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We investigate a class of universes in which the weak interaction is not in operation. We consider how
astrophysical processes are altered in the absence of weak forces, including big bang nucleosynthesis
(BBN), galaxy formation, molecular cloud assembly, star formation, and stellar evolution. Without weak
interactions, neutrons no longer decay, and the universe emerges from its early epochs with a mixture of
protons, neutrons, deuterium, and helium. The baryon-to-photon ratio must be smaller than the canonical
value in our Universe to allow free nucleons to survive the BBN epoch without being incorporated into
heavier nuclei. At later times, the free neutrons readily combine with protons to make deuterium in
sufficiently dense parts of the interstellar medium, and provide a power source before they are incorporated
into stars. Almost all of the neutrons are incorporated into deuterium nuclei before stars are formed. As a
result, stellar evolution proceeds primarily through strong interactions, with deuterium first burning into
helium, and then helium fusing into carbon. Low-mass deuterium-burning stars can be long-lived, and
higher-mass stars can synthesize the heavier elements necessary for life. Although somewhat different from
our own, such universes remain potentially habitable.
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I. INTRODUCTION

The fundamental constants that describe the laws of
physics appear to have arbitrary values that cannot be
explained by current theory. One possible—and partial—
explanation is that other universes exist in which the
fundamental constants have different values, so that they
are drawn from an as-yet-unknown probability distribution.
Many authors have argued that significant changes in these
constants could render the Universe uninhabitable to life as
we know it, and as a result our Universe appears to be “fine-
tuned” for life [1–5]. On the other hand, recent work
suggests that when multiple constants are allowed to vary,
large regions of the parameter space that result in habitable
universes can be found [6–8]. This paper continues the
exploration of alternate possibilities for the fundamental
constants with a focus on the weak force.
The strength of the weak interaction is a fundamental

part of the standard model of particle physics and repre-
sents one parameter that could vary from region to region.
The weak interaction governs the rate of radioactive decay,
the rate of conversion of hydrogen into helium via the
pðp; νeeþÞD stage of the pp chain in low-mass stars, and
the cross section for neutrino interactions. The latter two
effects are crucial to determining whether or not a universe
can produce life. If the weak force is too weak, or absent
altogether, long-lived stars fueled by weak reactions could
not exist. In the absence of weak interactions, helium can

still be synthesized through strong interactions during big
bang nucleosynthesis (BBN), as free neutrons are present,
but helium production is suppressed in stellar interiors
(which do not have neutrons). Once synthesized, helium
can later fuse into heavier elements via the triple alpha
process in sufficiently massive stars. However, without
neutrino interactions, core-collapse supernova will fail to
explode and will simply collapse to a degenerate remnant,
thereby hampering the dispersal of heavy elements.
These effects would appear to compromise the habit-

ability of universes where the weak force is significantly
weaker than in our own. However, this standard argument
has been challenged with the concept of a “weakless
universe” [9], namely, a universe without any weak
interaction at all. Neutrons would be stable in such a
universe, and would therefore most likely have an equal
abundance to protons. A universe with the same baryon
density as ours would convert virtually all baryons to
helium during BBN, leaving behind no free protons (no
hydrogen to make water). However, if the baryon density is
lower (more properly the baryon-to-photon ratio η), sig-
nificant amounts of protons and deuterium can survive the
BBN epoch [9] and would be available later for deuterium
burning in stars (which takes place through the strong
interaction). Note that stars in such a weakless universe
can also produce heavier elements by strong reactions.
Although core-collapse supernova might not function, at
least not in the same manner as in our universe, these heavy
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elements could still be dispersed by type Ia supernova and
classical novae, allowing the possibility of planet formation
and life.
The opposite case, where the weak interaction is sig-

nificantly stronger than in our Universe, would resemble
our Universe more closely. A stronger weak interaction
increases the rate of radioactive decay, most notably the
neutron lifetime, but it does not affect the stability of stable
nuclei, which is governed primarily by the strong inter-
action. If the neutron lifetime is less than 30 seconds, BBN
is suppressed because most neutrons decay before BBN
begins. However, this complication is not an impediment
because stars in this all-hydrogen universe will be more
efficient at converting hydrogen to helium. In addition,
core-collapse supernovae will be more efficient at dispers-
ing heavy elements due to the larger neutrino interaction
cross sections. The primary concern would be the shortened
lifetimes of these more efficient stars. (Note that if the weak
interaction is strong enough to approach the strength of the
electromagnetic interaction, nonlinear effects will likely
render these concerns moot.)
In this paper, we update and expand upon this idea of

a weakless universe in Refs. [10–12], and in particular
Ref. [9]. An important parameter in this problem is the
baryon-to-photon ratio η, which impacts the composition of
the universe after BBN. For the value in our Universe, BBN
with an equal amount of neutrons and protons would result
in a composition where the 4He abundance is greater than
90%. The high abundance of 4He yields short-lived stars
and is problematic for the development of life. For a
judicious choice of η, however, BBN can result in a richer
composition with large fractions of deuterium, free protons,
and free neutrons. We determine the range of η for which
weakless universes could support life, using models of
galaxy formation, star formation, and subsequent stellar
evolution.
One crucial issue not addressed in the original proposal

[9] is the abundance of free neutrons left over from BBN,
which is comparable to the abundance of free protons.
These neutrons can capture onto protons at zero temper-
ature, forming deuterium via the nðp; γÞD reaction. As a
result, nuclear fusion can occur in the interstellar medium
and could potentially halt the collapse of a gas cloud. This
paper considers the effects of neutron capture reactions on
four scales of formation: [A] from the intergalactic medium
down to the size scale of galaxies; [B] from the neutral
interstellar medium (ISM) to the formation of giant
molecular clouds; [C] from the cloud to molecular cloud
cores—the sites of individual star formation events; and
finally [D] from the cloud cores to the production of
protostars themselves. Neutron fusion becomes significant
during the latter stages of this hierarchy, and most of the
free neutrons are processed into deuterium before the onset
of stellar nuclear burning. Although gas cooling is delayed,
these processes do not disrupt star formation entirely.

We next consider stellar evolution and nuclear burning in
a weakless universe and the chemical evolution of the
universe through successive generations of stars. Long-
lived stars can exist in a weakless universe if the deuterium
abundance is high enough for deuterium fusion to continue
on Gyr time scales. With the main sources of heavy element
dispersal being red giant winds and type Ia supernovae, the
composition of the interstellar medium will be different
from our Universe, relatively enriched in carbon and iron
peak elements and depleted in oxygen. A low oxygen
abundance could cause a dearth of water which would
impose a problem to life—assuming water is an essential
ingredient to life like it is on our planet. However, later
generations of stars will undergo different reactions that
will likely mitigate this problem.
Iron peak elements in the ISM will capture an excess of

free neutrons, allowing stars to form with a small excess of
protons, which can then form oxygen via the reaction
12Cð2p; γÞ14O. Similar reactions may lead to a deficit of
nitrogen and an excess of neon compared with our
Universe, and likewise, the lack of core-collapse super-
novae will likely lead to a deficit of non-alpha-process
elements. However, the effect on the chemical evolution of
the weakless universe is neither negligible nor dominant,
and the necessary elements for both planet formation and
organic chemistry will still be present, implying that such a
universe could still be hospitable to life.
The organization of this paper is as follows. Section II

details the outcome of BBN in universes with a range of η
and neutron-to-proton ratios. We examine the impact of
weakless physics on galaxy formation in Sec. III, on the
ISM in Sec. IV, and on stellar evolution in Sec. V.
Section VI contains our study of the habitability of the
weakless universe. We summarize and discuss our results in
Sec. VII. Throughout this paper, we use cgs units with the
exception of BBN in Sec. II. We use natural units in Sec. II
to be consistent with the BBN literature.

II. BIG BANG NUCLEOSYNTHESIS

A. Standard versus weakless BBN

In this section, we give a brief overview of the role the
weak interaction plays in standard BBN (SBBN) and then
discuss the modifications to SBBN in a weakless universe.
We will use the ratio of neutrons to protons (denoted the
n=p ratio) extensively throughout this work

n=p≡ nn
np

: ð1Þ

Note that the number densities ni in Eq. (1) are the total
particle number densities (free particles and nucleons
bound in nuclei) and not solely the free particle number
densities. The authors of Ref. [13] showed that n=p would
evolve due to six weak reactions during primordial nucleo-
synthesis. We schematically write the six reactions as
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νe þ n ↔ pþ e−; ð2Þ

eþ þ n ↔ pþ ν̄e; ð3Þ

n ↔ pþ e− þ ν̄e ð4Þ

and colloquially refer to them as the n ↔ p rates. In the
approximation that the nucleon rest masses are much
heavier than both the neutrino and electron masses, the
authors of Ref. [14] gave the prescription for calculating
the rates for each of the six reactions listed in Eqs. (2)–(4).
At high temperature T, the weak interaction rates are fast
and maintain the n=p ratio in weak equilibrium as a
function of T

n=pðTÞ ¼ exp

�
−δmnp þ μe− − μνe

T

�
; ð5Þ

where δmnp ¼ 1.293 MeV is the mass difference between
a neutron and proton, μe− is the chemical potential of the
electrons, and μνe is the chemical potential of the electron
neutrinos. In SBBN, the chemical potentials of the electron
and electron neutrino are small and so the mass term
dominates. Therefore, n=p≃ 1 at high temperature.
Figure 6 of Ref. [14] showed how n=p initially follows
an equilibrium track for temperatures above 1 MeV, and
diverges from equilibrium at lower temperature. Free
neutron decay [the forward process in Eq. (4)] would
eventually transmute all neutrons into protons if there were
no other nuclear processes. n=p would go to zero and the
universe would emerge from BBN with a pure 1H compo-
sition. Such a scenario does not transpire as a chain of
reactions assembles free protons and neutrons into 4He and
some other low atomic mass nuclides. Nuclear freeze-out of
4He occurs when the temperature has reached T ∼ 100 keV
and n=p ∼ 1=7.
In a weakless universe, there are no weak interactions

and Eqs. (2)–(4) do not apply. This implies that neutrons
are stable to decay. The neutron-to-proton ratio is set at a
high temperature and is a function of the ratio of up quarks
to down quarks, u=d

n=p ¼ 2 − u=d
2u=d − 1

: ð6Þ

u=d ranges from 1=2 for a pure neutron universe to 2 for a
pure proton universe. Assuming baryon number conserva-
tion, n=p is fixed and does not evolve. Weakless BBN
(wBBN) proceeds with a fixed n=p ratio. If there are
multiple families of quarks with nonzero densities, then
there would be other hadrons present. We do not consider
such scenarios in this work.

B. Description of calculations

We employ the code BURST [15] to do both SBBN and
wBBN calculations. BURST is based off of the work in
Refs. [16,17]. In a SBBN calculation, there are four sets of

quantities to evolve as a function of time. There are three
thermodynamic variables: the plasma temperature T, the
scale factor a, and the electron-degeneracy parameter ϕe
where

ϕe ≡ μe−

T
: ð7Þ

All thermodynamic quantities of the plasma, such as energy
density and pressure, are functions of T, a, and ϕe. The
last set of evolution quantities are the abundances Yi.
Abundances are related to the mass fractions Xi via

Yi ¼
Xi

Ai
; ð8Þ

where Ai is the atomic mass number for species i. To
compare SBBN and wBBN calculations, we will employ a
network of nine nuclides which include all bound nuclides
up to mass number A ¼ 7. The nuclear reaction network
includes 34 strong, electromagnetic, and weak interactions
from Refs. [17,18]. For more precise calculations of SBBN,
one can evolve the neutrino spectra as they go out of
equilibrium which can lead to changes at the 1% level [19].
The present work does not require this level of precision, so
we always assume neutrinos are in a Fermi-Dirac distri-
bution with zero chemical potential and a temperature given
by the comoving temperature parameter Tcm as a function
of the scale factor a

TcmðaÞ≡ T in
ain
a
: ð9Þ

The subscript “in” on the temperature and scale factor
symbols denotes an initial epoch when the neutrinos are
in thermal equilibriumwith the electromagnetic components
of the plasma. We must use Tcm because it is manifestly
different from T and has ramifications on the n=p ratio [20].
AwBBN calculation proceeds in the sameway as a SBBN

one.WeevolveT,a,ϕe, and the nine nuclides as a functionof
time. We maintain all strong and electromagnetic cross
sections unaltered fromSBBN.There are twokeydifferences
between wBBN and SBBN. In aweakless universe, there are
no weak nuclear interactions. We remove the n ↔ p rates,
i.e., Eqs. (2)–(4), and any other β-decay rates, most notably
that of the three-nucleon hydrogen isotope tritium (denoted
as T), T → 3Heþ e− þ ν̄e. Tritium has a mean lifetime
τ3 ∼ 20 years and will not decay into 3He until well after
SBBN concludes. If doing precision SBBN calculations,
we would add the abundance of T to that of 3He to compare
to observation [21]. In a weakless universe however, the
difference in atomic number between T and 3He could be
important in the initial stages of stellar evolution. As a result,
we delineate the freeze-out T and 3He abundances in order
to use them in our stellar calculations.
The other difference between SBBN and wBBN is the

existence of neutrinos. Our model of SBBN in Ref. [15]
assumed that neutrinos only interact via theweak interaction
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and gravity.We donot know themechanismwhich populates
the neutrino states at early times in ourUniverse. In thiswork,
we assume that if there is no weak interaction, then there
would be no relic neutrino seas. We note that if there were
neutrinos in a weakless universe, then the neutrino energy
states would not necessarily be thermally populated.
Alternatively, one could consider the cosmic microwave
background (CMB) observable Neff , where Neff is the
“effective number of neutrino species” [see Eq. (3.11) in
Ref. [22]]. In our Universe, Neff ∼ 3 for the three flavors of
neutrino species [23]. In aweakless universewhere neutrinos
were present, Neff would most likely be smaller than three.
The exact number would depend on the mechanism which
created the neutrinos. The neutrinos would behave as a dark
radiation component [24] andwBBNwould proceed with an
expansion rate different than SBBN. For the wBBN calcu-
lations in this work, Neff ¼ 0.

C. Mass fraction evolution

In this section we discuss the evolution of the mass
fractions as a function of the Tcm variable from Eq. (9). For
our model of SBBN, the baryon number is the only
cosmological input. We do not consider other cosmological
inputs such as Neff or neutrino chemical potentials. There
are many equivalent ways to represent baryon number in
BBN. We adopt the nomenclature of Ref. [17] and use the
baryon-to-photon ratio η

η≡ nb
nγ

; ð10Þ

where nb and nγ are the proper number densities of baryons
and photons, respectively. Based on the strict definition in
Eq. (10), η decreases as electrons and positrons annihilate
to become photons for T ≲ 100 keV. Therefore, we will
refer to numerical values of η after the epoch of electron-
positron annihilation. In wBBN, η and the n=p ratio are
both inputs. When comparing SBBN to wBBN, we will use
the same value of η. There is no way to compare SBBN to
wBBN using the same n=p ratio as n=p evolves in SBBN
according to the n ↔ p rates schematically shown in
Eqs. (2)–(4). We will pick a value of the n=p ratio to
elucidate specific points on how wBBN differs from SBBN.
Figures 1 and 2 show mass fractions versus Tcm in a

number of BBN cases. Solid lines are from a SBBN
calculation with an evolving n=p ratio and dashed lines
are from a wBBN calculation with a constant n=p ratio.
Both calculations, for a given figure, use the same value of
η. For ease of reading, we only plot the mass fractions of
free neutrons (n), free protons (p), deuterium (D), tritium
(T), helium-3 (3He), and helium-4 (4He). We note that the
mass fractions of 6Li, 7Li, and 7Be are all subsidiary to that
of the hydrogen and helium isotopes in both SBBN and
wBBN. We do not include other possibly stable isotopes in
a weakless universe, i.e., 6He.

Figure 1 uses η ¼ 6.075 × 10−10 which is consistent
with the value in our Universe [23]. n=p ¼ 1 for the wBBN
calculation in the top panel. At high temperatures, the
abundances are in nuclear statistical equilibrium (NSE).
NSE abundances are functions of plasma temperature, η,
Xn, Xp, and nuclear properties [25]. The mass fractions of
D, T, and 3He all follow NSE tracks above T ≳ 1 MeV (4He
also follows a NSE track below the scale of the vertical
axis). For temperatures T > δmnp in a SBBN calculation,
Eq. (5) shows that n=p ∼ 1, implying that the SBBN and
wBBN scenarios have the same conditions for NSE. As a
result, the mass fractions evolve identically for both SBBN
and wBBN at high temperatures in the top panel. Although
the mass fractions remain in NSE, the SBBN curves begin
to diverge from the wBBN curves once T becomes
comparable to δmnp. At even lower temperatures, n=p
for SBBN is well below unity and the mass fractions
diverge for the two scenarios. Note that the red dashed

FIG. 1. Mass fractions, X, as a function of Tcm. Each color
represents a different isotope. (Top) Solid lines are a SBBN
calculation, and dashed lines are a wBBN calculation where
n=p ¼ 1. The dashed green line for n is coincident with the
dashed red line for p:η ¼ 6.075 × 10−10 for both calculations.
(Bottom) Same as the top panel except n=p ¼ 0.14 for the wBBN
calculation.
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curve (Xp in wBBN) is on top of the green dashed curve
(Xn in wBBN) in the top panel in Fig. 1. The wBBN mass
fractions for n, p, and D have frozen out at the end of the
horizontal plotting axis. Although neutrons and protons can
interact to form deuterons, the baryon density is so low that
all three mass fractions have frozen out at roughly the 1%
level.
For SBBN at η ¼ 6.075 × 10−10, 4He freezes out with a

mass fraction X4He ≡ YP ≃ 0.25, where we adopt the
cosmological notation of YP to denote the mass fraction
of 4He. The top panel of Fig. 1 shows that the number of
baryons in D and 3He is only a few in 105, implying that the
vast majority of neutrons are in 4He nuclei. Therefore,
n=p≃ 1=7 ¼ 0.14 at the conclusion of SBBN. The bottom
panel of Fig. 1 shows the same SBBN calculation as the top
panel, but the wBBN calculation now has n=p ¼ 0.14. In
the NSE regime at high temperatures, there is a clear
difference between the SBBN and wBBN calculations.

As the temperature decreases and the n=p ratios converge
to one another for the two scenarios, the abundances begin
to come into agreement, especially for p and 4He.
Nuclear reactions which involve the capture of a neutron

are not subject to the Coulomb repulsion that is unavoid-
able in proton capture reactions. At low temperatures,
neutrons can continue to capture on heavier nuclei or free
protons. It is possible for BBN to occur over a long period if
free neutrons are present and the proper baryon number
density is large. For the wBBN calculation in the top panel
of Fig. 1, there is a preponderance of free neutrons at
Tcm ≃ 10 keV, although the number density of baryons is
low enough that there is no late-time rise in D. However, the
flux of neutrons is large compared to the number of 3He
targets. The principal reactions which utilize neutrons
and 3He nuclei as reactants, namely 3Heðn; pÞT and
3Heðn; γÞ4He, have not frozen out at the end of the plotting
axis. As a result, the 3He mass fraction continues to
decrease at the end of the simulation. Similarly, the flux
of neutrons compared to 6Li, 7Li, and 7Be targets is also
large in the weakless scenario. If we had plotted the mass
fractions of the Li and Be isotopes, they would also be
decreasing at the end of the horizontal plotting axis in
much the same manner as the mass fraction for 3He does.
We verified our hypotheses by extending the wBBN
calculation down to a temperature of T ¼ 100 eV. How-
ever, our library for the integrated cross sections (based off
of that in Ref. [17]) is not accurate at such low temper-
atures. Furthermore, the error in not finishing the wBBN
calculation would be small as the mass fractions of 3He and
the heavier isotopes are orders of magnitude smaller than
the more abundant species. As we consider the composition
of the later weakless universe, we will take the mass
fractions from wBBN at the T ∼ 1 keV epoch and ignore
the small error present in 3He.
In Fig. 2, we use a value of η ¼ 4.0 × 10−12. This

specific value is in line with the value chosen in
Ref. [9]. The top panel of Fig. 2 shows the evolution of
the mass fractions for SBBN and wBBN with n=p ¼ 1. For
SBBN, the mass fractions of D, T, and 3He are all increased
over the freeze-out mass fractions when η ¼ 6.075 × 10−10

in Fig. 1. 4He is significantly reduced for the low value of η
in Fig. 2. Conversely, in wBBN there are roughly equal
amounts of n, p, D, and 4He. The freeze-out mass fractions
are in close agreement with Fig. 1 in Ref. [9]. As compared
to the top panel of Fig. 1, neutrons are not predominantly
incorporated into 4He nuclei for the lower value of η. In
both SBBN and wBBN, the D mass fraction is comparable
to that of 4He. SBBN makes less 4He (and less D) as the
n=p ratio evolves to 0.026.
The bottom panel of Fig. 2 is identical to the top panel

except that we run wBBN with n=p ¼ 0.026. Although
the n=p ratios are identical between SBBN and wBBN,
the final freeze-out mass fractions of D and 4He differ.
Furthermore, in the weakless scenario, there is a larger

FIG. 2. Mass fractions, X, as a function of Tcm. Each color
represents a different isotope. (Top) Solid lines are a SBBN
calculation, and dashed lines are a weakless calculation where
n=p ¼ 1. The dashed green line for n is coincident with the
dashed red line for p:η ¼ 4.0 × 10−12 for both calculations.
(Bottom) Same as the top panel except n=p ¼ 0.026 for the
wBBN calculation.
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mass fraction of D as compared to 4He. With fewer
neutrons, the NSE abundances are lower. We observe this
by using the top and bottom panels of Fig. 2 to compare the
locations of the dashed lines of T and 4He with respect to
the solid SBBN lines. The initial conditions for out-of-
equilibrium nucleosynthesis occur when the n=p ratio is
still evolving in SBBN, i.e., n=p > 0.026 when the mass
fractions go out of equilibrium. As a result, the sum of XD
and YP is larger in SBBN than wBBN. For the n=p ratios
to be equal at freeze-out, the deficit of neutrons in wBBN
must be incorporated into a different nuclide. Indeed, the
bottom panel of Fig. 2 shows a mass fraction of free
neutrons on order of 1%. This is a key difference of SBBN
compared to wBBN which was absent in Fig. 1: identical
n=p ratios at freeze-out do not imply identical mass
fractions of D and 4He. If the baryon number is low
enough, out-of-equilibrium nucleosynthesis begins during
weak freeze-out. The n=p ratio alone is not enough to
predict the final mass fractions of 4He.
To conclude this section, we note that neither SBBN nor

wBBN possesses D and T peaks in Fig. 2. The peaks are
quite visible in the bottom panel of Fig. 1 at Tcm ∼ 50 keV
for both SBBN and wBBN. The peaks stem from synthesis
of D and T into larger nuclei, most notably 4He, and no
production channels of equivalent strength. For the lower
value of η, the nuclear reaction rates freeze out at an earlier
time and the mass fractions plateau.

D. Parameter space scan

The previous section detailed a comparison between
SBBN and wBBN at various values of η. In this subsection,
we explore the n=p versus η parameter space of wBBN. We
cannot directly compare with SBBN because there is no
dual parameter space for cosmological inputs (see Fig. 2 in
Ref. [26] for SBBNmass fractions as a function of η). As an
alternative, we place a red star in the contour plots at the
values η ¼ 6.075 × 10−10 and n=p ¼ 0.14 of our Universe.
The red star comes from a simulation that models our
Universe with the weak interaction, namely the SBBN
calculation in Fig. 1. n=p changes with time in such a
scenario. In addition, our Universe contains neutrino
energy density so the Hubble expansion rate is different.
We emphasize that the red star is only for illustrative
purposes and does not belong to the class of weakless
universes. It is only meant as a guide and not for direct
comparison.
Figure 3 shows contours of constant p mass fraction in

the n=p–η plane. The red star is located close to the 75%
contour, which is in agreement with the value from SBBN
as seen in the bottom panel of Fig. 1. For the range of η
plotted, a significant fraction of the baryons are free protons
if n=p is below unity. Once n=p becomes larger than unity,
few free protons remain. The isospin mirror of Fig. 3 is
Fig. 4: contours of constant Xn in the n=p–η plane. For n=p
above unity, there exists a significant fraction of free

neutrons. Conversely, for n=p below unity, few free
neutrons remain.
Figures 3 and 4 show a remarkable degree of symmetry

about the line n=p ¼ 1. The symmetry is broken, albeit
slightly, in the mass fraction of D. Figure 5 shows contours
of constant XD in the n=p–η plane. At constant η, the mass
fraction of D increase as n=p approaches unity from either
direction. The rate of increase is larger as n=p decreases
towards unity. This is only evident for large η in Fig. 5. The
contours of XD at 10−5 and 10−10 are closer in the
parameter space for n=p > 1. The value of the contours
indicates that the degree of asymmetry is small—a few
parts in 105.

FIG. 3. The neutron-to-proton ratio, n=p, versus the baryon-to-
photon ratio, η, at contours of constant p mass fraction. In a
weakless universe, n=p is fixed at the start of BBN and does not
evolve through nuclear freeze-out. In our Universe, weak
interactions change n=p until 4He formation when n=p ≈ 1=7.
The red star indicates the point in parameter space where n=p
terminates its evolution in our Universe. This point should only
be taken for illustrative purposes and not labeled a member of the
weakless class of universes.

FIG. 4. n=p versus η at contours of constant n mass fraction.
The red star indicates the point in parameter space where n=p
terminates its evolution in our Universe.
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The red star in Fig. 5 is located on the XD ¼ 2.7 × 10−5

contour. For comparison, the D mass fraction of SBBN is
4.0 × 10−5. wBBN is able to produce a large mass fraction
of D. The largest mass fraction of D is XD ¼ 0.14 at n=p ¼
1 and η ¼ 5 × 10−12.
The symmetry about n=p ¼ 1 is restored in Fig. 6:

contours of constant YP in the n=p–η plane. For the
parameter space shown in Fig. 6, the smallest value of
YP is ∼7 × 10−3. This value occurs for small η and either
large or small n=p. The mass fraction value is above our
asymmetry limit of 10−5, so we cannot detect any visible
asymmetry in Fig. 6. For small η, Fig. 6 shows that not all
neutrons are incorporated into 4He nuclei. In fact, the mass
fraction of D is larger than that of 4He for a certain range of
η if n=p ¼ 1. Furthermore, Fig. 4 shows that most neutrons
are free at small η. For large η, the mass fraction of 4He is
independent of η in the range of n=p we employ in Fig. 6.
The contours of constant mass fraction are symmetrical

about n=p ¼ 1 and horizontal. We can succinctly capture
the relationship between the mass fraction of 4He and n=p
in this range

YP ≃ 2
minð1; n=pÞ
1þ n=p

: ð11Þ

If n=p < 1, Eq. (11) reduces to the familiar YP ¼ 2ðn=pÞ=
ð1þ n=pÞ [27]. Finally, we note that the location of the
contours in Fig. 6 (or, more specifically, the rounded ends at
low η) depends on the nuclear reaction rates versus the
Hubble expansion rate. We do not include neutrinos or any
other form of dark radiation in our model of wBBN. If we
did, that would increase the Hubble rate and decrease YP.
The result would be a shift of the contours in Fig. 6 in the
horizontal direction towards higher η. There would be no
change in the vertical direction of Fig. 6 at the level of
precision presented in the parameter space.
Table I gives the freeze-out mass fractions at numerous

values of η which we will use in Secs. III–V. n=p ¼ 1 for
all values of η. It appears that the D mass fraction gets
closer to the n and p mass fractions for increasing η. For
n=p ¼ 1, D gets closest to n when η≃ 10−7 at a value
XD=Xn ¼ 0.95. D gets closest to p when η≃ 5 × 10−8 at a
value XD=Xp ¼ 0.86. The 3He mass fraction is much lower
than the mass fractions for the other nuclides, as explained
in Figs. 1 and 2 by the lack of a Coulomb barrier in neutron
capture. By the same logic, Table I shows a slight excess of
the p mass fraction over that of free neutrons even though
the universe is isospin symmetric, i.e., n=p ¼ 1. This is due
to the high reactivity of neutrons, or equivalently, a
Coulomb barrier in proton capture.

III. GALAXY FORMATION

This section considers how nuclear reactions involving
free neutrons can potentially affect the galaxy formation
process. Here we assume that structure formation involves
processes that are analogous to those acting in our universe.
Without weak interactions, a universe can in principle still
produce dark matter [9]. In this case, the timing of structure
formation would remain the same, and this is the case
considered here.

FIG. 5. n=p versus η at contours of constant D mass fraction.
The red star indicates the point in parameter space where n=p
terminates its evolution in our Universe.

FIG. 6. n=p versus η at contours of constant YP, the 4He mass
fraction. The red star indicates the point in parameter space where
n=p terminates its evolution in our Universe.

TABLE I. Mass fractions at different values of η. All values are
for n=p ¼ 1.

η 10−11 10−10 10−9

n 0.2136 3.420 × 10−2 3.535 × 10−3

p 0.2139 3.428 × 10−2 3.545 × 10−3

D 0.1197 2.615 × 10−2 2.766 × 10−3

T 9.764 × 10−4 2.320 × 10−4 2.469 × 10−5

3He 8.844 × 10−10 2.605 × 10−10 2.819 × 10−11

4He 0.4518 0.9051 0.9901
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For completeness we note that even in the absence of
dark matter, a purely baryonic universe can produce
structure. In the present context, however, the baryon-to-
photon ratio η must be smaller due to BBN constraints (see
Sec. II D) so that the epoch of matter domination occurs at
lower redshift. As a result, galaxy formation takes place at
later epochs when the universe is more diffuse, so that
galaxies are less dense for a fixed value of the amplitude Q
of density fluctuations. For the particular value Q ¼ 10−5

realized in our Universe, the resulting densities of galaxies
could be so low that baryons have difficulty cooling and
condensing [28,29]. This issue can be alleviated with larger
values of the fluctuation amplitude Q [8,29]. With no dark
matter (which has ∼6 times the density of baryons in our
Universe) and lower η (by a factor of ∼50), the total matter
density is smaller by a factor of ∼300. The corresponding
value of the fluctuation amplitude Q ∼ 3 × 10−3.

A. Properties of dark matter halos

Simulations of structure formation show that dark matter
halos asymptotically approach a nearly universal form. The
density profile of the halo is thus taken to be a Hernquist
profile of the form

ρðrÞ ¼ ρ0
ξð1þ ξÞ3 ; ð12Þ

where the dimensionless coordinate ξ is defined via

ξ ¼ r
r0
: ð13Þ

Note that we use a slightly steeper power law for the density
distribution (ρ ∼ ξ−4 for ξ ≫ 1) compared to the often-used
Navarro-Frenk-White profile [30] (ρ ∼ ξ−3). Although only
the inner part of the potential well matters for the consid-
erations of this paper, we use the form (12) because it has
a finite mass and because numerical simulations show that
halo density profiles become steeper at later epochs
[31,32]. Given the form of Eq. (12), the corresponding
potential and enclosed mass have the forms

Ψ ¼ Ψ0

1þ ξ
and MðrÞ ¼ MT

�
ξ

1þ ξ

�
2

: ð14Þ

We can take ρ0 and r0 to be the defining parameters of the
halo. The scale Ψ0 for the potential and the total mass MT
are then given by

Ψ0 ¼ 2πGρ0r20 and MT ¼ 2πρ0r30: ð15Þ

For the example of the Milky Way galaxy, we can model
the halo with a profile of the form given by Eq. (12) if we
take the scale length r0 ¼ 65 kpc and the density scale
ρ0 ¼ 10−25 g cm−3 (see Ref. [33] and references therein).

B. Hydrostatic equilibrium

In order to assess the possible effects of nuclear reactions
on galaxy formation, we need to determine the temperature
and density distributions of the baryonic gas. We start with
an order-of-magnitude estimate: the usual assumption is
that dark matter collapses first, and then gas falls into the
dark matter halo. The collapse of the gaseous component
and subsequent shocks heat up the material to a temperature
given by

3kT ¼ GMmp

r
; ð16Þ

where M ¼ MðrÞ is the enclosed mass of the dark matter
halo at radius r. For the galaxy profiles considered here,
this expression becomes

3kT ¼ GMTmp

r0

ξ

ð1þ ξÞ2 : ð17Þ

For the Milky Way values, the benchmark temperature
scale is given by

T ¼ GMTmp

3kr0
≈ 2.7 × 106 K: ð18Þ

This estimate is approximate and does not require that the
gaseous density and temperature profiles approach an
equilibrium condition. We thus generalize the treatment
in the following discussion.
For a given darkmatter halo, we can determine the density

and temperature profile of the gas under the assumptions that
1) the dark matter halo dominates the gravity of the system,
2) the gas can be considered in hydrostatic equilibrium, and
3) the equation of state for the gas is polytropic

P ¼ KρΓ ≡ Kρ1þ1=n; ð19Þ

where n is the usual polytropic index and K is a scaling
constant. Hydrostatic equilibrium thus implies

KΓρΓ−2
dρ
dξ

¼ −
Ψ0

ð1þ ξÞ2 ; ð20Þ

so that the density profile has the form

ρðξÞ ¼
�ðΓ − 1ÞΨ0

KΓ

�
1=ðΓ−1Þ

ð1þ ξÞ−1=ðΓ−1Þ: ð21Þ

To fix ideas, consider the standard case of an adiabatic
equation of state for a monatomic gas, where Γ ¼ 5=3.
The density profile then becomes

ρðξÞ ¼
�
2Ψ0

5K

�
3=2

ð1þ ξÞ−3=2 ≡ ρXð1þ ξÞ−3=2; ð22Þ
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where the second equality defines a benchmark density scale.
The total mass in baryons is given by the integral

Mb ¼ 4πr30ρX

Z
ξmax

0

ξ2

ð1þ ξÞ3=2 dξ≡ 4πr30ρXIðξmaxÞ; ð23Þ

where the final equality defines the dimensionless integral I.
Note that we must invoke a finite boundary to the density
distribution of thebaryons in order to keep themass finite (for
this profile). If we define fb to be the baryonic fraction of the
total mass, then

Mb ¼ fbMT ¼ fb2πρ0r30: ð24Þ

Equating Eqs. (23) and (24) implies

2ρXI ¼ fbρ0 or ρX ¼ fbρ0
2I

: ð25Þ

The integral I is of order unity. For example, if ξmax ¼ 1, the
integral I ∼ 1=5. In general, we want to consider somewhat
larger values of ξmax, sowe can take 2I ≈ 1 and hence use the
ansatz

ρX ¼ fbρ0; ð26Þ

where fb ∼ 1=6 in our Universe. Next we note that since

P ¼ KρΓ ¼ ρ
kT
mp

; ð27Þ

where mp is the proton mass, we find that

kT ¼ mpKρΓ−1 ¼ mpKρ2=3 ¼ mpKρ
2=3
X ð1þ ξÞ−1: ð28Þ

We can thus write

T ¼ TX

1þ ξ
where TX ≡mpK

k
ρ2=3X ¼ 2mp

5k
Ψ0: ð29Þ

The temperature in a potential well is typically assumed to be
of order kT ∼mpΨ. For the particular case of an n ¼ 2=3
polytrope considered here, the last equality expresses the
particular realization of this expected relation. For halos
with properties of the Milky Way, the temperature scale
TX ≈ 8 × 106 K,which is roughly comparable to the original
estimate from Eq. (18).

C. Column density

The discussion thus far has assumed that the radiation
produced by any possible nuclear reactions escapes the
halo and does not affect its structure. To verify the validity
of this assumption, we need to estimate the optical depth
of the halo of its internal radiation. The first step is to
determine the column density. To wit, the column density

of the dark matter in the halo, integrated from spatial
infinity to a radial location ξ, is given by the expression

NdmðξÞ ¼ ρ0r0

�
log

�
1þ ξ

ξ

�
−

2ξþ 3

2ðξþ 1Þ2
�
: ð30Þ

We can use the hydrostatic profiles from the previous
section to obtain the column density of the gaseous
component. For simplicity, we use the solutions for
Γ ¼ 5=3, and find a column density in gas

NgasðξÞ ¼ 2ρXr0ð1þ ξÞ−1=2 ≈ 2fbρ0r0ð1þ ξÞ−1=2; ð31Þ

where we have used Eq. (26). The benchmark value τ0 of
the optical depth of the halo to its radiation field—that
generated by nuclear reactions—can be defined as

τ0 ¼ 2fbρ0r0
σT
mp

; ð32Þ

where we assume that the cross section for interactions
between the gamma rays from the nuclear reactions and the
remaining gas is given by the Thomson cross section σT .
For values in our Universe, this optical depth τ ∼ 10−3. As a
result, the halo does not have a photosphere: it is optically
thin to the radiation it generates, so that photons freely
stream outwards. In the inner regions of the galaxy, the
optical depth approaches τ0. In the outer regions, the optical
depth has a spatial dependence given by

τðξÞ ≈ τ0ð1þ ξÞ−1=2: ð33Þ

D. Heating and cooling rates

The cooling rate per unit volume can be generically
written in the form

dE
dtdV

����
cool

¼ nenpΛðTÞ ¼ nenphσvicoolϵcool; ð34Þ

where ne and np are the number densities of electrons and
free protons, respectively. For sufficiently high gas temper-
ature, the cooling process is primarily due to bremsstrah-
lung scattering [2], so the cross section is close to the
Thomson cross section σT and the speed is given by
the thermal speed of the electrons vs ¼ ðkT=meÞ1=2. The
energy lost per scattering ϵcool can be written in the form

ϵcool ¼
4e2

λ
≈ 2.37 keV where λ ¼ h

mec
: ð35Þ

Note that these expressions are approximate: an accurate
treatment requires integration of the interactions over the
thermal distribution of particles and results in corrections
given by factors of order unity. We can thus write the
cooling rate per unit volume in the form
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dE
dtdV

����
cool

¼ AnenpσT

�
kT
me

�
1=2 4e2mec

h
; ð36Þ

where A is a dimensionless parameter of order unity.
Although Eq. (36) is highly simplified, the resulting cool-
ing times are comparable to those found previously [34,35].
This cooling treatment assumes fully ionized gas and

hence high temperatures. As the temperature falls to about
T ∼ 104 K, this process becomes ineffective, and the cooling
rate becomesmuch smaller. As a result, halo gas tends to cool
down to 104 K and then stays at that temperature.
The corresponding heating rate due to nuclear reactions

can be written in the form

dE
dtdV

����
heat

¼ npnnhσvinpϵnuke; ð37Þ

where hσvinp ∼ 10−19 cm3 s−1 and ϵnuke is the energy
deposited in the gas due to the reaction.
Most of the energy from the reaction is contained in

gamma rays, which are (mostly) optically thin and hence
tend to leave the system. The deuterium nucleus itself
experiences a recoil energy of about 1 keV, so that the
deposited energy has a lower bound ϵnuke > 1 keV.
We can find the requirements for the heating rate (36)

and the cooling rate (34) to be in balance:

AσT

�
kT
me

�
1=2ϵ cool ¼ χnhσvinpϵnuke

⇒ T ¼ me

k

�hσvinpϵnuke
AσTϵcool

�
2

χ2n: ð38Þ

The parameter χn ¼ nn=np is the relative abundance of free
neutrons with respect to free protons [and not equivalent to
n=p from Eq. (1)]. Note that we have also assumed that the
gas is fully ionized so that ne ¼ np.
For optically thin conditions, where the gamma rays

from the nuclear reactions escape, the two energy scales are
comparable (ϵnuke ≈ ϵcool) and the equilibrium temperature
would be T < 1 K. The approximations used in the cooling
function break down well before this temperature is
reached, so that we expect the gas to stay at T ∼ 104 K.
In the other limit, where all of the energy from the nuclear
reactions is contained within the gas, ϵnuke ∼ 1 MeV and
the equilibrium temperature would be T ∼ 8 × 104 K.
As a result, under optically thin conditions, the heating

due to nuclear reactions is ineffective and the heating and
cooling of gas on galactic scales proceeds in the usual
fashion. The heating due to nuclear processes would only
become important if the temperature from Eq. (38) exceeds
T ∼ 104 K. This requirement, in turn, implies that the
energy deposited per reaction ϵnuke ≳ 1 MeV. In order
for this much energy to be retained in the gas, the optical
depth must be close to unity, but Eq. (33) implies that τ

reaches a maximum value of τ0 ≪ 1. As a result, the galaxy
remains optically thin to the radiation generated by nuclear
reactions.

E. Time scales

The collapse time is given by

tG ¼ ðGρÞ−1=2 ≈ 95 Myr

�
n

1 cm−3

�
−1=2

: ð39Þ

The cooling time is given by

tcool ¼
3kT
2nΛ

¼ 3kT
2AnσTvsϵcool

≈ 5 Myr
�

n
1 cm−3

�
−1
�

T
106 K

�
1=2

: ð40Þ

The heating time due to nuclear reactions is given by

tnuke ¼
3kT

2nhσvinpϵnuke
≈ 41 Gyr

�
n

1 cm−3

�
−1
�

T
106 K

��
ϵnuke
1 keV

�
−1
: ð41Þ

The cooling time is much shorter than the heating time over
the entire range of applicability of the cooling function
used here. Once the gas cools down to T ∼ 104 K, the
cooling processes become much less effective, and cooling
processes cease to operate.
We can also find a benchmark density scale where the

collapse time is equal to the heating time. This scale is
given by

n⋆ ≈ 20 cm−3
�

T
104 K

�
2
�

ϵnuke
1 keV

�
2

: ð42Þ

This number density is larger than the typical mean density
of the interstellar medium in the Galaxy, but smaller than
the density of molecular clouds (n ∼ 102–103 cm−3), where
star formation takes place.
In summary, nuclear reactions in this scenario do not

affect structure formation for scales larger than molecular
clouds. Cloud formation and subsequent evolution of star
forming regions, however, can be affected and are dis-
cussed in subsequent sections.

F. Scaling with amplitude of the density fluctuations

OurUniverse has initial density fluctuations, inferred from
the observed inhomogeneities in the CMB radiation, with
amplitude Q ≈ 10−5. In other universes, these fluctuations
could be larger, with the consequence that galaxies can form
earlier. This difference in timing, in turn, results in galaxies
that are denser. Here we define the relative amplitude
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q≡ Q
Q0

; ð43Þ

where Q0 is the value in our Universe. The parameters ρ0
and r0 of the dark matter halos vary with the fluctuation
amplitude that specifies the initial conditions. For darkmatter
haloswith density profiles given by Eq. (12), the dependence
of ρ0 and r0 on the amplitudeQ has been derived previously
[8], where these results are based on the standard paradigm
for galaxy formation [34]. The resulting scaling laws can be
written in the form

ρ0 ∝ q3 and r0 ∝ q−1: ð44Þ

The temperature scale TX is determined by the depth of the
gravitational potential well of the halo. Since Ψ0 ∼Gρ0r20,
the temperature scales according to

TX ∝ q: ð45Þ

The fluctuation amplitude can be larger by a factor of
∼1000 [8].
Now we consider how the time scales vary with changes

in the fluctuation amplitude. Using Eqs. (44) and (45), we
find the scaling laws

tG ∝ q−3=2; tcool ∝ q−5=2; and tnuke ∝ q−2: ð46Þ

We first consider the case where the gas in the halo
remains optically thin, so that the deposited energy
ϵnuke ∼ 1 keV. For the larger starting temperature induced
by larger q, the cooling rate dominates even more over the
heating rate due to nuclear reactions. The gas in these
denser galaxies will readily cool down to the temperature
T ∼ 104 K where these cooling processes become ineffec-
tive. However, as the galaxies create their substructures,
they do so at higher densities, which can be larger than the
threshold where nuclear reactions play a role [see Eq. (42)].
Conversely, the optical depth scales as τ ∝ ρ0r0 ∝ q2.

For q ≳ 30, the halos become optically thick and retain
most of the energy generated by the nuclear reactions. The
energy scale ϵnuke thus increases from ∼1 keV to ∼1 MeV
for sufficiently dense galaxies.

IV. PROCESSES IN THE INTERSTELLAR
MEDIUM

A. Molecular clouds

The considerations of the previous section show that the
additional heating due to nuclear reactions does not greatly
inhibit the cooling of gas on galactic scales.1 In this section,
we thus assume that galaxies form in an analogous fashion

to those in our Universe and have the same basic internal
structures. In the next level of structure formation, the
galaxy assembles molecular clouds, which in turn support
the process of star formation. Molecular clouds have
densities of order n ∼ 100 cm−3 on their largest scales,
with much denser internal structure. At these densities, the
nuclear reactions from stable free neutrons can act to
prevent the cooling of cloud material and hence delay star
formation.
To start, we consider the simplest possible model of a

molecular cloud: The structure is assumed to have constant
density with n ≈ 100–300 cm−3. Like clouds in our
Universe, the thermal pressure is much smaller than that
provided by both magnetic fields and turbulence. These
latter sources of pressure thus support the cloud, so that we
can assume that its mechanical structure is largely inde-
pendent of the thermal evolution of the constituent gas.
The cooling processes for the gas are different from those

of the previous section. In this case, the gas is largely
neutral (not ionized) and the cooling processes become
inefficient. In our Universe, the cooling processes become
dominated by line emission from heavy elements, in spite
of their low relative abundances. In this context, however,
we consider the gas to be composed only of hydrogen, free
neutrons, and helium. The cooling function will thus be
similar to that applicable for the formation of the first stellar
generation in our Universe. In the limit of high density
n → 103 cm−3, the gas can maintain local thermodynamic
equilibrium and the cooling function Λ ∝ nH [35].
Moreover, we can model the cooling function with the from

dE
dtdV

����
cool

¼ nHC

�
T

104 K

�
3

; ð47Þ

where the constant

C ¼ 10−19 erg s−1; ð48Þ
and where the functional form is approximate. In the
approximation of constant cloud density, which holds in
the absence of expansion or contraction of the gas, the time
evolution of the cloud material is governed by the equation

3

2
n
d
dt

ðkTÞ ¼ −nCT3
4 þ npnnhσvinpϵnuke; ð49Þ

where T4 ¼ T=104 K. The equilibrium temperature corre-
sponds to both sides of the equation vanishing, and has the
value

Teq ≈ 78 K

�
n

300 cm−3

�
1=3

; ð50Þ

where we have taken ϵnuke ¼ 1 keV.
In the discussion thus far, the nuclear reactions took

place on sufficiently long time scales that we did not need
to consider the time evolution of np and nn due to depletion
of protons and neutrons. If the reaction nðp; γÞD occurs

1We are considering universes with the same amplitude Q of
the initial density fluctuations.
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when np ≠ nn, then the less abundant species will expo-
nentially vanish, while the more abundant species will
asymptotically approach a nonzero constant value. For
simplicity, we assume that the starting densities of neutrons
and protons are equal and evolve in the same manner. We
denote the initial number density of either species as n0.
The characteristic time scale for the populations of nuclei to
change is the inverse of the rate

γ ¼ n0hσvinp ≈ 3 × 10−17 s−1
�

n0
300 cm−3

�
∼

1

Gyr
: ð51Þ

The population of each nuclear species will thus decrease
with time according to the expression

nðtÞ ¼ n0
1þ γt

: ð52Þ

The full differential equation for the time evolution of the
(constant density) cloud thus has the approximate form

3

2

d
dt

ðkTÞ ¼ −CT3
4 þ

γϵnuke
1þ γt

: ð53Þ

Next we can write this evolution equation in dimensionless
form by defining a time scale tc ¼ ð3=2ÞkT0=C, where
T0 ¼ 104 K (note that tc ∼ 0.67 yr). In terms of the
dimensionless time τ ¼ t=tc, the evolution equation
becomes

dT4

dτ
¼ −T3

4 þ
B

1þ Γτ
; ð54Þ

where B ¼ γϵnuke=C ≈ 4.8 × 10−7 and where Γ ¼ γtc∼
6 × 10−10. Since the second term evolves on a much longer
time scale than the dimensionless time τ in the differential
equation, we can find an approximate solution by fixing the
value of the second term when solving the equation, and
putting the time dependence back in afterwards. We thus
define

a ¼ aðτÞ≡
�

B
1þ Γτ

�
1=3

; ð55Þ

and integrate the differential equation to find the implicit
solution

τ ¼
Z

1

T4

dT
T3 − a3

¼ 1

6a2

�
log

�
a2 þ aþ 1

a2 þ aT4 þ T2
4

�
þ 2 log

�
1 − a
T4 − a

��

þ 2
ffiffiffi
3

p

6a2

��
tan−1

�
aþ 2ffiffiffi

3
p

a

�
− tan−1

�
aþ 2T4ffiffiffi

3
p

a

���
:

ð56Þ

This form is rather cumbersome. We can also write the
integrand as a series and integrate term by term to obtain

τ ¼
X∞
n¼0

a3n

3nþ 2
½T−ð3nþ2Þ

4 − 1�: ð57Þ

The first term gives us the simple form

T4ðτÞ ¼
1

ð1þ 2τÞ1=2 ; ð58Þ

which describes the initial phase of evolution. In contrast,
the long-term evolution is given by assuming a quasi-
steady-state solution for Eq. (54), which implies

T4ðτÞ ¼
B1=3

ð1þ ΓτÞ1=3 : ð59Þ

These solutions indicate that the gas can cool relatively
quickly (over time scales measured in years) from an
initial temperature of T0 ¼ 104 K down to temperatures
T ∼ Teq ∼ 80 K. Subsequent evolution and cooling relies
on the depletion of neutrons, which provide a nuclear
heating source. The relevant depletion time is ∼1 Gyr
[see Eq. (51)].
These results suggest that the formation of molecular

clouds, and the subsequent onset of star formation, will be
only modestly affected by the presence of nuclear reactions
due to free neutrons. Heating due to these reactions will
slow the cooling of the gas material and thus delay star
formation. The depletion time is of order 1 Gyr, so that,
after a delay of this order, star formation could proceed
unimpeded. The nuclear reactions produce deuterium, so
that the stars that form will be enriched in deuterium
relative to those in our Universe.

B. Star formation

As the next stage of structure formation, molecular
clouds produce small centrally concentrated regions which
constitute the actual formation sites for individual stars
[36]. These structures, called molecular cloud cores, slowly
condense out of the larger cloud as they lose pressure
support from both turbulence and magnetic fields. After the
core regions reach a sufficiently concentrated configura-
tion, they undergo dynamic collapse, with a star forming
at the center of the collapse flow. A circumstellar disk
forms around the star and serves as a reservoir of angular
momentum. This section shows that the condensation
phase of this sequence leads to the processing of most
of the free neutrons into deuterium.
During the condensation phase, the density distribution

of the molecular cloud core can be described by a profile of
the form [37]
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ρðr; tÞ ¼ Λ
2πGt2

1

1þ ξ2
where ξ ¼ r

ajtj : ð60Þ

In this expression, time t is defined as the time before
dynamic collapse begins, so that t decreases as the core
grows more concentrated. The dimensionless parameter Λ
specifies the initial overdensity of the region and is of order
unity. The parameter a is the effective transport speed in
the gas.
With the density distribution of Eq. (60), molecular cloud

cores will remain optically thin until extremely short times
before the onset of collapse. These short times are not
realized in practice, as the solution breaks down once the
time is shorter than∼104 years. At this time before collapse,
the core experiences a rapid transition into its collapse state,
where this transient phase is no longer described by Eq. (60).
The total optical depth, τ, of the core is given by

τ ¼ σTΛa
4mpGjtj

≈ 1.4 × 10−3
� jtj
1 Myr

�
−1
; ð61Þ

where mp is the proton mass and we have taken Λa ¼
0.3 km=s. The core thus remains optically thin until a time
t ∼ 1400 yr before its dynamic collapse, and hence for the
entire evolutionary time of interest.
The rate per unit volume at which neutrons are syn-

thesized into deuterium has the form

dNn

dVdt
¼ n2hσvinp: ð62Þ

The total number of nucleons processed is larger by a factor
of 2. The total conversion rate is determined by integrating
over the volume of the cloud core that will become the star.
In this case, the reaction rate is a steeply decreasing
function of radius, so that we can ignore the outer boundary
of the core and integrate out to infinity,

dNn

dt
¼ hσvinp

m2
p

Z
∞

0

4πr2drρ2 ¼ hσvinpΛ2a3

4G2m2
pjtj

: ð63Þ

Including the factor of 2 to account for both the neutrons
and the protons that are processed, the total number of
nucleons burned is given by the time integral

ΔN ¼ 2

Z
tf

t0

dNn

dt
dt ¼ hσvinpΛ2a3

2G2m2
p

log

�
t0
tf

�
: ð64Þ

The solution for the condensing core only holds up to a time
tf ≈ 104 yr before dynamic collapse.After this time, the core
undergoes a transition before rapidly approaching a well-
defined collapsing state [38]. The initial time t0 ≈ 1–10 Myr
is determined by the time when the solution of Eq. (60) first
holds. The logarithmic factor is thus ∼ log 103 ∼ 7, and the
number of converted nucleons is of order

ΔN ≈ 8 × 1056
�

a
0.3 km=s

�
3

≈ 0.64N⊙; ð65Þ

where N⊙ is the number of nucleons in a Solar-mass star.
Given that roughly one third of the mass is already in
deuterium (from BBN), this result indicates that most of the
remaining nucleons will experience nuclear reactions during
the contraction phase of the molecular clouds’ core that
forms stars. Any remaining free neutrons are then likely to be
burned during the subsequent dynamic collapse phase. As a
result, we expect stars to form with relatively few free
neutrons left, and to begin their evolution with a large
deuterium composition.
The discussion thus far assumes that the energy pro-

duced by the nuclear reactions has a negligible effect on the
evolution of the condensing cloud core. Equation (63)
specifies the number of reactions per unit time integrated
over the entire core structure. The total luminosity (power)
generated by the core is thus given by

L ¼ ϵnuke
dNn

dt
; ð66Þ

where ϵnuke is the energy per reaction that is retained by the
gas. Equation (61) shows that the core remains optically thin
to the radiation produced by the reactions, implying most
of the energy (2.2 MeV per reaction) is lost. Only the recoil
energy is retained so that we expect ϵnuke ¼ Oð1 keVÞ.
The luminosity is thus given by

L ¼ ϵnukehσvinpΛ2a3

4G2m2
pjtj

≈ 0.7L⊙
�

ϵnuke
1 keV

��
a

0.3 km=s

�
3
�

t
1 Myr

�
−1
: ð67Þ

For comparison, during the subsequent stage of dynamic
collapse, the protostellar luminosities are L∼ several L⊙,
and are not large enough to affect the dynamics.2

The above considerations indicate that even though
nuclear reactions can process most of the free neutrons
into deuterium during the phase of core condensation,
the energy generated has little effect on the evolution. This
finding may seem counterintuitive: nuclear reactions in our
Universe can power the Sun for ∼10 Gyr, whereas core
evolution takes place on the much shorter time scale of
∼1 Myr, but both systems burn up comparable amounts of
nuclear fuel. Even though the core processes essentially all
of its nuclei at this faster rate (by a factor of ∼104), each
reaction provides only ∼1 keV of usable energy, compared
to ∼28 MeV for each helium nucleus produced in the Sun.

2Specifically, the luminosity is a fraction of the power scale
L0 ¼ GM� _M=R�, where M� and R� are the mass and radius of
the forming star at the given time and _M ∼ a3=G is the rate at
which mass falls into the central region.
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The effective energy resources are thus also different by a
comparable factor (∼104) so that the object has about the
same power (L ∼ 1L⊙). This result holds only because the
core remains optically thin to the gamma rays produced by
the reactions.

V. STELLAR EVOLUTION

A. Changes to the MESA package

In this section we detail the changes we made to MESA

[39,40] to compute stellar evolution in the absence of the
weak interaction. The primary reaction chain for 4He
synthesis in our Universe is the pp chain, schematically
given as

pþ p → Dþ νe þ eþ; ð68Þ

pþ D ↔ 3Heþ γ; ð69Þ
3Heþ 3He ↔ 4Heþ 2p: ð70Þ

The reactions in Eqs. (69) and (70) are electromagnetic and
strong, respectively, and would be in operation in a
weakless universe. Equation (68) is a weak interaction
and by definition is no longer applicable. As a result, we
remove pðp; νeeþÞD from the nuclear reaction network in
MESA, while preserving Dðp; γÞ3He and 3Heð3He; 2pÞ4He.
The BBN calculations in Table I show that the primordial

composition can have significant contributions from D.
Free protons can capture on the ambient D to form 3He, in
line with Eq. (69). Additionally, two D nuclei can interact
with each other to form larger nuclei through three channels

Dþ D ↔ 3Heþ n; ð71Þ

Dþ D ↔ Tþ p; ð72Þ

Dþ D ↔ 4Heþ γ: ð73Þ

All three of the reactions are in operation in a weakless
universe. Reactions (71) and (72) are the principal means of
D destruction whereas reaction (73) is subsidiary. To
properly compute the nucleosynthesis in stars, we must
include all three reactions in our nuclear reaction network,
and in addition, we must include n and tritium, T, in our
isotope list.
With the inclusion of free neutrons, we need to include

other nuclear reactions, for example, TðD; nÞ4He and
TðT; 2nÞ4He. Our final nuclear reaction network includes
all of the BBN reactions which involve A < 5 from
Ref. [17]. In addition, we include other reactions which
are not important in BBN but could be important with a
high D mass fraction, e.g., DðD; γÞ4He from Eq. (73).
Finally, our nuclear reaction network includes reactions
which synthesize 12C and 16O for completeness. 12C is the

catalyst for the CNO cycle which burns free protons into
4He. The CNO cycle relies on β decays which are not in
operation in a weakless universe. We do not include any
part of the CNO cycle in our calculations.

B. Weakless stars

We compute the deuterium-burning main sequence at
zero metallicity for three cases of the weakless universe as
shown in Table I: η ¼ 10−9; 10−10; 10−11. For all cases of η,
we fix n=p ¼ 1. The range of η includes the value for
our Universe of 6 × 10−10 [23] and the value adopted by
Ref. [9] of 4 × 10−12, plus an intermediate value.
At still lower values of η, a negligible amount of

primordial nucleosynthesis occurs, and the universe con-
sists almost entirely of free protons and free neutrons,
which convert to deuterium during star formation. The
evolution of these stars would be similar to the η ¼ 10−11

case, but their lifetimes would be roughly twice as long. At
higher values of η, BBN produces a universe composed
almost entirely of 4He.
Notably, the only scenario that produces long-lived stars

with Gyr lifetimes is η ¼ 10−11. Therefore, we adopt this as
the “weakless universe” where not otherwise specified,
including the discussion on habitability in Sec. VI. We
compute three other stellar main sequences for comparison
to this weakless universe model. The weakless universe
with metals is a model for stars in a weakless universe that
has undergone chemical evolution as described in Sec. VI.
This model adopts mass fractions of Xp ¼ 0.01 for free
protons, XD ¼ 0.53 for deuterium, Y ¼ 0.45 for 4He, and
Z ¼ 0.01 for metals. “Our universe” is simply the main
sequence in our Universe, also computed with metals. We
compute this because it is most recognizable on the
Hertzsprung-Russell (H-R) diagram. Finally, we define a
“weak analog universe,” which has a weak interaction, but
it has the same helium abundance as the weakless universe
(Y ¼ 0.4569) and no metals to make the closest possible
comparison to the metal-free weakless universe.
We are unable to compute the very bottom end of the

main sequence in a weakless universe because the mini-
mum stellar mass is 0.013 M⊙, the deuterium-burning
limit, but the minimum mass computed by MESA is
0.03 M⊙. There are also gaps in some of our computed
main sequences because MESA failed to converge.
We plot the stellar zero-age main sequence (ZAMS)

from all four of these models in Fig. 7 on the H-R diagram.
The start of hydrogen burning defines the ZAMS. Our
Universe is represented with black triangles, the weak
analog universe with red triangles, our adopted weakless
universe with red circles, and the weakless universe with
metals with black circles. Note that the main sequence in
weak universes is a pp-burning main sequence, while in
weakless universes, it is a deuterium-burningmain sequence.
Our Universe produces the familiar main sequence on

the H-R diagram, while a more helium-rich universe
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produces hotter stars. In contrast, the main sequence in a
weakless universe falls mostly along the Hayashi track,
lying vertically over much of its length, staying near Teff ¼
4.5 × 103 K for a wide range of masses. Stars more massive
than about 50 M⊙ are bluer, and stars less massive than
0.25 M⊙ are redder. This occurs because deuterium burn-
ing begins at a much lower central temperature and thus a
much earlier time than the pp chain. The protostars
descend down the Hayashi track as in our Universe, until
deuterium burning reaches an equilibrium level, which
occurs while the star is still large and red. As a result, most
stars in a weakless universe appear as red giants. The lower
metallicity and higher helium fraction results in them being
more orange, but they do become redder by 500–1000 K as
they age.
Figure 8 shows evolutionary tracks on the H-R diagram

for our stellar main sequences for all three of our weakless
universe models through the end of deuterium burning as
well as a fourth model computed with 100% 4He, which
represents the limit as η increases. We begin plotting the
tracks at an age of 105 years, reflecting the fact that it takes
that long to make a protostar in our Universe—the time to
build up a protostar to its final mass and reach the birth line.
This is an aspect of history that is not captured by MESA,
which computes a pre-main-sequencemodel at the finalmass
and a very large radius, then lets it contract. Nonetheless, we
are confident in our results at the 10% level because models
with different initial conditions tend to converge quickly and

because our models look very similar at 104 and 105 years,
indicating they have reached such a quasiequilibrium state.
A red dot on each track denotes the location in the H-R
diagram when the star reaches the ZAMS. Some red dots do
not appear to be on the tracks which indicates that those stars
burn deuterium during protostar formation.We also put a red
dot on the tracks for the 100% 4He models which denote the
start of 4He burning.
For all of our weakless models, but especially for the

η ¼ 10−11 case, the evolutionary tracks look significantly
different from our Universe. Instead of moving upward and
slightly blueward on the H-R diagram as they age, weakless
stars of less than about 5 M⊙ make a large redward
excursion and grow significantly fainter early in their lives,
then move back to near their ZAMS position, followed by a
much larger blueward excursion near the ends of their lives.
The redward excursion is 500–1000 K cooler and takes
∼10% of the stars’ main sequence lifetime to reach the
redmost point. Returning to the ZAMS position takes a
further ∼70% of the main sequence lifetime, but the stars
have grown significantly brighter by that point. For the
smallest stars that are of most interest for habitability, their
brightness increases by a factor of ∼5 over the main
sequence lifetime, as opposed to ∼2 for Sun-like stars in
our Universe. The blueward excursion takes the remaining
∼20% of the main sequence lifetime and stops at about
104 K for a wide range of masses as the deuterium fuel is
exhausted, and the star enters a new contraction phase
ahead of helium burning.
Stars in cases with a higher value of η have a much lower

deuterium fraction. This means that they must have a higher
core temperature and contract further to reach an equilib-
rium state, and they will also have a higher surface
temperature due to the higher helium fraction. Thus, the
main sequence is shifted blueward while the end point of
deuterium burning remains roughly the same: a nearly
pure-helium star with an effective temperature of ∼104 K.
The stars will follow similar, but much shorter-lived
evolutionary tracks. For η ¼ 10−10, the longest-lived stars
live a few hundred Myr and typical effective temperatures
are around 6 × 103 K. For η ¼ 10−9, stars live only a few
Myr at most and have typical effective temperatures around
9 × 103 K, in both cases moving blueward to the same
end point.
The limiting case of pure helium stars will not occur in a

weakless universe even for very high baryon densities of
η ¼ 10−6 because the helium fraction produced by BBN
appears to approach a limit of ∼98%. However, we still
include them here for comparison purposes. The evolu-
tionary tracks for these stars represent the helium burning
phases. These helium stars do not “stall” at a deuterium-
burning main sequence and instead continue contracting
until they reach a helium-burningmain sequence (the point at
which the power output from helium burning overwhelms
that of hydrogen/deuterium burning) with temperatures of

FIG. 7. The stellar main sequence in our Universe (black
triangles), a “weak analog” universe (red triangles), and the
weakless universe (circles) plotted on the H-R diagram. For weak
universes, this is a pp-burning main sequence, while in the
weakless universe, it is a deuterium-burning main sequence. For
the weakless universe, we plot the main sequence with and
without metals (black and red, respectively). The weak analog
universe has no metals and the same helium fraction as the
weakless universe.
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3 × 104–15 × 104 K, while stars smaller than ∼0.3 M⊙ fail
to start helium burning at all.
Of the cases we study, only small stars (≲0.1 M⊙) in the

η ¼ 10−11 case have the multi-Gyr lifetimes needed to have
a large chance of supporting habitable planets. For com-
parison purposes, we adopt a “weakless sun”with a mass of
0.056 M⊙ and a lifetime of 8.3 Gyr, and we plot its
temperature, luminosity, and radius evolution compared
with our Sun in Fig. 9.
Unlike our Sun, the weakless sun grows significantly

fainter and redder over the first Gyr of its life, decreasing in
luminosity by a factor of 3. By itself, this is not too different
from M-dwarfs in our Universe, but the redward excursion
that occurs on the main sequence (top-left panel of Fig. 8) is
still unusual. The weakless sun resembles a bright M-dwarf
with a temperature of 2.5 × 103 K, a luminosity of 0.1 L⊙,
and a radius of 0.15R⊙ during the period when its properties
are most stable.

The other striking difference between the evolution of
the weakless sun and our Sun is that despite its main
sequence lifespan of 8.3 Gyr, the weakless sun begins to
take a sharp upturn in temperature and luminosity at an age
of 3.6 Gyr, increasing in brightness by a factor of 10 by the
end of deuterium burning, whereas a Solar-type star
brightens much more slowly and more steadily over its
main sequence life. This shift corresponds to the blueward
excursion on the H-R diagram.
Finally, we plot important ZAMS stellar parameters

versus mass in Fig. 10 for all three of our weakless universe
cases, here computing a much greater number of individual
models. The top two panels, showing effective temperature
and luminosity, mirror the results we see in the H-R
diagram. We note that the mass luminosity relation for
weakless stars has a much shallower slope of L ∝ M2

compared with our Universe, where the relation is closer
to L ∝ M3−4.

FIG. 8. Evolutionary tracks of stars plotted on the H-R diagram in our three weakless universe cases and pure helium stars. Masses of
individual tracks are labeled in solar masses. The tracks begin at an age of 105 years and end at the end of deuterium burning (helium
burning for pure helium stars). The red dots denote the ZAMS for the weakless models, and the start of helium burning for the 100%
helium models.
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Because the temperature of weakless stars is nearly
constant over a wide range of masses, we expect to find a
mass-radius relation of R ∝ M, such that radius scales
linearly with mass. This is borne out by our plot of radius
versus mass in the bottom-right panel. This results in the
smallest stars being brighter, while the largest stars have a
similar luminosity to those in our Universe on the order
of 106L⊙.
The bottom-left panel of Fig. 10 plots the central

temperature versus mass for our three weakless universe
cases and shows significant variation with mass. The
deuterium-burning temperature is usually described at
106 K. However, the lowest-mass stars in our η ¼ 10−11

case have central temperatures approaching 3 × 105 K,
much lower than expected. It may be that the much higher
deuterium concentration and the higher central density
make up for the lower temperature in the reaction rate, or
that following the stellar evolution over Gyr time scales
implies that lower reaction rates can be significant where
they would not be in our Universe. In any case, the central
temperature also has a very consistent power-law relation
with a stellar mass of Tc ∝ M0.14.

The mass-luminosity relationship shown in the upper-
right panel of Fig. 10 has the power-law form L ∝ M2.
Although a detailed derivation of this relation is beyond the
scope of this paper, we can understand this finding in
approximate terms. First, we note that this scaling law is
intermediate between the mass-luminosity relation found
for low-mass stars in our Universe (L ∝ M4) and that for
high-mass stars (L ∝ M). The weakless stars under con-
sideration here have properties in common with both low-
mass and high-mass stars. Weakless stars of low mass are
brighter than those in our Universe, but objects at the high-
mass end of the distribution are somewhat dimmer. This
compression of the luminosity range leads to the inter-
mediate slope of the mass-luminosity relationship. This
finding can also be understood through the following
approximate derivation.
Using order-of-magnitude scaling laws [41,42], we can

write the central pressure of the star in terms of the stellar
mass and radius,

Pc ∼
GM2

R4
; ð74Þ

where dimensionless constants of order unity are sup-
pressed. Using the ideal gas law to evaluate the pressure,
we find

kT ∼
GMμ

R
; ð75Þ

where μ is the mean molecular weight and all quantities are
evaluated at the stellar surface. In writing Eq. (75), we
ignore dimensionless constants so that we can explore the
scaling relationships. The dimensionless constants could
be orders of magnitude different between the center in
Eq. (74) and the surface in Eq. (75). Next, we note that the
photospheric temperature is nearly constant across the
entire stellar mass range, as indicated by the nearly vertical
main sequence in Fig. 7 and the effective temperature
plotted in the upper-left panel of Fig. 10. This trend of a
low, nearly constant surface temperature is much like the
behavior of stars ascending the red giant branch in our
Universe (as noted earlier, these weakless stars have much
in common with red giants). In the case of red giants, as
the stellar envelope expands and the surface temperature
decreases, the opacity of the photosphere eventually
increases due to contributions from H− ions. In addition,
when the photosphere reaches a minimum temperature of
T ∼ 5 × 103 K, the outer layers of the star become fully
convective. Luminosity is efficiently carried out of the star
and prevents further lowering of the surface temperature.
As a result, red giants move almost vertically up the H-R
diagram (at nearly constant temperature). The behavior in
the top-right panel of Fig. 10 is thus the weakless analog of
the well-known Hayashi forbidden zone, which arises in
pre-main-sequence evolution [43] and in red giants [44].

FIG. 9. Comparison of the time evolution of the temperature,
luminosity, and radius of our Sun and our adopted “weakless sun”
with a mass of 0.056 M⊙ and η ¼ 10−11.
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Weakless stars behave in a similar manner to these two
stellar states from our Universe. As a result, Eq. (75)
implies that M ∝ R. The stellar luminosity is given by

L ¼ 4πR2T4 ∼ R2 ∼M2; ð76Þ

where σ is the Steffan-Boltzmann constant and the final
approximate equalities assume that the surface temperature
is constant.

VI. CHEMICAL EVOLUTION AND
HABITABILITY

Of the cases we consider, only the η ¼ 10−11 case
produces stars with Gyr lifetimes. In the η ¼ 10−10

case, we can extrapolate from our results that a star at the
deuterium-burning limit would have a lifetime of ∼0.6 Gyr.
However, in the η ¼ 10−11 case, stars of 0.013 − 0.10 M⊙
would be similar to M-dwarfs and would have long lifetimes
of 3–30 Gyr, long enough for complex life to develop on
orbiting planets with liquid water.

There are a few differences in weakless stars that impact
habitability. Most significantly, the weakless sun only
remains in conditions stable enough to support life for
about 30% of its main sequence lifetime, compared with
60% or more for a Solar-type star, making them signifi-
cantly less hospitable to life. Additionally, the habitable
zone of our weakless sun model would be at roughly
0.3–0.5 AU, which is outside the tidal locking radius [45],
so tidal locking is not a concern.
The habitability of the weakless universe also depends

on the presence of the elements needed to make organic
compounds. Chemistry in a weakless universe would be
nearly identical to our own, so we postulate that life would
require, at a minimum, carbon and oxygen. Additionally,
life requires materials that can form planets, although
the possibility of water worlds means that this does not
necessarily require new elements.
The chemical evolution of a weakless universe is much

more speculative once later-generation stars form with a
nonzero metallicity because the nuclear reactions involved

FIG. 10. Plots of ZAMS stellar parameters versus mass for our three weakless universe models. Top left: Effective temperature.
Top right: Luminosity. Bottom left: Core temperature. Bottom right: Radius.
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are not well studied. However, the initial generation of
stars will disperse their heavy elements via two primary
mechanisms: red giant winds and type Ia supernovae.
Core-collapse supernovae (notably, the primary source of
oxygen in our Universe) fail to explode because of the lack
of neutrinos, with the entire star collapsing to a degenerate
remnant. If the star has undergone dramatic mass loss, it
could collapse to a “nucleon star” analogous to a neutron
star in our Universe. The maximum mass of a neutron star
is computed as 2.01 − 2.16 M⊙ [46]. However, a nucleon
star is composed of both protons and neutrons, giving the
degenerate matter twice as many degrees of freedom, so the
maximum mass of a nucleon star could potentially be as
high as 4.32 M⊙. Nonetheless, most massive stars will
collapse directly to a black hole since they will not undergo
enough mass loss to form such a nucleon star.
Asymptotic giant branch (AGB) winds from high-mass

stars dredge up triple-alpha products from the cores of stars
and disperse the largest amount of carbon in our Universe
[47,48]. The metals in these winds consist mostly of
carbon, but they also include some oxygen. The authors
of Ref. [49] estimated that the triple-alpha process produces
16O at a rate of ∼7%.
Meanwhile, the authors of Ref. [50] estimated yields of

type Ia supernovae in eight different models, resulting in
56Ni yields between 35% and 90%, most likely near the
upper end of that range. Most of the remaining ejecta is
composed of 54Fe and 58Ni. Other alpha-process elements,
28Si, 32S, 36Ar, and 40Ca are also produced in significant
amounts at the same order of magnitude as their Solar
abundances. Without beta decay and with a n=p ratio near
one, the most important products of type Ia supernovae in a
weakless universe are most likely 56Ni and 52Fe, both of
which will be stable. Thus, the second generation of stars
will form with “nickel peak elements” and carbon and
oxygen, the necessary elements to form terrestrial planets
and life. These planets will have a very iron-rich, Mercury-
like composition, but will also have carbon and oxygen.
One other problem for habitability is the very high

carbon-to-oxygen ratio, which would seem to suppress the
formation of water. However, the authors of Ref. [51]
suggested that in the reducing environment present at high
C/O ratios, as much as 10% of the oxygen could still bind
into water instead of carbon monoxide, so this is also not
necessarily a barrier to life forming.
Many metals produced in stars will undergo further

processing in the ISM. Just as free protons combine with
free neutrons to form deuterium during star formation,
these metals will also combine with free neutrons to form
neutron-rich isotopes. Any neutron capture reactions with
a cross section similar to or greater than that of free
protons (σv ¼ 7.3 × 10−20 cm3 s−1) will occur in signifi-
cant amounts, essentially resulting in an s-process during
star formation. Without beta decay, this neutron process
could theoretically continue all the way to the neutron drip

line, but neutron capture cross sections become small
compared with free protons for neutron-rich isotopes, so
this is unlikely in practice.
The neutron capture cross sections have not been mea-

sured for all of the isotopes in question, but it is known that
they are several times greater than those for free protons from
58Ni through 64Ni and for 54Fe through 58Fe. Thus, each atom
of nickel peak elements in a star-forming core will absorb on
the order of ten neutrons during star formation. Furthermore,
the same is true of calcium; argon atoms will absorb at least
five neutrons each, and sulfur atoms two or three. 12C, 16O,
and 28Si will undergo very little such processing due to small
neutron capture cross sections. Because the n=p ratio is
identical to one, this will result in second-generation stars
forming with a slight overabundance of free protons. Based
on solar abundances [52], the abundance of free protons will
probably be on the order of 1%.
Weakless stars will not have a CNO cycle, which

depends on beta decay. Instead, any free protons will
contribute to what the authors of Ref. [9] called “proton-
clumping” reactions, in which protons are added to carbon
and oxygen nuclei, which are stable up to the proton drip
line, essentially resulting in an “sp process” in the star.
For 12C, the proton drip line limits these reactions to

pþ 12C → 13Nþ γ; ð77Þ

pþ 13N → 14Oþ γ; ð78Þ

and similarly for 16O

pþ 16O → 17Fþ γ; ð79Þ

pþ 17F → 18Neþ γ: ð80Þ

However, if conditions are hot enough to overcome the
Coulomb repulsion between protons and larger nuclei,
other reactions are possible

4pþ 28Si → 32Ar; ð81Þ

4pþ 32S → 36Ca; ð82Þ

2pþ 36Ar → 38Ca; ð83Þ

4pþ 40Ca → 44Cr: ð84Þ

Interestingly, there is no reaction chain that has nitrogen or
fluorine as an end point (every stable isotope of nitrogen
and fluorine can become a stable isotope of oxygen and
neon, respectively, by adding a proton), or indeed most
odd-atomic-number elements. A weakless universe might
therefore have a nitrogen abundance an order of magnitude
lower than our Universe, like other odd-atomic number
elements, and a greater neon abundance, similar to carbon
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and oxygen in our Universe. The lower nitrogen abundance
could have implications for life, but on the other hand, these
reactions do increase the abundance of oxygen, potentially
solving the problem of the high C/O ratio. Further analysis
of proton-clumping reactions would be needed to deter-
mine how these abundances evolve over time.
If carbon-based life arises in a weakless universe, it will

have one further difference from our Universe in that nearly
all of the hydrogen is in the form of deuterium, and thus,
nearly all of the water will be heavy water, D2O. On Earth,
most plants and animals will die if roughly 50% of the
water in their bodies is replaced with D2O [53]. The first
place to look for the reason for this effect would be cellular
respiration. All eukaryotic life on Earth, including humans,
derives energy by pumping protons across a membrane via
proton pump proteins to create an electrochemical potential
which then powers adenosine triphosphate (ATP) synthase
proteins to form energy-storing ATP molecules. However,
this process is not significantly affected by the introduction
of heavy water; the proton pumps appear to work just as
well as deuteron pumps [53].
The exact cause of the toxicity of heavy water remains

uncertain, but it is believed to be due to the altered strength of
hydrogen bonds (intermolecular forces between polar mol-
ecules) involving deuteriumatoms [54]. The hydrogen bonds
between adjacent water molecules have a bond energy of
21 kJmol−1, and deuteration increases the strength of these
bonds on the order of 10% [55]. Because protein folding is
determined in large part by hydrogen bonds, any change in
their strength can dramatically impair cellular processes. It is
believed that the most important toxic effect resulting from
this is damage to fast-dividing cells, similar to the symptoms
of cytotoxic poisoning and radiation poisoning [54].
In a weakless universe, where the majority of hydrogen

is deuterium, enzymes and biochemical reactions would
have to adapt to the strength of deuterium-based hydrogen
bonds and the other quantum chemical properties of
deuterium. But this is no greater an evolutionary challenge
than producing biochemistry based on light hydrogen, so
we do not consider it an impairment to life.
One other factor deserves note: the abundance of many

elements that are crucial to biochemistry on Earth in ionic
form is much lower in a weakless universe because they are
primarily produced by core-collapse supernovae. Sodium
in particular would be nearly nonexistent, and chlorine
would also be depleted by 2 orders of magnitude relative to
our Universe. Based on the yields of type Ia supernovae, the
most common salt that is soluble in water is likely to be
magnesium sulfate (Epsom salt in its hydrate form), which
is the second largest component of sea salt on Earth.

VII. CONCLUSION

A. Summary of results

The overarching result of this work is that universes in
which the weak interaction is absent can remain viable.

This builds upon the original proposal of aweakless universe
[9] and is largely consistent with that scenario. More
specifically, our main results can be summarized as follows.
We have studied the epoch of big bang nucleosynthesis

in detail, exploring a wide range of baryon-to-photon ratio
η and over the full range of possible initial neutron-to-
proton ratios (Sec. II). In order for the universe to avoid the
overproduction of helium, which would lead to a shortage
of hydrogen, the value of η must be smaller than that of our
Universe by a factor of ∼100. For the working range of
parameter space, universes emerge from the BBN epoch
with roughly comparable abundances of protons, free
neutrons, deuterium, and helium.
The main difference between a weakless universe and

ours is the presence of a substantial admixture of both
free neutrons and deuterium. However, the formation of
galaxies (Sec. III) is largely unchanged. On these large
spatial (and mass) scales, the densities are too low for the
nuclear composition to play a role. The formation of
substructure within galactic disks, such as molecular cloud
complexes where stars form (Sec. IVA), is only modestly
affected. Some nuclear reactions of the free neutrons can
occur at cloud densities, and the resulting heating can delay
the onset of star formation, but the energy injection is not
sufficient to destroy the clouds. As substructures within the
clouds condense further (Sec. IV B), nuclear reactions
involving the free neutrons and protons process essentially
all of the free neutrons into deuterium. As a result, the free
neutrons are used up before they are incorporated into stars.
Finally, we have considered stars and stellar evolution in

universes without the weak interaction (Sec. V). For the low
value of η we primarily consider here, stars begin their
evolution with much greater amounts of deuterium than in
our Universe. In the absence of the weak interaction, the
standard pp chain and CNO cycle for hydrogen fusion are
no longer operative, and stars are powered by the strong
interaction via deuterium burning (roughly analogous to the
scenario where diprotons are stable and stars must burn
exclusively through the strong interaction [56]). These stars
resemble red giants and have proportionately greater
luminosities and shorter lifetimes, but the smaller minimum
mass of deuterium-burning stars means that stars with Gyr
lifetimes are still possible. The lightest possible stars more
closely resemble late K- or early M-dwarfs and can live for
up to ∼30 Gyr. These stars also show more variation in
luminosity over their main sequence lifetimes than stars in
our Universe.
After deuterium is processed into helium, the subsequent

nuclear reactions that take place via the strong interaction
proceed in much the same way as in our Universe. The
weakless universe is similar to our Universe with large
abundances of alpha elements. However, the dispersal
mechanisms in a weakless universe are limited to AGB
winds for 12C and type Ia supernovae for the other alpha
elements. Projecting the chemical evolution of a weakless
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universe over multiple generations of stars suggests some
differences from our Universe, such as an overabundance of
carbon and neon and an underabundance of nitrogen and
elements heavier than nickel, but these differences are not
enough to preclude either planet formation or the develop-
ment of organic chemistry.

B. Discussion

In addition to indicating that hypothetical universes
without weak interactions remain viable, the results of this
work provide insight into the workings of our own
Universe. By considering such scenarios, we can under-
stand how far trends in our Universe can be taken. We
understand BBN in our Universe such that we can predict
the primordial abundances to high precision (with the
exception of 7Li [57]). Much current research done on
SBBN is in computing higher-order effects detectable in
future experiments [22,58–60]. However, the relationship
between YP and n=p is approximated to high accuracy as
YP ≃ 2ðn=pÞ=ð1þ n=pÞ. This expression results from the
assumption that all of the neutrons (to one part in 105) are
incorporated into 4He. It has traditionally been used in the
context of an evolving n=p ratio [given by the reactions in
Eqs. (2)–(4)] and a baryon number within an order of
magnitude of that given by the CMB temperature power
spectrum. In this work, we expanded the parameter space to
encompass both a larger portion of the range 0 < n=p < 1
and the new range n=p > 1. We have found that the
expression YP ≃ 2ðn=pÞ=ð1þ n=pÞ is valid over the larger
range of 0 < n=p < 1, and furthermore can be generalized
with Eq. (11) to extend to n=p > 1. Although it is
physically reasonable that with fewer than 50% protons,
there will be less 4He, what is surprising is the degree of
symmetry in Fig. 6. This indicates that our weakless
nuclear reaction network—identical to that of SBBN
without the weak interaction rates—isolates the baryons
into 4He and free nucleons independent of isospin. An
interesting scenario would be to extend the BBN network to
include heavier nuclei and more neutron capture reactions
in the case of n=p > 1. Such an environment (high entropy
and n=p > 1) could be conducive to r-process nucleosyn-
thesis, where there is no analog for n=p < 1 and hence an
asymmetry. The r process relies on β decays of neutron-
rich nuclei, so our argument would have to be applied to a
class of universes where the weak interaction is indeed
present. This thought experiment would test whether the

symmetry in Fig. 6 is the result of a limited network, or
something more fundamental in the nuclear properties and
interactions of the light nuclides. We note that this
discussion is predicated on η being large enough so that
out-of-equilibrium nuclear reactions can occur at low
enough temperatures.
While a weakless universe produces all of the elements

necessary for life, the relative habitability of such a universe
compared with our own depends on several factors such as
the C/O ratio that are a result of chemical evolution. In this
paper, we have examined the most important effect on
stellar evolution by replacing the pp chain and CNO cycle
with a strong deuterium-burning reaction. The next step
would be to determine the reaction rates of proton-
clumping reactions and incorporate them into the nuclear
network of MESA, which would make it possible to
determine the stellar yields of carbon, nitrogen, oxygen,
neon, and possibly several heavier elements. These yields
would provide clearer insights into the range of possible
chemical makeup of life in a weakless universe.
Finally, the results of this paper suggest that the inclusion

of nuclear processing due to the presence of free neutrons
alters the evolution of galaxies, star formation, and stellar
evolution to a moderate degree. The changes are neither
negligible nor dominant. In particular, the presence of free
neutrons does not prevent a universe from becoming
habitable. In some sense, this intermediate result can be
understood on energetic grounds. The presence of stable
neutrons allows for fusion to take place in the interstellar
medium (rather than having all nuclear reactions take place
in stellar interiors) and produce deuterons, which have a
binding energy of 2.2 MeV. For comparison, the production
of helium-4, with a binding energy of 28 MeV, provides
much of the energy for galaxies, so that the new energy
source represents an 8% effect.
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