capture to the valence shell along with the next
higher shell (ni ¼ nvalence, ni ¼ nvalence þ 1). Again, we set
the Gaunt factor gfb to unity.
The discussion above was relevant for mirror dark

matter. The situation with more generic dissipative models
is quite analogous. For the two-component model of
Sec. II. A, each particle process, capture, excitation, ion-
ization, etc., has an analogue with the obvious replace-
ments: e0 → ed, Ak → pk

d, γ
0 → γd. The cross sections for

these processes are defined in terms of a new set of
fundamental parameters: med; mpd

; αd; Z0; ϵ. We need to
determine how the relevant cross sections depend on these
parameters.
Actually, if med ≪ mpd

, then to a very good approxi-
mation the relevant cross sections depend only on
med; αd; Z

0. If Z0 is an integer then we can choose the
corresponding element A with Z0 ¼ ZðAÞ (e.g. for Z0 ¼ 6
we take A ¼ C). With the element A chosen, the mirror
dark matter Ak cross sections can be scaled to take into
account values ofmed; αd different fromme, α. The result is
the scaling

fσ½Ak�nln0l0 ; Eeg →

�
σ½Ak�nln0l0

α2

α2d

m2
e

m2
ed

; Ee
α2d
α2

med

me

�
;

fσ½Ak�I; Eeg →

�
σ½Ak�I

α2

α2d

m2
e

m2
ed

; Ee
α2d
α2

med

me

�
;

fσ½Ak�PI; Eγg →

�
σ½Ak�PI

α

αd

m2
e

m2
ed

; Eγ
α2d
α2

med

me

�
;

fσ½Ak�fb; Eeg →

�
σ½Ak�fb

αd
α

m2
e

m2
ed

; Ee
α2d
α2

med

me

�
: ð24Þ

The ionization energies also scale,
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Ii → Ii
α2d
α2

med

me
: ð25Þ

For the bremsstrahlung process, we only need to know how
the differential cooling rate scales with med; αd, which can
be gleaned from the explicit expression for this rate given in
the following subsection.

B. Cooling rates

There are three sources of cooling that need to be taken
into account: Line emission, capture, and bremsstrahlung.
In addition, conduction and convection processes can also
contribute to the local cooling/heating rates. These proc-
esses could be important if significant temperature gra-
dients exist. It turns out that the halo temperature profile
derived from the steady state conditions is close to
isothermal, so that neglect of these processes might be
justifiable. In any case, conduction/convection processes
will not be included in the analysis presented here.
For thermal bremsstrahlung, also called free-free emis-

sion, we follow the classical treatment of [59]. The differ-
ential rate of energy radiated per unit volume due to
electron scattering off ions of charge Zi, assuming a
Maxwellian electron velocity distribution, is

dCff
dEγ

¼ 16α3

3me

�
2π

3meT

�
1/2
Z2
i ninee

−Eγ /Tḡff: ð26Þ

Here, ḡff is the velocity averaged Gaunt factor, which can
be approximated by the simple analytic expression [59]

ḡff ¼
8<
:

ffiffi
3

p
π ln

h
4
ξ
T
Eγ

i
for Eγ < T;ffiffiffiffiffiffi

3T
πEγ

q
for Eγ > T:

ð27Þ

Here ξ ≃ 1.781 is Euler’s constant. This simple analytic
form for the Gaunt factor is known to be valid for
T ≳ Z2Ry, where Ry ¼ 13.6 eV. For small dwarf galaxies
where T ≲ Z2Ry, the Gaunt factor is less accurate but still
provides a reasonable estimate for our purposes, especially
as the bremsstrahlung cooling rate in small galaxies turns
out to be much smaller than the other cooling processes.
The differential rate of energy radiated due to electron

capture by an ion, Ak, is

dCfb
dEγ

¼ nAk
dne0

dEe
veσ½Ak�fbEγ: ð28Þ

Note that energy conservation implies Eγ ¼ Ee þ Ii.
Assuming that the electron’s energy distribution is
Maxwellian, we have

dCfb
dEγ

¼ 2

ffiffiffiffiffiffiffiffiffi
2

meπ

s �
1

T

�
3/2
e−Ee/Tσ½Ak�fbEeEγ: ð29Þ

Energy is also radiated from line emission. Electrons can
scatter off a bound electron in an ion, Ak, leading to the
atomic transition nl → n0l0 (with excitation energy Enln0l0).
The resulting energy radiated following deexcitation is

dClines
dEγ

¼
X

ne0nAkhσ½Ak�nln0l0veiδðEγ − Enln0l0 ÞEnln0l0 ;

ð30Þ

where the sum runs over the nl quantum numbers that
correspond to each of the k bound electrons, and all
possible n0l0 quantum numbers of the atomic excitations
(and also over all Ak ions). For a Maxwellian electron
velocity distribution,

hσ½Ak�nln0l0vei ¼ 2

ffiffiffiffiffiffiffiffiffi
2

meπ

s �
1

T

�
3/2

×
Z

∞

Enln0l0
σ½Ak�nln0l0e−Ee/TEedEe: ð31Þ

The differential rate of radiation energy loss per unit
volume at a location P (at position r) in the halo is the sum
of these three contributions,

dCðrÞ
dEγ

¼ dCffðrÞ
dEγ

þ dCfbðrÞ
dEγ

þ dClinesðrÞ
dEγ

: ð32Þ

These dark photons, together with those originating from
Type II supernovae (to be considered in more detail in the
following subsection), contribute to the differential source
flux, dLS/dVdEγ, which influences the ionization state of
the halo [Eqs. (18) and (16)]. Some of these cooling
photons will be reabsorbed and also affect the heating
rate, H (to be discussed shortly).
The cooling rate will depend on the relative abundances

of the various mirror elements. Mirror BBN calculations
with the initial conditions of Eq. (5) and with ϵ ∼ 2 × 10−10

(as suggested by the observed deficit of satellite galaxies
[43]) have concluded that the primordial mirror helium
abundance dominates over mirror hydrogen, consistent
with general arguments [31], with the helium mass fraction
Y 0
p ≈ 0.95 [61] (see also Fig. 3.4 of [16]). Heavier mirror

elements are expected to be synthesized in mirror stars at an
early epoch; cf. [62]. Unfortunately, the detailed chemical
composition of the mirror sector resulting from stellar
evolution at the early epoch is rather difficult to surmise: It
involves unfamiliar initial conditions, chemical composi-
tion, etc., including unknown quantities such as initial mass
function. We shall assume for simplicity that the compo-
sition of the mirror metal component is the same as the
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solar abundance of the corresponding ordinary elements,
but allow for an overall scale factor ζ for the metal
component. Naturally, modifications of the relative abun-
dances of the various elements could be looked at it. In
Table I the standard solar abundances of the ordinary
elements are given, along with modified abundances
incorporating the higher primordial mirror helium abun-
dance (Y 0

P ≈ 0.95, suggested by mirror BBN calculations,
translates to log½nHe/nH� ≃ 0.68). The parameter ζ allows
adjustment of the mirror metal fraction, and we consider a
wide range in our numerical work (−2.0 < ζ < 2.0).
As a check of our code, we have computed the cooling

function, ΛN ≡ C/ðnentÞ (where nt ≡P
AnA is the total

number density of mirror ions), for the idealized case of a
low density optically thin plasma with ionization domi-
nated by electron impact. In this circumstance the ioniza-
tion state and cooling function depend only on the local
temperature. Adopting solar abundances, but choosing
ζ ¼ 0.1 to compensate for the restriction of just five metal
components, we found the cooling function shown in
Fig. 1. This cooling function compares reasonably well
with more accurate results found in the literature, such as
the result of Dopita and Sutherland [64]. In the numerical
work to follow we use the modified abundances, which

take into account the log½nHe0 /nH0 � ≈ 0.68 estimated from
mirror BBN.

C. Heating rates

The dissipative dark matter halos not only cool but also
are heated, with the heat source originating from ordinary
Type II supernovae. The assumed mechanism requires a
significant fraction of a supernova’s core collapse energy to
be converted, ultimately, into dark radiation. The kinetic
mixing interaction plays an important role as it is respon-
sible for the transfer of energy to the mirror sector. At the
particle physics level, kinetic mixing imbues the mirror
electron and mirror positron with a tiny ordinary electric
charge of magnitude ϵe. This enables particle processes
leading to the production of light mirror particles: e0, ē0; γ0,
to readily occur in the hot dense core of ordinary super-
novae (e.g. plasmon decay to e0ē0, eē → e0ē0, e0ē0 → γ0γ0,
etc.). The light mirror particles interact weakly enough with
ordinary matter so that they can escape from the supernova
core and also from the collapsing star.6

The rate at which the core collapse energy is transferred
to light mirror particles can be estimated from [67,68]. This
energy loss rate is given by

QP ¼ 8ζ3
9π3

ϵ2α2
�
μ2e þ

π2T2
SN

3

�
T3
SNQ1; ð33Þ

where Q1 is a factor of order unity, μe is the electron
chemical potential, and TSN ∼ 30 MeV is the temperature
of the supernova core. The observation of around a dozen
neutrino interactions associated with SN1987A [69,70]
suggests that QP should not exceed the energy loss rate
due to neutrino emission. This indicates a rough upper limit
on ϵ of around ϵ≲ 10−9 [67].
Supernovae can provide a rather substantial energy

source if ϵ does indeed have a value near this upper limit.
This energy is initially distributed among the various light
mirror particles: e0, ē0; γ0 (potentially also some fraction
in ν0). These particles, injected into the region around a
supernova, would undergo a variety of complex processes,
shocks, etc. In this paper we follow previous work [21,22]
and assume that the bulk of this energy is (ultimately)
converted into γ0 emission. These mirror photons, with total
energy up to around half the supernova core collapse
energy (∼1053 erg per supernova), can propagate out into
the halo. These photons can be absorbed via the dark
photoionization process. The key idea is that such

TABLE I. Solar abundances (ζ ¼ 0) from [63] and modified
abundances.

Element logðn/nHÞ (solar/modified)

He −1.01/0.68
C −3.44þ ζ
O −3.07þ ζ
Ne −3.91þ ζ
Si −4.45þ ζ
Fe −4.33þ ζ

-23.5

-23

-22.5

-22

-21.5

-21

 4  4.5  5  5.5  6  6.5  7  7.5  8

lo
g

Λ
N

 (
er

g 
cm

3  s
-1

)

log T(K)

FIG. 1. Optically thin cooling function for solar abundances.
The solid line is the result of our code, while the dashed line is the
result found by Dopita and Sutherland [64].

6The interactions of the escaping mirror particles with the
baryonic matter, though quite weak, could still transfer a
substantial amount of energy to the baryons. It has been
speculated [65] that this mechanism might facilitate the explosion
of a supernova, as the transfer of energy via the escaping
neutrinos may be inadequate, although there is still much debate
in the literature [66].
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mirror-photon heating, powered by ordinary supernovae,
can replace the energy dissipated in the halo due to the
various cooling processes.
If ordinary supernovae are the source of the heating of

the halo, then we will need to know their rate (RSN) and
spatial distribution in a given galaxy. Supernovae are the
final evolutionary stage of large stars. Ultraviolet radiation
is directly emitted from the photospheres of large stars with
M� ≳ 3m⊙ (O through later-type B stars). Galactic UV flux
measurements, such as those taken by the Galaxy Evolution
Explorer (GALEX) satellite [71], can therefore be used to
probe the recent star formation rate over a time scale
∼100 Myr e.g. [72–74]. It follows that a galaxy’s far
ultraviolet (FUV) luminosity, LFUV (taken here to be the
far UV bandpass of 1350–1750 Å), should provide an
estimate of the current supernova rate. That is, we expect
the rough scaling: RSN ∝ LFUV. Using LFUV ∝ 10−0.4MFUV ,
where MFUV is the galaxy’s FUV absolute magnitude, we
therefore expect

RSN ≈ RMW
SN

10−0.4MFUV

10−0.4M
MW
FUV

: ð34Þ

Here, MMW
FUV is the FUV absolute magnitude for the

Milky Way, and RMW
SN ∼ 10−9 s−1 is the Type II supernova

rate in the Milky Way. (We take MMW
FUV ¼ −18.4 in the

numerical work.)
Supernovae become a powerful source of mirror photons

with uncertain spectrum and total energy. We denote the
average dark photon luminosity of a single supernova by
LSN. The frequency spectrum will be modeled, for sim-
plicity, by a thermal distribution,

dLSN

dEγ
¼ 15

π4T4
eff

E3
γ

eEγ /Teff − 1
LSN: ð35Þ

The relevant effective temperature parameter, Teff , is not
known. One would need to be able to model the complex
processes in the expanding e0, ē0; γ0 plasma around a
supernova. In the absence of such modeling, we consider
a wide range of potential Teff values.
A thermal distribution for the supernova sourced spec-

trum of dark photons is very convenient, but may be a poor
representation of the actual spectrum. In fact, this system
may have some similarities with gamma ray bursts, which
are very complex, and are seldom thermal. Modeling the
system with an alternative distribution, e.g. a power law,
would appear to be equally valid given this state of
ignorance.
Consider now the supernova spatial distribution within

a given galaxy. For rotationally supported galaxies, this
distribution could be modeled as a Freeman disk (located at
θ ¼ π/2 in the spherical coordinate system with origin at
the Galactic center), so that the differential source lumi-
nosity of SN dark photons takes the form

dLS
SNðrÞ

dVdEγ
¼ e−r/rD

2πr2Dr
dLSN

dEγ
RSNδðθ − π/2Þ: ð36Þ

Since we are solving for the steady state configuration
assuming spherical symmetry, we shall replace this super-
nova disk distribution with a spherically symmetric ana-
logue of the form [cf. discussion around Eq. (10)]

dLS
SNðrÞ

dVdEγ
¼ e−r/rD

4πr2Dr
dLSN

dEγ
RSN: ð37Þ

For the Milky Way, we have a rough upper limit:
RMW
SN LSN ≲ 1045 erg/s.
The differential source luminosity, at a given location, is

the sum of the radiation cooling function [Eq. (32)] and the
SN sourced photons, i.e.

dLSðrÞ
dVdEγ

¼ dCðrÞ
dEγ

þ dLS
SNðrÞ

dVdEγ
: ð38Þ

Recall that the above source luminosity is required to
compute the differential flux at a given location
[dFðrÞ/dEγ] via Eq. (18), and that this flux is needed to
compute the ionization state [Eq. (16)]. The flux is also
required to calculate the differential rate of radiation
absorption (heating rate),

dHðrÞ
dEγ

¼
X
A;k

σ½Ak�PInAkEγ
dFðrÞ
dEγ

: ð39Þ

We now have a set of interconnected equations describing
the ionization state, cooling and heating rates of a dark
plasma. These equations will need to be solved to find the
steady state solution for mirror dark matter galaxy halos.
These equations, with straightforward modifications (as
indicated), are applicable also to the more generic dis-
sipative model of Sec. II. A.

IV. STEADY STATE SOLUTION

A. The numerical method

The system of equations governing the ionization state,
the heating and cooling rates, are somewhat nontrivial to
solve. Our strategy to solve them is to choose a suitable
form for the density profile (defined in terms of several
parameters to be determined from the dynamics). The
system of equations is then solved iteratively as follows:
(a) With the chosen density profile, the temperature

profile is calculated from the hydrostatic equilibrium
condition [Eq. (11)] (in the first iteration the m̄ profile
is chosen arbitrarily; in the second and subsequent
iterations it is input from the previous iteration).

(b) Using the temperature profile calculated from step
(a) the ionization state is computed [Eq. (16)], and a
new m̄ profile derived (in the first iteration the mirror
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photon flux can be neglected; in the second and
subsequent iterations the flux is input from the
previous iteration).

(c) Using the results from steps (a) and (b), the heating
[HðrÞ], cooling [CðrÞ] rates are evaluated [from
Eqs. (39) and (32)], and also the mirror photon flux
dFðrÞ/dEγ [from Eq. (18)].

The above three steps can be repeated until a stable solution
for H and C emerges (typically requires around 10–20
iterations). If the chosen density profile is such that H ≃ C
at each location, then this density profile (together with the
temperature derived from the hydrostatic equilibrium con-
dition via the above iterative procedure) would represent an
approximate steady state solution to the fluid equations.
We have made use of two spherically symmetric dark

matter halo density profiles. The first one is the density
profile that arises in the idealized case of an isothermal
halo in the optically thin limit [24,25]. Under these
assumptions, CðrÞ ∝ nðrÞ2 and HðrÞ ∝ nðrÞFðrÞ [where
FðrÞ is the flux of dark photons at r], the steady state
condition CðrÞ ¼ HðrÞ implies that nðrÞ ∝ FðrÞ. For a flux
originating from a spherical distribution of SN heat sources,
this yields a dark matter density profile of the form

ρðrÞ ¼ λ

Z Z
dLS

SNðr0Þ
dV

F ðr; r0; θ0Þ2πr02d cos θ0dr0; ð40Þ

where F ðr; r0; θ0Þ ¼ 1/ð4π½r2 þ r02 − 2rr0 cos θ0�Þ. Also,
from Eq. (37) we have

dLS
SNðrÞ
dV

¼ κe−r/rD

4πr2Dr
; ð41Þ

where κ≡ RSNLSN. The coefficient λ would be indepen-
dent of r in the optically thin and isothermal limit. We refer
to this one-parameter distribution as the λ-density profile.
We have also considered a generic cored profile,

ρðrÞ ¼ ρ0

�
r20

r2 þ r20

�
β

: ð42Þ

This profile is defined in terms of three independent
parameters: ρ0, r0, β. With either of these profiles we
can follow the steps (a)–(c) iterated until a stable solution
for H and C emerges.
For ρðrÞ to be an approximate steady state solution

requires H ≃ C at every location in the halo. To quantify
this, it is useful to introduce the functional Δ,

Δ≡ 1

R2 − R1

Z
R2

R1

jHðr0Þ − Cðr0Þj
Hðr0Þ þ Cðr0Þ dr0; ð43Þ

where we take R1 ¼ 0.3rD, R2 ¼ 10rD in our numerical
work. We then minimize Δ with respect to variations in λ
for the λ-density profile, and ρ0, r0, β for the generic cored

profile. If this minimum is sufficiently small, say less than
0.05, then we shall suppose that a candidate steady state
solution exists. The value of λ (or ρ0, r0, β) that minimizes
Δ defines the density profile of the candidate solution.

B. Mirror dark matter

Following the iterative procedure outlined above, we have
searched for steady state solutions for mirror dark matter
haloswith realistic asymptotic halo velocity for aMilkyWay
scale galaxy (vasymrot ≈ 200 km/s). We explored a wide range
of the available parameters including the halo metal abun-
dance parameter, −2.0 ≤ ζ ≤ 2.0, and SN parameters,
Teff ≤ 1000 keV, κ ≤ 1046 erg/s. We also looked at mod-
ifications of the halo metal composition, e.g. Fe0/O0 ratio,
etc., and different forms for the SN spectrum, e.g. replacing
the thermal spectrum, Eq. (35), with a power law.
Throughout this parameter space it was found that halo
cooling exceeds heating. (However, for a limited parameter
space, ζ ∼ 2.0, Teff ∼ 1 keV, κ ∼ 1046 erg/s, we found that
cooling only exceeds heating by a factor of ∼3.) That is, we
were unable to find a steady state solution for mirror dark
matter galactic halos with realistic halo density. Previous
more optimistic results of [21,22] were due, in part, to the
incomplete treatment of cooling (neglect of line emission and
recombination radiation), and, in part, to the incomplete
treatment of the ionization state (neglect of the photoioni-
zation contribution).
In Fig. 2, we illustrate the problem by showing the

integrated heating and cooling rates (H ¼ R
HdV, C ¼R

CdV) for a Milky Way scale galaxy. We considered the
λ-density profile with λκ ¼ 7.3 × 109½m⊙/kpc�, a parameter
choice sufficient to give a realistic asymptotic halo rotation
velocity of ∼220 km/s. With this density profile, the halo
temperature and ionization state were determined at each
location in the halo from the steady state equations using the
iterative numerical method outlined earlier. Figure 2 clearly
indicates that the halo cooling always exceeds heating for the
range of ζ,TSN, κ parameters examined.With the largevalues
of κ ≡ RSNLSN considered, there is enough energy available;
the problem is that this energy is not readily absorbed in the
halo. To illustrate this issue, we show in Fig. 3 the optical
depth for a dark photon originating near the Galactic center
and escaping the galaxy (again for a MilkyWay scale galaxy
with halo properties as per Fig. 2). As this figure shows, the
optical depth is typically less than unity. Increasing the
supernovae rate beyond observational limits does not help as
the increased energy in dark photons is compensated by a
reduction in the optical depth caused by the increased
ionization.
The discouraging results reported here for mirror dark

matter might be due to residual simplifications or, possibly,
invalid assumptions. The simplifications include treating
the mirror ions and electrons as a single-component
fluid with a common local temperature TðrÞ, a simplified
description of SN sourced dark photon energy spectrum,
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FIG. 2. Halo heating (thick solid line) and cooling rates (dashed line) for a Milky Way scale galaxy. The lower thin solid line is the
heating contributed by SN sourced dark photons. The λ-density profile was used with the halo temperature and ionization state
numerically determined from steady state equations. (a) and (b) give the rates in terms of the mirror metal abundance parameter, ζ, for
κ ¼ 1045 erg/s and (a) TSN ¼ 25 keV, (b) TSN ¼ 1 keV. While (c) and (d) give the rates in terms of the SN sourced dark photon
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and a neglect of dark magnetic fields. One of the ques-
tionable assumptions involves the mechanism by which the
SN sourced energy is transported to the halo. In this paper,
we have followed earlier work [21,22] and assumed that
this energy is transmitted to the halo via dark radiation. It is
possible that the SN sourced energy is instead transported
to the halo via local collisional processes in the SN vicinity.
A discussion of the implications that follow from adopting
this alternative energy source will be given in a separate
paper. In any case, the above caveats suggest that no
definite conclusion as to the validity, or otherwise, of the
mirror dark matter model could be made at this time; in the
remaining discussion of this paper we shall focus on
alternative dissipative particle models.

C. Two-component dissipative model

The mirror model is rather unique in that the funda-
mental interaction cross sections have no free parameters:
they are all identical to those of the corresponding ordinary
particle processes. Naturally, it is also worthwhile to look at
more generic dissipative models, the simplest such model
is the two-component model of [15], reviewed in Sec. II. A.
In that model the dark halo consists of just two matter
components, the dark electron and dark proton [with dark
charge ratio Z0 ≡ jQ0ðpdÞ/Q0ðedÞj]. That model has five
fundamental parameters: med; mpd

; Z0; αd, and ϵ. The con-
sidered parameter space is somewhat restricted,med ≪ mpd

and Z0 ≥ 1, so that atoms could potentially form with a pd
nucleus surrounded by one or more dark electrons.
For such a dissipative dark matter model to have the

potential of being realistic, galactic halos should not be fully
ionized. This is required so that the halo can absorb the
supernova sourced dark photons via the photoionization
process. This restriction leads to the rough criterion
Thalo ≲ I1, where I1 is the binding energy of the innermost
(K shell) dark electron. This condition is most restrictive
for the largest galaxies and can be used to estimate an upper
bound on mpd

. The halo also needs to have a non-negligible
degree of ionization, even for the smallest galaxies. Under the
assumption that the ionization is due primarily to dark electron
scattering, this criterion leads to a lower bound on mpd

. (It
might be possible to weaken this lower bound given the
photoionization contribution, and further study could be done
to clarify this issue.) These conditions, derived in Eq. (91)
of [15], imply that Z0 ≥ 3 and that mpd

lies in the range

�
Z0

10

��
αd
10−2

�
2
�
med

MeV

�

≲ mpd

GeV

≲ 100

�
Z0

10

�
3
�

αd
10−2

�
2
�
med

MeV

�
gðαd; Z0Þ; ð44Þ

where gðαd; Z0Þ≡maxðα3dZ04; 1Þ.

For a given choice of SN parameters (we take
Teff ¼ 25 keV, κ ¼ 1045 erg/s for definiteness), we have
searched for mpd

;med, and αd values which give realistic
asymptotic rotational velocity for a MilkyWay scale galaxy
(we fixed Z0 ¼ 6 for definiteness). There is a significant
parameter space where this occurs, and we shall focus here
on a specific example,

mpd
¼ 100mp; med ¼ 8me; αd ¼ 4α; Z0 ¼ 6: ð45Þ

For the particular dissipative dark matter model defined by
these parameters, we have undertaken a search for steady
state solutions for a representative range of galaxies.
Consider first a Milky Way scale galaxy with baryonic

parameters: mbaryons ¼ 1011m⊙, fs ¼ 0.8, rD ¼ 3.95 kpc,
MFUV ¼ −18.4. The system of equations describing the
ionization state, as well as the heating and cooling rates,
were solved iteratively with the λ-density profile [Eq. (40)].
An approximate steady state solution was identified for
λκ ¼ 7.3 × 109½m⊙/kpc�, with Δmin ≃ 0.05. To better re-
present this putative solution, we replaced the coefficient, λ,
in Eq. (40), with the radial expansion,

λ → λ

�
1þ

XN
n¼1

an

�
r
rD

�
n
þ bn

�
rD
r

�
n
�
: ð46Þ

In our numerical work we considered only N ¼ 1 as this
was sufficient to significantly reduce the Δmin value of the
approximate steady state solution. In Fig. 4 we show some
physical properties of the solution found. Evidently, the
halo’s temperature profile is nearly isothermal, and the
density profile is close to quasi-isothermal (to be discussed
in more detail shortly).
The above procedure can be repeated for other model

galaxies. One need only input the baryonic parameters,
mbaryons, fs, rD, MFUV, and the halo properties can be
computed from the steady state condition. We have
examined large stellar dominated galaxies (putative spiral
galaxies) with baryon masses: 109.5; 1010; 1010.5; 1011m⊙.
The stellar mass component, with mass fraction set to
fs ¼ 0.80, was assumed to be distributed as in Eq. (10),
with baryonic scale length values (rD) typical of high
surface brightness spirals [taken from Eq. (8) of [75]].
The remaining baryon fraction (1 − fs), the gas compo-
nent, was modeled with a more extended distribution
(rgasD ¼ 3rD, as in e.g. [76]). We also looked at two small
gas rich galaxies (putative dwarf irregular galaxies) with
baryon masses 5 × 108m⊙ and 108m⊙ and with stellar
mass fraction fs ¼ 0.20. The FUV absolute magnitude
values for this parameter set were chosen consistently with
the measured GALEX luminosities [71] of THINGS [5]
and LITTLE THINGS [8] galaxies. For these six examples
we have numerically solved the system of equations
iteratively with the generalized λ-density profile of
Eqs. (40) and (46). For all these examples approximate
steady state solutions were found with Δmin ≈ 0.01–0.04.
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For ease of notation, these approximate steady state
solutions will hereafter be referred to as steady state
solutions. The galaxy baryonic parameters chosen are
summarized in Table II.
The one-parameter λ-density profile, Eq. (40), represents

a reasonable first order approximation to all of the steady
state solutions found. It is not surprising then that much of
what dissipative dark matter models predict can be under-
stood from the properties of that profile. The λ-density
profile has the asymptotic behavior

ρðrÞ ¼ λκ

4πr2
for r ≫ rD; ð47Þ

and rises logarithmically for r≲ rD. Over the finite range
0.3 < r/rD < 10, the λ-density profile is numerically
equivalent, to a good approximation (within ∼ few per-
cent), to the density,

ρðrÞ ¼ ρ0

�
r20

r2 þ r20

��
1þ ln

�
r2 þ r20

r2

��
ð48Þ

with r0 ¼ 1.75rD and ρ0 ¼ 0.029λκ/r2D. This profile resem-
bles the quasi-isothermal profile often adopted in the
literature to fit rotation curves, e.g. [5,77]. There are two
important differences. First, it has a logarithmically increas-
ing density profile in the inner region, and second, it is
constrained as r0 is not a free parameter but set by the
baryonic disk scale length. The logarithmically increasing
inner density profile is expected to be observationally
(virtually) indistinguishable from a truly flat profile, while
the scaling of the core radius, r0 ∼ rD, is a noted feature
derived from observations [13].
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FIG. 4. Properties of the steady state solution obtained for a Milk Way scale galaxy (mbaryons ¼ 1011m⊙, fs ¼ 0.8, rD ¼ 3.95 kpc,
MFUV ¼ −18.4). Shown are (a) the halo density, (b) the halo temperature, (c) the mean mass, m̄, and (d) the heating, cooling rates [H, C]
(solid, dashed lines).

TABLE II. Baryonic properties (baryon mass, baryonic scale
length, FUVabsolute magnitude, and stellar mass fraction) for the
six “canonical” model galaxies considered.

mbaryonsðm⊙Þ rD (kpc) MFUV fs

1011 3.95 −18.4 0.8
1010.5 2.70 −17.9 0.8
1010 2.00 −17.4 0.8
109.5 1.60 −16.9 0.8
5108 0.60 −15.0 0.2
108 0.40 −13.4 0.2
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Observe that the existence of a dark matter core, with a
core radius r0 ∼ rD, has a clear geometrical origin in this
dynamics. The halo evolves toward a steady state configu-
ration, which is strongly influenced by the distribution of
supernovae, as these represent the primary source of halo
heating. This heat source is cored given the exponential
distribution of the Freeman disk and the associated scale
length, rD.
Consider now the rotation curves. The rotational velocity

follows directly from Newton’s law,

v2rot
r

¼ GN

r2

Z
r

0

½ρðr0Þ þ ρbaryonsðr0Þ�4πr02dr0: ð49Þ

We are also interested in the dark halo contribution to the
rotational velocity, for which we use the notation, vhalo,

v2halo
r

¼ GN

r2

Z
r

0

ρðr0Þ4πr02dr0: ð50Þ

In Fig. 5 we plot the rotational velocity and halo rotational
velocity derived from the steady state solutions found.
The rotation curves show an approximate linear rise in

the inner region, turning over to a roughly flat asymptotic
profile, with the transition radius occurring at r ∼ rD in
each case. As already mentioned, these properties can be
understood from simple geometrical considerations as the
halo mass density is closely aligned with the distribution
of supernova sources. Also, recall that these three
properties are all well discussed features of measured
rotation curves.
We have also looked at the effects of varying some of the

other baryonic parameters. The baryonic parameters given
in Table II are typical of high surface brightness galaxies.
In addition, there exist numerous low surface brightness
galaxies within which the stars and gas have a more

extended spatial distribution. To explore these kinds of
galaxies, we have computed the steady state solutions
for the six galaxies of Table II, but with disk scale
length increased by a factor of ×2.5 (i.e. rD → 2.5rD,
rgasD → 2.5rgasD , with mbaryons, MFUV; fs unchanged). In
Fig. 6 we give the halo rotation curves derived from the
steady state solutions for the original (Table II) parameter
set, as well as the rD → 2.5rD variation. As the figure
shows, there is only a very minor effect on the halo
contribution to the rotation curve for the three smallest
galaxies studied, while there are noticeable, although still
modest, effects for the larger galaxies. That is, the halo
rotation velocity is, at least approximately, a function of
the dimensionless variable r/rD (rather than r and rD
separately). This feature is consistent with observations,
with the galaxies NGC2403 and UGC128 providing a
well studied illustration [78] (see also [51] for a recent
discussion).
The near invariance of the halo rotational velocity with

respect to the transformation, r → Λr, rD → ΛrD, is not
unexpected. Recall the simple analytic argument that moti-
vated the λ-density profile [Eq. (40)]: for an optically thin
isothermal halo,HðrÞ ¼ CðrÞ implies a halo density propor-
tional to the flux of SN sourced dark photons, i.e.
nðrÞ ∝ FðrÞ. Since a photon flux scales as ∼1/r2, this
suggests that the halo density will scale as ρðrÞ →
ρðΛrÞ/Λ2, when r → Λr, rD → ΛrD. It follows directly
from Newton’s law, Eq. (50), that such a scaling implies a
scale invariant rotational velocity: vhaloðrÞ → vhaloðΛrÞ.
In fact, the scaling, ρðrÞ → ρðΛrÞ/Λ2, when r → Λr,
rD → ΛrD, is an exact property of the λ-density profile
(for fixed λ), which arises even when the assumption of
spherical symmetry is dropped [25]. Of course, scale
invariance can only be approximate, rather than exact, due
to the effects of halo reabsorption (finite optical depth) and
departures from isothermality.
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FIG. 5. (a) The rotation curves (haloþ baryons) derived from the computed steady state solutions. The baryon mass ranges from
mbaryons ¼ 108m⊙ (bottom curve) to mbaryons ¼ 1011m⊙ (top curve). See Table II for other baryonic parameters chosen. (b) The
corresponding halo rotation curves (halo contribution only).
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Consider now the effect of varying the luminosity
while keeping the other baryonic parameters fixed.7

Specifically, we have computed the steady state solutions
for more luminous galaxies, MFUV → MFUV − 0.8 (i.e. a
factor of 100.32 ≈ 2.1 increase in luminosity), with the
other baryonic parameters (mbaryons, fs, rD) unchanged
from their canonical (Table II) values. This set of
baryonic parameters, together with the canonical param-
eter choice, and those with rD → 2.5rD, provide a total of
18 distinct galaxy parameters. While changing the FUV
luminosity will strongly influence the normalization of
the halo rotational velocity, let us first look at the effect
(if any) on the shape of the rotation curve. Figure 7

shows the derived normalized halo rotational velocity,
vhaloðrÞ/vhaloðroptÞ, for all 18 modeled galaxies. (Here
ropt ≃ 3.2rD is the optical radius.) Evidently, the halo
rotation curves that follow from the solution of the steady
state conditions, Eq. (8), have a near universal profile, a
notable feature consistent with observations, e.g. [51,76].
This result was anticipated given the major influence of
supernova sourced heating on the halo density distribu-
tion [24,25]. The shape reflects the geometry of the
heating sources.
The steady state solutions discussed here correspond to

galaxies simplified with spherical symmetry. Indeed, the
supernova source distribution has been artificially modi-
fied to make it spherically symmetric. In actuality, the
spatial distribution of these sources is far from spherical;
a disk geometry would be much closer to realistic.
Nevertheless, we anticipate that only modest changes
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FIG. 6. Halo rotation curves derived from the steady state solutions for the galaxy set of Table II (solid lines), and with a factor of ×2.5
increase in the baryonic disk scale length (dashed lines). (a) The results are given for the five smallest galaxies, with mbaryons ¼ 108m⊙
(bottom curve) to mbaryons ¼ 1010.5m⊙ (top curve), while (b) is for mbaryons ¼ 1011m⊙.
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7The effect on the halo rotational velocity of varying the stellar
mass fraction, fs, with the other parameters kept fixed, was found
to be negligible.
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would arise if the system of equations were solved
without the spherically symmetric simplification. In fact,
the azimuthally symmetric disk analogue of the spheri-
cally symmetric λ-density profile [Eq. (40)] is [24,25]

ρðr; θÞ ¼ λ

Z
dϕ̃

Z
dr̃ r̃

ΣSNðr̃Þ
4π½r2 þ r̃2 − 2rr̃ sin θ cos ϕ̃� ;

ð51Þ

where ΣSN is the supernova distribution (averaged over a
suitable time scale) in the disk. The normalized halo
rotational velocity corresponding to this density, shown in
Fig. 7(b), closely resembles its spherically symmetric
counterpart, and in fact agrees slightly better with the
observations. While this appears to be a strong indication,
and indeed is very encouraging, it still requires verifica-
tion that Eq. (51) actually does approximate the steady
state solution for galaxy systems with disk geometry.
The next item of interest is the scaling of the normali-

zation of the halo velocity. From Eq. (47) we expect, at
leading order, an asymptotic halo velocity of vasymhalo ¼ffiffiffiffiffiffiffiffiffiffiffi
GNλκ

p
, i.e. λ ∝ ½vasymhalo �2/RSN. To make contact with

observable quantities, we again make use of the expected
RSN ∝ LFUV ∝ 10−0.4MFUV scaling. It is convenient then to
introduce the quantity λ̃,

λ̃≡ ½vasymhalo �2
10−0.4MFUV

: ð52Þ

We have evaluated λ̃ from the computed steady state
solutions for all 18 galaxy parameters examined [taking
vasymhalo ¼ vhaloðr ¼ 6.4rDÞ]. The result of this exercise is
shown in Fig. 8, where we plot the obtained λ̃ values versus
the maximum of the rotational velocity, vmax

rot . Also shown

in the figure are the values of λ̃ for THINGS spirals [5] and
LITTLE THINGS dwarfs [8].8

Figure 8 indicates that, for the model galaxies studied, λ̃
is not exactly constant but has some variation with respect
to vmax

rot .
9 The overall normalization appears to be in the

right ballpark to be consistent with THINGS spirals and
LITTLE THINGS dwarfs, although the λ̃ values of the
dwarfs show significant scatter. The rotation curve shapes
of many of the LITTLE THINGS dwarfs are also quite
irregular. This may be an indication that many of these
small galaxies are not currently in a steady state configu-
ration. In fact, some of these galaxies are known to have
unstable star formation (recent) histories. They are starburst
galaxies, undergoing large scale oscillations in star for-
mation rate, with a period of order ∼100 Myr, e.g.
[74,80].10

The results for the halo rotational velocity normalization
(Fig. 8) together with our earlier results for the shape
(Fig. 7) can be summarized: The halo rotation curve that
follows from the steady state conditions has a characteristic
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FIG. 8. The quantity λ̃ [Eq. (52)] versus vmax
rot computed from the steady state solutions found. (a) The results are given for the 18

modeled galaxies along with an extrapolation (circles for the six canonical baryonic parameters of Table II, squares for the rD → 2.5rD
parameter variation, and triangles for the MFUV → MFUV − 0.8 variation). (b) The extrapolated results together with the λ̃ values from
THINGS spirals (stars) [5] and LITTLE THINGS dwarfs (squares) [8].

8The raw FUV absolute magnitude values were appro-
priated from the updated nearby galaxy catalogue [79], and
corrected for internal and foreground extinction following
[73,74].

9The sharp downturn at vmax
rot ∼ 200 km/s is a threshold

effect. The plasma is approaching the state of full ionization.
Of course, a change in fundamental parameters, e.g. decreasing
mpd

(which lowers the halo temperature), can move this threshold
to a higher vmax

rot value.
10In this picture, the oscillations in the rate of star formation

might be strongly influenced by nontrivial dissipative halo
dynamics. Large scale radial density oscillations of the plasma
halo will induce oscillations in the star formation rate, due to the
expansion and compression of the baryonic gas under the
oscillating gravitational field strength. Such phenomena appear
extremely interesting, but complex, requiring solution of the time
dependent fluid equations.
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functional form that depends (approximately) only on r/RD,
MFUV. This appears to be consistent with observations—
with the existence of such a characteristic functional
form discussed for many years, e.g. [3,4]. It has also been
argued, though, that the normalization of the rotational
velocity might depend more closely onmbaryons (rather than
luminosity), with mbaryons ∝ ½vmax

rot �β, β ≈ 4 (baryonic Tully-
Fisher relation [10]).
In Fig. 9(a) [9(b)] we plot LFUV [mbaryons] versus vmax

rot for
the modeled galaxies. Evidently, the results are broadly
compatible with the empirical scaling relations, but with
some scatter. Clearly though, the underlying relation is a
predicted scaling of λ̃ (Fig. 8), for which there is negligible
scatter. (We have checked this further by considering a wider
variation of baryonic parameters than those displayed.) That
is, our analysis indicates that a λ̃ versus vmax

rot correspondence
underpins the empirical Tully-Fisher relations, at least in the
kind of dissipative model discussed here. Naturally, this

connection could be examinedmore closely in future studies,
noting that the weak variation of λ̃with vmax

rot will surely have
some dependence on the fundamental parameters defining
the dissipative dark matter model.
Other dark matter galactic scaling relations, e.g. the

radial acceleration relation [11,12], can be viewed as a
consequence of the predicted universal profile (Fig. 7) with
correct normalization (Fig. 8); see discussion in e.g. [25].
Further exploration of such relations is therefore not
essential.
Finally, to complete this analysis of the particular

dissipative model parameters chosen, we briefly examine
the effects of varying the uncertain effective supernova
temperature parameter, Teff . [Recall, we have modeled the
dark photon frequency spectrum by a thermal distribution
with this effective temperature, Eq. (35).] Changing the Teff
parameter will modify the level of halo heating and,
assuming a steady state solution still exists, will potentially
influence the normalization of the halo velocity. However,
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variation. The dashed lines are the power laws: (a) LFUV ∝ ½vmax

rot �2.8 and (b) mbaryons ∝ ½vmax
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FIG. 10. (a) The effect of varying the effective temperature parameter, Teff [Eq. (35)], on λ̃, Eq. (52). Notation as in Fig. 8(a) but with
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the shape of the normalized halo rotational velocity remains
(approximately) unchanged, and simply reflects the geom-
etry of the SN heat source distribution (as discussed).
Figure 10 compares the λ̃ [Eq. (52)] values obtained
with two choices for the effective temperature parameter,
Teff ¼ 10 keV and Teff ¼ 25 keV, for the same 18 bar-
yonic galaxy parameters already discussed.

V. CONCLUSION

We have considered dark matter featuring particle
properties that closely resemble familiar baryonic matter.
Mirror dark matter, which arises from an isomorphic
hidden sector, is a specific and theoretically constrained
scenario. Other possibilities include models with more
generic hidden sectors that contain massless dark photons
[unbroken Uð1Þ gauge interactions]. Such dark matter not
only features dissipative cooling processes, but is assumed
to have nontrivial heating sourced by ordinary supernovae
(facilitated by the kinetic mixing interaction).
The dynamics of dark matter halos around rotationally

supported galaxies, influenced by cooling and heating
processes, can be modeled by fluid equations. For a suffi-
ciently isolated galaxy with a stable star formation rate, the
dissipative dark matter halos are expected to evolve to a
steady state configurationwhich is in hydrostatic equilibrium
and where heating and cooling rates locally balance. Here,
we have endeavored to take into account the major cooling
and heating processes, and we have numerically solved for
the steady state solution under the assumptions of spherical
symmetry, negligible dark magnetic fields. In addition, we
have assumed that supernova sourced energy is transported
to the halo via dark radiation. For the parameters considered,
and assumptions made, we were unable to find a physically
realistic solution for the theoretically constrained case of
mirror dark matter halos. Halo cooling generally exceeds
heating at realistic halo mass densities.
Naturally, there are a number of possible reasons for this

deficiency, and some of the assumptions made could be
reexamined, etc. It could also be that mirror dark matter is

not the correct dark matter model. Nature might prefer
some other kind of dissipative dark matter, if dark matter
is indeed dissipative. To illustrate such a possibility, we
examined galaxy structure in the context of more generic
dissipative dark matter models. One such model was
looked at in some detail which featured steady state
solutions with realistic dark matter halos. This analysis
confirmed, to some extent, the insight gleaned from
simplified analytical considerations, e.g. [15,24].
We conclude this work by summarizing some of the key

results from this analysis of the steady state solutions of the
particular dissipative model studied. The rotation curves are
characterized by three main features:

(i) Approximate scale invariance of the halo rotation
velocity: vhaloðrÞ → vhaloðΛrÞ under r → Λr; rD →
ΛrD (Fig. 6).

(ii) The shape of the normalized halo rotational velocity
is close to universal (Fig. 7).

(iii) The normalization of the halo velocity is charac-
terized by a Tully-Fisher type relation (Fig. 8).

Even though this analysis has focused on a particular
dissipative model, the above three features are expected to
hold over a significant region of parameter space in generic
dissipative models [15,23–25]. Observations appear to be
consistent with the above features, including the universal
profile for the normalized halo rotational velocity that was
here derived in the steady state limit. That observations
have these characteristic features has been frequently noted
in the literature and is often cited as support for the notion
of modified Newtonian dynamics (MOND) [81–83]. The
present study, though, reinforces the idea that (approxi-
mate) MONDian phenomenology can arise also in a dark
matter setting.
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