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Magnetic reconnection in curved spacetime is studied by adopting a general-relativistic magneto-
hydrodynamic model that retains collisionless effects for both electron-ion and pair plasmas. A simple
generalization of the standard Sweet-Parker model allows us to obtain the first-order effects of the
gravitational field of a rotating black hole. It is shown that the black hole rotation acts to increase the length
of azimuthal reconnection layers, thus leading to a decrease of the reconnection rate. However, when
coupled to collisionless thermal-inertial effects, the net reconnection rate is enhanced with respect to what
would happen in a purely collisional plasma due to a broadening of the reconnection layer. These findings
identify an underlying interaction between gravity and collisionless magnetic reconnection in the vicinity
of compact objects.
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I. INTRODUCTION

Magnetic reconnection is a fundamental process whereby
the connectivity ofmagnetic field lines [1–4] is modified due
to the presence of a localized diffusion region. This results in
a rapid conversion of magnetic energy into kinetic and
thermal energy. As such, magnetic reconnection is believed
to power some of the most important and spectacular
astrophysical phenomena in the Universe, such as stellar
flares, gamma-ray flares in blazar jets, and nonthermal
emissions from active galactic nuclei [5,6].
Although the theory of magnetic reconnection has mainly

focusedon thenonrelativistic regime [7], in recent years there
has been a growing body of studies aimed towards under-
standing magnetic reconnection in magnetically dominated
environments, where special-relativistic effects must be
considered [8,9]. Indeed, in these situations the magnetic
energy density exceeds the relativistic enthalpy density,
implying that the Alfvén speed approaches the speed of
light. This motivated the problem of the special-relativistic
generalization of the collisional Sweet-Parker and Petschek
reconnection models, which was approached for the first
timebyBlackman andField [10]. They argued that the inflow
velocity of the reconnecting magnetic field would be
enhanced to ultrarelativistic speeds because of Lorentz
contraction. The same conclusion was drawn by Lyutikov
and Uzdensky [11], who performed a similar analysis
focused on the Sweet-Parker reconnection model.

However, a few years later Lyubarsky [12] showed that in
the collisional Sweet-Parker regime, the thermal pressure
within the reconnection layer constrains the outflow velocity
to bemildly relativistic, therefore limiting the inflow velocity
to remain subrelativistic. In the collisional Petschek scenario,
he found that the outflow velocity becomes ultrarelativistic,
but the reconnection velocity remains subrelativistic because
the Lorentz contraction is compensated by a decrease of the
angle between the Petschek shocks as the magnetization
parameter increases. In consideration of the fact that resistive
relativistic magnetohydrodynamic simulations confirmed
these predictions [13–15], Lyubarsky’s theory became the
standard theory for collisional reconnection in the special-
relativistic regime.
On the other hand, simulations of relativistic reconnection

with two-fluid or kinetic models showed reconnection rates
higher than those predicted byLyubarsky’s analysis [16–21].
Therefore, a further generalization to account for collision-
less effects in the special-relativistic regimewas needed. This
was done fairly recently in Ref. [22], where it was shown that
thermal-inertial effects played an essential role in increasing
the reconnection rate with respect to the purely resistive case
discussedbyLyubarsky. Indeed, thermal-inertial effectswere
found to modify the Sweet-Parker and Petschek relativistic
scenarios by causing a broadening of the reconnection layer
that is capable of supporting a larger inflow velocity of the
reconnecting magnetic field.
While special-relativistic effects on the magnetic recon-

nection process are becoming increasingly recognized,
general-relativistic effects have been far less investigated.
Several studies have predicted the formation of reconnection
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layers in thevicinity of black holes [23–29],where the effects
of spacetime curvature can be important. However, a detailed
investigation of these reconnection layers by means of
numerical simulations has not been possible so far, due to
the stringent requirements on the spatial and temporal
resolutions of typical reconnection processes in this setting.
On the other hand, an advance in our theoretical under-
standing of magnetic reconnection in curved spacetime has
been recently obtained by generalizing the collisional Sweet-
Parker reconnection model in Kerr spacetime [30]. This
approach allowed us to obtain a first estimation of the effects
of the gravitational field on the magnetic reconnection
process in the collisional regime.
In this paper, we take a step forward by also considering

the contribution of collisionless effects. Indeed, collision-
less effects are expected to be more important than colli-
sional ones in plasmas surrounding black holes (e.g.,
Ref. [31]). To perform this analysis, we adopt a set of
equations for a general-relativistic magnetohydrodynamic
(GRMHD) model that retains two-fluid effects. Both
electron-ion and pair plasmas can be described within this
model, and we obtain the reconnection rate and other
properties of the reconnection layer for both cases. We find
that in the collisionless regime there is an interaction
between the thermal-inertial and the spacetime curvature
effects. The combination of these effects leads to a broad-
ening of the reconnection layer and a net reconnection rate
that is larger than what would have been predicted con-
sidering a purely collisional case.
The outline of the paper is as follows. Themodel equations

are presented in Sec. II, while the spacetime of the rotating
black hole and the configuration of the reconnection layer are
given in Sec. III.We derive the properties of the reconnection
layer and the reconnection rate in Sec. IV. Finally, the most
relevant results are summarized in Sec. V.

II. MODEL EQUATIONS

We commence our study from the covariant form of the
generalized GRMHD equations derived by Koide in
Ref. [32]. They include the usual continuity equation

∇νðnUνÞ ¼ 0; ð1Þ
where n is the proper particle number density of the
magnetohydrodynamic plasma, Uμ is its four-velocity,
and ∇ν denotes the covariant derivative associated with
the spacetime metric gμν. The generalized version of the
momentum equation is

∇ν

�
h

�
UμUν þ ξ

4n2e2
JμJν

��
¼ −∇μpþ JνFμν; ð2Þ

where e is the electron charge, h ¼ n2ðhþ=n2þ þ h−=n2−Þ is
the proper enthalpy density (subscripts þ and − are used to
indicate the positively and negatively charged fluids), p ¼
pþ þ p− is the proper pressure, Jμ is the four-current
density, Fμν is the electromagnetic field tensor, and finally

ξ ¼ 1 − ðΔμÞ2; ð3Þ

with

Δμ ¼ mþ −m−

mþ þm−
ð4Þ

denoting the normalized mass difference of the positively
and negatively charged particles. Notice that ξ is a constant
in agreement with the covariant transformation of the
momentum equation (ξ ≈ 4m−=mþ for an electron-ion
plasma, while ξ ¼ 1 for a pair plasma). Then, the plasma
dynamics is completed by the generalized Ohm’s law

1

4en
∇ν

�
ξh
ne

�
UμJν þ JμUν −

Δμ
ne

JμJν
��

¼ 1

2ne
∇μðΔμp − ΔpÞ þ

�
Uν −

Δμ
ne

Jν

�
Fμν

− η½Jμ − ρ0eð1þ ΘÞUμ�; ð5Þ
where Δp ¼ pþ − p− is the pressure difference between
the fluids, ρ0e ¼ −UνJν is the charge density observed by
the local center-of-mass frame, Θ is the thermal energy
exchange rate between the two fluids [32], and η is the
electrical resistivity, which is considered as a phenomeno-
logical parameter in this model. Finally, the system is
completed by Maxwell’s equations,

∇νFμν ¼ Jμ; ∇νF�μν ¼ 0; ð6Þ
where F�μν is the dual of the electromagnetic field tensor.
The derivation of this system of generalized GRMHD

equations that retain two-fluid effects assumes nþ ≈ n− and
Δh ¼ mn2ðhþ=mþn2þ − h−=m−n2−Þ=2 ≪ h. We recall that
the terms proportional to h=ðneÞ2 on the left-hand side of
Eqs. (2) and (5) are thermal-inertial terms, while the first
two terms and the fourth term on the right-hand side of
Eq. (5) are Hall terms. For definiteness, in this work we
focus on the investigation of magnetic reconnection in the
thermal-inertial regime, which corresponds to the situation
in which the thermal-inertial terms are larger than the Hall
terms [33–36]. For an electron-ion plasma, assuming that
the Hall terms are of the same order, the thermal-inertial
regime can be achieved if the condition

ΔμJB
ð ξh
nelÞUJ

∼Ωeτ ≪ 1 ð7Þ

is satisfied. Here,Ωe is the electron gyro-frequency, while l
and τ are the characteristic length and time scales of current
change. On the other hand, for a pair plasma, the thermal-
inertial regime is naturally satisfied because Δμ ¼ 0 and
pþ ∼ p−. Therefore, in this regime Eq. (5) reduces to

UνFμν ¼ η½Jμ − ρ0eð1þ ΘÞUμ�

þ 1

4en
∇ν

�
ξh
ne

�
UμJν þ JμUν −

Δμ
ne

JμJν
��

; ð8Þ

where all nonideal terms are displayed on the right-hand side.
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The above equations naturally incorporate the effects of
the spacetime curvature in the plasma dynamics. However,
for our purposes, it is more effective to represent these
equations by expressing them in the 3þ 1 formalism
[37–39]. Indeed, in this way, spacetime curvature effects
can be displayed explicitly in a set of vectorial equations.
Adopting the 3þ 1 formalism, the line element becomes

ds2 ¼ gμνdxμdxν ¼ −α2dt2 þ
X3
i¼1

ðhidxi − αβidtÞ2; ð9Þ

where

α ¼
�
h20 þ

X3
i¼1

ðhiωiÞ2
�1=2

; βi ¼ hiωi

α
ð10Þ

are the lapse function and the shift vector, respectively,
while

h20 ¼ −g00; h2i ¼ gii; h2iωi ¼ −gi0 ¼ −g0i ð11Þ

are the nonzero components of the metric.
The plasma vectorial equations can be better understood

by introducing a locally nonrotating frame called the
“zero-angular-momentum-observer” (ZAMO) frame [40].
This frame offers the advantage of having a locally
Minkowskian spacetime. Indeed, in this case, the line
element can be simply writte n as

ds2 ¼ −dt̂2 þ
X3
i¼1

ðdx̂iÞ2 ¼ ημνdx̂μdx̂ν; ð12Þ

where

dt̂ ¼ αdt; dx̂i ¼ hidxi − αβidt: ð13Þ

Notice that here and in the following, quantities observed in
the ZAMO frame are denoted with hats. A careful derivation
of the generalized GRMHD equations in the ZAMO frame
can be found in Ref. [32]. Here, for the sake of compactness,
we reproduce only the relevant ones for our study. The first
one is the continuity equation (1), which can be written as

∂ðγnÞ
∂t þ 1

h1h2h3

X
j

∂
∂xj

�
αh1h2h3

hj
γnðv̂jþβjÞ

�
¼ 0; ð14Þ

where v̂ is the velocity observed in the ZAMO frame, and
γ ¼ ð1 − v̂2Þ−1=2 is its corresponding Lorentz factor (latin
indices are used for space components). Similarly, the spatial
components of the generalized momentum equation (2) can
be written as

∂P̂i

∂t ¼ −
1

h1h2h3

X
j

∂
∂xj

�
αh1h2h3

hj
ðT̂ij þ βjP̂iÞ

�

− ðϵþ γρÞ 1
hi

∂α
∂xi −

X
j

σjiP̂
j

þ
X
j

α½GijT̂
ij −GjiT̂

jj þ βjðGijP̂
i −GjiP̂

jÞ�; ð15Þ

with

P̂i ¼ hγ2v̂i þ hξ
4n2e2

ĴiĴ0 þ
X
j;k

εijkÊjB̂k; ð16Þ

ϵ ¼ hγ2 þ hξ
4e2n2

ðĴ0Þ2 − p − ργ þ 1

2
ðB̂2 þ Ê2Þ; ð17Þ

T̂ij ¼ pδij þ hγ2v̂iv̂j þ hξ
4e2n2

ĴiĴj

þ 1

2
ðB̂2 þ Ê2Þδij − B̂iB̂j − ÊiÊj: ð18Þ

Here, Êj and B̂k are the electric andmagnetic fieldsmeasured
in the ZAMO frame, εijk is the Levi-Civita symbol, and

Gij ¼ −
1

hihj

∂hi
∂xj ; σij ¼

1

hj

∂ðαβiÞ
∂xj : ð19Þ

The generalized Ohm’s law (8) can also be written in the
ZAMO frame. Its spatial components become

ξ

en
∂
∂t

�
hγ
4en

ðĴi þ Ĵ0v̂iÞ
�
¼ −

1

enh1h2h3

X
j

∂
∂xj

�
αh1h2h3

hj

�
K̂ij þ hξγ

4en
βjðĴi þ Ĵ0v̂iÞ

��

−
hγξĴ0

2e2n2hi

∂α
∂xi þ

α

en

X
j

�
GijK̂

ij −GjiK̂
jj þ hξγ

4en
βjðGijðĴi þ Ĵ0v̂iÞ − GjiðĴj þ Ĵ0v̂jÞÞ

�

−
hξγ
4e2n2

X
j

σjiðĴj þ Ĵ0v̂jÞ þ αγF̂i0 þ αγv̂jF̂ij − αη½Ĵi − ρ0eð1þ ΘÞγv̂i�; ð20Þ

where
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K̂ij ¼ hξγ
4en

½v̂iĴj þ v̂jĴi�: ð21Þ

Finally, we rewrite Maxwell’s equations (6) in the ZAMO
frame. The two constraint equations become

X
j

∂
∂xj

�
h1h2h3
hj

B̂j

�
¼ 0; ð22Þ

1

h1h2h3

X
j

∂
∂xj

�
h1h2h3
hj

Êj

�
¼ Ĵ0; ð23Þ

while the Ampere-Maxwell equation can be written as

αĴiþαĴ0βiþ∂Êi

∂t
¼ hi
h1h2h3

X
j;k

εijk
∂
∂xj

�
αhk

�
B̂kþ

X
l;m

εklmβ
lÊm

��
; ð24Þ

and Faraday’s law becomes

∂B̂i

∂t ¼
−hi

h1h2h3

X
j;k

εijk
∂
∂xj

�
αhk

�
Êk−

X
l;m

εklmβ
lB̂m

��
: ð25Þ

In the following, we use these equations written in the
ZAMO frame to analyze the magnetic reconnection process
around rotating black holes. Our purpose is to investigate if,
and how, the spacetime curvature produced by the black
hole affects the reconnection mechanism.

III. SPACETIME AND RECONNECTION
LAYER CONFIGURATION

In this section, we specify the spacetime around the
rotating black hole, ðx0; x1; x2; x3Þ ¼ ðt; r; θ;ϕÞ, as well as
the configuration of the magnetic reconnection layer. The
metric of a rotating black hole with mass M and angular
momentum J is given by the Kerr metric [41], for which

h0 ¼
�
1 −

2rgr

Σ

�
1=2

; h1 ¼
�
Σ
Δ

�
1=2

; ð26Þ

h2 ¼ Σ1=2; h3 ¼
�
A
Σ

�
1=2

sin θ; ð27Þ

ω1 ¼ ω2 ¼ 0; ω3 ¼
2r2gar

A
: ð28Þ

Here, rg ¼ GM is the gravitational radius, with G denoting
the gravitational constant, and a ¼ J=Jmax ≤ 1 is the
rotation parameter, with Jmax ¼ GM2 indicating the angu-
lar momentum of a maximally rotating black hole.
Furthermore, Σ, Δ, and A, which have been introduced
for brevity, are defined as

Σ ¼ r2 þ ðargÞ2cos2θ; ð29Þ

Δ ¼ r2 − 2rgrþ ðargÞ2; ð30Þ

A ¼ ½r2 þ ðargÞ2�2 − ΔðargÞ2 sin2 θ: ð31Þ

Finally, the lapse function and the shift vector are given by

α ¼
�
ΣΔ
A

�
1=2

; βj ¼ βϕδjϕ; ð32Þ

where βϕ ¼ h3ω3=α is a measurement of the rotation of the
Kerr spacetime, in which βjGij ¼ 0. The radius of the event
horizon can be obtained by setting α ¼ 0, which leads
to rH ¼ rgð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a2

p
Þ.

Magnetic reconnection layers can form in different
locations around the rotating black hole. Here, we consider
the typical situation where the reconnection layer is in the
equatorial plane, θ ¼ π=2, or very close to it. In particular,
we examine the case in which the magnetic diffusion region
is oriented in the azimuthal direction, as shown in Fig. 1.
This orientation is indeed commonly found in numerical
simulations (e.g., Refs. [25,27,29]). Finally, we assume that
the reconnection process occurs in a stable orbit around the
rotating black hole [42–44], in such a way that the plasma is
supported against the black hole gravity.
We adopt a Sweet-Parker-like approach [12,22,30]

in order to evaluate the reconnection rate and other quantities
related to the magnetic reconnection layer. This approach
is suitable to study magnetic reconnection within narrow
quasi-two-dimensional current sheets (i.e., δ ≪ L) under
quasistationary conditions (i.e., ∂t ≈ 0). The latter condition
is satisfied not only in steady state, but also at the time of
maximum reconnection rate. The reconnection layer is
implicitly assumed to be stable to the plasmoid instability

FIG. 1. Sketch of a reconnection layer in the azimuthal
direction around a rotating black hole. The shaded orange area
represents a narrow (δ ≪ L) magnetic diffusion region.
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[45]. If this is not the case, the global reconnection layer
would be replaced by a chain of plasmoids of different sizes
separated by smaller current sheets [46], but our analysis
would still be valuable for understanding the properties of
the basic current sheets composing the global reconnection
layer [47–51].

IV. RECONNECTION LAYER ANALYSIS

In our reconnection layer analysis, we first discuss the
case in which the current density in the reconnection layer
is in the θ direction, and then we extend the calculation to
investigate if a reconnection layer having current density in
a different direction could be characterized by a different
reconnection rate.

A. Poloidally oriented current density

In the azimuthal configuration [30], the reconnecting
magnetic field is in the ϕ direction. We indicate with B̂in its
magnitude in the ZAMO frame. In the diffusion region, the
radial velocity v̂r vanishes at the neutral line, where
B̂ϕ ¼ 0. Similarly, at the neutral line Ĵr ¼ 0 ≈ Ĵϕ, and
Ĵ0 ¼ 0 by quasineutrality, implying that the charge density
observed by the local center-of-mass frame of the plasma
vanishes. We assume v̂θ ≈ 0, B̂θ ≈ 0, and that spatial
variations of the fields with respect to θ are negligible.
The same configuration has been adopted by Koide and
Arai [52] to examine the possibility of energy extraction
from a rotating black hole. Indeed, magnetic reconnection
can redistribute the plasma angular momentum to yield
negative energy at infinity of the plasma, making it an
interesting alternative to the well-known Penrose [53,54]
and Blandford-Znajek [55] processes.
In order to obtain the outflow velocity of the accelerated

plasma through the magnetic reconnection process, we use
the momentum equation (15) written in the 3þ 1 formalism.
Evaluating it along the neutral line, we find

1

h1h2h3

∂
∂ϕ ½αh1h2ðT̂ϕϕ þ βϕP̂ϕÞ� ¼ αGϕjT̂

ϕj; ð33Þ

where the relevant components of P̂ and T̂, which can be
found from Eqs. (16) and (18), are

P̂ϕ ¼ hγ2v̂ϕ; ð34Þ

T̂ϕj ¼ pδϕj þ hγ2v̂ϕv̂j þ 1

2
ðB̂2

in − Ê2
θÞδϕj − B̂ϕB̂j: ð35Þ

Using Eq. (19) we find that GϕjT̂
ϕj ¼ 0. Thus, Eq. (33)

reduces to

∂
∂ϕ

�
hγ2v̂ϕðv̂ϕ þ βϕÞ − B̂2

in

2
− p

�
¼ 0: ð36Þ

The magnetohydrodynamic enthalpy density h can be
obtained from the equation of state of each fluid. In thermal
equilibrium we have [56,57]

h ¼ mn
K3ðm=kBTÞ
K2ðm=kBTÞ

; ð37Þ

where K2 and K3 are the modified Bessel functions of the
second kind of orders two and three, respectively. Hence, for
a relativistically hot plasma h ≈ 4p. At this point, we are left
with the evaluation of the pressure at the center of the current
sheet. This can be done from the assumption of pressure
balance across the layer, which gives us p ≈ B̂2

in=2.
Substituting this relation into Eq. (36), we can finally
evaluate the outflow velocity. Thus, from the integration
of Eq. (36), we conclude that

γoutv̂out ≈ 1=
ffiffiffi
2

p
; ð38Þ

implying that the outflow velocity and its Lorentz factor are
both of order of unity, as was also shown for current sheet
configurations around Kerr black holes in the absence of
thermal-inertial effects [30]. Note that this conclusion is not
affected by the rotation of the black hole. Indeed, when
evaluating this effect along the neutral line, at theX point, the
βϕvϕ contributionvanishes,while at the outflowpointβϕ is at
best of the same order as vϕ, which does not modify our
order-of-magnitude approximation.
We proceed with the calculation of the reconnected

magnetic field at the outflow point by assuming magnetic
flux conservation through the current sheet. Using Eq. (22),
we end up with

B̂rjout ≈
�
rh1
h3

�����
out

δ

L
B̂in; ð39Þ

where the symbol jout indicates that the relevant quantities
are evaluated at the outflow point of the reconnection layer.
Similarly, we can express the inverse aspect ratio of the
reconnection layer by assuming steady-state flow flux
conservation. Using Eq. (14), if the inflow flux γinv̂in
balances the outflow flux γoutv̂out, we are led to the relation

δ

L
≈
�
h3
h1r

�����
out

γinv̂in
γoutv̂out

; ð40Þ

where we have considered Eq. (39) in the estimation.
The evaluation of the generalized Ohm’s law (20)

constitutes the last step required to estimate the velocity
v̂in that measures the rate at which the magnetic flux
undergoes the reconnection process. We consider sepa-
rately the inner region, where magnetic diffusion occurs,
and the outer region, where the plasma moves with a
transport velocity that preserves the magnetic connections
between plasma elements [1–4,58,59]. Since ∂t ≈ 0 and
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∂θ ≈ 0, from Eq. (25) we have ∂rðαh2ÊθÞ ¼ 0 along the
inflow line passing through the X point. The smallness of
the current layer width δ implies that Êθjin ≈ ÊθjX.
Therefore, we can match the electric field Êθ at the X
point and the inflow point in order to obtain the inflow
velocity v̂in. In the current sheet, the generalized Ohm’s law
(20) in the θ direction is

1

enh1h2h3

X
j

∂
∂xj

�
αh1h2h3

hj

�
K̂θjþ hξγ

4en
βjĴθ

��

−
α

en

X
j

�
GθjK̂

θj−GjθK̂
jjþ hξγ

4en
βjðGθjĴ

θ−GjθĴ
jÞ
�

þ hξγ
4e2n2

X
j

σjθĴ
j−αγF̂θ0−αγv̂jF̂θjþαηĴθ ¼ 0: ð41Þ

At the inflow point, where all nonideal terms can be
neglected, Ohm’s law simply gives

Êθjin ≈ v̂inB̂in: ð42Þ
On the other hand, at the X point, where the plasma velocity
vanishes, the evaluation of Eq. (41) leads us to

ÊθjX ≈ ðηþ ΛÞĴθjX; ð43Þ
where

Λ ¼ ξh
4n2e2L

r
h3

γv̂ϕ
����
out

≈
ξh

4n2e2L
r
h3

����
X
: ð44Þ

It is possible to regard Λ as an “effective resistivity” given
by thermal-inertial-curvature effects. Note that rX < h3jX in
general. Therefore, this new effective resistivity is smaller
than the one obtained in the flat spacetime limit [22]. For
small black hole rotation we can adopt the approximation

r
h3

����
X
≈ 1 −

a2r2g
2r2X

; ð45Þ

which clearly shows that this effective resistivity decreases
as the reconnection layer becomes closer to the black hole.
In Eq. (43), the current density at the X point can be

estimated from Eq. (24) as

ĴθjX ≈ −
1

h1

����
X

B̂in

δ
: ð46Þ

Therefore, the matching of the expressions for Êθjin and
ÊθjX leads us to the conclusion that

v̂in ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
h3

����
X

�
1

S
þ Λ

L

�s
; ð47Þ

where S ¼ L=η ≫ 1 indicates the Lundquist number,
which represents the dimensionless ratio between the
Alfvén wave-crossing time scale and the resistive diffusion

time scale. This expression shows that the collisionless
effects retained in Λ increase the reconnection rate with
respect to the purely collisional case [30]. However, the net
effect is smaller compared to the thermal-inertial effects in
flat spacetime [22], because the spacetime curvature
induced by the rotating black hole acts to increase the
aspect ratio of the reconnection layer.
It must be noted that S is a remarkably large number for

the highly conducting plasmas of interest here (it can be as
large as 1020 or even greater [60]). Consequently, collision-
less effects are crucial to sustain very high reconnection
rates in the vicinity of black holes. Note that the recon-
nection rate given by Eq. (47) can be high even for S → ∞
because of the thermal-inertial-curvature effects contained
in the expression (44). More generally, the thermal-inertial-
curvature effects dominate over the collisional ones when
Λ=L ≫ 1=S. This is indeed expected to be the case for the
hot tenuous plasmas surrounding black holes.
While until now we have not made any assumption about

the constituent particles of the plasma, which are specified
through ξ, it is useful to consider this new collisionless
regime in a more definite way. For an electron-ion plasma,
thermal-inertial-curvature effects dominate when

hm−

n2e2mþL2

r
h3

����
X
≈

f
ω2
peL2

r
h3

����
X
≫

1

S
; ð48Þ

where we have indicated with ωpe the plasma frequency
and with f ¼ K3ðm=kBTÞ=K2ðm=kBTÞ the relativistic
thermal factor. In this regime, the reconnection rate
becomes

v̂e−iin ≈
r
h3

����
X

ffiffiffi
f

p λe
L
; ð49Þ

while the reconnection layer width turns out to be

δe−i ≈
1

h1

����
X

ffiffiffi
f

p
λe; ð50Þ

with λe indicating the electron skin depth. On the other
hand, for a pair plasma, the thermal-inertial-curvature
effects dominate when

h
4n2e2L2

r
h3

����
X
¼ f

2ω2
peL2

r
h3

����
X
≫

1

S
: ð51Þ

In this case, the reconnection rate and the reconnection
layer width become

v̂pairin ≈
r
h3

����
X

ffiffiffi
f
2

r
λe
L
; δpair ≈

1

h1

����
X

ffiffiffi
f
2

r
λe: ð52Þ

When considering the flat spacetime limit, h3jX ¼ rX, these
formulas reduce to the ones obtained in Ref. [22] (the factorffiffiffi
2

p
difference appears because here f is defined such that

h ¼ hþ þ h− ≈ 2m−nf for the pair plasma case), with
reconnection rates that can be even larger than v̂pairin ∼
0.1 [17,18,21,61].
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B. Radially oriented current density

To explore if the direction of the current density in the
reconnection layer could lead to a different reconnection
rate, here we consider a similar configuration, but with
current density in the r direction. At the neutral line we
have Ĵθ ¼ 0 ≈ Ĵϕ, as well as Ĵ0 ¼ 0. Again, we assume
v̂r ≈ 0, B̂r ≈ 0, and that spatial variations of the fields with
respect to the radial distance are negligible, i.e., ∂r ≈ 0.
In the evaluation of the outflow velocity, the only

difference with the above analysis is that now the electric
field Êθ in the expression for T̂ϕj is replaced by the Êr
component. This, however, does not play a role in the
momentum equation along the neutral line [Eq. (33)]
because at the neutral line ∂ϕÊr ¼ 0. Therefore, employing
the same approximations adopted before, we obtain again
γoutv̂out ≈ 1=

ffiffiffi
2

p
. On the other hand, for this configuration,

magnetic flux conservation through the current sheet yields
the reconnected magnetic field

B̂θjout ≈
r
h3

����
out

δ

L
B̂in; ð53Þ

where we have estimated δϕ ≈ L=rout and δθ ≈ δ=rout. The
expression for the inverse aspect ratio of the reconnecting
current sheet is also slightly different. Indeed, from the
continuity equation (14) we can obtain

δ

L
≈
h3
r

����
out

γinv̂in
γoutv̂out

: ð54Þ

Following the same procedure adopted before, we use
the generalized Ohm’s law (20) to complete the relations
needed to calculate the rate at which the magnetic flux is
transported across the diffusion region. Indeed, since ∂t ≈ 0

and ∂r ≈ 0, the electric field Êr is uniform along the line
passing the inflow and X points, allowing us to employ the
standard matching procedure by means of the generalized
Ohm’s law. In the current sheet, Eq. (20) in the radial
direction reduces to

ξ

αenh1h2h3

∂
∂ϕ

�
αh1h2hγ
4en

Ĵrðv̂ϕ þ βϕÞ
�

þ hξγ
4e2n2h1hj

�∂h1
∂xj v̂

jĴr − 2
∂hj
∂r v̂jĴj

�
þ ηĴr

− γF̂r0 − γv̂θF̂rθ − γv̂ϕF̂rϕ ¼ 0: ð55Þ
At the X point, this equation yields

ÊrjX ≈ ðηþ ΛÞĴrjX; ð56Þ
which is very similar to the reconnection electric field
obtained before for a θ-oriented current density. The only
difference is that now, from Eq. (24), the current density at
the X point is simply ĴrjX ≈ B̂in=δ. Matching Eq. (56) with
the electric field expression at the inflow point, Êrjin≈
v̂inB̂in, with the help of Eqs. (53) and (54), we obtain the

inflow plasma velocity in the θ direction, whose final
expression is v̂in ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr=h3ÞjXð1=Sþ Λ=LÞp
, as for the

θ-oriented current density. Therefore, we conclude that
the orientation of the current density does not have a
significant impact on the reconnection rate.

V. CONCLUSIONS

In this paper, we have studied the magnetic reconnection
process in curved spacetime due to the presence of a
rotating black hole. By performing a Sweet-Parker-like
analysis for azimuthal reconnection layers, we have calcu-
lated the reconnection rate as well as other important
quantities, such as the width of the reconnection layer,
the reconnected magnetic field, and the outflow velocity of
the plasma accelerated through the magnetic reconnection
process. This analysis has allowed us to obtain the first-
order effects induced by the gravitational field of a rotating
black hole. In particular, we have shown that the spacetime
curvature due to black hole rotation acts to decrease the
reconnection rate in azimuthal reconnection layers.
The analysis presented here extends our recent paper [30]

to also include collisionless plasma effects, which couple to
gravity and have the net effect of enhancing the rate at which
the magnetic flux is transported toward the reconnection X
point. Indeed, we have shown that thermal-inertial-curvature
effects cause a broadening of the reconnection layer, which,
in turn, enables higher reconnection rates. This has been
shown for both electron-ion and pair plasmas, and can be
understood in terms of an “effective resistivity” Λ that limits
the response of the electrons (or electrons and positrons)
to the reconnection electric field. The thermal-inertial-
curvature resistivity Λ depends on the thermal factor f,
the plasma frequency ωpe, and the curvature-related ratio
ðr=h3ÞjX. Therefore, these effects can be very important in
the hot tenuous plasmas surrounding black holes, where the
condition Λ=L ≫ 1=S is expected to occur.
We observe that the ideas presented here about the

interaction between gravity and magnetic reconnection
may have a much broader impact. If elaborated further,
they may indicate whether magnetic reconnection could be
an efficient mechanism of energy extraction from rotating
black holes. Besides, they could be adopted to understand
how gravitational effects can influence magnetic energy
release rates close to neutron stars.
Finally, one might wonder if purely relativistic effects can

play the role of an effective resistivity in more general
configurations than the ones proposed here. These kind
of effects were qualitatively explored by Koide in
Ref. [32], and they correspond, for example, to the
terms −ðhγξĴ0=2e2n2hiÞð∂α=∂xiÞ or ðα=enÞPjðGijK̂

ij−
GjiK̂

jjÞ in the generalizedOhm’s law (20). In ourmodel, all of
those terms vanish. This occurs because effective resistivities
generated by these purely relativistic terms are only possible in
more complex configurations, such as three-dimensional
models. We will explore these ideas in forthcoming works.
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