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By assuming the existence of extra-dimensional sterile neutrinos in the big bang nucleosynthesis (BBN)
epoch, we investigate the sterile neutrino (νs) effects on the BBN and constrain some parameters associated
with the νs properties. First, for the cosmic expansion rate, we take into account effects of a five-
dimensional bulk and intrinsic tension of the brane embedded in the bulk and constrain a key parameter of
the extra dimension by using the observational element abundances. Second, effects of the νs traveling on
or off the brane are considered. In this model, the effective mixing angle between a νs and an active neutrino
depends on energy, which may give rise to a resonance effect on the mixing angle. Consequently, the
reaction rate of the νs can be drastically changed during the cosmic evolution. We estimated abundances
and temperature of the νs by solving the rate equation as a function of temperature until the sterile neutrino
decoupling. We then find that the relic abundance of the νs is drastically enhanced by the extra dimension
and maximized for a characteristic resonance energy Eres ≳ 0.01 GeV. Finally, some constraints related to
the νs, i.e., mixing angle and mass difference, are discussed in detail with the comparison of our BBN
calculations corrected by the extra-dimensional νs to observational data on light element abundances.
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I. INTRODUCTION

Over the past few decades, a considerable number of
studies have been conducted on the neutrino oscillation with
great success inmeasuring neutrinomixing angles. But some
experiments for the neutrino oscillationmore or less revealed
disagreements with the three-flavor neutrino model, which
are termed the neutrino anomalies, as reported by LSND [1],
MiniBoone [2], reactor experiments [3], and gallium experi-
ments [4]. One of the approaches for explaining the neutrino
anomalies is to presume the existence of the hypothetical
fourth neutrino,which is called the sterile neutrino, because it
does not interact with other particles except through amixing
with active neutrinos.
Very recently, the IceCube experiment reported a new

constrained region for the parameter space of the mixing
angle and the mass-squared differences for the 1 eV mass
scale sterile neutrino [5], in which the parameter space by
previous LSND andMiniBoone data is largely excluded. But
if we recollect that the 1 keV cosmological sterile neutrino is
still under discussion for a dark matter candidate and the
relic neutrino search is being considered, it would be an

interesting discussion to consider effects of the sterile
neutrino in the big bang nucleosynthesis (BBN) epoch
and deduce related parameters from the observational data
with comparison to the IceCube experimental data analysis.
Amongmany scenarios of the sterile neutrino, Päs et al. [6]

assumed that the sterile neutrino is a gauge-singlet particle
and can travel on or off our 3þ 1-dimensional brane
embedded in a large extra-dimension bulk similarly to the
graviton in the braneworld cosmology. According to the
cosmology, ordinary matter fields are confined to a three-
dimensional space in the high-dimensional bulk. Originally,
the braneworld cosmology was suggested to explain the
hierarchy problem, the large scale difference between the
standard model force and the gravity [7,8]. Randall and
Sundrum suggested a new solution of the hierarchy problem
by introducing noncompact extra dimensions [9,10].
Reference [6] suggested a model in which a sterile neutrino
can propagate in the bulk and brane similarly to the graviton.
Theyderived a new formula of resonant active-sterile neutrino
oscillation and found an allowed region of the resonance
energy from the comparison to available experimental data.
If the production rate of this kind of sterile neutrino is

always smaller than the cosmic expansion rate, the abun-
dance of the sterile neutrino never reaches the equilibrium
value. The effect of the sterile neutrino on BBN is then
completely negligible. This situation has been considered
recently [11], and a parameter region where the sterile
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neutrino abundance is extremely small has been searched
by an analytical estimate. However, as shown in this paper,
observational constraints on primordial abundances do not
exclude the situation in which the sterile neutrino is
abundantly produced in the thermal bath and its abundance
attains the equilibrium value in the early Universe.
Furthermore, the observational abundance of 4He is pos-
sibly explained by the effect of the sterile neutrino better
than in the standard BBN model, as argued in this paper.
In this study, we adopt the same scheme as Ref. [6] and

study effects of a sterile neutrino in an extra-dimensional
universe by a numerical BBN calculation in detail.
Especially, we considered not only the matter effects but
also wave packet formalism to describe the oscillation
between active and sterile neutrinos in the five-dimensional
universe. Since the primordial element abundances can be
measured with a good precision by the recent great advent
of astrophysical spectroscopic observations, the BBN study
turns out to be a useful test bed for deriving the cosmo-
logical constraints on nonstandard models. For example,
some parameters in the modified gravity models, such as
fðRÞ and fðGÞ gravity, were constrained in detail [12]. In
addition, effects of some supersymmetric particles in the
early Universe have been investigated, and parameters, i.e.,
the lifetime and mass, can be constrained [13].
We include effects of the extra-dimensional sterile

neutrino in the BBN epoch as follows. The cosmic
expansion rate is modified by the large extra dimension
[14,15] as well as the energy density [16,17] of the sterile
neutrino traveling on or off our 3þ 1-dimensional brane.
Then, the modified Friedmann equation and the energy
density of the decoupled sterile neutrino may change the
primordial element abundances. Therefore, the parameters
relevant to the extra dimension and the sterile neutrino can
be constrained by using observational data of primordial
light element abundances.
This paper is composed as follows. In Sec. II, we briefly

review the active-sterile neutrino oscillation in the extra-
dimension model and address how to describe the evolution
for the number abundance of sterile neutrinos in the early
Universe in the model. In Sec. III, results of primordial
nuclear abundances by the model are presented. From the
results, in Sec. IV, we discuss the constrained parameter
region from the comparison of BBN calculation results to
observational abundancedata. SectionVcontains a summary
and conclusions of this article. We derive the flavor-change
probability of the sterile neutrino in the current extra-
dimension model in Appendix A. A result of solving the
Boltzmann equation for the sterile neutrino and its compari-
son with that of the rate equation are shown in Appendix B.

II. THEORETICAL MODEL

We presume that the Universe is five dimensional and the
sterile neutrino travels on or off the five-dimensional space
as in Ref. [6]. We simply consider only one sterile neutrino

and assume that sterile neutrinos interact with matter
particles only via its mixing with an active neutrino. The
decay of the sterile neutrino is not considered in this model.

A. Modified cosmic expansion rate
from extra dimension

According to Ref. [18], the cosmic expansion rate in a
five-dimensional universe is given by

_a20
a20

¼ κ2

6
ρB þ κ4

36
ρ2b þ

E
a40

−
K
a20

¼ κ2

6
ρB þ κ4

36
ρ2Λ þ κ4

18
ρΛρþ

κ4

36
ρ2 þ E

a40
−
K
a20

; ð1Þ

where a0 is the scale factor for the four-dimensional space
time. ρB denotes the bulk energy density in the universe.
The energy density of the brane, ρb, is given as a sum of
ordinary energy density (ρ) and energy density (ρΛ)
stemming from the intrinsic tension on the brane,
ρb ¼ ρþ ρΛ. E is an integration constant. The five-
dimensional analog of the gravitational constant, Gð5Þ, is
related to the five-dimensional Planck mass Mð5Þ and the
constant κ, as follows:

κ2 ¼ 8πGð5Þ ¼ M−3
ð5Þ: ð2Þ

The last term in the right-hand side of Eq. (1) vanishes in
the flat universe where the curvature constant is K ¼ 0. We
can choose ρΛ by following Refs. [9,10]:

κ2

6
ρB þ κ4

36
ρ2Λ ¼ 0: ð3Þ

Then, the cosmic expansion rate of the standard cosmology
is recovered for ρ ≪ ρΛ by the identification [19,20] of

8πG≃ κ4ρΛ
6

; ð4Þ

where G is Newton’s constant. Our final expansion rate is
obtained as

_a2

a2
≃ 8πG

3
ρþ E

a4
; ð5Þ

where the index 0 in the scale factor on the brane a0 has
been omitted.
The first term of the right-hand side in Eq. (5) is identical

with the cosmic expansion rate in the standard cosmologi-
cal model. Note that only the second term comes from the
effect of the extra dimension. The free parameter E, which
is a kind of an integration constant in the five-dimensional
Einstein equation, affects the primordial abundances
[14,15]. The initial temperature of our BBN calculation
is T9 ¼ T=ð109KÞ ¼ 100 with T the temperature. We then
take the value of the second term at T9 ¼ 100, i.e., E=a4i
with ai the scale factor at the initial temperature, as a
parameter.
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Figure 1 shows calculated abundances of the deuterium
(number ratio of D/H) and 4He (the mass fraction Yp) as a
function of E=a4i . The abundances of D and 4He are
monotonically increasing with the increase of E=a4i . The
standard BBN model corresponds to the case of E ¼ 0.
In this case, the predicted deuterium abundance is within
the observational 2σ limit, while the 4He abundance is out
of the 2σ limit. When the nonzero value of E is considered,
we find the 2σ allowed region from the both D and 4He
abundances in the region of 120 < E=a4i ðs−2Þ < 149.
When theE value is increased, the cosmic expansion rate is

also increased. Since the cosmic time scale for a fixed
temperature is shorter, the neutron-to-proton ratio at the
4He synthesis is larger. As a result, the 4He abundance after
the BBN is larger. In the late time of BBN, the deuterium is
effectively destroyed by the reactions 2Hðd; nÞ3He and
2Hðd; pÞ3H. The shorter cosmic time scale leads to the earlier
freeze-out of the destruction reactions. Subsequently, the
larger final deuterium abundance is obtained.

B. Relic abundance of sterile neutrino

Since we include the sterile neutrino which has a finite
mass mνs , its energy density ρνs is added to the ordinary
density in Eq. (5). The total energy density is thus changed as

ρ ¼ ρstandard þ ρνs ; ð6Þ

where the first and the second terms indicate energy densities
of standard model particles and sterile neutrinos, respec-
tively. The value of ρνs is roughly evaluated as

ρνs ≃
�
nνshEνsi ðfor the relativistic caseÞ
nνsmνs ðfor the non relativistic caseÞ: ð7Þ

Here, nνs and hEνsi are the number density and the averaged
energy of the sterile neutrino, respectively. The energy
density is separated into relativistic and nonrelativistic cases,
which depend on temperature Tνs and mνs . Namely, for
mνs > hEνsi ∼ 3Tνs , the sterile neutrino is nonrelativistic.
Otherwise, it is relativistic. Since the nνs in Eq. (7) is a key
quantity to determine the energy density of the sterile
neutrino, we calculate the number density of the sterile
neutrino in the following way.
In the hot early Universe, the sterile neutrino can stay in

an equilibrium state when its production rate is large
enough. However, with the decrease of temperature, the
sterile neutrino is decoupled from the equilibrium state. The
decoupling condition is that the reaction rate of the sterile
neutrino Γνs becomes smaller than the cosmic expansion
rate H ≡ _a=a. At that time, the ratio Yνs between nνs and
the entropy density s freezes out, i.e., does not change (see
Chap. 5 of Ref. [23]). To describe the Yνs evolution, we
exploit the rate equation

x
YEQ

dYνs

dx
¼ −

Γνs

H

��
Yνs

YEQ

�
2

− 1

�
; ð8Þ

where x≡mνs=T and YEQ ¼ nEQ=s is a ratio of the
equilibrium number density to the entropy density in the
comoving unit volume given in terms of temperature T,

s ¼ 2π2

45
g�ST3; ð9Þ

where g�S is defined in terms of the degrees of freedom of
particle i,

g�S ¼ Σi¼boson gi

�
Ti

T

�
3

þ 7

8
Σi¼fermion gi

�
Ti

T

�
3

: ð10Þ

We note that the temperature of the sterile neutrino is the
same as that of thermal bath, i.e., Tνs ¼ T, until the
decoupling of the sterile neutrino.
From the assumption that the sterile neutrino interactswith

other particles via only mixing, the production rate of the
sterile neutrino Γνs is given by a product of the probability of
the flavor change of νa ↔ νs via mixing, Pas, and averaged
weak interaction rate hΓweaki [24–26],

Γνs ¼ PashΓweaki: ð11Þ
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FIG. 1. Deuterium (the top panel) and 4He (the bottom panel)
abundances as a function of E=a4i . Shaded and dark-shaded
regions are 4σ and 2σ ranges, respectively, for the observational
primordial abundances. We adopt the observational value of
D=H ¼ ð2.53� 0.04Þ × 10−5 [21] and Yp ¼ ð0.2551� 0.0022Þ
[22]. From the observational data, the E value is constrained as
120 < E=a4i ðs−2Þ < 149 (2σ) and −18 < E=a4i ðs−2Þ < 248 (4σ).

EFFECTS OF STERILE NEUTRINOS AND AN EXTRA … PHYS. REV. D 97, 043005 (2018)

043005-3



In this study, we adopt the simplest case in which one sterile
neutrino mixes with only one active neutrino [6] and assume
that the tau neutrino has the mixing for simplicity. We then
adopt the average weak interaction rate of ντ, i.e., hΓweaki →
Γτ ¼ 2.9G2

FT
5 [26], where GF is the Fermi constant. We set

the initial condition Y i ¼ 0 in Eq. (8). Because the reaction
rate of sterile neutrino depends on parameters, the sterile
neutrino does not always stay in equilibriumat the initial time
within all parameter space. This is in contrast to active
neutrinos that are consistently in equilibrium well before
BBN. The distribution function of the sterile neutrino is then
not always the equilibrium function. For large reaction rates
relative to the cosmic expansion rate, the equilibrium
abundance is realized quickly, while for small reaction rates,
the abundance remains much smaller than YEQ. This is the
reasonwhywe assume that the initial abundance of the sterile
neutrino is equal to zero.
In addition, in Eq. (8), we neglect the effect of an

extra dimension on the cosmic expansion rate. As shown
in Sec. II A, observations of light element abundances
strongly constrain the value of E=a4i . The cosmic expansion
rate in the early epoch until the sterile neutrino decoupling is
therefore not allowed to deviate significantly from that in the
standard model. The rate equation is then not affected
significantly.

C. Modified flavor-change probability

In solving the rate equation, the flavor-change proba-
bility in Eq. (11) should account for the extra-dimensional
and matter effects. Since the trajectories of sterile neutrinos
in the bulk and active neutrinos on the brane are different,
their flavor-change probability is different from that in free
space [6]. In addition, the neutrino oscillation is affected
by the matter effect. These two effects can be treated
similarly to the effective potential in the Mikheev-Smirnov-
Wolfenstein physics [27,28]. When the matter effect
[24,29,30] and difference of geodesic are included, the
effective mixing angle is derived as

sin22~θ ¼ sin22θ
Q2

αðθ; δm2; Eres;T; EÞ
; ð12Þ

where we defined a parameter Qα for the modification of
the mixing angle given by

Qαðθ; δm2; Eres;T; EÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin22θ þ cos22θ

�
1þ CαG2

FT
4E2

cos 2θαδm2
−
�

E
Eres

�
2
�
2

s
;

ð13Þ

where α is the fine structure constant, Ce ¼ 1.22 (for νe)
and Cμ;τ ¼ 0.34 (for νμ and ντ) are flavor (α) dependent
constants. We used Cτ ¼ 0.34 because we considered only

ντ. θ is the bare mixing angle between the sterile and active
neutrinos, δm2 denotes the mass-squared difference, and E
is the energy of the sterile neutrino. The resonance energy
Eres is given [6] by

Eres ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δm2 cos 2θ

2ϵs

s
; ð14Þ

where ϵs ¼ ðDb −DBÞ=Db is a shortcut parameter describ-
ing the fractional difference between the geodesic in the
bulk DB and that on the brane Db.
We assume that the sterile neutrino is relativistic before

the decoupling and use the value of E ¼ 3.151Tνs , which is
the averaged energy for the relativistic fermion with Tνs the
temperature of the sterile neutrino.
The probability of the flavor change of sterile and

active neutrinos is derived from the wave packet treatment
[31,32] as

Pas ≈

8<
:

sin22~θsin2
�
δm2

mattsc
4E

	
ðfor T ≥ TeqÞ

1
2
sin22~θ ðfor T ≤ TeqÞ;

ð15Þ

where we defined the effective mass-squared difference in
matter, i.e.,

δm2
mat ¼ δm2Qαðθ; δm2; Eres;T; EÞ; ð16Þ

and the scattering time scale of the active neutrino

tsc ≃ 1

G2
FT

5
: ð17Þ

The typical temperature Teq is defined related to the flavor-
change probability as

Teq ¼
�
δm2

G2
F

�
1=6

¼ 44 MeV

�
δm2

1 eV2

�
1=6

: ð18Þ

At this temperature, the scattering time scale of the active
neutrino and the overlap time scale of neutrino wave packets
are equal. In addition, the matter effect becomes negligible
somewhat below this equality temperature.
A formulation of the flavor-change probability including

Eqs. (12), (13), and (15)–(18) is shown in Appendix A. By
using Eqs. (8), (11), and (15), the abundance of the sterile
neutrino is calculated.

III. RESULT OF THE RATE EQUATION

By using the modified mixing probability, we solve
the rate equation in the temperature interval of
100 GeV ≥ T ≥ 1 MeV. This rate equation is an approxi-
mation of the Boltzmann equation. The comparison of
results of the Boltzmann and rate equations is described in
Appendix B. Figure 2 shows the contours for the final
values of Yνs calculated by the rate equation as a function
of θ and Eres. For this figure and Figs. 3–5 in this section,
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the mass of sterile neutrino is taken to be mνs≈
ðδm2Þ1=2 ¼ 1 eV, for example. We discuss the result from
three viewpoints.

A. Mixing angle vs Yνs

First, we explain the results in Fig. 2 as a function of
mixing angle for a given Eres. The value of Yνs is larger for a
larger mixing angle. As seen in Eqs. (11) and (15), the
larger mixing angle produces the larger flavor-change
probability and reaction rate.
Figure 3 shows the temperature evolution of the abun-

dance of the sterile neutrino derived by solving the rate
equation. The red solid line indicates the equilibrium
abundance YEQ, and other lines show the abundance of
the sterile neutrino Yνs for θ ¼ 0.1 (higher dashed line),
0.01 (lower dashed line), and 0.001 (dotted line), respec-
tively. The resonance energy is fixed as Eres ¼ 0.1 GeV, for

example. The black vertical dashed line at T ¼ 150 MeV
shows the temperature of the quark-hadron transition [33].
The equilibrium abundanceYEQ is increasedwith decreas-

ing T because the number of degrees of freedom g�S
decreases. This behavior is remarkably contrary to the
decrease of Yνs by the exponential decrease of the equilib-
rium number density nEQ after the sterile neutrino becomes
nonrelativistic. Because of the hadronization of the

Yνs
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FIG. 2. Contours for the final value of Yνs as a function of θ and
Eres (GeV) for mνs ¼ 1 eV.
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quark-gluon plasma, the abundance Yνs is increased with
decreasing temperature in this epoch. This feature can be
seen at the vertical line. For this figure, the entropy density is
calculated by a standard method [23] described in Ref. [34].
No sterile neutrino exists at initial time by the

assumption. When the temperature decreases to
T ∼ Teq ¼ 44 MeV, however, the effective mixing angle
increases (Sec. II C). The production rate of the sterile
neutrino then becomes large, and its number density
approaches to the equilibrium line. In this parameter set,
no resonance of the effective mixing angle occurs as the
Universe evolves. This can be understood by noting that the
square bracket in Eq. (13) is always close to or larger than
unity. The temperature at which the second and the third
terms in the square brackets are equal is given by Tres;1 ¼
11.2 MeV [Eq. (B65)]. At this temperature, the factor
ðE=EresÞ2 is significantly smaller than 1. Therefore, no
resonance occurs in this model (see Appendixes A and B
for details on the resonant mixing in the early Universe).
After the matter term becomes negligible in Eq. (13), the
effective mixing angle is close to the bare mixing angle, i.e.,
sin2 2~θ ≈ sin2 2θ. Since the reaction rate is proportional to
~θ2, the final abundance is almost proportional to θ2 for
small θ values (see curves of θ ¼ 0.01 and 0.001). For large
θ values, the equilibrium abundance is realized before the
decoupling of the sterile neutrino (the case of θ ¼ 0.1).
Figure 3 shows that the small mixing angle gives low
abundance of the sterile neutrino for this parameter set.

B. Resonance energy vs Yνs

Second, the resonance energy dependence is interpreted
similarly because it is related to the reaction rate of the
sterile neutrino. Figure 4 shows the temperature evolution
of reaction rate Γνs and H (upper panel) and Yνs (lower
panel). The value of mixing angle θ is fixed as 0.01. The
black vertical dashed line at T ¼ 150 MeV corresponds to
the temperature of the quark-hadron transition. At the
temperature, the equilibrium abundance of the sterile
neutrino is increased because of decreasing g�S.
The reaction rate is very small in the high-temperature

region, T ≳ Teq ¼ 44 MeV since a large matter term
hinders the effective mixing angle [Eqs. (12) and (13)].
For the both cases of Eres ¼ 0.01 and 0.03 GeV, maximal
enhancements of the effective mixing angle occur twice. At
the peaks, the production rate of the sterile neutrino is larger
than the cosmic expansion rate. As a result, the abundance
of the sterile neutrino approaches the equilibrium abun-
dance. However, resonances occur for short periods
[cf. Eqs. (B16), (B17), and (B54)], and the equilibrium
abundance is not reached. At the first resonance, the second
term of the square brackets in Eq. (12) cancels the third
term, and the effective mixing angle increases. At the
second resonance, the first term, i.e., unity, cancels the third
term, and the effective mixing angle increases again (see

Appendix B 6 for details). At these resonances, the abun-
dance of the sterile neutrino suddenly increases (the lower
panel). The abundance is flat except the resonance epochs
because the sterile neutrino is decoupled from the
equilibrium.
For the case of Eres ¼ 0.1 GeV, there is no resonance of

the effective mixing angle, as explained for Fig. 3.
Therefore, the reaction rate does not have a peak,
and the abundance evolves smoothly.
As seen in Fig. 4, the abundance of the sterile neutrino

is significantly enhanced by the extra-dimensional correc-
tion to the effective mixing angle. For large values of
Eres ≳ 0.04 GeV, no resonance in the effective mixing
angle appears along the cosmic evolution. This parameter
region asymptotes to the standard model of the four-
dimensional universe. For small values of Eres ≲
0.04 GeV, resonances appear in the mixing angle, and
the final sterile neutrino abundance is enhanced. We
observe that the final abundance is smaller for smaller
Eres values for the reason explained below. As Eres
decreases, the temperature of the first resonance increases,
and that of the second resonance decreases (see
Appendix B 6).

1. First resonance

For 0.007 GeV≲ Eres ≲ 0.04 GeV, the effective mixing
angle for temperatures around the first resonance temper-
ature is given by

sin22~θ ¼ sin22θ

sin22θ þ cos22θ½1þ CαG2
FT

4E2

cos 2θαδm2 − ð E
Eres

Þ2�2

≈
4θ2

4θ2 þ ð E
Eres

Þ4½ð T
Tres;1

Þ4 − 1�2

≈
4θ2

4θ2 þ ð E
Eres

Þ4½4Δ lnT1 þ 6ðΔ lnT1Þ2�2
; ð19Þ

where we took Δ lnT1 ¼ ðT − Tres;1Þ=Tres;1 ≪ 1 and
assumed θ ≪ 1 and that amplitudes of the second and the
third terms in the square brackets in the first line are much
larger than unity. The duration of the resonance, e.g., the full
width of temperature at 1=e maximum, is estimated as�

E
Eres

�
4

½4Δ lnT1þ6ðΔ lnT1Þ2�2 ¼ 4θ2ðe−1Þ

⇒Δ lnT1 ∝
E2
res

E2
: ð20Þ

Since the sterile neutrino energy at the first resonance has a
scaling of E ¼ 3.15Tres;1 ∝ E−1=2

res [Eq. (B65)], the temper-
ature step is given by Δ lnT1 ∝ E3

res. When the final
abundance is much smaller than the equilibrium abundance,
the abundance change at the first resonance roughly scales as
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ΓνsðTres;1ÞΔtres;1 ∝ ΓνsðTres;1ÞΔ lnT1HðTres;1Þ−1 ð21Þ

∝ T5
res;1E

3
resT−2

res;1 ð22Þ

∝ E3=2
res : ð23Þ

Therefore, the abundance is smaller for smaller Eres values.

2. Deactivation of the first resonance

A discontinuity in contours is seen at a specific
energy of Eres;cr ≈ 7 MeV. For Eres > Eres;cr the condition
Tres;1 < Teq ¼ 44 MeV is satisfied, while for Eres < Eres;cr,
the condition Tres;1 > Teq is satisfied. In the latter case, the
sterile neutrino production rate is significantly hindered by
the small neutrino oscillation phase [Eq. (15)]. The clear
discontinuity results from the present approximate treat-
ment of Eq. (15).

3. Second resonance

The temperature step during the second resonance
Δ lnT2 is constant (see Appendix B 3). Using the scaling
Tres;2 ∝ Eres [Eq. (B66)], we obtain a rough scaling of the
abundance change for the case that the final abundance is
much smaller than the equilibrium abundance, i.e.,

ΓνsðTres;2ÞΔtres;2 ∝ ΓνsðTres;2ÞΔ lnT2HðTres;2Þ−1 ð24Þ

∝ E3
res: ð25Þ

Since the first resonance is not effective forEres < Eres;cr, the
abundance change at the second resonance is the final
abundance. The abundance is smaller for smallerEres values.
We note that for such a small Eres value the effective

mixing angle is much smaller than the bare mixing angle
until E ∼ Eres is realized [Eq. (13)]. Therefore, the final
abundance is smaller than that of very large Eres or the four-
dimensional model for a fixed θ value.

C. Decoupling temperature

Finally, we discuss the νs decoupling temperature in order
to describe the time evolution of the energy density of the
sterile neutrino during BBN. First, we define a parameter

rs ¼
Tνs

Tν
; ð26Þ

where Tνs and Tν are temperatures of sterile neutrino and
active neutrinos, respectively, for a fixed cosmic time. This
ratio is unity when the sterile neutrino is in equilibrium.
When the sterile neutrino is decoupled, the temperatures can
be different, and the ratio is smaller than 1, in general. After
active neutrino decoupling, the two temperatures have the
same scaling with a scale factor of the Universe. The ratio is,
therefore, kept constant again.

The rs value after the decoupling is given by

rs ¼
Tνs

Tν
¼

�
g�S

g�S;dec

�
1=3

; ð27Þ

where g�S and g�S;dec denote the relativistic degrees of
freedom, which does not contain the contribution of the
sterile neutrino, at the decoupling temperature of active and
sterile neutrinos, respectively. The second equality is
derived from the evolution of the active neutrino temper-
ature by taking into account the entropy conservation [23].
This ratio is constant between the initial temperature of

BBN calculation, which is taken to be T9 ¼ 100, and the
active neutrino decoupling temperature T9 ∼ 10, due to the
following reason. In this temperature interval, the number
of degrees of freedom for entropy does not change.
Therefore, both temperatures of the sterile and active
neutrinos simply scale as T ∝ 1=a. We then use this
constant ratio in the BBN calculation.
Figure 5 shows the calculated ratio rs in the parameter

plane of θ and Eres. This ratio rs depends on θ and Eres since
the decoupling temperature of the sterile neutrino depends
on its reaction rate determined by those parameters. The
ratio is rapidly increased at the curved boundary. In the
light region, the sterile neutrino decouples later than
the quark-hadron transition. The value of rs is therefore
close to unity in the region. The dark region is correspond-
ing to the small abundance region due to a small reaction
rate in Fig. 2. The final abundance Yνs is smaller than the
equilibrium abundance at the initial temperature, YEQ ∼
0.002 (see Fig. 3), in that region. The equilibrium is never
realized there. When the reaction rate does not become
larger than the expansion rate, there is no good way of
estimation for the temperature of the sterile neutrino.
However, in such a case, the final abundance of the sterile
neutrino is always negligibly small, and the temperature is
not important. We then just take the initial temperature
T ¼ 100 GeV as the decoupling temperature for this case.

IV. RESULTS OF BBN

From the rate equation, the final abundances and energy
density of the sterile neutrino are determined. Then, the
cosmic expansion rate is modified as follows:

H2 ¼ 8πG
3

ðρstandard þ ρνsÞ þ
E
a4

. ð28Þ

The modified expansion rate changes primordial abundan-
ces. We can then constrain the relevant parameters, θ, Eres,
mνs , and E, by comparing calculated abundances to the
observational data. The primordial elemental abundances
depend on the sterile neutrino abundance, Yνs , shown in
Fig. 2 because the cosmic expansion rate depends on the
energy density of the sterile neutrino.
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A. BBN calculation and observational constraints

We use updated reaction rates [35,36] in the BBN
calculation code [37,38]. The neutron lifetime is taken
from the central value of the Particle Data Group,
880.3� 1.1 s [39]. The baryon-to-photon ratio is adopted
from the value η ¼ ð6.037� 0.077Þ × 10−10 corresponding
to the baryon density in the base ΛCDM model
(PlanckþWP) determined from Planck observation
of the cosmic microwave background, Ωmh2 ¼ 0.02205�
0.00028 [40].
The primordial D abundance comes from observations

of quasistellar object absorption systems, and its value is
D=H ¼ ð2.53� 0.04Þ × 10−5. We take the 2σ limit
ð2.53� 0.08Þ × 10−5 and 4σ limit ð2.53� 0.16Þ × 10−5

in the following analysis. For 4He, we adopt Yp ¼
0.2551� 0.0022, which is observed from the metal-poor
extragalactic HII region [21], and also consider their 2σ
limit ð0.2551� 0.0044Þ and 4σ limit ð0.2551� 0.0088Þ.

B. E = 0 and mνs = 1 keV

Figure 6 shows the result of the primordial abundance in
the case of E ¼ 0 andmνs ¼ 1 keV. This 1 keV scale of the
sterile neutrino is one of the candidates for dark matter.
Since E is equal to zero, only the energy density of the
sterile neutrino affects the cosmic expansion rate. Since the
mass of the sterile neutrino is 1 keV, it is relativistic during

the BBN epoch. For deuterium abundance, all parameter
regions adopted here are allowed by the 4σ abundance
limit. We find a parameter region in which the calculated
4He abundances satisfy the observational 2σ constraints,
although most of this region does not satisfy the 2σ limit of
D abundance. This allowed 2σ region is not seen in the
standard BBN result (see Fig. 1 at E=a4i ¼ 0). The existence
of the sterile neutrino energy density, however, increases
the cosmic expansion rate, and as a result, abundances of D
and 4He are increased. All parameter regions in Fig. 6 are
allowed by the 4σ limit.
The shapes of contours can be interpreted as follows. The

energy density scales as

ρνs ¼ nνshEνsi ∝ YνsTνs

∝ Yνsrs: ð29Þ

The number abundance of the sterile neutrino is propor-
tional to Yνs shown in Fig. 2.

1 The abundance is then high in
the large θ region, and there is a narrow peak at
Eres ¼ Oð0.01Þ GeV. Since large values of rs are realized
with large Yνs values, the factor of rs amplifies the effect of
Yνs . This dependence appears again in Fig. 6. Since the
energy density of the sterile neutrino becomes larger for the
larger θ values and the critical resonance energy of
Eres ¼ Oð0.01Þ GeV, the abundances of D and 4He are
also high in that region of Fig. 6. Also, the energy density is
proportional to the sterile neutrino temperature or rs shown
in Fig. 5. There is a rapid change of the rs value related to
whether the sterile neutrino is decoupled early or not. The
value is low at the left bottom and the left top in the
parameter space.

C. Constraint on E

First, we consider the case of the smallest number
abundance of the sterile neutrino realized in the parameter
region. Figure 7 shows the calculated abundances of
deuterium and 4He and also constraints on E similar to
those in Fig. 1. The mass of the sterile neutrino mνs is
assumed to be 1 eV, which was the mass scale discussed in
the reactor anomalies. The mixing angle θ and resonance
energy Eres are fixed to be 0.01 rad and 0.01 GeV,
respectively. From the rate equation result, these values
give the lowest reaction rate of the sterile neutrino, that is,
the smallest relic number abundance of the sterile neutrino.
Since the sterile neutrino increases the cosmic expansion
rate, constrained values of E are shifted to the left
side compared to those of Fig. 1. Namely, the 120 <
E=a4i ðs−2Þ < 149 (2σ) and −18 < E=a4i ðs−2Þ < 248 (4σ)
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FIG. 6. Contours of deuterium abundance (the top panel) and
4He mass fraction (the bottom panel) in the parameter plane of θ
and Eres (GeV) for the case ofmνs ¼ 1 keV and E ¼ 0. Parameter
ranges are 0.001 ≤ θ ≤ π=4 and 0.001 GeV ≤ Eres ≤ 10 GeV,
respectively. Dark- and light-shaded regions are 2σ and 4σ
allowed regions, respectively.

1We note that the values of Yνs as well as rs depend on δm2.
Therefore, contour shapes in Figs. 2 and 6 are different. The mass
assumed for Fig. 6 is larger than that of Fig. 2. Therefore, the
value of Teq is larger. The neutrino oscillation then becomes
effective earlier (see Sec. II C and Appendix A).

JANG, KUSAKABE, and CHEOUN PHYS. REV. D 97, 043005 (2018)

043005-8



regions are shifted to −56 < E=a4i ðs−2Þ < −26 (2σ) and
−195 < E=a4i ðs−2Þ < 72 (4σ), respectively. Therefore, the
2σ allowed region in Fig. 1 is totally replaced, and a part of
the parameter region of 72 < E=a4i ðs−2Þ < 248 (4σ) is
excluded by the sterile neutrino existent in the BBN epoch.
Figure 8 shows the contours for the case of

E=a4i ¼ 248 s−2, which is the maximum value of E in

the 4σ allowed region in Fig. 1, and mνs ¼ 1 eV. This E
value is excluded by the overabundance of deuterium when
the 1 eV sterile neutrino with θ ¼ 0.01 and Eres ¼
0.01 GeV is added.

D. Constraint on the mass

Figure 9 shows the primordial abundances as a function
of δm2 ≡m2

νs −m2
νa in the same condition of Fig. 7, i.e.,

θ ¼ 0.01 and Eres ¼ 0.01 GeV. The value of E is fixed by
the lowest values in the 2σ and 4σ allowed regions for the
case without the sterile neutrino. Assuming mνa ≪ 1 eV,
we neglected the mass of the active neutrino. Thus, δm2 is
approximately the same as the squared mass of the sterile
neutrino. For δm2 ≲ 10−9 GeV2, there is no contribution of
the sterile neutrino mass because the sterile neutrino is
relativistic during the BBN epoch. If the sterile neutrino is
relativistic in the BBN epoch, then the cosmic expansion
rate does not depend on the mass of the sterile neutrino but
only its number density.
However, if mνs is larger, then the sterile neutrino would

be nonrelativistic, and its mass would affect the cosmic
expansion rate. As a result, for E=a4i ¼ −18 s−2, δm2 is
allowed up to 1.7 × 10−7GeV2 by the 4σ constraint. On the
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value of E is constrained as −56 < E=a4i ðs−2Þ < −26 and
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FIG. 9. Primordial abundances of D and 4He as a function of
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other hand, there is no allowed region for the 2σ range. For
E=a4i ¼ 120 s−2, δm2 is allowed up to 3.3 × 10−8 GeV2 for
the 4σ range, and also there is no allowed region for the
2σ range.
In addition, if the relic sterile neutrino can be existed on

the brane in the present Universe, it can be a candidate of
dark matter. We can constrain it from the observational data
of the cosmic microwave background (CMB). However, we
do not know what happens during BBN and the present
time in the extra-dimensional universe. Perhaps the sterile
neutrino may diffuse in the extra-dimensional bulk asso-
ciated with bulk expansion, which is beyond the scope of
this paper and not treated in this study. We should then note
that what we derive in this paper is a constraint independ-
ently coming from the BBN consideration alone on the
physical environment in the short BBN epoch.
The Planck observation gives the following data of the

cold dark matter density parameter for the ΛCDM model
with Planck temperature power spectrum data alone [40]:

Ωch2 ¼ 0.1196� 0.0031: ð30Þ
This corresponds to the energy density of the cold dark
matter ρc,

ρc ¼ ð0.1261� 0.0033Þ × 10−5 GeVcm−3: ð31Þ
The present energy density of the sterile neutrino ρνs0
cannot be larger than the observed energy density of dark
matter. Therefore, if the relic sterile neutrino totally remains
on our brane until now, we have a constraint of ρνs0 ≤ ρc
that leads to

rsYνs0 ≤ ð8.257�0.22Þ×102 ðfor hEνs0i>mνsÞ; ð32Þ
mνsYνs0 ≤ ð4.362�0.11Þ×10−10 GeV ðfor hEνs0i<mνsÞ;

ð33Þ

where hEνs0i ¼ 3.151ð4=11Þ1=3Tγ0 is the average present
temperature of the sterile neutrino when it is massless, with
Tγ0 ¼ 2.7255 K the present CMB temperature [41]. The
first and second lines correspond to constraints on the
relativistic and nonrelativistic sterile neutrinos, respec-
tively. In our calculation, the maximum value of rs and
Yνs are ∼1 and ∼0.02, respectively. Thus, all parameter
space for the relativistic case is allowed by the CMB data.
For the nonrelativistic case, since the energy density of the
sterile neutrino is proportional to the mass, the allowed
region from the CMB data becomes narrow with increasing
sterile neutrino mass. We choose mνs ¼ 100 keV, i.e., the
mass scale with which the sterile neutrino becomes non-
relativistic at the typical BBN temperature of T9 ¼ 1. For
this mass value, the region of Eres ≲Oð0.001Þ GeV is only
allowed. As seen in Fig. 9, the constraint from the CMB
data sets the upper limit on mνs at δm

2 ¼ Oð10−15Þ GeV2.
Figure 10 shows the contours for the present energy

density of the relic sterile neutrino deduced from calculated

results of Yνs in the parameter plane of θ and Eres for
mνs ¼ 100 keV. The black dashed line corresponds to the
present energy density of cold dark matter [Eq. (31)]. The
right upper region from this line is excluded.
Figure 11 shows the same contours of light element

abundances as in Fig. 6 for the case of the 1 MeV sterile
neutrino and E=a4i ¼ −20 s−2, for example. This value of
E=a4i ¼ −20 s−2 is near the lowest allowed value in Fig. 1
for the 4σ limit. In this case, there is no parameter region
that satisfies both of the 2σ limits on D/H and Yp. The 4σ
allowed region is located in the left bottom region.
In the present model of a sterile neutrino, the effective

mixing angle depends on the energy by Eq. (12). (See also
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Figs. 15 and 16 in Appendix B.) Results of neutrino
experiments, therefore, do not always exclude the param-
eter region for large values of θ. For example, if we assume
the resonance energy Eres ¼ 400 MeV (corresponding to
Fig. 4 in Ref. [6]), for the energy region of the IceCube
measurement [5], i.e., 320 GeV–20 TeV, the effective
mixing angle becomes negligibly small. The IceCube data
are therefore consistent with this model, independently of
the mixing angle θ. The experimental verification of the
mixing of a sterile neutrino, which propagates to the bulk
space, then requires measurements of the effective mixing
angle for various neutrino energies.

E. Dependence of primordial abundances on δm2 and θ

Figure 12 shows the primordial abundances as a function
of δm2 and the mixing angle θ. The values of E and Eres are
fixed, respectively, at 0 and 0.03 GeV. If δm2 is larger than
10−8 GeV2, the primordial abundances are increased
because the cosmic expansion rate depends on the mass
of the sterile neutrino by Eq. (7). In the high mass region of
the figure, deuterium and 4He abundances are high. If the
mixing angle is increased, the reaction rate of the sterile
neutrino is also increased. As a result, higher number and
energy densities of the sterile neutrino are obtained.
Therefore, final abundances of light elements become
higher by increasing the mixing angle θ similarly to the

trend in Fig. 9. If the δm2 value is higher than
ð2–3Þ × 10−8 GeV2, the region is excluded by overpro-
duction of the deuterium. Similarly to the case of Fig. 9,
only the relativistic mass region is allowed by the CMB
observational data in this case.

F. Dependence of primordial abundances
on δm2 and Eres

Figure 13 shows the primordial abundances as a function
of δm2 and Eres. The values of E and θ are fixed,
respectively, at 0 and 0.03 GeV. In the figure, the depend-
ence on δm2 is similar to Fig. 12 for the same reason. The
curved shape at the specific Eres value appears for the
following reason: the number abundance of the sterile
neutrino is the highest when the resonance energy is equal
to the energy of the sterile neutrino during its decoupling
epoch. Then, the higher number abundance of sterile
neutrino around Eres ≃ Teq ∼ 0.04 GeV makes the larger
energy density. It affects the cosmic expansion rate more
and results in higher primordial abundances. The curved
shape is then similar to the pattern in Fig. 2. The region of
δm2 ≳ 2 × 10−8 GeV2 and Eres ≳ 0.01 GeV is excluded
by the overproduction of deuterium, also in this case.
We find a parameter region for the 2σ allowed region at
Eres ∼ 0.01 GeV and δm2 ≲ 10−8 GeV2.
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G. Effects of sterile neutrino decay

The sterile neutrino decay into an active neutrino and a
photon, i.e., νs → νa þ γ, can also affect the primordial
abundances of light elements. But the decay effect is
neglected in this study because of the following arguments.
There are many investigations of the decay effects, but most
of them have been done only for the case of the constant
decay rate that corresponds to the constant mixing
angle. Although a photon coupled to a fermion loop has a
suppressed matrix element, a photon coupled to a hypotheti-
cal neutrino magnetic moment can lead to a large decay rate.
For a massive sterile neutrino withmνs ≳Oð10Þ MeV, an

energetic photon generated from the decay induces electro-
magnetic cascade showers and destroy nuclei [42–54].
Although 7Be and 7Li nuclei can be destroyed, destruction
of D is more efficient. Therefore, they could not be a solution
to the Li problem. For a light sterile neutrino with
mνs ∼ 3–5 MeV, the photon from the decay can effectively
destroy 7Be without too much destruction of D [55,56]. As a
result, this light sterile neutrinomayprovide theonly solution
to theLi problemwithin the framework of the radiative decay
of light exotic particles. A similar effect appears also for the
case in which a sterile neutrino decays into an electron-
positron pair, i.e., νs → νa þ eþ þ e− is predominant [34].
In this paper, we assumed a light sterile neutrino with

mνs ≲ 1 MeV. If the mass is less than twice the photodis-
integration threshold energy for 7Be, i.e., 2 × 1.59 MeV,
there is no nucleosynthetic effect by the decay. On the other
hand, if the mass is larger, nonthermal nuclear photodis-
integrations triggered by the decay can affect elemental
abundances, as argued above.
Moreover, the decay rate has a scaling with the effective

mixing angle and the mass of the sterile neutrino [Eq. (B4)].
The sterile neutrino decay is more effective in the resonant
mixing epochs. Also, the decay rate becomes smaller with
decreasing sterile neutrino mass according to a strong
dependence on the mass. Therefore, it is expected that
effects of the sterile neutrino decay depend on the param-
eters of the sterile neutrino and the extra-dimensional
model intricately. The sterile neutrino decay and the effect
on the primordial nucleosysthseis should be studied in
detail in the future.

V. CONCLUSION

In this work, we study effects of a sterile neutrino which
can propagate in the bulk and brane in the five-dimensional
universe on BBN. In the present model, the cosmic
expansion rate is modified by the energy density of the
sterile neutrino and the existence of the fifth dimension
itself. We then deduce parameter regions relevant to the
multidimensional sterile neutrino by using results of the
BBN calculation. The five-dimensional effect is described
by one parameter E, and the energy density of the sterile
neutrino depends on three parameters, i.e., Eres, θ, and mνs .

This model therefore has four physical parameters. Two of
them are integration constants: (1) E comes from the
integration of five-dimensional Einstein equation, and
(2) ϵs describes the shortcut, i.e., the difference of geodesics
in the bulk and on the brane in five-dimensional cosmology.
The latter is reflected in the sterile neutrino resonance
energy Eres in Eq. (14). The other two parameters are the
mixing angle and mass scale of the sterile neutrino. These
four parameters modify the cosmic expansion rate and the
energy density in the BBN epoch. Taking into account the
modified cosmic expansion rate, we investigated how
primordial abundances are changed and constrained the
parameters using the observational abundance data.
First, the parameter E manifests itself in the cosmic

expansion rate and influences the primordial abundances.
When we do not consider the sterile neutrino, the
paremeter E is constrained, 120 < E=a4i ðs−2Þ < 149 and
−18 < E=a4i ðs−2Þ < 248, from the observational 2σ and 4σ
limits, respectively, on abundances (Fig. 1).
Second, we took into account the effect of the energy

density of the sterile neutrino, which can propagate in the
bulk space. The relic abundance and the temperature of the
sterile neutrino are calculated by solving the rate equation.
The energy density of the sterile neutrino depends on
not only the mass but also the number density and the
temperature. Since the mixing angle and the resonance
energy are related to the reaction rate of the sterile neutrino,
the two parameters determine the relic abundance of the
sterile neutrino. The parameters are then constrained
through the comparison of the BBN calculation results
and observed elemental abundances. The final abundance
of the sterile neutrino is increased when the sterile neutrino
has a large reaction rate.
We found that the relic abundance is large for large values

of θ and a characteristic resonance energy Eres ∼ 0.04 GeV
(Fig. 2). This value of the resonance energy corresponds to
the temperature at which the average scattering time scale
equals the overlap time scale of wave packets for active
neutrinos. The ratio of the temperatures of the sterile and
active neutrinos, rS, after the decoupling of the active
neutrino depends on the decoupling temperature of the sterile
neutrino. The decoupling temperature is determined by the
parameters θ andEres. It is found that the ratio is significantly
changed depending onwhether the decoupling occurs before
or after the quark-hadron transition (Fig. 5).
When the sterile neutrino is taken into account, the

cosmic expansion rate is increased, and high E values are
excluded. For example, we observed that the constraints on
E in Fig. 1 are shifted to −56 < E=a4i ðs−2Þ < −26 (2σ) and
−195 < E=a4i ðs−2Þ < 72 (4σ) in the case of mνs ¼ 1 eV,
θ ¼ 0.01, and Eres ¼ 0.01 GeV (Fig. 7).
When the sterile neutrino is relativistic during BBN, the

energy density of the sterile neutrino is determined by the
relic abundance Yνs and the temperature ratio rS. The energy
density is larger for a sterile neutrino which decouples later
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since its abundance and the temperature ratio are larger. We
then derived a constraint on the parameters for the case of
E ¼ 0 (Fig. 6). If themass of the sterile neutrino is larger than
∼1 MeV, then it becomes nonrelativistic in the BBN epoch.
So, the energydensity of the sterile neutrino is proportional to
its mass. It gives a large energy density, and it is constrained
strongly. For the case of mνs ≥ 1 MeV, there is no allowed
parameter region consistent with the 2σ limit from observa-
tional data (Fig. 11).
We showed a result of a parameter search in the plane

of (θ, mνs ) for a fixed Eres value. We found that the region
of mνs ≳Oð10−4Þ GeV is excluded within all mixing
angle parameter space searched in this study when
Eres ¼ 0.03 GeV. On the other hand, all mixing angle
parameter space is allowed when mνs ≲Oð10−4Þ GeV
within 4σ range. This is because the heavier mass leads
to a larger energy density, and the larger mixing angle leads
to a later decoupling and a larger number density. In both
cases, the energy density is larger, and that parameter
region is constrained (Fig. 12). We also showed a result of a
parameter search in the plane of (Eres, mνs ) for a fixed θ
value. We then checked trends of large effects for larger
mass and the characteristic resonance energy (Fig. 13).
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APPENDIX A: FLAVOR-CHANGE
PROBABILITY Pas

When the matter effect [24,29,30] is taken into account
in the current five-dimensional model [6], the effective
mixing angle becomes

sin22~θ ¼ sin22θ

sin22θ þ cos22θ
h
1þ CαG2

FT
4E2

cos 2θαδm2 − ð E
Eres

Þ2
i
2

¼ sin22θ
Q2

αðθ; δm2; Eres;T; EÞ
; ðA1Þ

where α is the fine structure constant andCe ¼ 1.22 (for νe)
and Cμ;τ ¼ 0.34 (for νμ and ντ) are flavor (α) dependent
constants. In the second equality, we defined a modification
factor for the mixing angle by the matter and the extra-
dimension effects, i.e.,

Qαðθ; δm2; Eres;T; EÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin22θ þ cos22θ

�
1þ CαG2

FT
4E2

cos 2θαδm2
−
�

E
Eres

�
2
�
2

s
:

ðA2Þ

The probability of the flavor change of νa ↔ νs after
propagation of time t [6] taking into account the evolution
of the wave packet [31,32] is given by

Pas ¼
1

2
sin22~θ

�
1 − cos

�
δm2

matt
2E

�

× exp

�
−
�

t
Lcoh
mat

�
2

− ð1þ κÞ ðδm
2
matÞ2

32σ2pp2

�

; ðA3Þ

where δm2
mat is given by

δm2
mat ¼ δm2Qαðθ; δm2; Eres;T; EÞ: ðA4Þ

The coherent length Lcoh
mat is defined [57] as

Lcoh
mat ¼ Lcoh

vac

���� δm2
mat

δm2 þ cos 2θ½CαG2
FT

4E2

α − cos 2θδm2ð E
Eres

Þ2�

����;
ðA5Þ

where the coherent length in vacuum is given by

Lcoh
vac ¼ 2

ffiffiffi
2

p
σx

2p2

δm2
: ðA6Þ

The quantity κ is given by

κ ≈
p2
1 − p2

2

δm2
mat

; ðA7Þ

with p1 and p2 average momenta of mass eigenstates 1 and
2, respectively, and σx and σp the widths of the position and
momentum, respectively. There is a relation of σxσp ¼ 1=2.
The first term in Eq. (A3) corresponds to the contribution

of squared terms of mass eigenstates 1 and 2, while the
second oscillation term with damping corresponds to the
interference term of states 1 and 2.
Taking p ∼ σp ¼ 1=ð2σxÞ ∼ T [24], because of

κ ≤ T2=δm2
mat, the amplitude of second term in the expo-

nential in Eq. (A3) is

ð1þ κÞ ðδm
2
matÞ2

32σ2pp2
≤
δm2

mat

T2
: ðA8Þ

We assume that this factor is always much less than unity
and can be neglected in Eq. (A3).
We note that the coherence length Lcoh

mat for θ ≪ 1 is
roughly given by that of the vacuum oscillation except a
region where the sum of the second and third terms in the
square brackets in Eq. (A1) is comparable to unity. When
the correction by the matter potential plus the extra-
dimensional term is dominant, Lcoh

mat ¼ Lcoh
vac= cos 2θ. On

the other hand, when the correction is negligible, Lcoh
mat ¼

Lcoh
vac is realized. We then approximate the coherent length
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by that of the vacuum oscillation. Using approximations
above, the flavor-change probability is given by

Pas¼
1

2
sin22~θ

�
1−cos

�
δm2

matt
2E

�
exp

�
−
�

t
Lcoh
vac

�
2
�


:

ðA9Þ

The production rate of the sterile neutrino is given by

Γνs ¼ ΓwPas: ðA10Þ
This production rate is evaluated with the mean life of

the active neutrino against destruction via the weak
interaction [24]. The mean life is given [24] by the average
scattering time scale,

tsc ≃ 1

G2
FT

5
: ðA11Þ

This time scale is shorter than the cosmic expansion time
scale before the active neutrino decoupling.
The coherent length is

Lcoh
vac ¼ 2

ffiffiffi
2

p
σx

2p2

δm2
∼

T
δm2

: ðA12Þ

This is equivalent to the overlap time scale of neutrino wave
packets tcoh ¼ Lcoh

vac .

1. Matter effect

First, we consider the neutrino oscillation in the case
without the extra-dimensional correction. The ratio of the
two different time scales is given by

tcoh

tsc
≃ T=δm2

1=ðG2
FT

5Þ ¼
G2

FT
6

δm2
: ðA13Þ

Then, the time scales are comparable at the temperature of

Teq ¼
�
δm2

G2
F

�
1=6

¼ 44 MeV

�
δm2

1 eV2

�
1=6

: ðA14Þ

Then, we obtain tcoh ≥ tsc for T ≥ Teq and tsc ≥ tcoh for
T ≤ Teq. Therefore, the coherence survives for T ≥ Teq,
while it is lost for T ≤ Teq. We note that at Teq the matter
term in δm2

mat becomes

CαG2
FT

4
eqE2

eq

cos 2θαδm2
∼
1

α
: ðA15Þ

This temperature thus roughly corresponds to the epoch
when the matter effect becomes unimportant.
The flavor-change probability then scales as

Pas ≈

8<
:

1
2
sin22~θ

n
1 − cos

�
δm2

mattsc
2E

	o
¼ sin22~θsin2

�
δm2

mattsc
4E

	
ðfor T ≥ TeqÞ

1
2
sin22~θ ðfor T ≤ TeqÞ:

ðA16Þ

We thus find that after the typical temperature Teq the
flavor-change probability does not oscillate since the
coherence is lost during the propagation.
In the early epoch of T ≥ Teq, the oscillation phase

reduces to

δm2
mattsc
4E

≃ δm2

4E

�
CαG2

FT
4E2

αδm2

��
1

G2
FT

5

�
≃ 1

α
: ðA17Þ

The oscillation is therefore maximally operative. We can
then take the time average of the probability. As a result, the
flavor-change probability for any temperature is given by

Pas ≈
1

2
sin2 2~θ: ðA18Þ

2. Extra-dimensional effect

Second, we consider the effect of the extra dimension. If
the term ðE=EresÞ2 in Eq. (A1) effectively increases the
effective mixing angle, the flavor-change probability can
increase. The sterile neutrino production rate Γνs is then
increased. However, when the factor Qα is significantly

decreased by the extra-dimensional term, the term δm2
mat

becomes small. Therefore, the approximation of the maxi-
mal oscillation can be broken. In an extreme case in which
the factor Qα is very small, the oscillation phase is
δm2

mattsc=ð4EÞ ≪ 1. In this case, the flavor-change prob-
ability for T ≥ Teq is modified to

Pas ≈ sin22~θsin2
�
δm2

mattsc
4E

�
2

≃ sin22θ

�
δm2

G2
FT

6

�
2

¼ sin22θ

�
T
Teq

�
−12

ðfor T ≥ TeqÞ: ðA19Þ

We find that the flavor-change probability is smaller at high
temperatures since there is not enough time for oscillation.
We note that this probability scales similarly to that of the
3D space case with ϵs ¼ 0 [see Eqs. (A1) and (A18)]. We
thus confirm that the resonant extra-dimensional effect
possibly increases the effective mixing angle while it
simultaneously increases the oscillation time scale, i.e.,
tosc ¼ 4E=δm2

mat. As a result, the flavor-change probability
is not changed drastically from that of the standard three-
dimensional case.

JANG, KUSAKABE, and CHEOUN PHYS. REV. D 97, 043005 (2018)

043005-14



APPENDIX B: SOLUTION OF THE
BOLTZMANN EQUATION

In this paper, we utilized the rate equation instead of the
Boltzmann equation in the estimation of the relic energy
density of the sterile neutrino. We check how well the result
of the rate equation approximates the exact result.

1. ν-oscillation in the Universe

Before the decoupling of active neutrinos, the neutrino
oscillation phase is given by

αosc ¼
δm2

mattsc
4E

ðB1Þ

¼ 3.8 × 108
�
δm2

mat

eV2

��
tsc
s

��
E

MeV

�
−1
: ðB2Þ

At the beginning of BBN of t ¼ 1 s and T ¼ 1 MeV, the
neutrino oscillation of νa and νs is very frequent on the
cosmic expansion time scale for δm2 ≳ 1 eV2. In the early
Universe of T > 1 MeV, this phase is usually larger than
unity [Eq. (A17)]. For simplicity, we assume a case in
which the flavor-change probability is given by Eq. (A18).
The production rate of νs is given by

ΓνsðEÞ ¼
1

2
sin2ð2~θðEÞÞΓWðEÞ; ðB3Þ

where the factor sin2ð2~θÞ=2 is the probability of the flavor
change from νa to νs after the production of νa and ΓW is the
rate of weak reaction which produces νa.
When the value of ~θ is large, i.e., ~θ ≲ 1, the flavor change

becomes maximally effective:
(1) If this effective epoch is before the freeze-out of νa,

Γνs > H−1 is realized. Then, the νs abundance
approaches the equilibrium value.

(2) If this effective epoch is after the freeze-out of νa, the
oscillation leads to an equalization of energy den-
sities for νs and νa. Because of the energy con-
servation, however, the total neutrino energy density
is unchanged. Therefore, the additional neutrino
energy, i.e., Δρν, is not affected.

We assume that the mass-squared difference is larger
than δm2 ∼ eV2 as considered by Pas et al. There are
constraints on the mixing angle, e.g., sin2 2~θ24 ≲ 10−1 for
δm2

41 ∼ 1 eV2 (IceCube) [5] and jUμ4j2 < 0.041 and
jUτ4j2 < 0.18 for δm2 > 0.1 eV2 (90% C.L.) (Super-
Kamiokande) [58]. We then assume that the bare mixing
angle θ is significantly smaller than unity in this case.

2. Upper limit on the mass

We focus on the relatively heavy sterile neutrino case and
consider an upper limit on the mass. If the sterile neutrino
can decay before the active neutrino decoupling, there is no

sterile neutrino in the BBN epoch. The νs mass can then be
constrained from the requirement of τ > 1 s in order to
have any effect on BBN. The decay rate is given (Eq. (7.12)
in Ref. [34]) by

Γdec ∼ 1.87 × 10−5 s−1
�

~θ

10−3

�2� mνs

14 MeV

�
5

: ðB4Þ

The condition of Γdec ¼ τ−1 < 1 s−1 is then satisfied when

mνs < 20 MeV

�
~θ

0.1

�−2=5

: ðB5Þ

3. Full width at 1=e maximum of the resonance

A maximum in the effective mixing angle as a function
of E is derived as follows. We define the function

fðE;TÞ ¼ sin22~θ

¼ sin22θ
sin22θ þ cos22θ½1þ FðEres; TÞE2�2 ; ðB6Þ

where we defined

FðEres; TÞ ¼ DðTÞ − 1=E2
res; ðB7Þ

DðTÞ ¼ CαG2
FT

4

cos 2θαδm2
: ðB8Þ

In these equations, θ is the bare mixing angle between the
sterile and active neutrinos, Eres is a parameter related to the
extra dimension [Eq. (14)], Cα is the flavor (α) dependent
constant, GF is the Fermi constant, α is the fine structure
constant, and δm2 is the mass-squared difference of the
sterile and active neutrinos.
The derivative of this functionwith respect toE is given by

dfðE;TÞ
dE

¼ −4sin22θcos22θ½1þFðEres;TÞE2�FðEres;TÞE
fsin22θþ cos22θ½1þFðEres;TÞE2�2g2 :

ðB9Þ

Maxima exist for df=dE ¼ 0, i.e.,

½1þ FðEres; TÞE2�FðEres; TÞ ¼ 0: ðB10Þ

1. FðEres; TÞ ¼ 0 case
When FðEres; TÞ ¼ 0 is satisfied, DðTÞ ¼ 1=E2

res holds.
In this case, the effective mixing angle is the same as the
mixing angle θ independent of E. Therefore, fðE;TÞ is
constant, and the condition df=dE ¼ 0 is realized for any
E. Thus, at the temperature satisfyingDðTÞ ¼ 1=E2

res, there
is no maximum. This temperature occurs only once.
2. E2 ¼ −1=FðEres; TÞ case
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For this case, the peak energy is given by

EpeakðEres; TÞ ¼
Eresffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 −DðTÞE2
res

p : ðB11Þ

The maximum is given by

fðEpeak;TÞ ¼
sin22θ

sin22θ þ cos22θ½1þ FðEres; TÞE2
peak�2

¼ 1:

ðB12Þ
This maxima exist only for FðEres; TÞ < 0, i.e., DðTÞ <
1=E2

res. Therefore, the resonance appears after the temper-
ature of the Universe decreases to some critical temperature.
After the condition DðTÞE2

res ¼ 1 is satisfied, the peak
energy quickly moves from infinity to Eres as the temper-
ature decreases. The asymptotic value of Epeak at low T
values is Eres. We note that sterile neutrinos with energies
below a critical value do not experience any resonance
since this peak energy never overlaps the sterile neutrino
energy. On the other hand, a sterile neutrino with energies
above the critical value has two resonance epochs in
general. The sterile neutrino energy that is redshifting once
becomes larger than Epeak while the peak energy is
decreasing. After that, the redshifting energy becomes
smaller than Epeak ≈ Eres. These behaviors of the first
and second resonances are shown in Appendix B 6 below.
The full width at 1=e maximum of sin2 2~θðEÞ (for

F < 0) is derived as follows:

sin22~θ¼ sin22θ
sin22θþ cos22θ½1þFðEres;TÞE2�2 ≥

1

e
ðB13Þ

⇒
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tan 2θ

ffiffiffiffiffiffiffiffiffiffiffi
e − 1

pq
≤

E
Epeak

≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan 2θ

ffiffiffiffiffiffiffiffiffiffiffi
e − 1

pq

ðB14Þ

⇒ 1 − θ
ffiffiffiffiffiffiffiffiffiffiffi
e − 1

p
≤

E
Epeak

≤ 1þ θ
ffiffiffiffiffiffiffiffiffiffiffi
e − 1

p
ðfor θ ≪ 1Þ:

ðB15Þ
We note that the energy at which the maximum of the

function f appears, i.e., Epeak, depends on T. Especially, at
the second resonance, the matter term DðTÞE2

res in
Eq. (B11) is subdominant, and the energy Epeak does not
significantly dependent on T. When we approximate Epeak

with Eres, the full width at 1=e maximum is given by

ΔE
Eres

≈ 2θ
ffiffiffiffiffiffiffiffiffiffiffi
e − 1

p
ðfor θ ≪ 1Þ ðB16Þ

⇒ Δ ln a ¼ 2θ
ffiffiffiffiffiffiffiffiffiffiffi
e − 1

p
ðfor θ ≪ 1Þ; ðB17Þ

where Δ ln a is the scale factor interval in logarithmic scale
corresponding to the duration of the second resonance of
the mixing angle.

4. Boltzmann equation

As the neutrino energy redshifts, it pass through the
resonant region in the effective mixing angle ~θðEÞ.
Although the width of resonance can be narrow, when
T ∼ Eres is satisfied, all the energy region of E ∼ T
experiences the resonance peak. Therefore, the approxi-
mation of the Boltzmann equation by the rate equation
would not introduce a very large error in the final sterile
neutrino abundance, although there is certainly some error.
The Boltzmann equation of the sterile neutrino in the

Friedmann-Lemaître-Robertson-Walker universe is given
[23,59] by

ð∂t −Hp∂pÞfkðp; tÞ ¼ Ha∂afkðy; aÞ ¼ Icoll; ðB18Þ

where

Icoll ¼
1

2Ek

X
process

Z Y
i≠k

�
d3pi

2Eið2πÞ3
�Y
f≠k

�
d3pf

2Efð2πÞ3
�
ð2πÞ4

× δð4Þ
�X

i

pi −
X
f

pf

�
1

2
SjAifj2Fðfi; ffÞ

ðB19Þ

is the collision integral with

Fðfi;ffÞ¼−
Y
i

fi
Y
f

ð1−ffÞþ
Y
f

ff
Y
i

ð1−fiÞ ðB20Þ

the factor for the phase space. In these equations, t is the
cosmic time; p is the momentum; H ¼ _a=a is the cosmic
expansion rate with aðtÞ the scale factor of the universe; fl
is the phase space distribution function of a fermion l; El is
the total energy of l; indices i and j are used for particles in
the initial and final states, respectively; the factor of 1=2 is
for taking a spin average for particles in the initial state;
S ¼ 1=m! with m the number of identical particles in the
final state; and Aij is the matrix element. In Eq. (B19), the
sum is taken over process. At the first equality in Eq. (B18),
the variable y ¼ paðtÞ is defined, and the distribution
function fða; yÞ is considered.
Matrix elements of a sterile neutrino are listed in Tables 1

and 2 in Ref. [59]. We consider the relatively light sterile
neutrino, i.e., mνs < 2me, where me ¼ 0.510999 MeV is
the electron mass. Then, the sterile neutrino decay into an
eþe− pair plus an active neutrino does not occur energeti-
cally. In addition, since we consider cosmic temperatures
which are well above the electron mass, terms proportional
to m2

e in matrix elements can be neglected. Furthermore, it
is assumed that all fermions except the sterile neutrino have
the exact Fermi-Dirac distribution and that masses of those
fermions are neglected. In the decay and scattering proc-
esses, we adopt indices as 1 → 2þ 3þ 4 and 1þ 2 →
3þ 4 and identify index 1 to be the sterile neutrino.
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The collision term for decay processes of νs → ντ þ
νa þ νaða ¼ e; μ; τÞ is given by

Icoll;d ¼
4

ð2πÞ5G
2
F
~θ2

1

E1

Z
d3p2

E2

d3p3

E3

d3p4

E4

× δð4Þ½p1 − ðp2 þ p3 þ p4Þ�ðp1 · p4Þðp2 · p3Þ
× Fðfi; ffÞ: ðB21Þ

For the scattering processes, it is

Icoll;s ¼
4ð1þ ~g2L þ g2RÞ

ð2πÞ5 G2
F
~θ2

1

E1

Z
d3p2

E2

d3p3

E3

d3p4

E4

× δð4Þ½p1 þ p2 − ðp3 þ p4Þ�½2ðp1 · p4Þðp2 · p3Þ
þ ðp1 · p2Þðp3 · p4Þ�Fðfi; ffÞ; ðB22Þ

where we defined

~gL ¼ −
1

2
þ sin2 θW; ðB23Þ

gR ¼ sin2 θW; ðB24Þ
with the weak angle sin2 θW ¼ 0.23 [39]. We considered
11 processes in Ref. [59] for scattering processes
which are νsþ ν̄a→νaþ ν̄a, νsþνa→ντþνa, νsþ ν̄τ→
νeðμÞ þ ν̄eðμÞ, νs þ ν̄τ → eþ þ e−, and νs þ e� → ντ þ e�.
The two terms in Eq. (B22) are separately defined as

Ið1Þcoll;s ¼
4ð1þ ~g2L þ g2RÞ

ð2πÞ5 G2
F
~θ2

1

E1

Z
d3p2

E2

d3p3

E3

d3p4

E4

× δð4Þ½p1 þ p2 − ðp3 þ p4Þ�
× 2ðp1 · p4Þðp2 · p3ÞFðfi; ffÞ ðB25Þ

Ið2Þcoll;s ¼
4ð1þ ~g2L þ g2RÞ

ð2πÞ5 G2
F
~θ2

1

E1

Z
d3p2

E2

d3p3

E3

d3p4

E4

δð4Þ½p1 þ p2 − ðp3 þ p4Þ�ðp1 · p2Þðp3 · p4ÞFðfi; ffÞ: ðB26Þ

Performing the integrals, we obtain the exact formulas for p1 ≠ 0 as follows. For the decay term,

Icoll;d ¼
1

2π3
G2

F
~θ2
�
−
f1ðE1Þ
p1

�Z E1−p1
2

0

dE4

Z
p1þp4

jp1−p4j
dRþ

Z E1þp1
2

E1−p1
2

dE4

Z
E1−E4

jp1−p4j
dR

�

×½1 − f4ðE4Þ�½ðE1 − E4Þ2 − R2�
�
p4 −

p2
1 þ p2

4 − R2

2E1

�
G1ðE1; E4; RÞ

þ 1 − f1ðE1Þ
p1

�Z E1−p1
2

0

dE4

Z
p1þp4

jp1−p4j
dRþ

Z E1þp1
2

E1−p1
2

dE4

Z
E1−E4

jp1−p4j
dR

�

× f4ðE4Þ½ðE1 − E4Þ2 − R2�
�
p4 −

p2
1 þ p2

4 − R2

2E1

�
G2ðE1; E4; RÞ



ðB27Þ

G1ðE1; E4; RÞ≡
Z

E2max;d

E2min;d

½1 − f2ðE2Þ�½1 − f3ðE1 − E4 − E2Þ�dE2 ðB28Þ

¼
8<
:

T
1−e−a2

h
ln expðx2max;dÞþ1

expðx2max;dÞþexpða2Þ − ln expðx2min;dÞþ1

expðx2min;dÞþexpða2Þ
i

ða2 ≠ 0Þ

T
�

1
expðx2min;dÞþ1

− 1
expðx2max;dÞþ1

	
ða2 ¼ 0Þ

ðB29Þ

G2ðE1; E4; RÞ≡
Z

E2max;d

E2min;d

f2ðE2Þf3ðE1 − E4 − E2ÞdE2 ðB30Þ

¼
8<
:

T
ea2−1

h
ln expðx2max;dÞþ1

expðx2max;dÞþexpða2Þ − ln expðx2min;dÞþ1

expðx2min;dÞþexpða2Þ
i

ða2 ≠ 0Þ

T
�

1
expðx2min;dÞþ1

− 1
expðx2max;dÞþ1

	
ða2 ¼ 0Þ

ðB31Þ

x2min;d ¼
E2min;d

T
¼ E1 − E4 − R

2T
ðB32Þ

EFFECTS OF STERILE NEUTRINOS AND AN EXTRA … PHYS. REV. D 97, 043005 (2018)

043005-17



x2max;d ¼
E2max;d

T
¼ E1 − E4 þ R

2T
ðB33Þ

a2 ¼
E1 − E4

T
; ðB34Þ

where the first and second terms in Eq. (B27) correspond to the decay and inverse-decay terms, respectively. For scattering
terms, we obtain

Ið1Þcoll;s ¼
ð1þ ~g2L þ g2RÞ

2π3
G2

F
~θ2
�
−
f1ðE1Þ
p1

�Z E1þp1
2

E1−p1
2

dE4

Z
p1þE4

E1−E4

dRþ
Z

∞

E1þp1
2

dE4

Z
E4þp1

E4−p1

dR

�

× ½1 − f4ðE4Þ�½R2 − ðE1 − E4Þ2�
�
p4 −

p2
1 þ p2

4 − R2

2E1

�
G3ðE1; E4; RÞ

þ 1 − f1ðE1Þ
p1

�Z E1þp1
2

E1−p1
2

dE4

Z
p1þE4

E1−E4

dRþ
Z

∞

E1þp1
2

dE4

Z
E4þp1

E4−p1

dR

�

× f4ðE4Þ½R2 − ðE1 − E4Þ2�
�
p4 −

p2
1 þ p2

4 − R2

2E1

�
G4ðE1; E4; RÞ



ðB35Þ

G3ðE1; E4; RÞ≡
Z

∞

E2min;s

f2ðE2Þ½1 − f3ðE1 − E4 þ E2Þ�dE2 ðB36Þ

¼

8>><
>>:

T
1−e−a2

�
a2 − ln expðx2min;sþa2Þþ1

expðx2min;sÞþ1

�
ða2 ≠ 0Þ

T 1
expðx2min;sÞþ1

ða2 ¼ 0Þ
ðB37Þ

G4ðE1; E4; RÞ≡
Z

∞

E2min;s

½1 − f2ðE2Þ�f3ðE1 − E4 þ E2ÞdE2 ðB38Þ

¼

8>><
>>:

T
ea2−1

�
a2 − ln expðx2min;sþa2Þþ1

expðx2min;sÞþ1

�
ða2 ≠ 0Þ

T 1
expðx2min;sÞþ1

ða2 ¼ 0Þ
ðB39Þ

x2min;s ¼
E2min;s

T
¼ R − E1 þ E4

2T
ðB40Þ

a2 ¼
E1 − E4

T
; ðB41Þ

and

Ið2Þcoll;s ¼
ð1þ ~g2L þ g2RÞ

4π3
G2

F
~θ2
�
−
f1ðE1Þ
p1

Z
∞

0

f2ðE2ÞdE2

×
Z

p1þp2

jp1−p2j
dR½ðE1 þ E2Þ2 − R2�

�
p2 −

R2 − p2
1 − p2

2

2E1

�
G5ðE1; E2; RÞ

þ 1 − f1ðE1Þ
p1

Z
∞

0

½1 − f2ðE2Þ�dE2

×
Z

p1þp2

jp1−p2j
dR½ðE1 þ E2Þ2 − R2�

�
p2 −

R2 − p2
1 − p2

2

2E1

�
G6ðE1; E2; RÞ



ðB42Þ
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G5ðE1; E2; RÞ≡
Z

E4max;s

E4min;s

½1 − f4ðE4Þ�½1 − f3ðE1 þ E2 − E4Þ�dE4 ðB43Þ

¼

8>><
>>:

T
1−e−a4

h
ln expðx4max;sÞþ1

expðx4max;sÞþexpða4Þ − ln expðx4min;sÞþ1

expðx4min;sÞþexpða4Þ
i

ða4 ≠ 0Þ

T
�

1
expðx4min;sÞþ1

− 1
expðx4max;sÞþ1

	
ða4 ¼ 0Þ

ðB44Þ

G6ðE1; E2; RÞ≡
Z

E4max;s

E4min;s

f4ðE4Þf3ðE1 þ E2 − E4ÞdE4 ðB45Þ

¼

8>><
>>:

T
ea4−1

h
ln expðx4max;sÞþ1

expðx4max;sÞþexpða4Þ − ln expðx4min;sÞþ1

expðx4min;sÞþexpða4Þ
i

ða4 ≠ 0Þ

T
�

1
expðx4min;sÞþ1

− 1
expðx4max;sÞþ1

	
ða4 ¼ 0Þ

ðB46Þ

x4min;s ¼
E4min;s

T
¼ E1 þ E2 − R

2T
ðB47Þ

x4max;s ¼
E4max;s

T
¼ E1 þ E2 þ R

2T
ðB48Þ

a4 ¼
E1 þ E2

T
; ðB49Þ

where the first and second terms in Eqs. (B35) and (B42)
correspond to the collisional destruction and production
terms, respectively. We note that in this formulation we

adopted variables R ¼ p1 − p4 (for terms Icoll;d and Ið1Þcoll;s)

and R ¼ p1 − p2 (for a term Ið2Þcoll;s).
Especially when the mass of the sterile neutrino is much

larger than the temperature, the Pauli blocking effect is
negligible in the phase factor [Eq. (B20)]. Then, the decay
term in Eq. (B27) becomes

Idecaycoll;d ¼ −
1

192π3
G2

F
~θ2m5

νsf1ðE1Þ: ðB50Þ

This gives the lifetime of the sterile neutrino at low
temperatures, i.e.,

τνsðT ¼ 0Þ ¼
�

1

192π3
G2

F
~θ2m5

νs

�
−1
: ðB51Þ

By using replacement for terms of the distribution
function as ð1 − flÞ ↔ 1 and fl ¼ ½expðEl=TÞ þ 1�−1 ↔
expð−El=TÞ, inaccurate and analytic expressions for the
collision terms are derived and used frequently. For
example, Eq. (23) in Ref. [59] for pνs ¼ 0 (Eνs ¼ mνs ) is
reproduced using the replacement in Eqs. (B21) and
(B22). However, an error of a factor of up to 2 is
introduced by each replacement of ð1 − flÞ ↔ 1 or fl ¼
½expðEl=TÞ þ 1�−1 ↔ expð−El=TÞ, in general. Therefore,
we should use the exact collision terms as given above.

5. Abundance increase at the resonance

We assume that the sterile neutrino is ultrarelativistic
before the decoupling. The equilibrium distribution function
of the fermion, i.e., the Fermi-Dirac function, is given by

fEQðE; tÞ ¼
1

expðE=TðtÞÞ þ 1
; ðB52Þ

fEQðy; aÞ ¼
1

exp fy=½aTðaÞ�g þ 1
; ðB53Þ

where we define y≡ E0 and a0 ¼ 1 as the sterile neutrino
energy and the scale factor at the initial temperature
T0 ¼ 100 GeV. The product aT has the scaling derived
below.
Suppose that the abundance of the sterile neutrino is very

small initially and it increases significantly during the
resonance epoch. If the final abundance does not reach
the equilibrium abundance, the abundance change roughly
scales as

Δfðy;aÞres∼ΓνsðEpeak;TpeakðyÞÞΔtpeakfEQðy;apeakÞ

∝ΓνsðEpeak;TpeakðyÞÞθ
1

HðTpeakðyÞÞ
fEQðy;apeakÞ

∝ θTpeakðyÞ3fEQðy;apeakÞ; ðB54Þ

where TpeakðyÞ is the temperature at which the resonant
mixing occurs for a given y, apeakðyÞ is the scale factor

EFFECTS OF STERILE NEUTRINOS AND AN EXTRA … PHYS. REV. D 97, 043005 (2018)

043005-19



corresponding to the temperature, and ΓνsðEpeak; TpeakðyÞÞ
is the sterile neutrino production rate at the energy Epeak

and the temperature TpeakðyÞ.
On the other hand, if the reaction rate is very large, the

final abundance becomes the equilibrium abundance. Since
the difference in the final abundance between the exact and
approximated treatment using the Boltzmann and the rate
equations, respectively, is small in the latter case, we focus
on the former case in what follows.
The resonant mixing for a fixed y value occurs when the

energy redshifts to the peak energy, i.e.,

Epeak ¼
y

apeakðyÞ
: ðB55Þ

The entropy per comoving volume is given by

S ¼ sa3 ¼ 2π2

45
g�ST3a3; ðB56Þ

where s is the entropy density of the universe and g�S is the
statistical degrees of freedom for entropy. The entropy
conservation during the resonance leads to the equation

TpeakðyÞ ¼
T0

apeakðyÞ
�

g�S0
g�S;peakðyÞ

�
1=3

¼ T0

Epeak

y

�
g�S0

g�S;peakðyÞ
�

1=3
; ðB57Þ

where g�S0 and g�S;peakðyÞ are the values of g�S at T0 and
TpeakðyÞ, respectively.
We then obtain

fEQðEpeak; tðapeakðyÞÞÞ¼
1

expðEpeak=TpeakðyÞÞþ1

¼ 1

exp ½ yT0
ðg�S;peakðyÞg�S0

Þ1=3�þ1
: ðB58Þ

The change in the distribution function is approximately
given by

Δfðy; aÞres ∝
θTpeakðyÞ3

expðEpeak=TpeakÞ þ 1
: ðB59Þ

At the first resonance, the peak temperature is rather
constant [see Eq. (B65) below] since the value of Epeak
quickly evolves. The change is then given by

Δfðy; aÞ1res ∝
1

exp ½ yT0
ðg�S;peakðyÞg�S0

Þ1=3� þ 1
: ðB60Þ

At the second resonance, on the other hand, the peak energy
is close to Eres, and the value of TpeakðyÞ significantly
depends on y. The change is then given by

Δfðy;aÞ2res∝
1

y3g�S;peakðyÞ
1

exp½ yT0
ðg�S;peakðyÞg�S0

Þ1=3�þ1
: ðB61Þ

6. Test calculation

We check a difference in the distribution function of the
sterile neutrino derived from the exact calculation and the
simplified estimation. To check the expectable maximum
difference,we choose a case inwhich the initial abundance of
the sterile neutrino is negligible. For example, we take
mνs ¼ 1 eV, θ ¼ 10−8, and Eres ¼ 10 MeV. Then, even at
the cosmic temperature of the electroweak phase transition of
T ∼ 200 GeV, the sterile neutrino is not in the equilibrium.
This is shown by the fact that the sterile neutrino

production rate is smaller than the cosmic expansion rate
using the following equation. The production rate of the
sterile neutrino and the cosmic expansion rate are, respec-
tively, given [Eqs. (A10) and (A18)] by

Γνs ∼G2
F
~θ2T5; ðB62Þ

H ∼
g1=2� T2

MPl
; ðB63Þ

where g� is the statistical degrees of freedom for energy and
MPl is the Planck mass. Then, we have a relation (Eq. (7.11)
in Ref. [34]):

Γνs

H
∼
�

~θ

10−3

�2� g�
63.75

�
−1=2

�
T

0.2 GeV

�
3

: ðB64Þ

For the adopted parameter set, the sterile neutrino abun-
dance is very small before the resonant mixing occurs.
Therefore, we can assume that the abundance is zero at
the initial time of the calculation. We can then estimate the
maximum difference in the distribution function calculated
by the Boltzmann equation and the rate equation from this
result. We note that the flavor-change probability is the
averagevalue for the case of complete oscillation [Eq. (A18)]
in the whole temperature region until the sterile neutrino
decoupling for this parameter set (see Appendix A).
Figure 14 shows the ratio of the calculated distribution

function and the equilibrium function, i.e., f=fEQðyÞ, (solid
lines) as a function of temperature for y=T0 ¼ 0.25, 1, 2,
3.15, 4, and 5. At high temperature, the effective mixing
angle is hindered by the matter effect [Eq. (A1)]. As the
temperature decreases, the effective mixing angle increases,
and the distribution function increases also. Since the
effective mixing angle is smaller for larger energy E, the
distribution function is larger for smaller E or smaller
y ¼ E0 values. At T ¼ 35.4 MeV, the 1þmatter term in
Eq. (A1) cancels with the extra-dimensional term in the
square brackets. Therefore, the effective mixing angle
becomes large for a short time resonantly. This first
resonance occurs at the temperature [cf. Eq. (A1)]
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Tres;1 ≈
�
cos 2θαδm2

CαG2
FE

2
res

�
1=4

: ðB65Þ

Thevalues of distribution function then suddenly increase,
except those at low energies (see the curve for y=T0 ¼ 0.25).
This resonance does not exist for low energies for the
following reason: when the matter term becomes smaller
than the extra-dimensional term, the absolute value
jðE=EresÞj2 is already relatively small. Therefore, the square
brackets do not become very close to zero, and the strong
resonance of sin2 2~θ ≈ 1 is never realized.
After the first resonance temperature, the second reso-

nance occurs at a temperature which is significantly
dependent on the energy y. One can see a slight increase
in the distribution function fðyÞ at the second resonance. In
general, at this point, the matter term becomes negligible,
and the extra-dimensional term cancels with unity in the
square brackets of Eq. (A1). This resonance approximately
occurs at the time when the sterile neutrino energy is
identical to the resonant energy Eres. The second resonance
is then given by the condition [cf. Eqs. (B55) and (B57)]

Tres;2ðyÞ ≈ T0

Eres

y

�
g�S0

g�S;resðyÞ
�

1=3
: ðB66Þ

The second resonant temperature becomes the smaller for
the larger energies y. The dashed line shows the abundance
ratio Y=YEQ calculated by solving the rate equation
[Eq. (8)]. It is close to the ratio of the distribution function
f=fEQð3.15T0Þ, i.e., the value for the average energy of the
equilibrium distribution, although a difference by a factor
of 5–10 exists between the two lines.

Figure 15 shows the effective mixing angle as a function
of temperature for y=T0 ¼ 0.25, 1, 2, 3.15, 4, and 5. No
resonance exists for the low energy of y=T0 ¼ 0.25 as
explained above, and there are two resonances for other
energies.
Figure 16 shows the distribution function of the sterile

neutrino as a function of the initial energy y ¼ E0 at
T ¼ 100, 40, 35, 30, 10, and 3 MeV (solid lines). At
T ¼ 100 MeV, no resonance has come for the effective
mixing angle, and the distribution function is low totally
and higher for low energies (cf. Fig. 14). At T ¼ 40 MeV
before the first resonance, the distribution function is larger
but still very small. At T ¼ 35 MeV during the first
resonance, the distribution function suddenly increases.
This increase occurs from larger y to lower y. The first
resonance occurs at FE2 ¼ −1, which is realized earlier,

FIG. 15. The effective mixing angle as a function of temper-
ature for y=T0 ¼ 0.25, 1, 2, 3.15, 4, and 5. Adopted parameters
are the same as in Fig 14.

FIG. 16. The distribution function of the sterile neutrino as a
function of y ¼ E0 at T ¼ 100, 40, 35, 30, 10, and 3 MeV (solid
lines). Adopted parameters are the same as in Fig 14. The dotted
line is the equilibrium function at the initial temperature T0 that is
normalized arbitrarily.

FIG. 14. Temperature evolution of distribution function
f=fEQðyÞ (solid lines) for y=T0 ¼ 0.25, 1, 2, 3.15, 4, and 5.
The temperature evolution of the abundance Y=YEQ is also shown
(dashed line). The mass and the bare mixing angle of the sterile
neutrino are set to mνs ¼ 1 eV and θ ¼ 10−8, respectively. The
resonant energy is Eres ¼ 10 MeV.

EFFECTS OF STERILE NEUTRINOS AND AN EXTRA … PHYS. REV. D 97, 043005 (2018)

043005-21



i.e., at higher T, for larger y [see Eq. (B7)]. At
T ¼ 30 MeV, the distribution function is large for energies
larger than y ∼ 50 GeV. At T ¼ 10 MeV, the large value of
the distribution function is extended to somewhat lower
energy y, and a slight increase of the function for y≲
100 GeV is observed. This slight increase is caused by the
second resonance which occurs earlier for lower y values.
At T ¼ 3 MeV, the distribution function in the range of
y ∼ ½100; 350� GeV is larger than that of T ¼ 10 MeV
because of the effect of the second resonance.
The dotted line is the equilibrium function at the initial

temperature T0 that is normalized arbitrarily. As seen from
the equilibrium function and the last distribution function at
T ¼ 3 MeV, the real distribution function is different from
the equilibrium spectrum. The main differences are (1) the
cutoff energy below which the distribution function is very
small because of no resonance and (2) a different

dependence of the function on energy. The production
rate of the sterile neutrino is larger for smaller energy of the
sterile neutrino. Therefore, the increase of the distribution
function at the resonance is larger for smaller energies (see
Fig. 14). As a result, the final distribution function for low
energies is enhanced with respect to the equilibrium
spectrum.
We derive the final energy density of the sterile neutrino

ρνs ¼ 1.3 × 10−19 GeV4 from the integration of Boltzmann
equation. The approximate energy density from the inte-
gration of the rate equation is ρνs ¼ 6.4 × 10−19 GeV4. It is
then found that the use of the rate equation gives a rough
estimation of the sterile neutrino energy density, although
there are significant differences in spectra and the total
number densities from values of the calculation of an exact
Boltzmann equation.
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